SlideShare a Scribd company logo
1 of 31
Download to read offline
Darmon Points: an overview
Explicit Methods for Darmon Points, Benasque
Marc Masdeu
Columbia University
August 25, 2013
(part of joint project with X.Guitart and M.H.Sengun)
Marc Masdeu Darmon Points: an overview August 25, 2013 1 / 1
Basic Setup
E = (semistable) elliptic curve defined over a number field F.
Let N = conductor(E).
Assume (for simplicity) that N is square-free.
Let K/F a quadratic extension.
Assume (for simplicity) that disc(K/F) is coprime to N.
For each prime p of K, ap(E) = 1 + |p| − #E(Fp).
L(E/K, s) =
p|N
1 − a|p||p|−s −1
×
p N
1 − a|p||p|−s
+ |p|1−2s −1
Modularity conjecture =⇒
Analytic continuation of L(E/K, s) to C.
Functional equation relating s ↔ 2 − s.
Marc Masdeu Darmon Points: an overview August 25, 2013 2 / 1
Birch and Swinnerton-Dyer
Conjecture (BSD, rough version)
ords=1 L(E/K, s) = rkZ E(K).
So L(E/K, 1) = 0 =⇒ ∃PK ∈ E(K) of infinite order.
The sign of the functional equation of L(E/K, s) should be:
sign(E, K) = (−1)#{v|N∞F :v not split in K}
.
So sign(E, K) = −1 + BSD “ =⇒ ” E(K) has points of infinite order.
From here on, assume that sign(E, K) = −1.
Marc Masdeu Darmon Points: an overview August 25, 2013 3 / 1
Classical Example: Heegner Points
∃ when F is totally real and K/F is totally complex (CM extension).
Suppose F = Q and E/Q.
X0(N)/Q modular curve with a morphism Jac(X0(N)) → E.
X0(N)(C) = Γ0(N)H.
∃ cycles on Jac(X0(N)) attached to K, giving points on E(Kab).
E ; ωE ∈ H0(Γ0(N), Ω1
H).
For each τ ∈ K ∩ H, set:
Jτ =
τ
∞
ωE ∈ C.
Well-defined up to ΛE = { γ
ωE | γ ∈ H1(X0(N), Z)}.
Set Pτ = ΦWeierstrass(Jτ ) ∈ E(C).
Theorem (Shimura)
Pτ ∈ E(Hτ ), where Hτ /K is a class field attached to τ.
Gross-Zagier: TrHτ /K(Pτ ) ∈ E(K) nontorsion ⇐⇒ ran(E, K) = 1.
Marc Masdeu Darmon Points: an overview August 25, 2013 4 / 1
Darmon’s Dream
Drop hypothesis of K/F being CM.
Simplest case: F = Q, K real quadratic.
However:
There are no points on X0(N) attached to K.
For F not totally real, even the curve X0(N) is missing.
Nevertheless, Darmon points exist!
(We just can’t prove it, so far.)
Marc Masdeu Darmon Points: an overview August 25, 2013 5 / 1
Goals
In this talk we will:
1 Explain what Darmon Points are,
2 Give hints on how we calculate them, and
“The fun of the subject seems to me to be in the examples.
B. Gross, in a letter to B. Birch, 1982
”3 Show some fun examples!
Marc Masdeu Darmon Points: an overview August 25, 2013 6 / 1
More Notation
S(K, N∞F ) = {v | N∞F : v not split in K}.
Recall that we assume that #S(K, N∞F ) is odd.
Fix a place w ∈ S(K, N∞F ).
Let B be a quaternion algebra over F with
Ram(B) = S(K, N∞F )  {w}.
Let D be the discriminant of B.
m = product of the primes in F diving N and which are split in K.
Let RD
0 (m) be an Eichler order of level m inside B.
Fix an embedding
ιw : RD
0 (m) → M2(OF,w)
Set Γ = ιw RD
0 (m)[1/w]×
1 ⊂ SL2(Fw).
n := #{v | ∞F : K ⊗F Fv
∼= Fv × Fv}.
K/F is CM ⇐⇒ n = 0.
Marc Masdeu Darmon Points: an overview August 25, 2013 7 / 1
Non-archimedean History
Definition
s = #S(K, N∞F ) = {v | N∞F : v not split in K}
n = #∞F  S(K, ∞F ) = {v | ∞F : v split in K}
H. Darmon (1999): F = Q, n = 1 and s = 1.
Darmon-Green (2001): m trivial, Riemann products.
Darmon-Pollack (2002): m trivial, overconvergent.
Guitart-M. (2012): Allowed for m arbitrary.
M. Trifkovic (2006): F imag. quadratic (n = 1) and s = 1.
Trifkovic (2006): F euclidean, m trivial.
Guitart-M. (2013): F arbitrary, m arbitrary.
M. Greenberg (2008):F totally real, n ≥ 1 and s ≥ 1.
Guitart-M. (2013): n = 1.
Marc Masdeu Darmon Points: an overview August 25, 2013 8 / 1
Archimedean History
Definition
s = #S(K, N∞F ) = {v | N∞F : v not split in K}
n = #∞F  S(K, ∞F ) = {v | ∞F : v split in K}
H. Darmon (2000): F totally real and s = 1.
Darmon-Logan (2007): F real quadratic and norm-euclidean, n = 1,
m trivial.
Guitart-M. (2011): F real quadratic and arbitrary, n = 1, m trivial.
Guitart-M. (2012): F real quadratic and arbitrary, n = 1, m arbitrary.
J. Gartner (2010): F totally real, s ≥ 1.
Marc Masdeu Darmon Points: an overview August 25, 2013 9 / 1
Integration Pairing
Let w ∈ S(K, N∞F ).
Let Hw = the w-adic upper half plane. That is:
The Poincar´e upper half plane if w is infinite,
The p-adic upper-half plane if w = p is finite.
Hw comes equipped with an analytic structure (complex- or rigid-).
If w is infinite, there is a natural pairing
Ω1
Hw
× Div0
Hw → C = Kw,
which sends
(ω, (τ2) − (τ2)) →
τ2
τ1
ω ∈ C = Kw.
Analogously, Coleman integration gives a natural pairing
Ω1
Hw
× Div0
Hw → Kw.
Marc Masdeu Darmon Points: an overview August 25, 2013 10 / 1
Rigid one-forms and measures
The assignment
µ → ω =
P1(Qp)
dz
z − t
dµ(t)
induces an isomorphism Meas0(P1(Qp), Z) ∼= Ω1
Hw,Z.
Inverse given by ω → U → µ(U) = resA(U) ω .
Theorem (Teitelbaum)
τ2
τ1
ω =
P1(Qp)
log
t − τ1
t − τ2
dµ(t).
Proof sketch.
τ2
τ1
ω =
τ2
τ1 P1(Qp)
dz
z − t
dµ(t) =
P1(Qp)
log
t − τ2
t − τ1
dµ(t).
Marc Masdeu Darmon Points: an overview August 25, 2013 11 / 1
The p-adic upper half plane
If the residues of ω are all integers, have a multiplicative refinement:
×
τ2
τ1
ω = lim
−→
U U∈U
tU − τ2
tU − τ1
µ(U)
∈ K×
w where µ(U) = resA(U) ω.
Bruhat-Tits tree of
GL2(Qp) with p = 2.
Hp having the
Bruhat-Tits as retract.
Annuli A(U) for U a
covering of size p−3.
tU is any point in
U ⊂ P1(Qp).
Marc Masdeu Darmon Points: an overview August 25, 2013 12 / 1
(Co)homology
S(K, N∞) and w determine an S-arithmetic group Γ.
e.g. S(K, N∞) = {p} gives SL2(Z[1
p ]).
Attach to E a unique class (up to sign):
[ΦE] ∈ Hn
