SlideShare a Scribd company logo
1 of 58
Download to read offline
Dynamics
Dynamics
Newton’s Laws Of Motion
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Law 2
“ Mutationem motus proportionalem esse vi motrici impressae, et
  fieri secundum rectam qua vis illa impritmitur.”
Dynamics
                    Newton’s Laws Of Motion
Law 1
“ Corpus omne perseverare in statu suo quiescendi vel movendi
  uniformiter, nisi quatenus a viribus impressis cogitur statum illum
  mutare.”
Everybody continues in its state of rest, or of uniform motion in a
right line, unless it is compelled to change that state by forces
impressed upon it.
Law 2
“ Mutationem motus proportionalem esse vi motrici impressae, et
  fieri secundum rectam qua vis illa impritmitur.”
The change of motion is proportional to the motive force
impressed, and it is made in the direction of the right line in which
that force is impressed.
Motive force  change in motion
Motive force  change in motion
          F acceleration
Motive force  change in motion
         F acceleration
         F  constant  acceleration
Motive force  change in motion
         F acceleration
         F  constant  acceleration
        F  ma            (constant = mass)
Motive force  change in motion
                     F acceleration
                     F  constant  acceleration
                    F  ma            (constant = mass)

Law 3
“ Actioni contrariam semper et aequalem esse reactionem: sive
  corporum duorum actions in se mutuo semper esse aequales et in
  partes contrarias dirigi.”
Motive force  change in motion
                     F acceleration
                     F  constant  acceleration
                    F  ma            (constant = mass)

Law 3
“ Actioni contrariam semper et aequalem esse reactionem: sive
  corporum duorum actions in se mutuo semper esse aequales et in
  partes contrarias dirigi.”


To every action there is always opposed an equal reaction: or, the
mutual actions of two bodies upon each other are always equal, and
directed in contrary parts.
Acceleration
Acceleration
     d 2x
  2
x
     dt
     dv
   
     dt
Acceleration
     d 2x
  2
x           (acceleration is a function of t)
     dt
     dv
   
     dt
Acceleration
     d 2x
  2
x                (acceleration is a function of t)
     dt
     dv
   
     dt
      d 1 2 
     v        (acceleration is a function of x)
     dx  2 
Acceleration
     d 2x
  2
x                (acceleration is a function of t)
     dt
     dv
   
     dt
      d 1 2 
     v        (acceleration is a function of x)
     dx  2 
     dv
  v             (acceleration is a function of v)
     dx
Acceleration
                          d 2x
                       2
                     x                (acceleration is a function of t)
                          dt
                          dv
                        
                          dt
                           d 1 2 
                          v        (acceleration is a function of x)
                          dx  2 
                          dv
                       v             (acceleration is a function of v)
                          dx
e.g. (1981)
Assume that the earth is a sphere of radius R and that, at a point r  R 
from the centre of the earth, the acceleration due to gravity is
proportional to 1 and is directed towards the earth’s centre.
                 r2
A body is projected vertically upwards from the surface of the earth with
initial speed V.
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0




        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0                         resultant
                              m
                               r
                                      force



        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
        v0                         resultant
                              m
                               r
                                      force

                                    m
                                    r2
        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                         m
          v0                   resultant         m   2
                                                   r
                            m
                              r                           r
                                  force

                                  m
                                  r2
        r  R, v  V ,    g
                       r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                          m
          v0                      resultant      m   2
                                                   r
                               m
                                 r                        r
                                     force              
                                                     2
                                                   r
                                    m                  r
                                     r2
         r  R, v  V ,    g
                        r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                          m
          v0                      resultant      m   2
                                                   r
                               m
                                 r                         r
                                     force              
                                                     2
                                                   r
                                    m                  r
                                       2     when r  R,    g
                                                         r
                                     r
         r  R, v  V ,    g
                        r


