SlideShare a Scribd company logo
1
Dynamique	
  des	
  intrusions	
  magma1ques	
  peu	
  profondes	
  
“Instead of rising through the beds of the Earth’s crust, it stopped at a lower horizon,
insinuated itself between two strata, and opened for itself a chamber by lifting all the
superior beds … it congealed, forming a massive body … the name laccolith … will
be used. “ Gilbert (1877, p. 19)
Thorey	
  Clément
PhD	
  defense
Under	
  the	
  supervision	
  of	
  Chloé	
  Michaut	
  and	
  Mark	
  Wieczorek
Rock	
  body	
  formed	
  when	
  a	
  magma	
  have	
  
crystallised	
  and	
  solidified	
  beneath	
  the	
  
Earth	
  surface
2
Magma;c	
  intrusion
Main	
  driving	
  force	
  :	
  buoyancy
Dyke	
  Makhtesh	
  Ramon,	
  Israel
Par;al	
  mel;ng	
  
Upper	
  mantle
3
Introduc1on:	
  Magma	
  forma1on	
  and	
  transport
TransportForma1on
Con1nental	
  	
  
crust
Oceaninc	
  	
  
crust
Lithosphere
100	
  km
4
Introduc1on:	
  Extrusive	
  volcanism
Colima	
  volcano,	
  Mexico.	
  Credit:	
  César	
  Cantú
Dyke
CrustCrust
Magma%c	
  intrusion	
  :	
  Neutral	
  buoyancy	
  layer
5
Introduc%on:	
  Intrusive	
  magma%sm
Intrusive	
  
90%
Extrusive	
  
10%
Mass	
  and	
  heat	
  flux: Mantle Crust
Melt	
  distribu%on	
  
con%nental	
  crust
Significant impact on crust
★Forma;on	
  
★Thermal	
  evolu;on
Surface
Magma;c	
  intrusion
Crust
(Crisp,	
  1984;	
  White	
  et	
  al,	
  2006)
6
Introduc%on:	
  PhD	
  ques%on
Can	
  we	
  constrain	
  the	
  intrusive	
  component	
  of	
  lunar	
  
magma%sm	
  ?
Intrusive	
  
???
Extrusive	
  
~106	
  km3
Melt	
  redistribu%on
Lunar	
  crust
★ Geological evolution lunar crust

★ Constrain on thermal evolution model
Intrusive	
  volume	
  :	
  key
7
Introduc%on:	
  PhD	
  ques%on
Can	
  we	
  constrain	
  the	
  intrusive	
  component	
  of	
  lunar	
  
magma%sm	
  ?
★ Geological evolution lunar crust

★ Constrain on thermal evolution model
Intrusive	
  volume	
  :	
  key
Intrusive	
  
???
Extrusive	
  
~106	
  km3
Melt	
  redistribu%on
Lunar	
  crust
8
Lunar	
  basalt	
  density	
  :	
  ~3000	
  kg	
  m-­‐3
Mare	
  basalt	
  
V~106	
  km3	
  
Age	
  ~	
  3	
  -­‐	
  4	
  Gyr	
  
Lunar	
  crust	
  	
  
GRAIL	
  density	
  es;mate	
  :	
  ~2550	
  kg	
  m-­‐3
Intrusive	
  ac%vity	
  should	
  be	
  large	
  on	
  the	
  Moon	
  
4.4	
  Gyr
Introduc%on:	
  Moon	
  forma%on
9
Batholith
Laccolith
Dykes
Sills
Can	
  we	
  characterise	
  the	
  expected	
  surface	
  deforma%on	
  
from	
  the	
  intrusion	
  of	
  a	
  shallow	
  	
  laccolith	
  	
  ?
Shallow	
  <	
  5	
  km
Introduc%on:	
  Probing	
  intrusive	
  ac%vity	
  from	
  the	
  surface
10
Laccolith
Can	
  we	
  characterise	
  the	
  expected	
  surface	
  deforma%on	
  
from	
  the	
  intrusion	
  of	
  a	
  shallow	
  	
  laccolith	
  	
  ?
Shallow	
  <	
  5	
  km
Introduc%on:	
  Probing	
  intrusive	
  ac%vity	
  from	
  the	
  surface
Dykes
Sills
11
Forma;on	
  ~	
  100	
  years	
  
Thickness	
  ~	
  100	
  m	
  
Radius	
  ~	
  10	
  km
Laccolith at Bear Butte State Park
magmaUpper	
  strata
Rigid	
  basement
h0
R
h0
R
Laccolith:	
  Descrip%on
Dynamics	
  model	
  for	
  the	
  emplacement	
  of	
  laccolith
12
Forma;on	
  ~	
  100	
  years	
  
Thickness	
  ~	
  100	
  m	
  
Radius	
  ~	
  10	
  km
Laccolith at Bear Butte State Park
Laccolith:	
  Descrip%on
Upper	
  strata
Rigid	
  basement
magmaUpper	
  strata
Rigid	
  basement
h0
R
Dynamics	
  model	
  for	
  the	
  emplacement	
  of	
  laccolith
13
Modified from Rocchie et al 2002
9	
  shallow-­‐level	
  felsic	
  laccoliths	
  emplaced	
  at	
  depth	
  between	
  1.9	
  and	
  3.7	
  km
Laccolith:	
  Benchmark	
  data	
  -­‐	
  Elba	
  Island	
  laccoliths
14
Elastic layer
Rigid layer
Michaut,	
  2011	
  
Lister	
  et	
  al,	
  2013	
  
Hewi?	
  et	
  al,	
  2015	
  
Isoviscous	
  laccolith:	
  Model
15
Elastic layer
Rigid layer
Michaut,	
  2011	
  
Lister	
  et	
  al,	
  2013	
  
Hewi?	
  et	
  al,	
  2015	
  
Regulariza;on
Thin film
Isoviscous	
  laccolith:	
  Model
16
Elastic layer
Rigid layer
Michaut,	
  2011	
  
Lister	
  et	
  al,	
  2013	
  
Hewi?	
  et	
  al,	
  2015	
  
Magma	
  weight Crust	
  weight
Bending	
  	
  
pressure
Pressure
Bending	
  	
  
s;ffness
Magma	
  	
  
density
Crust	
  
density
Intrusion	
  
depth
Lateral	
  gradients	
  in	
  this	
  pressure	
  drive	
  flow	
  
Isoviscous	
  laccolith:	
  Model
17
Elastic layer
Rigid layer
Michaut,	
  2011	
  
Lister	
  et	
  al,	
  2013	
  
Hewi?	
  et	
  al,	
  2015	
  
Magma	
  weight
Bending	
  	
  
pressure
Driving	
  
Pressure
Bending	
  	
  
s;ffness
Magma	
  	
  
density
Lateral	
  gradients	
  in	
  this	
  pressure	
  drive	
  flow	
  
Isoviscous	
  laccolith:	
  Model
18
Elastic layer
Rigid layer
Michaut,	
  2011	
  
Lister	
  et	
  al,	
  2013	
  
Hewi?	
  et	
  al,	
  2015	
  
Height	
  scale
Balance	
  between	
  bending	
  and	
  gravity	
  
Length	
  scale
Bending	
  	
  
s;ffness
Magma	
  	
  
density
Magma	
  viscosity Injec;on	
  rate
Isoviscous	
  laccolith:	
  Model
h0
R
19
Michaut	
  (2011)	
  