Γ, Ω1
Hp,Z .
Ω1
Hp,Z = rigid-analytic differentials having integral residues.
Uses Hecke action and Shapiro’s lemma.
Attach to each embedding ψ: OK → RD
0 (m) a homology class:
[Θψ] ∈ Hn Γ, Div0
Hp .
Integration yields an element
Jψ = × ΦE, Θψ ∈ K×
w .
Marc Masdeu Darmon Points: an overview August 25, 2013 13 / 1
Uniformization
Jψ = × ΦE, Θψ ∈ K×
w .
Jψ is well-defined up to a lattice L ⊂ K×
v .
It is conjectured (and in some cases proven) that this lattice is
commensurable to the (Weierstrass or Tate) lattice qE of E.
∃ isogeny β : K×
w /L → K×
w /qZ
E.
When w is infinite, there is a complex-analytic map
Φ = ΦWeierstrass : C → E(C).
When w is finite, Tate uniformization provides a rigid-analytic map
Φ = ΦTate : K×
w → E(Kw).
Marc Masdeu Darmon Points: an overview August 25, 2013 14 / 1
Conjecture
Define Pψ = Φ(β(Jψ)) ∈ E(Kw).
Conjecture (Darmon, . . . )
The local point Pψ belongs to E(Kab).
Moreover Pψ is torsion if and only if L (E/K, 1) = 0.
The conjecture predicts the exact number field over which Pψ is
defined.
It also includes a Shimura reciprocity law, mimicking the behavior of
Heegner points.
Marc Masdeu Darmon Points: an overview August 25, 2013 15 / 1
A special case
We will restrict to the non-archimedean setting, w = p.
Suppose also that Fp
∼= Qp, i.e. p is split in F.
But recall the running assumption: p is inert in K.
Suppose also that n = 1. This includes the cases:
1 F totally real and K/F almost totally complex.
e.g. F = Q and K real quadratic. (Darmon)
2 F almost totally real and K/F totally imaginary.
e.g. F quadratic imaginary. (Trifkovic)
Marc Masdeu Darmon Points: an overview August 25, 2013 16 / 1
Cohomology
Jacquet-Langlands correspondence gives:
dimQ H1
ΓD
0 (pm), Q
λE
p-new
= 1
Let ϕE ∈ H1(ΓD
0 (pm), Z)p-new
λE
Well-defined up to sign.
Shapiro’s isomorphism gives ΦE ∈ H1(Γ, coindΓ
ΓD
0 (pm)
Z).
Choose an “harmonic” system of representatives, to pull back to
ΦE ∈ H1
(Γ, HC(Z)),
Here HC(Z) = ker coindΓ
ΓD
0 (pm) Z → coindΓ
ΓD
0 (m) Z
2
.
Finally, use isomorphisms
HC(Z) ∼= Meas0(P1
(Qp), Z) ∼= Ω1
Hp,Z.
Obtain ΦE ∈ H1(Γ, Ω1
Hp,Z).
Marc Masdeu Darmon Points: an overview August 25, 2013 17 / 1
Homology
Let ψ: O → R0(m) be an embedding of an order O of K.
. . . which is optimal: ψ(O) = R0(m) ∩ ψ(K).
Consider the group
O×
1 = {u ∈ O×
: NmK/F (u) = 1}.
rank(O×
1 ) = rank(O×
) − rank(OF ) = 1.
Let u ∈ O×
1 be a non-torsion unit, and let γψ = ψ(u).
u acts on Hp via K× → B×
1 → B×
1,p
∼= SL2(Qp) with fixed points
τψ, τψ.
Consider ˜Θψ = [γψ ⊗τψ] in H1(Γ, Div Hp).
Have the exact sequence
H1(Γ, Div0
Hp) // H1(Γ, Div Hp)
deg
// H1(Γ, Z)
Θψ
 ? // ˜Θψ
 // deg ˜Θψ
Lemma: deg ˜Θψ is torsion.
Can pull back (a multiple of) ˜Θψ to Θψ ∈ H1(Γ, Div0
Hp).
Marc Masdeu Darmon Points: an overview August 25, 2013 18 / 1
Overconvergent Integration (I)
D = { locally-analytic Zp-valued distributions on Zp }.
Σ0(p) =
a b
c d
∈ M2(Zp) | p | c, d ∈ Z×
p , ad − bc = 0 .
γ = a b
c d ∈ Σ0(p) acts on ν ∈ D by:
Zp
h(t)d(γν) =
Zp
h
at + b
ct + d
dν.
Can define Up operator on H1(ΓD
0 (pm), D).
Theorem (Pollack-Pollack)
Let ϕ ∈ H1(ΓD
0 (pm), Zp) be such that Upϕ = αϕ with α ∈ Z×
p . Then there
is a unique lift Φ ∈ H1(ΓD
0 (pm), D) such that UpΦ = αΦ.
Marc Masdeu Darmon Points: an overview August 25, 2013 19 / 1
Overconvergent Integration (II)
Theorem (Pollack-Pollack)
Let ϕ ∈ H1(ΓD
0 (pm), Zp) be such that Upϕ = αϕ with α ∈ Z×
p . Then there
is a unique lift Φ ∈ H1(ΓD
0 (pm), D) such that UpΦ = αΦ.
Recall we have ϕE ∈ H1(Γ, Meas0(P1(Qp), ZZ)).
The cocycle Φ given by:
(Φγ)(h(t)) =
Zp
h(t)dϕE,γ(t), γ ∈ ΓD
0 (pM).
is a lift of ϕE which is also an Up-eigenclass.
So Φ = Φ, and obtain a way to integrate.
We can extend this in order to:
1 Evaluate at γ ∈ Γ (not just ΓD
0 (pm)).
2 Integrate over all of P1
(Qp) (not just Zp).
3 Compute multiplicative integrals.
Marc Masdeu Darmon Points: an overview August 25, 2013 20 / 1
Implementation
We have written SAGE code to compute non-archimedean Darmon
points when n = 1.
Depend on:
1 Overconvergent method for F = Q and D = 1 (R.Pollack).
2 Finding a presentation for units of orders in B (J.Voight, A.Page).
Currently depends on MAGMA.
Overconvergent methods (adapted to D = 1).
Efficient (polynomial time) integration algorithm.
Apart from checking the conjecture, can use the method to actually
finding the points.
Need more geometric ideas to treat n  1.
Marc Masdeu Darmon Points: an overview August 25, 2013 21 / 1
Examples
Please show them
the examples !
Marc Masdeu Darmon Points: an overview August 25, 2013 22 / 1
p = 5, Curve 15A1
E : y2
+ xy + y = x3
+ x2
− 10x − 10
dK h P
13 1 −
√
13 + 1, 2
√
13 − 4
28 1 −15
√
7 + 43, 150
√
7 − 402
37 1 −5
9
√
37 + 5
9, 25
27
√
37 − 70
27
73 1 −17
32
√
73 + 77
32, 187
128
√
73 − 1199
128
88 1 −17
9 , 14
27
√
22 + 4
9
97 1 − 25
121
√
97 + 123
121, 375
2662
√
97 − 4749
2662
133 1 103
9 , 92
27
√
133 − 56
9
172 1 −1923
1681, 11781
68921
√
43 + 121
1681
193 1 1885
288
√
193 + 25885
288 , 292175
3456
√
193 + 4056815
3456
Marc Masdeu Darmon Points: an overview August 25, 2013 23 / 1
p = 3, Curve 21A1
E : y2
+ xy = x3
− 4x − 1
dK h P
8 1 −9
√
2 + 11, 45
√
2 − 64
29 1 − 9
25
√
29 + 32
25, 63
125
√
29 − 449
125
44 1 − 9
49
√
11 − 52
49, 54
343
√
11 + 557
343
53 1 − 37
169
√
53 + 184
169, 555
2197
√
53 − 5633
2197
92 1 533
46 , 17325
2116
√
23 − 533
92
137 1 − 1959
11449
√
137 + 242
11449, 295809
2450086
√
137 − 162481
2450086
149 1 − 261
2809
√
149 + 2468
2809, 8091
148877
√
149 − 101789
148877
197 1 − 79135143
209961032
√
197 + 977125081
209961032, 1439547386313
1075630366936
√