    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O                                                 gR 2
                                                   2
                                                 r
                                                       r
(i) Prove that it will escape the earth if and only if V  2 gR where g
    is the magnitude of the acceleration due to gravity at the earth’s
    surface.
                                                            m
          v0                      resultant       m   2
                                                     r
                               m
                                 r                           r
                                     force               
                                                       2
                                                     r
                                    m                    r
                                       2     when r  R,    g
                                                           r
                                     r                    
         r  R, v  V ,    g
                        r                      i.e.  g  2
                                                           R
                                                   gR 2
    O                                                gR 2
                                                  2
                                                r
                                                      r
                                        d  1 2   gR 2
                                            v  2
                                        dr  2      r
1 2 gR 2
  v        c
2        r
       2 gR 2
  v2         c
          r
1 2 gR 2
   v        c
 2        r
        2 gR 2
   v2         c
           r
when r  R, v  V
1 2 gR 2
     v         c
  2         r
          2 gR 2
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
1 2 gR 2
     v         c
  2         r
          2 gR 2
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
     v         c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r
when r  R, v  V
           2 gR 2
i.e. V 2         c
              R
       c  V 2  2 gR
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
     v         c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r                               2 gR 2              
                             lim v 2  lim           V 2  2 gR 
when r  R, v  V            r       r 
                                             r                   
           2 gR 2                     V 2  2 gR
i.e. V 2         c
              R
       c  V 2  2 gR
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
    v          c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r                               2 gR 2              
                             lim v 2  lim           V 2  2 gR 
when r  R, v  V            r       r 
                                             r                   
           2 gR 2                     V 2  2 gR
i.e. V 2         c
              R
                             Now v 2  0
       c  V 2  2 gR
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
    v          c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r                               2 gR 2              
                             lim v 2  lim           V 2  2 gR 
when r  R, v  V            r       r 
                                             r                   
           2 gR 2                     V 2  2 gR
i.e. V 2         c
              R
                             Now v 2  0
       c  V 2  2 gR
                             V 2  2 gR  0
     2 gR 2
v2          V 2  2 gR
        r
1 2 gR 2
    v          c
  2         r
          2 gR 2           If particle never stops then r  
    v2          c
             r                               2 gR 2              
                             lim v 2  lim           V 2  2 gR 
when r  R, v  V            r       r 
                                             r                   
           2 gR 2                     V 2  2 gR
i.e. V 2         c
              R
                             Now v 2  0
       c  V 2  2 gR
                             V 2  2 gR  0
     2 gR 2                            V 2  2 gR
v2          V 2  2 gR
        r
1 2 gR 2
    v          c
  2         r
          2 gR 2              If particle never stops then r  
    v2          c
             r                                   2 gR 2              
                                 lim v 2  lim           V 2  2 gR 
when r  R, v  V                r       r 
                                                 r                   
           2 gR 2                         V 2  2 gR
i.e. V 2         c
              R
                                 Now v 2  0
       c  V 2  2 gR
                                 V 2  2 gR  0
     2 gR 2                                V 2  2 gR
v2          V 2  2 gR
        r
                           Thus if V  2 gR the particle never stops,
                           i.e. the particle escapes the earth.
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
  If V  2 gR ,
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
                          2 gR 2
  If V  2 gR , v                2 gR  2 gR
                      2

                             r
                          2 gR 2
                    v2 
                             r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
                          2 gR 2
  If V  2 gR , v                2 gR  2 gR
                      2

                             r
                          2 gR 2
                    v2 
                             r
                       2 gR 2
                    v                 (cannot be –ve, as it does not return)
                          r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
                          2 gR 2
  If V  2 gR , v                2 gR  2 gR
                      2

                             r
                          2 gR 2
                    v2 
                             r
                        2 gR 2
                    v                 (cannot be –ve, as it does not return)
                           r
                   dr   2 gR 2
                      
                   dt      r
(ii) If V  2 gR ,prove that the time taken to rise to a height R above
     the earth’s surface is;
                             1
                               4  2  R
                             3          g
         2 gR 2
    v2          V 2  2 gR
            r
                          2 gR 2
  If V  2 gR , v                2 gR  2 gR
                      2