Bunger	
  et	
  al	
  (2011)	
  
Lister	
  et	
  al	
  (2013)
Isoviscous	
  laccolith:	
  Results	
  h0(R)
Michaut	
  (2011)	
  
Bunger	
  et	
  al	
  (2011)	
  
Lister	
  et	
  al	
  (2013)
h0
R
Thickness	
  profile
h0
R
20
Isoviscous	
  laccolith:	
  Results	
  h0(R)
Michaut	
  (2011)	
  
Bunger	
  et	
  al	
  (2011)	
  
Lister	
  et	
  al	
  (2013)
h0
R
h0
R
21
Isoviscous	
  laccolith:	
  Results	
  h0(R)
Michaut	
  (2011)	
  
Bunger	
  et	
  al	
  (2011)	
  
Lister	
  et	
  al	
  (2013)
h0
R
22
Isoviscous	
  laccolith:	
  Results	
  h0(R)
Michaut	
  (2011)	
  
Bunger	
  et	
  al	
  (2011)	
  
Lister	
  et	
  al	
  (2013)
Bending	
  regime
h0
R
23
Isoviscous	
  laccolith:	
  Results	
  h0(R)
Michaut	
  (2011)	
  
Bunger	
  et	
  al	
  (2011)	
  
Lister	
  et	
  al	
  (2013)
Bending	
  regime
h0
R
24
Isoviscous	
  laccolith:	
  Results	
  h0(R)
25
Michaut	
  (2011)	
  
Bunger	
  et	
  al	
  (2011)	
  
Lister	
  et	
  al	
  (2013)
Gravity	
  regimeBending	
  regime
Isoviscous	
  laccolith:	
  Results	
  h0(R)
Laccolith?
h0
R
26
Isoviscous	
  laccolith:	
  Elba	
  Island	
  laccoliths
27
Isoviscous	
  laccolith:	
  Scale Applica;on
Poisson’s	
  	
  
ra;o
Youngs’s	
  	
  
modulus
Intrusion	
  
depth
Depth 1.9 - 3.7 km
Young’s mod. 10 GPa
Poisson’s ratio 0.25
Density 2500 kg m-3
Gravity 9.81 m s-2Magma	
  	
  
density
Gravity
28
Applica;on
Magma	
  	
  
viscosity Injec;on	
  rate Density 2500 kg m-3
Viscosity 105 Pa s
Injection rate 10 m3 s-1
Gravity 9.81 m s-2
Poisson’s	
  	
  
ra;o
Youngs’s	
  	
  
modulus
Intrusion	
  
depth
Depth 1.9 - 3.7 km
Young’s mod. 10 GPa
Poisson’s ratio 0.25
Density 2500 kg m-3
Gravity 9.81 m s-2Magma	
  	
  
density
Gravity
Isoviscous	
  laccolith:	
  Scale
h0
R
29
Isoviscous	
  laccolith:	
  Elba	
  island	
  laccolith
h0
R
Gap	
  ?
30
Isoviscous	
  laccolith:	
  Elba	
  island	
  laccolith
Mafic	
  magmas	
  :	
  101-­‐104	
  Poise
Felsic	
  magmas	
  :	
  106-­‐1014	
  Poise
University	
  of	
  Rhode	
  Island	
  
BasalLc	
  lava	
  flow	
  ,Hawai	
  (USGS)
Ryholite	
  lava	
  flow	
  	
  from	
  Oregon	
  (USGS)
Can	
  the	
  cooling	
  explain	
  the	
  difference	
  between	
  	
  
predic%ons	
  and	
  observa%ons	
  ?
31
Isoviscous	
  laccolith:	
  What	
  is	
  missing	
  ?
32
Elastic layer
Rigid layer
Cooling	
  laccolith:	
  Model
33
Elastic layer
Rigid layer
Conductive cooling
Cooling	
  laccolith:	
  Model
34
Elastic layer
Rigid layer
Conductive cooling
Temperature	
  	
  
field
Cooling	
  laccolith:	
  Model
Rheology
Velocity	
  	
  
field
Coupling	
  
rheology
35
Elastic layer
Rigid layer
Conductive cooling
Dimensionless	
  numbers
Viscosity	
  contrast
Cooling	
  laccolith:	
  Model
36
Elastic layer
Rigid layer
Conductive cooling
Dimensionless	
  numbers
Viscosity	
  contrast
Cooling	
  laccolith:	
  Model
Peclet	
  number
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
cooling
37
Cooling	
  laccolith:	
  Bending	
  results
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
cooling
38
Cooling	
  laccolith:	
  Bending	
  results
39
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
coolingCooling	
  laccolith:	
  Bending	
  results
40
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
coolingCooling	
  laccolith:	
  Bending	
  results
41
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
coolingCooling	
  laccolith:	
  Bending	
  results
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
cooling
42
Cooling	
  laccolith:	
  Effec%ve	
  viscosity	
  
43
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
coolingCooling	
  laccolith:	
  Effec%ve	
  viscosity	
  
44
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
cooling
The	
  viscosity	
  of	
  the	
  ;p	
  region	
  
controls	
  h0/R
Cooling	
  laccolith:	
  Effec%ve	
  viscosity	
  
45
Gap	
  ?
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
cooling
Isoviscous	
  predic;on
best	
  fit
Cooling	
  laccolith:	
  Elba	
  Island	
  laccoliths	
  
46
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
cooling
Cooling	
  
Isoviscous	
  predic;on
Model	
  predic;on	
  :	
  ν	
  =	
  10
-­‐6Model	
  predic;on	
  :	
  ν	
  =	
  10
-­‐8
best	
  fit
Cooling	
  laccolith:	
  Elba	
  Island	
  laccoliths	
  
47
Expected	
  laccolith	
  topographic	
  deforma%on	
  
Morphology Dimension
Can	
  we	
  detect	
  laccoliths	
  at	
  the	
  lunar	
  surface	
  ?
Cooling	
  laccolith:	
  Elba	
  Island	
  laccoliths	
  