197 − 9297639417941
537815183468
D h hD(x)
65 2 x2 + 61851
6241
√
65 − 491926
6241 x − 403782
6241
√
65 + 3256777
6241
Marc Masdeu Darmon Points: an overview August 25, 2013 24 / 1
p = 11, Curve 33A1
E : y2
+ xy = x3
+ x2
− 11x
dK h P
13 1 − 1
2
√
13 + 3
2
, 1
2
√
13 − 7
2
28 1 22
7
, 55
49
√
7 − 11
7
61 1 − 1
2
√
61 + 5
2
,
√
61 − 11
73 1 − 53339
49928
√
73 + 324687
49928
, 31203315
7888624
√
73 − 290996167
7888624
76 1 −2,
√
19 + 1
109 1 − 143
2
√
109 + 1485
2
, 5577
2
√
109 − 58223
2
172 1 − 51842
21025
, 2065147
3048625
√
43 + 25921
21025
184 1 59488
21609
, 109252
3176523
√
46 − 29744
21609
193 1 94663533349261
678412148664608
√
193 + 1048806825770477
678412148664608
,
147778957920931299317
12494688311813553741184
√
193 + 30862934493092416035541
12494688311813553741184
D h hD(x)
40 2 x2
+ 2849
1681
√
10 − 6347
1681
x − 5082
1681
√
10 + 16819
1681
85 2 x2
+ 119
361
√
85 − 1022
361
x − 168
361
√
85 + 1549
361
145 4 x4
+ 169016003453
83168215321
√
145 − 1621540207320
83168215321
x3
+ − 1534717557538
83168215321
√
145 + 18972823294799
83168215321
x2
+ 5533405190489
83168215321
√
145 − 66553066916820
83168215321
x
+ − 6414913389456
83168215321
√
145 + 77248348177561
83168215321
Marc Masdeu Darmon Points: an overview August 25, 2013 25 / 1
p = 13, Curve 78A1
78 = 2 · 3 · 13, we take p = 13 and D = 6.
E : y2
+ xy = x3
+ x2
− 19x + 685
dK P
5 1 · 48 · −2, 12
√
5 + 1
149 1 · 48 · 1558, −5040
√
149 − 779
197 1 · 48 · 310
49 , 720
343
√
197 − 155
49
293 1 · 48 · 40, −15
√
293 − 20
317 1 · 48 · 382, −420
√
317 − 191
437 1 · 48 · 986
23 , 7200
529
√
437 − 493
23
461 1 · 48 · 232, −165
√
461 − 116
509 1 · 48 · − 2
289 , −5700
4913
√
509 + 1
289
557 1 · 48 · 75622
121 , 882000
1331
√
557 − 37811
121
Marc Masdeu Darmon Points: an overview August 25, 2013 26 / 1
p = 11, Curve 110A1
110 = 2 · 5 · 11, we take p = 11 and D = 10.
E : y2
+ xy + y = x3
+ x2
+ 10x − 45.
dK P
13 2 · 30 · 1103
81 − 250
81
√
13, −52403
729 + 13750
729
√
13
173 2 · 30 · 1532132
9025 , −1541157
18050 − 289481483
1714750
√
173
237 2 · 30 · 190966548837842073867
4016648659658412649 − 10722443619184119320
4016648659658412649
√
237,
−3505590193011437142853233857149
8049997913829845411423756107 + 235448460130564520991320372200
8049997913829845411423756107
√
237
277 2 · 30 46317716623881
12553387541776 , −58871104165657
25106775083552 − 20912769335239055243
44477606117965542976
√
277
293 2 · 30 · 7088486530742
2971834657801 , −10060321188543
5943669315602 − 591566427769149607
10246297476835603402
√
293
373 2 · 30 · 298780258398
62087183929 , −360867442327
124174367858 − 19368919551426449
30940899762281434
√
373
Marc Masdeu Darmon Points: an overview August 25, 2013 27 / 1
p = 5, Curve 110A1
110 = 2 · 5 · 11, we take p = 5 and D = 22.
E : y2
+ xy + y = x3
+ x2
+ 10x − 45.
dK P
13 2 · 12 · 4, 5
2
√
13 − 5
2
173 2 · 12 · 1532132
9025 , −289481483
1714750
√
173 − 1541157
18050
237 2 · 12 · 5585462179
1193768112 , −53751973226309
71439858894528
√
237 − 6779230291
2387536224
277 —
293 2 · 12 · 7088486530742
2971834657801 , − 591566427769149607
10246297476835603402
√
293 − 10060321188543
5943669315602
373 2 · 12 · 298780258398
62087183929 , 19368919551426449
30940899762281434
√
373 − 360867442327
124174367858
Marc Masdeu Darmon Points: an overview August 25, 2013 28 / 1
p = 19, Curve 114A1
114 = 2 · 3 · 19, we take p = 19 and D = 6.
E : y2
+ xy = x3
− 8x.
dK P
29 1 · 72 · − 6
25
√
29 − 38
25 , − 18
125
√
29 + 86
125
53 1 · 72 · −1
9 , 7
54
√
53 + 1
18
173 1 · 72 · − 3481
13689 , 347333
3203226
√
173 + 3481
27378
269 1 · 72 · 1647149414400
23887470525361
√
269 − 43248475603556
23887470525361 ,
2359447648611379200
116749558330761905641
√
269 + 268177497417024307564
116749558330761905641
293 1 · 72 · 21289143620808
4902225525409 , 4567039561444642548
10854002829131490673
√
293 − 10644571810404
4902225525409
317 1 · 72 · −25
9 , − 5
54
√
317 + 25
18
341 1 · 72 · 3449809443179
499880896975 , 3600393040902501011
3935597293546963250
√
341 − 3449809443179
999761793950
413 1 · 72 · 59
7 , 113
98
√
413 − 59
14
Marc Masdeu Darmon Points: an overview August 25, 2013 29 / 1
Thank you !
Bibliography and slides at:
http://www.math.columbia.edu/∼masdeu/
Marc Masdeu Darmon Points: an overview August 25, 2013 30 / 1
Bibliography
Henri Darmon and Adam Logan, Periods of Hilbert modular forms and rational points on elliptic curves, Int. Math. Res. Not.
(2003), no. 40, 2153–2180.
Henri Darmon and Peter Green.
Elliptic curves and class fields of real quadratic fields: Algorithms and evidence.
Exp. Math., 11, No. 1, 37-55, 2002.
Henri Darmon and Robert Pollack.
Efficient calculation of Stark-Heegner points via overconvergent modular symbols.
Israel J. Math., 153:319–354, 2006.
J´erˆome G¨artner, Darmon’s points and quaternionic Shimura varieties
arXiv.org, 1104.3338, 2011.
Xavier Guitart and Marc Masdeu.
Elementary matrix Decomposition and the computation of Darmon points with higher conductor.
arXiv.org, 1209.4614, 2012.
Xavier Guitart and Marc Masdeu.
Computation of ATR Darmon points on non-geometrically modular elliptic curves.
Experimental Mathematics, 2012.
Xavier Guitart and Marc Masdeu.
Computation of quaternionic p-adic Darmon points.
arXiv.org, ?, 2013.
Matthew Greenberg.
Stark-Heegner points and the cohomology of quaternionic Shimura varieties.
Duke Math. J., 147(3):541–575, 2009.
David Pollack and Robert Pollack.
A construction of rigid analytic cohomology classes for congruence subgroups of SL3(Z).
Canad. J. Math., 61(3):674–690, 2009.
Marc Masdeu Darmon Points: an overview August 25, 2013 31 / 1