                             r
                          2 gR 2
                    v2 
                             r
                        2 gR 2
                    v                 (cannot be –ve, as it does not return)
                           r
                   dr   2 gR 2
                      
                   dt      r
                   dt     r
                      
                   dr   2gR 2
2R
    1
t
   2 gR 2   
            R
                 r dr
2R
    1                   2 R                            
t
   2 gR 2       r dr     as travelling from R to 2 R 
            R           R                              
2R
    1                     2 R                            
t
   2 gR 2       r dr       as travelling from R to 2 R 
            R             R                              
                     2R
    1       2  3
           3 r 
                 2

   2 gR 2       R
2R
    1                        2 R                            
t
   2 gR 2       r dr          as travelling from R to 2 R 
            R                R                              
                     2R
    1       2  3
           3 r 
                 2

   2 gR 2       R

 
      2
        2
          2 R 2 R  R R 
   3 gR
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
       R
         4  2 
     3 g
2R
    1                         2 R                            
t
   2 gR 2        r dr          as travelling from R to 2 R 
             R                R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
       R
         4  2 
     3 g

 
     1
       4  2  R
     3          g
2R
    1                           2 R                            
t
   2 gR 2        r dr            as travelling from R to 2 R 
             R                  R                              
                       2R
    1        2   3
            3 r 
                   2

   2 gR 2        R

 
      2
        2
          2 R 2 R  R R 
   3 gR

 
       2
            2    2  1R R
     3R g

 
       R
         4  2 
     3 g
                               time taken to rise to a height R above
 
     1
       4  2  R               earth' s surface is 4  2 
                                                   1         R
                                                               seconds
     3          g                                  3         g
Exercise 8C; 3, 15, 19

More Related Content

Similar to X2 T07 01 acceleration (2010) (9)

X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)X2 t06 01 acceleration (2013)
X2 t06 01 acceleration (2013)
 
X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)X2 t06 02 resisted motion (2013)
X2 t06 02 resisted motion (2013)
 
IMPULS AND MOMENTUM
IMPULS AND MOMENTUMIMPULS AND MOMENTUM
IMPULS AND MOMENTUM
 
Motion in two dimensions
Motion in two dimensionsMotion in two dimensions
Motion in two dimensions
 
Attitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry VehicleAttitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry Vehicle
 
Gravitation
GravitationGravitation
Gravitation
 
X2 T07 01 Acceleration
X2 T07 01 AccelerationX2 T07 01 Acceleration
X2 T07 01 Acceleration
 
Theory of relativity
Theory of relativityTheory of relativity
Theory of relativity
 
physics430_lecture21 for students chemistry
physics430_lecture21 for students chemistryphysics430_lecture21 for students chemistry
physics430_lecture21 for students chemistry
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
httgc7rh9c
 

Recently uploaded (20)

Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
Play hard learn harder: The Serious Business of Play
Play hard learn harder:  The Serious Business of PlayPlay hard learn harder:  The Serious Business of Play
Play hard learn harder: The Serious Business of Play
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lessonQUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
QUATER-1-PE-HEALTH-LC2- this is just a sample of unpacked lesson
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 

X2 T07 01 acceleration (2010)