48
Eleva;on	
  (m)
Nearside
Surface	
  expression	
  of	
  magma%c	
  intrusions	
  ?
Low-­‐slope	
  domes
Wöhler	
  et	
  al,	
  2006	
  
49
Low-­‐slope	
  domes:	
  Observa%ons
Applica;on
Poisson’s	
  	
  
ra;o
Youngs’s	
  	
  
modulus
Intrusion	
  
depth
Magma	
  	
  
density
Gravity
Depth 1.5 km
Young’s mod. 10 GPa
Poisson’s ratio 0.25
Density 2900 kg m-3
Gravity 1.62 m s-2
50
Low-­‐slope	
  domes:	
  Scales
Applica;on
Magma	
  	
  
viscosity Injec;on	
  rate
Poisson’s	
  	
  
ra;o
Youngs’s	
  	
  
modulus
Intrusion	
  
depth
Magma	
  	
  
density
Gravity
Depth 1.5 km
Young’s mod. 10 GPa
Poisson’s ratio 0.25
Density 2900 kg m-3
Gravity 1.62 m s-2
Density 2900 kg m-3
Viscosity 104 Pa s
Injection rate 10 m3 s-1
Gravity 1.62 m s-2
51
Low-­‐slope	
  domes:	
  Scales
Isoviscous	
  predic;on	
  -­‐	
  h0	
  =	
  0.6	
  R1.1	
  
52
Low-­‐slope	
  domes:	
  Model	
  comparison
Model	
  predic;on	
  :	
  ν	
  =	
  10-­‐4Model	
  predic;on	
  :	
  ν	
  =	
  10-­‐5
53
Low-­‐slope	
  domes:	
  Model	
  comparison
Isoviscous	
  predic;on	
  -­‐	
  h0	
  =	
  0.6	
  R1.1	
  
Eleva;on	
  (m)
Nearside
54
Low-­‐slope	
  domes:	
  Conclusion
Low-­‐slope	
  domes	
  are	
  
the	
  surface	
  expression	
  of	
  
shallow	
  mafic	
  	
  
magma%c	
  intrusions
Floor-­‐fractured	
  craters	
  
Low	
  slope	
  domes
55
Floor-­‐fractured	
  craters:	
  Introduc%on
•Shallow	
  floors	
  -­‐	
  up	
  to	
  1	
  km	
  uplim	
  	
  
•Large	
  fracture	
  networks	
  
•Close	
  rela;onship	
  Maria
Crater	
  floor	
  uplim	
  
56
Floor-­‐fractured	
  craters:	
  Introduc%on
Convex	
  floor	
  FFC Flat	
  floor	
  FFC
57
Floor-­‐fractured	
  craters:	
  Introduc%on
58
Floor-­‐fractured	
  craters:	
  Introduc%on
Are	
  they	
  the	
  surface	
  expressions	
  
	
  of	
  shallow	
  magma%c	
  intrusions	
  ?
Elastic layer
Rigid layer
59
Floor-­‐fractured	
  craters:	
  Crater-­‐centered	
  intrusion	
  model
Elastic layer
Rigid layer
60
Floor-­‐fractured	
  craters:	
  Crater-­‐centered	
  intrusion	
  model
Elastic layer
Rigid layer
Driving	
  
Pressure
Lateral	
  gradients	
  in	
  this	
  pressure	
  drive	
  flow	
  
Magma	
  weight
Bending	
  	
  
pressure
Crust	
  weight
61
Floor-­‐fractured	
  craters:	
  Crater-­‐centered	
  intrusion	
  model
Elastic layer
Rigid layer
The	
  intrusion	
  shape	
  and	
  floor	
  appearance	
  depends	
  on	
  
Transi;on	
  radius	
  /	
  Crater	
  radius
62
Floor-­‐fractured	
  craters:	
  Crater-­‐centered	
  intrusion	
  model
t=30
t=1
Dimensionlessthicknessh
t=1
t=5
t=10
t=30
Wall zoneWall zone
Dimensionless axis r
63
Floor-­‐fractured	
  craters:	
  Results	
  -­‐	
  Transi%on	
  radius	
  >	
  D/2
Convex	
  floor	
  
FFC
t=1
Dimensionless axis r
Dimensionlessthicknessh
t=1
t=5
t=10
t=30
Wall zoneWall zone
t=30
64
Floor-­‐fractured	
  craters:	
  Results	
  -­‐	
  Transi%on	
  radius	
  <	
  D/2
Flat	
  floor	
  
FFC
Thorey	
  et	
  al,	
  JGR,	
  2014
65
Floor-­‐fractured	
  craters:	
  Conclusion
Can	
  we	
  detect	
  the	
  gravita%onal	
  signatures	
  produced	
  
by	
  the	
  magma%c	
  intrusions	
  ?
Floor-­‐fractured	
  craters	
  are	
  
deformed	
  following	
  the	
  	
  
emplacement	
  of	
  shallow	
  
magma%c	
  intrusion
Synthe;c	
  gravity	
  anomaly	
  (mGal)
Crater	
  wall
66
Gravita%onal	
  signature:	
  Introduc%on
Mean	
  anomaly	
  ~30	
  mGal
10 20 30 40 500
180	
  km	
  in	
  diameter	
  
2	
  km	
  in	
  thick	
  
Density	
  contrast	
  :	
  500	
  kg	
  m-­‐3
Cylinder-­‐like	
  intrusion
Detectable	
  in	
  the	
  gravity	
  field	
  collected	
  by	
  GRAIL	
  mission
Zuber	
  et	
  al,	
  2013;	
  Konopliv	
  et	
  al,	
  2014	
  
67
Gravita%onal	
  signature:	
  Free	
  air	
  gravity	
  map
Zuber	
  et	
  al,	
  2013;	
  Konopliv	
  et	
  al,	
  2014	
  
68
Gravita%onal	
  signature:	
  Bouguer	
  gravity	
  map
Zuber	
  et	
  al,	
  2013;	
  Konopliv	
  et	
  al,	
  2014	
  
69
Gravita%onal	
  signature:	
  Bouguer	
  gravity	
  map
Wieczorek	
  et	
  al,	
  2013
70
Gravita%onal	
  signature:	
  Crustal	
  gravity	
  map
71
Gravita%onal	
  signature:	
  Spherical	
  harmonic	
  domain
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105
Power(m2)
0 100 200 300 400 500 600 700 800 900
Spherical harmonic degree
JGGRAIL 900C11A
Bouguer Anomaly
CrustAnom
10-6
10-5
10-4
0 100 200 300 400 500 600 700 800 900
Spherical harmonic degree
Spherical	
  harmonic	
  coefficientPower	
  (m2)
Signal	
  wavelength	
  (km)
1370 86 43 28 21 17 14 12 10 9.5
72
Gravita%onal	
  signature:	
  Spherical	
  harmonic	
  domain
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105
Power(m2)
0 100 200 300 400 500 600 700 800 900
Spherical harmonic degree
JGGRAIL 900C11A
Bouguer Anomaly
CrustAnom
10-6
10-5
10-4
0 100 200 300 400 500 600 700 800 900
Spherical harmonic degree
Spherical	
  harmonic	
  coefficientPower	
  (m2)
Signal	
  wavelength	
  (km)
1370 86 43 28 21 17 14 12 10 9.5
50
0
25~5	
  mGal
Flat	
  floor	
  FFC
Convex	
  floor	
  FFC
73
Gravita%onal	
  signature:	
  Observed	
  crustal	
  gravity	
  anomaly
South	
  