More Related Content

What's hot

On learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihoodOn learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihoodFrank Nielsen
 
Improved Trainings of Wasserstein GANs (WGAN-GP)
Improved Trainings of Wasserstein GANs (WGAN-GP)Improved Trainings of Wasserstein GANs (WGAN-GP)
Improved Trainings of Wasserstein GANs (WGAN-GP)Sangwoo Mo
 
Darmon Points for fields of mixed signature
Darmon Points for fields of mixed signatureDarmon Points for fields of mixed signature
Darmon Points for fields of mixed signaturemmasdeu
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsFrank Nielsen
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clusteringFrank Nielsen
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesFrank Nielsen
 
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...Sangwoo Mo
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applicationsFrank Nielsen
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Frank Nielsen
 
Doubled Geometry and Double Field Theory
Doubled Geometry and Double Field TheoryDoubled Geometry and Double Field Theory
Doubled Geometry and Double Field TheoryLuigi
 
Optimal L-shaped matrix reordering, aka graph's core-periphery
Optimal L-shaped matrix reordering, aka graph's core-peripheryOptimal L-shaped matrix reordering, aka graph's core-periphery
Optimal L-shaped matrix reordering, aka graph's core-peripheryFrancesco Tudisco
 
On Clustering Histograms with k-Means by Using Mixed α-Divergences
 On Clustering Histograms with k-Means by Using Mixed α-Divergences On Clustering Histograms with k-Means by Using Mixed α-Divergences
On Clustering Histograms with k-Means by Using Mixed α-DivergencesFrank Nielsen
 
Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...HidenoriOgata
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsSean Meyn
 
Tailored Bregman Ball Trees for Effective Nearest Neighbors
Tailored Bregman Ball Trees for Effective Nearest NeighborsTailored Bregman Ball Trees for Effective Nearest Neighbors
Tailored Bregman Ball Trees for Effective Nearest NeighborsFrank Nielsen
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning Sean Meyn
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Frank Nielsen
 
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...Frank Nielsen
 

What's hot (20)

On learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihoodOn learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihood
 
Improved Trainings of Wasserstein GANs (WGAN-GP)
Improved Trainings of Wasserstein GANs (WGAN-GP)Improved Trainings of Wasserstein GANs (WGAN-GP)
Improved Trainings of Wasserstein GANs (WGAN-GP)
 
Darmon Points for fields of mixed signature
Darmon Points for fields of mixed signatureDarmon Points for fields of mixed signature
Darmon Points for fields of mixed signature
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clustering
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
 
Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)Computational Information Geometry: A quick review (ICMS)
Computational Information Geometry: A quick review (ICMS)
 
Doubled Geometry and Double Field Theory
Doubled Geometry and Double Field TheoryDoubled Geometry and Double Field Theory
Doubled Geometry and Double Field Theory
 
Optimal L-shaped matrix reordering, aka graph's core-periphery
Optimal L-shaped matrix reordering, aka graph's core-peripheryOptimal L-shaped matrix reordering, aka graph's core-periphery
Optimal L-shaped matrix reordering, aka graph's core-periphery
 
Igv2008
Igv2008Igv2008
Igv2008
 
On Clustering Histograms with k-Means by Using Mixed α-Divergences
 On Clustering Histograms with k-Means by Using Mixed α-Divergences On Clustering Histograms with k-Means by Using Mixed α-Divergences
On Clustering Histograms with k-Means by Using Mixed α-Divergences
 
Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
 
Tailored Bregman Ball Trees for Effective Nearest Neighbors
Tailored Bregman Ball Trees for Effective Nearest NeighborsTailored Bregman Ball Trees for Effective Nearest Neighbors
Tailored Bregman Ball Trees for Effective Nearest Neighbors
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
 
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
 
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
 

Viewers also liked

Numerical Evidence for Darmon Points
Numerical Evidence for Darmon PointsNumerical Evidence for Darmon Points
Numerical Evidence for Darmon Pointsmmasdeu
 
p-adic periods of abelian varieties attached to GL2-automorphic forms
p-adic periods of abelian varieties attached to GL2-automorphic formsp-adic periods of abelian varieties attached to GL2-automorphic forms
p-adic periods of abelian varieties attached to GL2-automorphic formsmmasdeu
 
Quaternionic Modular Symbols in Sage
Quaternionic Modular Symbols in SageQuaternionic Modular Symbols in Sage
Quaternionic Modular Symbols in Sagemmasdeu
 
Analytic construction of elliptic curves and rational points
Analytic construction of elliptic curves and rational pointsAnalytic construction of elliptic curves and rational points
Analytic construction of elliptic curves and rational pointsmmasdeu
 
A Unified Perspective for Darmon Points
A Unified Perspective for Darmon PointsA Unified Perspective for Darmon Points
A Unified Perspective for Darmon Pointsmmasdeu
 
Analytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesAnalytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesmmasdeu
 
Darmon points for fields of mixed signature
Darmon points for fields of mixed signatureDarmon points for fields of mixed signature
Darmon points for fields of mixed signaturemmasdeu
 
Analytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesAnalytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesmmasdeu
 
Darmon Points in mixed signature
Darmon Points in mixed signatureDarmon Points in mixed signature
Darmon Points in mixed signaturemmasdeu
 
Non-archimedean construction of elliptic curves and abelian surfaces
Non-archimedean construction of elliptic curves and abelian surfacesNon-archimedean construction of elliptic curves and abelian surfaces
Non-archimedean construction of elliptic curves and abelian surfacesmmasdeu
 
Non-archimedean construction of elliptic curves and rational points
Non-archimedean construction of elliptic curves and rational pointsNon-archimedean construction of elliptic curves and rational points
Non-archimedean construction of elliptic curves and rational pointsmmasdeu
 
Computing p-adic periods of abelian surfaces from automorphic forms
Computing p-adic periods of abelian surfaces from automorphic formsComputing p-adic periods of abelian surfaces from automorphic forms
Computing p-adic periods of abelian surfaces from automorphic formsmmasdeu
 
Darmon Points for fields of mixed signature
Darmon Points for fields of mixed signatureDarmon Points for fields of mixed signature
Darmon Points for fields of mixed signaturemmasdeu
 
p-adic integration and elliptic curves over number fields
p-adic integration and elliptic curves over number fieldsp-adic integration and elliptic curves over number fields
p-adic integration and elliptic curves over number fieldsmmasdeu
 

Viewers also liked (16)

Numerical Evidence for Darmon Points
Numerical Evidence for Darmon PointsNumerical Evidence for Darmon Points
Numerical Evidence for Darmon Points
 
p-adic periods of abelian varieties attached to GL2-automorphic forms
p-adic periods of abelian varieties attached to GL2-automorphic formsp-adic periods of abelian varieties attached to GL2-automorphic forms
p-adic periods of abelian varieties attached to GL2-automorphic forms
 
Quaternionic Modular Symbols in Sage
Quaternionic Modular Symbols in SageQuaternionic Modular Symbols in Sage
Quaternionic Modular Symbols in Sage
 
dough trading
dough tradingdough trading
dough trading
 
Analytic construction of elliptic curves and rational points
Analytic construction of elliptic curves and rational pointsAnalytic construction of elliptic curves and rational points
Analytic construction of elliptic curves and rational points
 
A Unified Perspective for Darmon Points
A Unified Perspective for Darmon PointsA Unified Perspective for Darmon Points
A Unified Perspective for Darmon Points
 
Analytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesAnalytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curves
 
Darmon points for fields of mixed signature
Darmon points for fields of mixed signatureDarmon points for fields of mixed signature
Darmon points for fields of mixed signature
 
Analytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesAnalytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curves
 
Darmon Points in mixed signature
Darmon Points in mixed signatureDarmon Points in mixed signature
Darmon Points in mixed signature
 
Non-archimedean construction of elliptic curves and abelian surfaces
Non-archimedean construction of elliptic curves and abelian surfacesNon-archimedean construction of elliptic curves and abelian surfaces
Non-archimedean construction of elliptic curves and abelian surfaces
 
Non-archimedean construction of elliptic curves and rational points
Non-archimedean construction of elliptic curves and rational pointsNon-archimedean construction of elliptic curves and rational points
Non-archimedean construction of elliptic curves and rational points
 
Computing p-adic periods of abelian surfaces from automorphic forms
Computing p-adic periods of abelian surfaces from automorphic formsComputing p-adic periods of abelian surfaces from automorphic forms
Computing p-adic periods of abelian surfaces from automorphic forms
 
Darmon Points for fields of mixed signature
Darmon Points for fields of mixed signatureDarmon Points for fields of mixed signature
Darmon Points for fields of mixed signature
 
p-adic integration and elliptic curves over number fields
p-adic integration and elliptic curves over number fieldsp-adic integration and elliptic curves over number fields
p-adic integration and elliptic curves over number fields
 
Electrical Condition monitoring part 1
Electrical Condition monitoring part 1Electrical Condition monitoring part 1
Electrical Condition monitoring part 1
 

Similar to Darmon Points: an Overview

Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Daisuke Yoneoka
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...Frank Nielsen
 
Group theory notes
Group theory notesGroup theory notes
Group theory notesmkumaresan
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curvesmmasdeu
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCEFrank Nielsen
 
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a treedeformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a treeBohdan Feshchenko
 
Improving estimates for discrete polynomial averaging operators
Improving estimates for discrete polynomial averaging operatorsImproving estimates for discrete polynomial averaging operators
Improving estimates for discrete polynomial averaging operatorsVjekoslavKovac1
 
Rainone - Groups St. Andrew 2013
Rainone - Groups St. Andrew 2013Rainone - Groups St. Andrew 2013
Rainone - Groups St. Andrew 2013Raffaele Rainone
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexityFrank Nielsen
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 
Meta-learning and the ELBO
Meta-learning and the ELBOMeta-learning and the ELBO
Meta-learning and the ELBOYoonho Lee
 
Introduction to modern Variational Inference.
Introduction to modern Variational Inference.Introduction to modern Variational Inference.
Introduction to modern Variational Inference.Tomasz Kusmierczyk
 
l1-Embeddings and Algorithmic Applications
l1-Embeddings and Algorithmic Applicationsl1-Embeddings and Algorithmic Applications
l1-Embeddings and Algorithmic ApplicationsGrigory Yaroslavtsev
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeVjekoslavKovac1
 

Similar to Darmon Points: an Overview (20)

Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
Slides: Total Jensen divergences: Definition, Properties and k-Means++ Cluste...
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCETHE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
THE CHORD GAP DIVERGENCE AND A GENERALIZATION OF THE BHATTACHARYYA DISTANCE
 
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a treedeformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
deformations of smooth functions on 2-torus whose kronrod-reeb graph is a tree
 
Improving estimates for discrete polynomial averaging operators
Improving estimates for discrete polynomial averaging operatorsImproving estimates for discrete polynomial averaging operators
Improving estimates for discrete polynomial averaging operators
 
Rainone - Groups St. Andrew 2013
Rainone - Groups St. Andrew 2013Rainone - Groups St. Andrew 2013
Rainone - Groups St. Andrew 2013
 
Bregman divergences from comparative convexity
Bregman divergences from comparative convexityBregman divergences from comparative convexity
Bregman divergences from comparative convexity
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 
Seminar Sample
Seminar SampleSeminar Sample
Seminar Sample
 
8803-09-lec16.pdf
8803-09-lec16.pdf8803-09-lec16.pdf
8803-09-lec16.pdf
 
Meta-learning and the ELBO
Meta-learning and the ELBOMeta-learning and the ELBO
Meta-learning and the ELBO
 
Introduction to modern Variational Inference.
Introduction to modern Variational Inference.Introduction to modern Variational Inference.
Introduction to modern Variational Inference.
 
l1-Embeddings and Algorithmic Applications
l1-Embeddings and Algorithmic Applicationsl1-Embeddings and Algorithmic Applications
l1-Embeddings and Algorithmic Applications
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
SPLITTING FIELD.ppt
SPLITTING FIELD.pptSPLITTING FIELD.ppt
SPLITTING FIELD.ppt
 
E42012426
E42012426E42012426
E42012426
 

More from mmasdeu

Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de númerosmmasdeu
 
Numerical experiments with plectic Stark-Heegner points
Numerical experiments with plectic Stark-Heegner pointsNumerical experiments with plectic Stark-Heegner points
Numerical experiments with plectic Stark-Heegner pointsmmasdeu
 
Quaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocyclesQuaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocyclesmmasdeu
 
Sabem resoldre equacions de tercer grau?
Sabem resoldre equacions de tercer grau?Sabem resoldre equacions de tercer grau?
Sabem resoldre equacions de tercer grau?mmasdeu
 
Quaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocyclesQuaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocyclesmmasdeu
 
Variations on the method of Coleman-Chabauty
Variations on the method of Coleman-ChabautyVariations on the method of Coleman-Chabauty
Variations on the method of Coleman-Chabautymmasdeu
 
Towards a theory of p-adic singular moduli attached to global fields
Towards a theory of p-adic singular moduli attached to global fieldsTowards a theory of p-adic singular moduli attached to global fields
Towards a theory of p-adic singular moduli attached to global fieldsmmasdeu
 
(International) Academic Career
(International) Academic Career(International) Academic Career
(International) Academic Careermmasdeu
 
Distributing Sage / Python Code, The Right Way
Distributing Sage / Python Code, The Right WayDistributing Sage / Python Code, The Right Way
Distributing Sage / Python Code, The Right Waymmasdeu
 
Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017mmasdeu
 

More from mmasdeu (10)

Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de números
 
Numerical experiments with plectic Stark-Heegner points
Numerical experiments with plectic Stark-Heegner pointsNumerical experiments with plectic Stark-Heegner points
Numerical experiments with plectic Stark-Heegner points
 
Quaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocyclesQuaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocycles
 
Sabem resoldre equacions de tercer grau?
Sabem resoldre equacions de tercer grau?Sabem resoldre equacions de tercer grau?
Sabem resoldre equacions de tercer grau?
 
Quaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocyclesQuaternionic rigid meromorphic cocycles
Quaternionic rigid meromorphic cocycles
 
Variations on the method of Coleman-Chabauty
Variations on the method of Coleman-ChabautyVariations on the method of Coleman-Chabauty
Variations on the method of Coleman-Chabauty
 
Towards a theory of p-adic singular moduli attached to global fields
Towards a theory of p-adic singular moduli attached to global fieldsTowards a theory of p-adic singular moduli attached to global fields
Towards a theory of p-adic singular moduli attached to global fields
 
(International) Academic Career
(International) Academic Career(International) Academic Career
(International) Academic Career
 
Distributing Sage / Python Code, The Right Way
Distributing Sage / Python Code, The Right WayDistributing Sage / Python Code, The Right Way
Distributing Sage / Python Code, The Right Way
 
Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017
 

Recently uploaded

Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Jshifa
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
 

Recently uploaded (20)

Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)
 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
 

Darmon Points: an Overview

  • 1. Darmon Points: an overview Explicit Methods for Darmon Points, Benasque Marc Masdeu Columbia University August 25, 2013 (part of joint project with X.Guitart and M.H.Sengun) Marc Masdeu Darmon Points: an overview August 25, 2013 1 / 1
  • 2. Basic Setup E = (semistable) elliptic curve defined over a number field F. Let N = conductor(E). Assume (for simplicity) that N is square-free. Let K/F a quadratic extension. Assume (for simplicity) that disc(K/F) is coprime to N. For each prime p of K, ap(E) = 1 + |p| − #E(Fp). L(E/K, s) = p|N 1 − a|p||p|−s −1 × p N 1 − a|p||p|−s + |p|1−2s −1 Modularity conjecture =⇒ Analytic continuation of L(E/K, s) to C. Functional equation relating s ↔ 2 − s. Marc Masdeu Darmon Points: an overview August 25, 2013 2 / 1
  • 3. Birch and Swinnerton-Dyer Conjecture (BSD, rough version) ords=1 L(E/K, s) = rkZ E(K). So L(E/K, 1) = 0 =⇒ ∃PK ∈ E(K) of infinite order. The sign of the functional equation of L(E/K, s) should be: sign(E, K) = (−1)#{v|N∞F :v not split in K} . So sign(E, K) = −1 + BSD “ =⇒ ” E(K) has points of infinite order. From here on, assume that sign(E, K) = −1. Marc Masdeu Darmon Points: an overview August 25, 2013 3 / 1
  • 4. Classical Example: Heegner Points ∃ when F is totally real and K/F is totally complex (CM extension). Suppose F = Q and E/Q. X0(N)/Q modular curve with a morphism Jac(X0(N)) → E. X0(N)(C) = Γ0(N)H. ∃ cycles on Jac(X0(N)) attached to K, giving points on E(Kab). E ; ωE ∈ H0(Γ0(N), Ω1 H). For each τ ∈ K ∩ H, set: Jτ = τ ∞ ωE ∈ C. Well-defined up to ΛE = { γ ωE | γ ∈ H1(X0(N), Z)}. Set Pτ = ΦWeierstrass(Jτ ) ∈ E(C). Theorem (Shimura) Pτ ∈ E(Hτ ), where Hτ /K is a class field attached to τ. Gross-Zagier: TrHτ /K(Pτ ) ∈ E(K) nontorsion ⇐⇒ ran(E, K) = 1. Marc Masdeu Darmon Points: an overview August 25, 2013 4 / 1
  • 5. Darmon’s Dream Drop hypothesis of K/F being CM. Simplest case: F = Q, K real quadratic. However: There are no points on X0(N) attached to K. For F not totally real, even the curve X0(N) is missing. Nevertheless, Darmon points exist! (We just can’t prove it, so far.) Marc Masdeu Darmon Points: an overview August 25, 2013 5 / 1
  • 6. Goals In this talk we will: 1 Explain what Darmon Points are, 2 Give hints on how we calculate them, and “The fun of the subject seems to me to be in the examples. B. Gross, in a letter to B. Birch, 1982 ”3 Show some fun examples! Marc Masdeu Darmon Points: an overview August 25, 2013 6 / 1
  • 7. More Notation S(K, N∞F ) = {v | N∞F : v not split in K}. Recall that we assume that #S(K, N∞F ) is odd. Fix a place w ∈ S(K, N∞F ). Let B be a quaternion algebra over F with Ram(B) = S(K, N∞F ) {w}. Let D be the discriminant of B. m = product of the primes in F diving N and which are split in K. Let RD 0 (m) be an Eichler order of level m inside B. Fix an embedding ιw : RD 0 (m) → M2(OF,w) Set Γ = ιw RD 0 (m)[1/w]× 1 ⊂ SL2(Fw). n := #{v | ∞F : K ⊗F Fv ∼= Fv × Fv}. K/F is CM ⇐⇒ n = 0. Marc Masdeu Darmon Points: an overview August 25, 2013 7 / 1
  • 8. Non-archimedean History Definition s = #S(K, N∞F ) = {v | N∞F : v not split in K} n = #∞F S(K, ∞F ) = {v | ∞F : v split in K} H. Darmon (1999): F = Q, n = 1 and s = 1. Darmon-Green (2001): m trivial, Riemann products. Darmon-Pollack (2002): m trivial, overconvergent. Guitart-M. (2012): Allowed for m arbitrary. M. Trifkovic (2006): F imag. quadratic (n = 1) and s = 1. Trifkovic (2006): F euclidean, m trivial. Guitart-M. (2013): F arbitrary, m arbitrary. M. Greenberg (2008):F totally real, n ≥ 1 and s ≥ 1. Guitart-M. (2013): n = 1. Marc Masdeu Darmon Points: an overview August 25, 2013 8 / 1
  • 9. Archimedean History Definition s = #S(K, N∞F ) = {v | N∞F : v not split in K} n = #∞F S(K, ∞F ) = {v | ∞F : v split in K} H. Darmon (2000): F totally real and s = 1. Darmon-Logan (2007): F real quadratic and norm-euclidean, n = 1, m trivial. Guitart-M. (2011): F real quadratic and arbitrary, n = 1, m trivial. Guitart-M. (2012): F real quadratic and arbitrary, n = 1, m arbitrary. J. Gartner (2010): F totally real, s ≥ 1. Marc Masdeu Darmon Points: an overview August 25, 2013 9 / 1
  • 10. Integration Pairing Let w ∈ S(K, N∞F ). Let Hw = the w-adic upper half plane. That is: The Poincar´e upper half plane if w is infinite, The p-adic upper-half plane if w = p is finite. Hw comes equipped with an analytic structure (complex- or rigid-). If w is infinite, there is a natural pairing Ω1 Hw × Div0 Hw → C = Kw, which sends (ω, (τ2) − (τ2)) → τ2 τ1 ω ∈ C = Kw. Analogously, Coleman integration gives a natural pairing Ω1 Hw × Div0 Hw → Kw. Marc Masdeu Darmon Points: an overview August 25, 2013 10 / 1