  • 3. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.”
  • 4. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it.
  • 5. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it. Law 2 “ Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum rectam qua vis illa impritmitur.”
  • 6. Dynamics Newton’s Laws Of Motion Law 1 “ Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter, nisi quatenus a viribus impressis cogitur statum illum mutare.” Everybody continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it. Law 2 “ Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum rectam qua vis illa impritmitur.” The change of motion is proportional to the motive force impressed, and it is made in the direction of the right line in which that force is impressed.
  • 7. Motive force  change in motion
  • 8. Motive force  change in motion F acceleration
  • 9. Motive force  change in motion F acceleration F  constant  acceleration
  • 10. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass)
  • 11. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass) Law 3 “ Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actions in se mutuo semper esse aequales et in partes contrarias dirigi.”
  • 12. Motive force  change in motion F acceleration F  constant  acceleration  F  ma (constant = mass) Law 3 “ Actioni contrariam semper et aequalem esse reactionem: sive corporum duorum actions in se mutuo semper esse aequales et in partes contrarias dirigi.” To every action there is always opposed an equal reaction: or, the mutual actions of two bodies upon each other are always equal, and directed in contrary parts.
  • 14. Acceleration d 2x   2 x dt dv  dt
  • 15. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt
  • 16. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2 
  • 17. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2  dv v (acceleration is a function of v) dx
  • 18. Acceleration d 2x   2 x (acceleration is a function of t) dt dv  dt d 1 2    v  (acceleration is a function of x) dx  2  dv v (acceleration is a function of v) dx e.g. (1981) Assume that the earth is a sphere of radius R and that, at a point r  R  from the centre of the earth, the acceleration due to gravity is proportional to 1 and is directed towards the earth’s centre. r2 A body is projected vertically upwards from the surface of the earth with initial speed V.
  • 19. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface.
  • 20. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. O
  • 21. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. O
  • 22. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. r  R, v  V ,    g r O
  • 23. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 r  R, v  V ,    g r O
  • 24. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 r  R, v  V ,    g r O
  • 25. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 resultant m r force r  R, v  V ,    g r O
  • 26. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. v0 resultant m r force m r2 r  R, v  V ,    g r O
  • 27. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force m r2 r  R, v  V ,    g r O
  • 28. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r r2 r  R, v  V ,    g r O
  • 29. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r r  R, v  V ,    g r O
  • 30. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O
  • 31. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O  gR 2   2 r r
  • 32. (i) Prove that it will escape the earth if and only if V  2 gR where g is the magnitude of the acceleration due to gravity at the earth’s surface. m v0 resultant m   2 r m r r force    2 r m r 2 when r  R,    g r r  r  R, v  V ,    g r i.e.  g  2 R   gR 2 O  gR 2   2 r r d  1 2   gR 2  v  2 dr  2  r
  • 33. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r
  • 34. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V
  • 35. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR
  • 36. 1 2 gR 2 v  c 2 r 2 gR 2 v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR 2 gR 2 v2   V 2  2 gR r
  • 37. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r when r  R, v  V 2 gR 2 i.e. V 2  c R c  V 2  2 gR 2 gR 2 v2   V 2  2 gR r
  • 38. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R c  V 2  2 gR 2 gR 2 v2   V 2  2 gR r
  • 39. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR 2 gR 2 v2   V 2  2 gR r
  • 40. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 v2   V 2  2 gR r
  • 41. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 V 2  2 gR v2   V 2  2 gR r
  • 42. 1 2 gR 2 v  c 2 r 2 gR 2 If particle never stops then r   v2  c r  2 gR 2  lim v 2  lim  V 2  2 gR  when r  R, v  V r  r   r  2 gR 2  V 2  2 gR i.e. V 2  c R Now v 2  0 c  V 2  2 gR V 2  2 gR  0 2 gR 2 V 2  2 gR v2   V 2  2 gR r Thus if V  2 gR the particle never stops, i.e. the particle escapes the earth.
  • 43. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g
  • 44. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r
  • 45. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r If V  2 gR ,
  • 46. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r
  • 47. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r
  • 48. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r dr 2 gR 2  dt r
  • 49. (ii) If V  2 gR ,prove that the time taken to rise to a height R above the earth’s surface is; 1 4  2  R 3 g 2 gR 2 v2   V 2  2 gR r 2 gR 2 If V  2 gR , v   2 gR  2 gR 2 r 2 gR 2 v2  r 2 gR 2 v (cannot be –ve, as it does not return) r dr 2 gR 2  dt r dt r  dr 2gR 2
  • 50. 2R 1 t 2 gR 2  R r dr
  • 51. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R 
  • 52. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R
  • 53. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR
  • 54. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g
  • 55. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g
  • 56. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g  1 4  2  R 3 g
  • 57. 2R 1 2 R  t 2 gR 2  r dr   as travelling from R to 2 R  R R  2R 1 2  3  3 r  2 2 gR 2  R  2 2 2 R 2 R  R R  3 gR  2 2 2  1R R 3R g  R 4  2  3 g  time taken to rise to a height R above  1 4  2  R earth' s surface is 4  2  1 R seconds 3 g 3 g
  • 58. Exercise 8C; 3, 15, 19