Pole-­‐Aitken	
  
Basin
Lunar	
  	
  
maria
74
Gravita%onal	
  signature:	
  Crater	
  popula%on
80	
  FFCs	
  
4054	
  unmodified	
  craters
Diam
eter	
  D
Radius	
  D/2
Area-­‐weighted	
  	
  
mean	
  anomaly	
  
Anomaly interior 

crater rim
Anomaly exterior

crater rim
= -­‐
75
Gravita%onal	
  signature:	
  Crustal	
  anomaly	
  defini%on
Diam
eter	
  D
Radius	
  D/2
Area-­‐weighted	
  	
  
mean	
  anomaly	
  
Anomaly interior 

crater rim
Anomaly exterior

crater rim
= -­‐
76
Gravita%onal	
  signature:	
  Crustal	
  anomaly	
  defini%on
Diam
eter	
  D
Radius	
  D/2
Area-­‐weighted	
  	
  
mean	
  anomaly	
  
Anomaly interior 

crater rim
Anomaly exterior

crater rim
= -­‐
77
Gravita%onal	
  signature:	
  Crustal	
  anomaly	
  defini%on
78
Gravita%onal	
  signature:	
  Results
p<0.01
79
Gravita%onal	
  signature:	
  Results
p<0.01
80
Gravita%onal	
  signature:	
  Corrected	
  gravity	
  anomaly
Support	
  shallow	
  magma%c	
  intrusions	
  below	
  FFCs
h0
R
magma
Elas;c	
  	
  
crust
Rigid	
  crust
cooling
81
Conclusion:	
  Numerous	
  shallow	
  lunar	
  magma%c	
  intrusions
Elastic layer
Rigid layer
Crater-­‐centered	
  intrusion
Laccolith
Gravita;onal	
  signature
Low-­‐slope	
  domes
FFCs
82
Perspec%ves:	
  Lunar	
  intrusive	
  magma%sm
~200	
  FFCs	
  +	
  ~10	
  domes
1%	
  of	
  the	
  maria	
  volume
Volume	
  ~	
  104	
  km3
Origin	
  of	
  the	
  magma	
  ?
Larger	
  and	
  deeper	
  magma	
  	
  
reservoirs	
  within	
  the	
  crust	
  ?
Deforma;ons	
  are	
  
localised	
  inside	
  	
  
the	
  crater	
  wall
Melt	
  redistribu%on
Lunar	
  crustMare	
  basalt	
  
V~106	
  km3
Extrusive	
  
~106	
  km3
Shallow	
  
intrusive	
  
~104	
  km3
83
Perspec%ves:	
  Lunar	
  intrusive	
  magma%sm
~200	
  FFCs	
  +	
  ~10	
  domes
1%	
  of	
  the	
  maria	
  volume
Volume	
  ~	
  104	
  km3
Origin	
  of	
  the	
  magma	
  ?
Larger	
  and	
  deeper	
  magma	
  	
  
reservoirs	
  within	
  the	
  crust	
  ?
Deforma;ons	
  are	
  
localised	
  inside	
  	
  
the	
  crater	
  wall
Shallow	
  
intrusive	
  
~104	
  km3
Melt	
  redistribu%on
Lunar	
  crust
Mare	
  basalt	
  
V~106	
  km3
Extrusive	
  
~106	
  km3
Deep	
  
intrusive	
  
???
Mars Venus
b)
d)
d)
)
)
f)
Sato	
  et	
  al	
  2010 Wichman	
  and	
  Schultz	
  1995
Mercury
Schultz	
  1997,	
  Thomas	
  et	
  al	
  2015
84
Perspec%ves:	
  Crater	
  =	
  Enhance	
  shallow	
  intrusive	
  ac%vity	
  ?
What	
  causes	
  intrusive	
  ac;vity	
  to	
  preferen;ally	
  occur	
  beneath	
  impact	
  craters	
  ?
Fracture	
  
	
  criterion
85
Perspec%ves:	
  Dynamics	
  -­‐	
  Real-­‐%me	
  data	
  interpreta%on	
  ?
Amelung	
  et	
  al,	
  2000
Real-­‐%me	
  deforma%on	
  monitoring
Magma	
  physical	
  parameters	
  
•Injec;on	
  rate	
  
•Intrusion	
  depth
Model	
  improvement
•Effect	
  of	
  solidifica;on	
  
•Precise	
  descrip;on	
  of	
  the	
  	
  
dynamics	
  at	
  the	
  ;p	
  
•Stopping	
  criterion
Gas-­‐filled	
  
region
1992 1997 1998
Sierra	
  Negra	
  volcano
86
Thanks	
  for	
  your	
  acen%on

More Related Content

Similar to Defense upload

A Subsurface Magma Ocean on Io: Exploring the Steady State of Partially Molte...
A Subsurface Magma Ocean on Io: Exploring the Steady State of Partially Molte...A Subsurface Magma Ocean on Io: Exploring the Steady State of Partially Molte...
A Subsurface Magma Ocean on Io: Exploring the Steady State of Partially Molte...
Sérgio Sacani
 
Gulf of Mexico Hydrate Mounds
Gulf of Mexico Hydrate MoundsGulf of Mexico Hydrate Mounds
Gulf of Mexico Hydrate Mounds
B.Nicole Barry
 
The Boltysh crater fill sediments – a 500,000 year record of the lower Danian
The Boltysh crater fill sediments – a 500,000 year record of the lower DanianThe Boltysh crater fill sediments – a 500,000 year record of the lower Danian
The Boltysh crater fill sediments – a 500,000 year record of the lower Danian
Iain Gilmour
 
Petro Teach Free Webinar on "Rock Physics for Quantitative Seismic Reservoir ...
Petro Teach Free Webinar on "Rock Physics for Quantitative Seismic Reservoir ...Petro Teach Free Webinar on "Rock Physics for Quantitative Seismic Reservoir ...
Petro Teach Free Webinar on "Rock Physics for Quantitative Seismic Reservoir ...
Petro Teach
 