  • 11. Rigid one-forms and measures The assignment µ → ω = P1(Qp) dz z − t dµ(t) induces an isomorphism Meas0(P1(Qp), Z) ∼= Ω1 Hw,Z. Inverse given by ω → U → µ(U) = resA(U) ω . Theorem (Teitelbaum) τ2 τ1 ω = P1(Qp) log t − τ1 t − τ2 dµ(t). Proof sketch. τ2 τ1 ω = τ2 τ1 P1(Qp) dz z − t dµ(t) = P1(Qp) log t − τ2 t − τ1 dµ(t). Marc Masdeu Darmon Points: an overview August 25, 2013 11 / 1
  • 12. The p-adic upper half plane If the residues of ω are all integers, have a multiplicative refinement: × τ2 τ1 ω = lim −→ U U∈U tU − τ2 tU − τ1 µ(U) ∈ K× w where µ(U) = resA(U) ω. Bruhat-Tits tree of GL2(Qp) with p = 2. Hp having the Bruhat-Tits as retract. Annuli A(U) for U a covering of size p−3. tU is any point in U ⊂ P1(Qp). Marc Masdeu Darmon Points: an overview August 25, 2013 12 / 1
  • 13. (Co)homology S(K, N∞) and w determine an S-arithmetic group Γ. e.g. S(K, N∞) = {p} gives SL2(Z[1 p ]). Attach to E a unique class (up to sign): [ΦE] ∈ Hn Γ, Ω1 Hp,Z . Ω1 Hp,Z = rigid-analytic differentials having integral residues. Uses Hecke action and Shapiro’s lemma. Attach to each embedding ψ: OK → RD 0 (m) a homology class: [Θψ] ∈ Hn Γ, Div0 Hp . Integration yields an element Jψ = × ΦE, Θψ ∈ K× w . Marc Masdeu Darmon Points: an overview August 25, 2013 13 / 1
  • 14. Uniformization Jψ = × ΦE, Θψ ∈ K× w . Jψ is well-defined up to a lattice L ⊂ K× v . It is conjectured (and in some cases proven) that this lattice is commensurable to the (Weierstrass or Tate) lattice qE of E. ∃ isogeny β : K× w /L → K× w /qZ E. When w is infinite, there is a complex-analytic map Φ = ΦWeierstrass : C → E(C). When w is finite, Tate uniformization provides a rigid-analytic map Φ = ΦTate : K× w → E(Kw). Marc Masdeu Darmon Points: an overview August 25, 2013 14 / 1
  • 15. Conjecture Define Pψ = Φ(β(Jψ)) ∈ E(Kw). Conjecture (Darmon, . . . ) The local point Pψ belongs to E(Kab). Moreover Pψ is torsion if and only if L (E/K, 1) = 0. The conjecture predicts the exact number field over which Pψ is defined. It also includes a Shimura reciprocity law, mimicking the behavior of Heegner points. Marc Masdeu Darmon Points: an overview August 25, 2013 15 / 1
  • 16. A special case We will restrict to the non-archimedean setting, w = p. Suppose also that Fp ∼= Qp, i.e. p is split in F. But recall the running assumption: p is inert in K. Suppose also that n = 1. This includes the cases: 1 F totally real and K/F almost totally complex. e.g. F = Q and K real quadratic. (Darmon) 2 F almost totally real and K/F totally imaginary. e.g. F quadratic imaginary. (Trifkovic) Marc Masdeu Darmon Points: an overview August 25, 2013 16 / 1
  • 17. Cohomology Jacquet-Langlands correspondence gives: dimQ H1 ΓD 0 (pm), Q λE p-new = 1 Let ϕE ∈ H1(ΓD 0 (pm), Z)p-new λE Well-defined up to sign. Shapiro’s isomorphism gives ΦE ∈ H1(Γ, coindΓ ΓD 0 (pm) Z). Choose an “harmonic” system of representatives, to pull back to ΦE ∈ H1 (Γ, HC(Z)), Here HC(Z) = ker coindΓ ΓD 0 (pm) Z → coindΓ ΓD 0 (m) Z 2 . Finally, use isomorphisms HC(Z) ∼= Meas0(P1 (Qp), Z) ∼= Ω1 Hp,Z. Obtain ΦE ∈ H1(Γ, Ω1 Hp,Z). Marc Masdeu Darmon Points: an overview August 25, 2013 17 / 1
  • 18. Homology Let ψ: O → R0(m) be an embedding of an order O of K. . . . which is optimal: ψ(O) = R0(m) ∩ ψ(K). Consider the group O× 1 = {u ∈ O× : NmK/F (u) = 1}. rank(O× 1 ) = rank(O× ) − rank(OF ) = 1. Let u ∈ O× 1 be a non-torsion unit, and let γψ = ψ(u). u acts on Hp via K× → B× 1 → B× 1,p ∼= SL2(Qp) with fixed points τψ, τψ. Consider ˜Θψ = [γψ ⊗τψ] in H1(Γ, Div Hp). Have the exact sequence H1(Γ, Div0 Hp) // H1(Γ, Div Hp) deg // H1(Γ, Z) Θψ ? // ˜Θψ // deg ˜Θψ Lemma: deg ˜Θψ is torsion. Can pull back (a multiple of) ˜Θψ to Θψ ∈ H1(Γ, Div0 Hp). Marc Masdeu Darmon Points: an overview August 25, 2013 18 / 1
  • 19. Overconvergent Integration (I) D = { locally-analytic Zp-valued distributions on Zp }. Σ0(p) = a b c d ∈ M2(Zp) | p | c, d ∈ Z× p , ad − bc = 0 . γ = a b c d ∈ Σ0(p) acts on ν ∈ D by: Zp h(t)d(γν) = Zp h at + b ct + d dν. Can define Up operator on H1(ΓD 0 (pm), D). Theorem (Pollack-Pollack) Let ϕ ∈ H1(ΓD 0 (pm), Zp) be such that Upϕ = αϕ with α ∈ Z× p . Then there is a unique lift Φ ∈ H1(ΓD 0 (pm), D) such that UpΦ = αΦ. Marc Masdeu Darmon Points: an overview August 25, 2013 19 / 1
  • 20. Overconvergent Integration (II) Theorem (Pollack-Pollack) Let ϕ ∈ H1(ΓD 0 (pm), Zp) be such that Upϕ = αϕ with α ∈ Z× p . Then there is a unique lift Φ ∈ H1(ΓD 0 (pm), D) such that UpΦ = αΦ. Recall we have ϕE ∈ H1(Γ, Meas0(P1(Qp), ZZ)). The cocycle Φ given by: (Φγ)(h(t)) = Zp h(t)dϕE,γ(t), γ ∈ ΓD 0 (pM). is a lift of ϕE which is also an Up-eigenclass. So Φ = Φ, and obtain a way to integrate. We can extend this in order to: 1 Evaluate at γ ∈ Γ (not just ΓD 0 (pm)). 2 Integrate over all of P1 (Qp) (not just Zp). 3 Compute multiplicative integrals. Marc Masdeu Darmon Points: an overview August 25, 2013 20 / 1
  • 21. Implementation We have written SAGE code to compute non-archimedean Darmon points when n = 1. Depend on: 1 Overconvergent method for F = Q and D = 1 (R.Pollack). 2 Finding a presentation for units of orders in B (J.Voight, A.Page). Currently depends on MAGMA. Overconvergent methods (adapted to D = 1). Efficient (polynomial time) integration algorithm. Apart from checking the conjecture, can use the method to actually finding the points. Need more geometric ideas to treat n 1. Marc Masdeu Darmon Points: an overview August 25, 2013 21 / 1
  • 22. Examples Please show them the examples ! Marc Masdeu Darmon Points: an overview August 25, 2013 22 / 1
  • 23. p = 5, Curve 15A1 E : y2 + xy + y = x3 + x2 − 10x − 10 dK h P 13 1 − √ 13 + 1, 2 √ 13 − 4 28 1 −15 √ 7 + 43, 150 √ 7 − 402 37 1 −5 9 √ 37 + 5 9, 25 27 √ 37 − 70 27 73 1 −17 32 √ 73 + 77 32, 187 128 √ 73 − 1199 128 88 1 −17 9 , 14 27 √ 22 + 4 9 97 1 − 25 121 √ 97 + 123 121, 375 2662 √ 97 − 4749 2662 133 1 103 9 , 92 27 √ 133 − 56 9 172 1 −1923 1681, 11781 68921 √ 43 + 121 1681 193 1 1885 288 √ 193 + 25885 288 , 292175 3456 √ 193 + 4056815 3456 Marc Masdeu Darmon Points: an overview August 25, 2013 23 / 1