ENV 101 Ch06 lecture ppt_a
ENV 101 Ch06 lecture ppt_aENV 101 Ch06 lecture ppt_a
ENV 101 Ch06 lecture ppt_a
BHUOnlineDepartment
 
1) Earth science is the study ofa. Oceanographyb. Astrono.docx
1) Earth science is the study ofa. Oceanographyb. Astrono.docx1) Earth science is the study ofa. Oceanographyb. Astrono.docx
1) Earth science is the study ofa. Oceanographyb. Astrono.docx
jeremylockett77
 
diagnostic-test-in-science-10.docx
diagnostic-test-in-science-10.docxdiagnostic-test-in-science-10.docx
diagnostic-test-in-science-10.docx
ralstongarcia
 
Part I. Plate Tectonics Theory
Part I. Plate Tectonics TheoryPart I. Plate Tectonics Theory
Part I. Plate Tectonics Theory
William Szary
 
MSc thesis’2011
MSc thesis’2011MSc thesis’2011
MSc thesis’2011knyazevaig
 
The magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planetsThe magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planets
Advanced-Concepts-Team
 
GeophyicsPapergel110
GeophyicsPapergel110GeophyicsPapergel110
GeophyicsPapergel110Cody McMurdie
 
Lecture 04
Lecture 04Lecture 04
Lecture 04
Oky de Holmeas
 
Gate 2018 GG Solution (Geology Option)
Gate 2018 GG Solution (Geology Option)Gate 2018 GG Solution (Geology Option)
Gate 2018 GG Solution (Geology Option)
Lawrence Kanyan
 
N.20 capria main-belt-comets-a-new-class-of-objects
N.20 capria main-belt-comets-a-new-class-of-objectsN.20 capria main-belt-comets-a-new-class-of-objects
N.20 capria main-belt-comets-a-new-class-of-objects
IAPS
 
THE GRAND CANYON - Part 1
THE GRAND CANYON - Part 1THE GRAND CANYON - Part 1
THE GRAND CANYON - Part 1
Ariel Roth
 
Coagulation & Flocculation
Coagulation & FlocculationCoagulation & Flocculation
Coagulation & Flocculation
KASHIF SHABBIR
 
THE GRAND CANYON - Part 2
THE GRAND CANYON - Part 2THE GRAND CANYON - Part 2
THE GRAND CANYON - Part 2
Ariel Roth
 

Similar to Defense upload (20)

A Subsurface Magma Ocean on Io: Exploring the Steady State of Partially Molte...
A Subsurface Magma Ocean on Io: Exploring the Steady State of Partially Molte...A Subsurface Magma Ocean on Io: Exploring the Steady State of Partially Molte...
A Subsurface Magma Ocean on Io: Exploring the Steady State of Partially Molte...
 
Aesc2010 nf
Aesc2010 nfAesc2010 nf
Aesc2010 nf
 
Gulf of Mexico Hydrate Mounds
Gulf of Mexico Hydrate MoundsGulf of Mexico Hydrate Mounds
Gulf of Mexico Hydrate Mounds
 
The Boltysh crater fill sediments – a 500,000 year record of the lower Danian
The Boltysh crater fill sediments – a 500,000 year record of the lower DanianThe Boltysh crater fill sediments – a 500,000 year record of the lower Danian
The Boltysh crater fill sediments – a 500,000 year record of the lower Danian
 
ResearchPaper
ResearchPaperResearchPaper
ResearchPaper
 
Petro Teach Free Webinar on "Rock Physics for Quantitative Seismic Reservoir ...
Petro Teach Free Webinar on "Rock Physics for Quantitative Seismic Reservoir ...Petro Teach Free Webinar on "Rock Physics for Quantitative Seismic Reservoir ...
Petro Teach Free Webinar on "Rock Physics for Quantitative Seismic Reservoir ...
 
ENV 101 Ch06 lecture ppt_a
ENV 101 Ch06 lecture ppt_aENV 101 Ch06 lecture ppt_a
ENV 101 Ch06 lecture ppt_a
 
1) Earth science is the study ofa. Oceanographyb. Astrono.docx
1) Earth science is the study ofa. Oceanographyb. Astrono.docx1) Earth science is the study ofa. Oceanographyb. Astrono.docx
1) Earth science is the study ofa. Oceanographyb. Astrono.docx
 
diagnostic-test-in-science-10.docx
diagnostic-test-in-science-10.docxdiagnostic-test-in-science-10.docx
diagnostic-test-in-science-10.docx
 
Part I. Plate Tectonics Theory
Part I. Plate Tectonics TheoryPart I. Plate Tectonics Theory
Part I. Plate Tectonics Theory
 
MSc thesis’2011
MSc thesis’2011MSc thesis’2011
MSc thesis’2011
 
The magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planetsThe magma ocean stage in the formation of rocky-terrestrial planets
The magma ocean stage in the formation of rocky-terrestrial planets
 
GeophyicsPapergel110
GeophyicsPapergel110GeophyicsPapergel110
GeophyicsPapergel110
 
Lecture 04
Lecture 04Lecture 04
Lecture 04
 
Gate 2018 GG Solution (Geology Option)
Gate 2018 GG Solution (Geology Option)Gate 2018 GG Solution (Geology Option)
Gate 2018 GG Solution (Geology Option)
 
N.20 capria main-belt-comets-a-new-class-of-objects
N.20 capria main-belt-comets-a-new-class-of-objectsN.20 capria main-belt-comets-a-new-class-of-objects
N.20 capria main-belt-comets-a-new-class-of-objects
 
THE GRAND CANYON - Part 1
THE GRAND CANYON - Part 1THE GRAND CANYON - Part 1
THE GRAND CANYON - Part 1
 
AIAA_Orlando15 copy
AIAA_Orlando15 copyAIAA_Orlando15 copy
AIAA_Orlando15 copy
 
Coagulation & Flocculation
Coagulation & FlocculationCoagulation & Flocculation
Coagulation & Flocculation
 
THE GRAND CANYON - Part 2
THE GRAND CANYON - Part 2THE GRAND CANYON - Part 2
THE GRAND CANYON - Part 2
 

Recently uploaded

4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
ssuserbfdca9
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SELF-EXPLANATORY
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
sachin783648
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
NathanBaughman3
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Erdal Coalmaker
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
subedisuryaofficial
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 

Recently uploaded (20)

4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
Comparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebratesComparative structure of adrenal gland in vertebrates
Comparative structure of adrenal gland in vertebrates
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
Unveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdfUnveiling the Energy Potential of Marshmallow Deposits.pdf
Unveiling the Energy Potential of Marshmallow Deposits.pdf
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
Citrus Greening Disease and its Management
Citrus Greening Disease and its ManagementCitrus Greening Disease and its Management
Citrus Greening Disease and its Management
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 

Defense upload

  • 1. 1 Dynamique  des  intrusions  magma1ques  peu  profondes   “Instead of rising through the beds of the Earth’s crust, it stopped at a lower horizon, insinuated itself between two strata, and opened for itself a chamber by lifting all the superior beds … it congealed, forming a massive body … the name laccolith … will be used. “ Gilbert (1877, p. 19) Thorey  Clément PhD  defense Under  the  supervision  of  Chloé  Michaut  and  Mark  Wieczorek
  • 2. Rock  body  formed  when  a  magma  have   crystallised  and  solidified  beneath  the   Earth  surface 2 Magma;c  intrusion
  • 3. Main  driving  force  :  buoyancy Dyke  Makhtesh  Ramon,  Israel Par;al  mel;ng   Upper  mantle 3 Introduc1on:  Magma  forma1on  and  transport TransportForma1on Con1nental     crust Oceaninc     crust Lithosphere 100  km
  • 4. 4 Introduc1on:  Extrusive  volcanism Colima  volcano,  Mexico.  Credit:  César  Cantú
  • 5. Dyke CrustCrust Magma%c  intrusion  :  Neutral  buoyancy  layer 5 Introduc%on:  Intrusive  magma%sm Intrusive   90% Extrusive   10% Mass  and  heat  flux: Mantle Crust Melt  distribu%on   con%nental  crust Significant impact on crust ★Forma;on   ★Thermal  evolu;on Surface Magma;c  intrusion Crust (Crisp,  1984;  White  et  al,  2006)
  • 6. 6 Introduc%on:  PhD  ques%on Can  we  constrain  the  intrusive  component  of  lunar   magma%sm  ? Intrusive   ??? Extrusive   ~106  km3 Melt  redistribu%on Lunar  crust ★ Geological evolution lunar crust ★ Constrain on thermal evolution model Intrusive  volume  :  key
  • 7. 7 Introduc%on:  PhD  ques%on Can  we  constrain  the  intrusive  component  of  lunar   magma%sm  ? ★ Geological evolution lunar crust ★ Constrain on thermal evolution model Intrusive  volume  :  key Intrusive   ??? Extrusive   ~106  km3 Melt  redistribu%on Lunar  crust
  • 8. 8 Lunar  basalt  density  :  ~3000  kg  m-­‐3 Mare  basalt   V~106  km3   Age  ~  3  -­‐  4  Gyr   Lunar  crust     GRAIL  density  es;mate  :  ~2550  kg  m-­‐3 Intrusive  ac%vity  should  be  large  on  the  Moon   4.4  Gyr Introduc%on:  Moon  forma%on
  • 9. 9 Batholith Laccolith Dykes Sills Can  we  characterise  the  expected  surface  deforma%on   from  the  intrusion  of  a  shallow    laccolith    ? Shallow  <  5  km Introduc%on:  Probing  intrusive  ac%vity  from  the  surface
  • 10. 10 Laccolith Can  we  characterise  the  expected  surface  deforma%on   from  the  intrusion  of  a  shallow    laccolith    ? Shallow  <  5  km Introduc%on:  Probing  intrusive  ac%vity  from  the  surface Dykes Sills
  • 11. 11 Forma;on  ~  100  years   Thickness  ~  100  m   Radius  ~  10  km Laccolith at Bear Butte State Park magmaUpper  strata Rigid  basement h0 R h0 R Laccolith:  Descrip%on Dynamics  model  for  the  emplacement  of  laccolith
  • 12. 12 Forma;on  ~  100  years   Thickness  ~  100  m   Radius  ~  10  km Laccolith at Bear Butte State Park Laccolith:  Descrip%on Upper  strata Rigid  basement magmaUpper  strata Rigid  basement h0 R Dynamics  model  for  the  emplacement  of  laccolith
  • 13. 13 Modified from Rocchie et al 2002 9  shallow-­‐level  felsic  laccoliths  emplaced  at  depth  between  1.9  and  3.7  km Laccolith:  Benchmark  data  -­‐  Elba  Island  laccoliths
  • 14. 14 Elastic layer Rigid layer Michaut,  2011   Lister  et  al,  2013   Hewi?  et  al,  2015   Isoviscous  laccolith:  Model
  • 15. 15 Elastic layer Rigid layer Michaut,  2011   Lister  et  al,  2013   Hewi?  et  al,  2015   Regulariza;on Thin film Isoviscous  laccolith:  Model
  • 16. 16 Elastic layer Rigid layer Michaut,  2011   Lister  et  al,  2013   Hewi?  et  al,  2015   Magma  weight Crust  weight Bending     pressure Pressure Bending     s;ffness Magma     density Crust   density Intrusion   depth Lateral  gradients  in  this  pressure  drive  flow   Isoviscous  laccolith:  Model
  • 17. 17 Elastic layer Rigid layer Michaut,  2011   Lister  et  al,  2013   Hewi?  et  al,  2015   Magma  weight Bending     pressure Driving   Pressure Bending     s;ffness Magma     density Lateral  gradients  in  this  pressure  drive  flow   Isoviscous  laccolith:  Model
  • 18. 18 Elastic layer Rigid layer Michaut,  2011   Lister  et  al,  2013   Hewi?  et  al,  2015   Height  scale Balance  between  bending  and  gravity   Length  scale Bending     s;ffness Magma     density Magma  viscosity Injec;on  rate Isoviscous  laccolith:  Model
  • 19. h0 R 19 Michaut  (2011)   Bunger  et  al  (2011)   Lister  et  al  (2013) Isoviscous  laccolith:  Results  h0(R)
  • 20. Michaut  (2011)   Bunger  et  al  (2011)   Lister  et  al  (2013) h0 R Thickness  profile h0 R 20 Isoviscous  laccolith:  Results  h0(R)
  • 21. Michaut  (2011)   Bunger  et  al  (2011)   Lister  et  al  (2013) h0 R h0 R 21 Isoviscous  laccolith:  Results  h0(R)
  • 22. Michaut  (2011)   Bunger  et  al  (2011)   Lister  et  al  (2013) h0 R 22 Isoviscous  laccolith:  Results  h0(R)
  • 23. Michaut  (2011)   Bunger  et  al  (2011)   Lister  et  al  (2013) Bending  regime h0 R 23 Isoviscous  laccolith:  Results  h0(R)
  • 24. Michaut  (2011)   Bunger  et  al  (2011)   Lister  et  al  (2013) Bending  regime h0 R 24 Isoviscous  laccolith:  Results  h0(R)