  • 24. p = 3, Curve 21A1 E : y2 + xy = x3 − 4x − 1 dK h P 8 1 −9 √ 2 + 11, 45 √ 2 − 64 29 1 − 9 25 √ 29 + 32 25, 63 125 √ 29 − 449 125 44 1 − 9 49 √ 11 − 52 49, 54 343 √ 11 + 557 343 53 1 − 37 169 √ 53 + 184 169, 555 2197 √ 53 − 5633 2197 92 1 533 46 , 17325 2116 √ 23 − 533 92 137 1 − 1959 11449 √ 137 + 242 11449, 295809 2450086 √ 137 − 162481 2450086 149 1 − 261 2809 √ 149 + 2468 2809, 8091 148877 √ 149 − 101789 148877 197 1 − 79135143 209961032 √ 197 + 977125081 209961032, 1439547386313 1075630366936 √ 197 − 9297639417941 537815183468 D h hD(x) 65 2 x2 + 61851 6241 √ 65 − 491926 6241 x − 403782 6241 √ 65 + 3256777 6241 Marc Masdeu Darmon Points: an overview August 25, 2013 24 / 1
  • 25. p = 11, Curve 33A1 E : y2 + xy = x3 + x2 − 11x dK h P 13 1 − 1 2 √ 13 + 3 2 , 1 2 √ 13 − 7 2 28 1 22 7 , 55 49 √ 7 − 11 7 61 1 − 1 2 √ 61 + 5 2 , √ 61 − 11 73 1 − 53339 49928 √ 73 + 324687 49928 , 31203315 7888624 √ 73 − 290996167 7888624 76 1 −2, √ 19 + 1 109 1 − 143 2 √ 109 + 1485 2 , 5577 2 √ 109 − 58223 2 172 1 − 51842 21025 , 2065147 3048625 √ 43 + 25921 21025 184 1 59488 21609 , 109252 3176523 √ 46 − 29744 21609 193 1 94663533349261 678412148664608 √ 193 + 1048806825770477 678412148664608 , 147778957920931299317 12494688311813553741184 √ 193 + 30862934493092416035541 12494688311813553741184 D h hD(x) 40 2 x2 + 2849 1681 √ 10 − 6347 1681 x − 5082 1681 √ 10 + 16819 1681 85 2 x2 + 119 361 √ 85 − 1022 361 x − 168 361 √ 85 + 1549 361 145 4 x4 + 169016003453 83168215321 √ 145 − 1621540207320 83168215321 x3 + − 1534717557538 83168215321 √ 145 + 18972823294799 83168215321 x2 + 5533405190489 83168215321 √ 145 − 66553066916820 83168215321 x + − 6414913389456 83168215321 √ 145 + 77248348177561 83168215321 Marc Masdeu Darmon Points: an overview August 25, 2013 25 / 1
  • 26. p = 13, Curve 78A1 78 = 2 · 3 · 13, we take p = 13 and D = 6. E : y2 + xy = x3 + x2 − 19x + 685 dK P 5 1 · 48 · −2, 12 √ 5 + 1 149 1 · 48 · 1558, −5040 √ 149 − 779 197 1 · 48 · 310 49 , 720 343 √ 197 − 155 49 293 1 · 48 · 40, −15 √ 293 − 20 317 1 · 48 · 382, −420 √ 317 − 191 437 1 · 48 · 986 23 , 7200 529 √ 437 − 493 23 461 1 · 48 · 232, −165 √ 461 − 116 509 1 · 48 · − 2 289 , −5700 4913 √ 509 + 1 289 557 1 · 48 · 75622 121 , 882000 1331 √ 557 − 37811 121 Marc Masdeu Darmon Points: an overview August 25, 2013 26 / 1
  • 27. p = 11, Curve 110A1 110 = 2 · 5 · 11, we take p = 11 and D = 10. E : y2 + xy + y = x3 + x2 + 10x − 45. dK P 13 2 · 30 · 1103 81 − 250 81 √ 13, −52403 729 + 13750 729 √ 13 173 2 · 30 · 1532132 9025 , −1541157 18050 − 289481483 1714750 √ 173 237 2 · 30 · 190966548837842073867 4016648659658412649 − 10722443619184119320 4016648659658412649 √ 237, −3505590193011437142853233857149 8049997913829845411423756107 + 235448460130564520991320372200 8049997913829845411423756107 √ 237 277 2 · 30 46317716623881 12553387541776 , −58871104165657 25106775083552 − 20912769335239055243 44477606117965542976 √ 277 293 2 · 30 · 7088486530742 2971834657801 , −10060321188543 5943669315602 − 591566427769149607 10246297476835603402 √ 293 373 2 · 30 · 298780258398 62087183929 , −360867442327 124174367858 − 19368919551426449 30940899762281434 √ 373 Marc Masdeu Darmon Points: an overview August 25, 2013 27 / 1
  • 28. p = 5, Curve 110A1 110 = 2 · 5 · 11, we take p = 5 and D = 22. E : y2 + xy + y = x3 + x2 + 10x − 45. dK P 13 2 · 12 · 4, 5 2 √ 13 − 5 2 173 2 · 12 · 1532132 9025 , −289481483 1714750 √ 173 − 1541157 18050 237 2 · 12 · 5585462179 1193768112 , −53751973226309 71439858894528 √ 237 − 6779230291 2387536224 277 — 293 2 · 12 · 7088486530742 2971834657801 , − 591566427769149607 10246297476835603402 √ 293 − 10060321188543 5943669315602 373 2 · 12 · 298780258398 62087183929 , 19368919551426449 30940899762281434 √ 373 − 360867442327 124174367858 Marc Masdeu Darmon Points: an overview August 25, 2013 28 / 1
  • 29. p = 19, Curve 114A1 114 = 2 · 3 · 19, we take p = 19 and D = 6. E : y2 + xy = x3 − 8x. dK P 29 1 · 72 · − 6 25 √ 29 − 38 25 , − 18 125 √ 29 + 86 125 53 1 · 72 · −1 9 , 7 54 √ 53 + 1 18 173 1 · 72 · − 3481 13689 , 347333 3203226 √ 173 + 3481 27378 269 1 · 72 · 1647149414400 23887470525361 √ 269 − 43248475603556 23887470525361 , 2359447648611379200 116749558330761905641 √ 269 + 268177497417024307564 116749558330761905641 293 1 · 72 · 21289143620808 4902225525409 , 4567039561444642548 10854002829131490673 √ 293 − 10644571810404 4902225525409 317 1 · 72 · −25 9 , − 5 54 √ 317 + 25 18 341 1 · 72 · 3449809443179 499880896975 , 3600393040902501011 3935597293546963250 √ 341 − 3449809443179 999761793950 413 1 · 72 · 59 7 , 113 98 √ 413 − 59 14 Marc Masdeu Darmon Points: an overview August 25, 2013 29 / 1
  • 30. Thank you ! Bibliography and slides at: http://www.math.columbia.edu/∼masdeu/ Marc Masdeu Darmon Points: an overview August 25, 2013 30 / 1
  • 31. Bibliography Henri Darmon and Adam Logan, Periods of Hilbert modular forms and rational points on elliptic curves, Int. Math. Res. Not. (2003), no. 40, 2153–2180. Henri Darmon and Peter Green. Elliptic curves and class fields of real quadratic fields: Algorithms and evidence. Exp. Math., 11, No. 1, 37-55, 2002. Henri Darmon and Robert Pollack. Efficient calculation of Stark-Heegner points via overconvergent modular symbols. Israel J. Math., 153:319–354, 2006. J´erˆome G¨artner, Darmon’s points and quaternionic Shimura varieties arXiv.org, 1104.3338, 2011. Xavier Guitart and Marc Masdeu. Elementary matrix Decomposition and the computation of Darmon points with higher conductor. arXiv.org, 1209.4614, 2012. Xavier Guitart and Marc Masdeu. Computation of ATR Darmon points on non-geometrically modular elliptic curves. Experimental Mathematics, 2012. Xavier Guitart and Marc Masdeu. Computation of quaternionic p-adic Darmon points. arXiv.org, ?, 2013. Matthew Greenberg. Stark-Heegner points and the cohomology of quaternionic Shimura varieties. Duke Math. J., 147(3):541–575, 2009. David Pollack and Robert Pollack. A construction of rigid analytic cohomology classes for congruence subgroups of SL3(Z). Canad. J. Math., 61(3):674–690, 2009. Marc Masdeu Darmon Points: an overview August 25, 2013 31 / 1