  • 25. 25 Michaut  (2011)   Bunger  et  al  (2011)   Lister  et  al  (2013) Gravity  regimeBending  regime Isoviscous  laccolith:  Results  h0(R) Laccolith?
  • 26. h0 R 26 Isoviscous  laccolith:  Elba  Island  laccoliths
  • 27. 27 Isoviscous  laccolith:  Scale Applica;on Poisson’s     ra;o Youngs’s     modulus Intrusion   depth Depth 1.9 - 3.7 km Young’s mod. 10 GPa Poisson’s ratio 0.25 Density 2500 kg m-3 Gravity 9.81 m s-2Magma     density Gravity
  • 28. 28 Applica;on Magma     viscosity Injec;on  rate Density 2500 kg m-3 Viscosity 105 Pa s Injection rate 10 m3 s-1 Gravity 9.81 m s-2 Poisson’s     ra;o Youngs’s     modulus Intrusion   depth Depth 1.9 - 3.7 km Young’s mod. 10 GPa Poisson’s ratio 0.25 Density 2500 kg m-3 Gravity 9.81 m s-2Magma     density Gravity Isoviscous  laccolith:  Scale
  • 30. h0 R Gap  ? 30 Isoviscous  laccolith:  Elba  island  laccolith
  • 31. Mafic  magmas  :  101-­‐104  Poise Felsic  magmas  :  106-­‐1014  Poise University  of  Rhode  Island   BasalLc  lava  flow  ,Hawai  (USGS) Ryholite  lava  flow    from  Oregon  (USGS) Can  the  cooling  explain  the  difference  between     predic%ons  and  observa%ons  ? 31 Isoviscous  laccolith:  What  is  missing  ?
  • 32. 32 Elastic layer Rigid layer Cooling  laccolith:  Model
  • 33. 33 Elastic layer Rigid layer Conductive cooling Cooling  laccolith:  Model
  • 34. 34 Elastic layer Rigid layer Conductive cooling Temperature     field Cooling  laccolith:  Model Rheology Velocity     field Coupling   rheology
  • 35. 35 Elastic layer Rigid layer Conductive cooling Dimensionless  numbers Viscosity  contrast Cooling  laccolith:  Model
  • 36. 36 Elastic layer Rigid layer Conductive cooling Dimensionless  numbers Viscosity  contrast Cooling  laccolith:  Model Peclet  number
  • 37. h0 R magma Elas;c     crust Rigid  crust cooling 37 Cooling  laccolith:  Bending  results
  • 38. h0 R magma Elas;c     crust Rigid  crust cooling 38 Cooling  laccolith:  Bending  results
  • 39. 39 h0 R magma Elas;c     crust Rigid  crust coolingCooling  laccolith:  Bending  results
  • 40. 40 h0 R magma Elas;c     crust Rigid  crust coolingCooling  laccolith:  Bending  results
  • 41. 41 h0 R magma Elas;c     crust Rigid  crust coolingCooling  laccolith:  Bending  results
  • 42. h0 R magma Elas;c     crust Rigid  crust cooling 42 Cooling  laccolith:  Effec%ve  viscosity  
  • 43. 43 h0 R magma Elas;c     crust Rigid  crust coolingCooling  laccolith:  Effec%ve  viscosity  
  • 44. 44 h0 R magma Elas;c     crust Rigid  crust cooling The  viscosity  of  the  ;p  region   controls  h0/R Cooling  laccolith:  Effec%ve  viscosity  
  • 45. 45 Gap  ? h0 R magma Elas;c     crust Rigid  crust cooling Isoviscous  predic;on best  fit Cooling  laccolith:  Elba  Island  laccoliths  
  • 46. 46 h0 R magma Elas;c     crust Rigid  crust cooling Cooling   Isoviscous  predic;on Model  predic;on  :  ν  =  10 -­‐6Model  predic;on  :  ν  =  10 -­‐8 best  fit Cooling  laccolith:  Elba  Island  laccoliths  
  • 47. 47 Expected  laccolith  topographic  deforma%on   Morphology Dimension Can  we  detect  laccoliths  at  the  lunar  surface  ? Cooling  laccolith:  Elba  Island  laccoliths  
  • 48. 48 Eleva;on  (m) Nearside Surface  expression  of  magma%c  intrusions  ? Low-­‐slope  domes Wöhler  et  al,  2006  
  • 50. Applica;on Poisson’s     ra;o Youngs’s     modulus Intrusion   depth Magma     density Gravity Depth 1.5 km Young’s mod. 10 GPa Poisson’s ratio 0.25 Density 2900 kg m-3 Gravity 1.62 m s-2 50 Low-­‐slope  domes:  Scales
  • 51. Applica;on Magma     viscosity Injec;on  rate Poisson’s     ra;o Youngs’s     modulus Intrusion   depth Magma     density Gravity Depth 1.5 km Young’s mod. 10 GPa Poisson’s ratio 0.25 Density 2900 kg m-3 Gravity 1.62 m s-2 Density 2900 kg m-3 Viscosity 104 Pa s Injection rate 10 m3 s-1 Gravity 1.62 m s-2 51 Low-­‐slope  domes:  Scales
  • 52. Isoviscous  predic;on  -­‐  h0  =  0.6  R1.1   52 Low-­‐slope  domes:  Model  comparison
  • 53. Model  predic;on  :  ν  =  10-­‐4Model  predic;on  :  ν  =  10-­‐5 53 Low-­‐slope  domes:  Model  comparison Isoviscous  predic;on  -­‐  h0  =  0.6  R1.1  
  • 54. Eleva;on  (m) Nearside 54 Low-­‐slope  domes:  Conclusion Low-­‐slope  domes  are   the  surface  expression  of   shallow  mafic     magma%c  intrusions
  • 55. Floor-­‐fractured  craters   Low  slope  domes 55 Floor-­‐fractured  craters:  Introduc%on
  • 56. •Shallow  floors  -­‐  up  to  1  km  uplim     •Large  fracture  networks   •Close  rela;onship  Maria Crater  floor  uplim   56 Floor-­‐fractured  craters:  Introduc%on
  • 57. Convex  floor  FFC Flat  floor  FFC 57 Floor-­‐fractured  craters:  Introduc%on
  • 58. 58 Floor-­‐fractured  craters:  Introduc%on Are  they  the  surface  expressions    of  shallow  magma%c  intrusions  ?
  • 59. Elastic layer Rigid layer 59 Floor-­‐fractured  craters:  Crater-­‐centered  intrusion  model
  • 60. Elastic layer Rigid layer 60 Floor-­‐fractured  craters:  Crater-­‐centered  intrusion  model
  • 61. Elastic layer Rigid layer Driving   Pressure Lateral  gradients  in  this  pressure  drive  flow   Magma  weight Bending     pressure Crust  weight 61 Floor-­‐fractured  craters:  Crater-­‐centered  intrusion  model
  • 62. Elastic layer Rigid layer The  intrusion  shape  and  floor  appearance  depends  on   Transi;on  radius  /  Crater  radius 62 Floor-­‐fractured  craters:  Crater-­‐centered  intrusion  model
  • 63. t=30 t=1 Dimensionlessthicknessh t=1 t=5 t=10 t=30 Wall zoneWall zone Dimensionless axis r 63 Floor-­‐fractured  craters:  Results  -­‐  Transi%on  radius  >  D/2 Convex  floor   FFC
  • 64. t=1 Dimensionless axis r Dimensionlessthicknessh t=1 t=5 t=10 t=30 Wall zoneWall zone t=30 64 Floor-­‐fractured  craters:  Results  -­‐  Transi%on  radius  <  D/2 Flat  floor   FFC
  • 65. Thorey  et  al,  JGR,  2014 65 Floor-­‐fractured  craters:  Conclusion Can  we  detect  the  gravita%onal  signatures  produced   by  the  magma%c  intrusions  ? Floor-­‐fractured  craters  are   deformed  following  the     emplacement  of  shallow   magma%c  intrusion
  • 66. Synthe;c  gravity  anomaly  (mGal) Crater  wall 66 Gravita%onal  signature:  Introduc%on Mean  anomaly  ~30  mGal 10 20 30 40 500 180  km  in  diameter   2  km  in  thick   Density  contrast  :  500  kg  m-­‐3 Cylinder-­‐like  intrusion Detectable  in  the  gravity  field  collected  by  GRAIL  mission
  • 67. Zuber  et  al,  2013;  Konopliv  et  al,  2014   67 Gravita%onal  signature:  Free  air  gravity  map
  • 68. Zuber  et  al,  2013;  Konopliv  et  al,  2014   68 Gravita%onal  signature:  Bouguer  gravity  map
  • 69. Zuber  et  al,  2013;  Konopliv  et  al,  2014   69 Gravita%onal  signature:  Bouguer  gravity  map
  • 70. Wieczorek  et  al,  2013 70 Gravita%onal  signature:  Crustal  gravity  map
  • 71. 71 Gravita%onal  signature:  Spherical  harmonic  domain 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 Power(m2) 0 100 200 300 400 500 600 700 800 900 Spherical harmonic degree JGGRAIL 900C11A Bouguer Anomaly CrustAnom 10-6 10-5 10-4 0 100 200 300 400 500 600 700 800 900 Spherical harmonic degree Spherical  harmonic  coefficientPower  (m2) Signal  wavelength  (km) 1370 86 43 28 21 17 14 12 10 9.5
  • 72. 72 Gravita%onal  signature:  Spherical  harmonic  domain 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105 Power(m2) 0 100 200 300 400 500 600 700 800 900 Spherical harmonic degree JGGRAIL 900C11A Bouguer Anomaly CrustAnom 10-6 10-5 10-4 0 100 200 300 400 500 600 700 800 900 Spherical harmonic degree Spherical  harmonic  coefficientPower  (m2) Signal  wavelength  (km) 1370 86 43 28 21 17 14 12 10 9.5 50 0 25~5  mGal
  • 73. Flat  floor  FFC Convex  floor  FFC 73 Gravita%onal  signature:  Observed  crustal  gravity  anomaly
  • 74. South   Pole-­‐Aitken   Basin Lunar     maria 74 Gravita%onal  signature:  Crater  popula%on 80  FFCs   4054  unmodified  craters
  • 75. Diam eter  D Radius  D/2 Area-­‐weighted     mean  anomaly   Anomaly interior crater rim Anomaly exterior crater rim = -­‐ 75 Gravita%onal  signature:  Crustal  anomaly  defini%on
  • 76. Diam eter  D Radius  D/2 Area-­‐weighted     mean  anomaly   Anomaly interior crater rim Anomaly exterior crater rim = -­‐ 76 Gravita%onal  signature:  Crustal  anomaly  defini%on
  • 77. Diam eter  D Radius  D/2 Area-­‐weighted     mean  anomaly   Anomaly interior crater rim Anomaly exterior crater rim = -­‐ 77 Gravita%onal  signature:  Crustal  anomaly  defini%on
  • 80. p<0.01 80 Gravita%onal  signature:  Corrected  gravity  anomaly Support  shallow  magma%c  intrusions  below  FFCs
  • 81. h0 R magma Elas;c     crust Rigid  crust cooling 81 Conclusion:  Numerous  shallow  lunar  magma%c  intrusions Elastic layer Rigid layer Crater-­‐centered  intrusion Laccolith Gravita;onal  signature Low-­‐slope  domes FFCs
  • 82. 82 Perspec%ves:  Lunar  intrusive  magma%sm ~200  FFCs  +  ~10  domes 1%  of  the  maria  volume Volume  ~  104  km3 Origin  of  the  magma  ? Larger  and  deeper  magma     reservoirs  within  the  crust  ? Deforma;ons  are   localised  inside     the  crater  wall Melt  redistribu%on Lunar  crustMare  basalt   V~106  km3 Extrusive   ~106  km3 Shallow   intrusive   ~104  km3
  • 83. 83 Perspec%ves:  Lunar  intrusive  magma%sm ~200  FFCs  +  ~10  domes 1%  of  the  maria  volume Volume  ~  104  km3 Origin  of  the  magma  ? Larger  and  deeper  magma     reservoirs  within  the  crust  ? Deforma;ons  are   localised  inside     the  crater  wall Shallow   intrusive   ~104  km3 Melt  redistribu%on Lunar  crust Mare  basalt   V~106  km3 Extrusive   ~106  km3 Deep   intrusive   ???
  • 84. Mars Venus b) d) d) ) ) f) Sato  et  al  2010 Wichman  and  Schultz  1995 Mercury Schultz  1997,  Thomas  et  al  2015 84 Perspec%ves:  Crater  =  Enhance  shallow  intrusive  ac%vity  ? What  causes  intrusive  ac;vity  to  preferen;ally  occur  beneath  impact  craters  ?
  • 85. Fracture    criterion 85 Perspec%ves:  Dynamics  -­‐  Real-­‐%me  data  interpreta%on  ? Amelung  et  al,  2000 Real-­‐%me  deforma%on  monitoring Magma  physical  parameters   •Injec;on  rate   •Intrusion  depth Model  improvement •Effect  of  solidifica;on   •Precise  descrip;on  of  the     dynamics  at  the  ;p   •Stopping  criterion Gas-­‐filled   region 1992 1997 1998 Sierra  Negra  volcano