SlideShare a Scribd company logo
1 of 58
Download to read offline
A new Perron–Frobenius theorem for
nonnegative tensors
Francesco Tudisco
joint work with Antoine Gautier and Matthias Hein (Saarland University)
Department of Mathematics and Statistics, University of Strathclyde, UK
SIAM ALA Conference • Hong Kong Baptist University
May 5, 2018
0/20
1/20
Outline
Huge literature on eigenvalues of nonnegative tensors
[Bai, Caccetta, Chang, Friedland, Gaubert, Han, Hu, Huang,
Kang, Kolda, Lim, Ling, Liu, Mayo, Ng, Pearson, Ottaviani, Qi,
Sun, Xie, Yang, You, Yuan, Wang, Zhang, Zhou, ...]
1 / 20
1/20
Outline
Huge literature on eigenvalues of nonnegative tensors
[Bai, Caccetta, Chang, Friedland, Gaubert, Han, Hu, Huang,
Kang, Kolda, Lim, Ling, Liu, Mayo, Ng, Pearson, Ottaviani, Qi,
Sun, Xie, Yang, You, Yuan, Wang, Zhang, Zhou, ...]
1. Shape partitions:
A unifying eigenvalue problem formulation for tensors
2. Homogeneity matrix:
Perron-Frobenius thm for tensors via multi-homogeneous map
1 / 20
2/20
Notation
T ∼ N1 × · · · × Nm
T = (ti1,...,im ) ∈ RN1×···×Nm
+ nonnegative tensor
x = (x1, · · · , xm) ∈ RN1 × · · · × RNm
2 / 20
3/20
Notation
Two useful maps
T ∼ N1 × · · · × Nm
T : RN1 × · · · × RNm −→ R
T(x) =
i1,...,im
ti1,...,im x1,i1 · · · xm,im
3 / 20
3/20
Notation
Two useful maps
T ∼ N1 × · · · × Nm
T : RN1 × · · · × RNm −→ R
T(x) =
i1,...,im
ti1,...,im x1,i1 · · · xm,im
T[k] : RN1 × · · · × RNm −→ RNk
T[k](x)ik
=
i1,...,ik−1,ik+1,...,im
ti1,...,ik,...,im x1,i1 · · · xk−1,ik−1
xk+1,ik+1
· · · xm,im
3 / 20
3/20
Notation
Two useful maps
T ∼ N1 × · · · × Nm
T : RN1 × · · · × RNm −→ R
T(x) =
i1,...,im
ti1,...,im x1,i1 · · · xm,im
T[k] : RN1 × · · · × RNm −→ RNk
T[k](x)ik
=
i1,...,ik−1,ik+1,...,im
ti1,...,ik,...,im x1,i1 · · · xk−1,ik−1
xk+1,ik+1
· · · xm,im
Example: Matrix case
T ∼ N × N, i.e. T = matrix A
T(x) = xTAx T[1](x) = Ax T[2](x) = ATx
3 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
f1 =
T(x, x, x)
x 3
p
f2 =
T(x, y, y)
x p y 2
q
f3 =
T(x, y, z)
x p y q z r
4 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
f1 =
T(x, x, x)
x 3
p
ℓp-eigenvalues
If T is symmetric (tijk = tikj = tkij = tkji)
Crit. points f1 ⇐⇒ T[1](x, x, x) = λ xp−2
x
4 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
f2 =
T(x, y, y)
x p y 2
q
ℓp,q-singular values
If T is partially symmetric (tijk = tikj)
Crit. points f2 ⇐⇒
T[1](x, y, y) = λ xp−2x
T[2](x, y, y) = λ yq−2y
4 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
f3 =
T(x, y, z)
x p y q z r
ℓp,q,r-singular values
For any T
Crit. points f3 ⇐⇒



T[1](x, y, z) = λ xp−2x
T[2](x, y, z) = λ yq−2y
T[3](x, y, z) = λ zr−2z
4 / 20
4/20
Example m = 3 and N1 = N2 = N3
Eigenvalue problems
T ∼ N1 × N1 × N1, square tensor
We introduce a unifying formulation
4 / 20
5/20
Shape partition
Shape partition of T ∼ N1 × · · · × Nm:
σ = {σ1, . . . , σd} is a partition of {1, . . . , m} s.t.
• j, k ∈ σi =⇒ Ni = Nk
• j ∈ σi, k ∈ σi+1 =⇒ j < k
• |σi| ≤ |σi+1|
Examples:
T ∼ N × N × N × N
σ1 = {1, 2, 3, 4}
σ2 = {1}, {2, 3, 4}
σ3 = {1, 2}, {3, 4}
σ4 = {1}, {2}, {3, 4}
σ5 = {1}, {2}, {3}, {4}
T ∼ N × N × M × M
σ3 = {1, 2}, {3, 4}
σ4 = {1}, {2}, {3, 4}
σ5 = {1}, {2}, {3}, {4}
5 / 20
6/20
Indexing associated with σ
T ∼ N1 × · · · × Nm
σ = {σ1, . . . , σd}
6 / 20
6/20
Indexing associated with σ
T ∼ N1 × · · · × Nm
σ = {σ1, . . . , σd}
• si = min{k : k ∈ σi}
• ni = Nsi for all i = 1, . . . , d
σ1
N1 × . . . × Ns2−1
=
=
n1 × . . . × n1
|σ1| times
×
=
×
σ2
Ns2 × . . . × Ns3−1
=
=
n2 × . . . × n2
|σ2| times
× . . . ×
=
=
× . . . ×
σd
Nsd × . . . × Nm
=
=
nd × . . . × nd
|σd| times
6 / 20
7/20
σ−eigenvalues and eigenvectors
T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1
|σ1| times
x1, . . . , x1,
|σ2| times
x2, . . . , x2, . . . ,
|σd| times
xd, . . . , xd
7 / 20
7/20
σ−eigenvalues and eigenvectors
T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1
|σ1| times
x1, . . . , x1,
|σ2| times
x2, . . . , x2, . . . ,
|σd| times
xd, . . . , xd
(⋆)



T[s1](x1,..., x1, . . . , xd,..., xd) = λ xp1−2
1 x1 x1 p1 = 1
...
T[sd](x1,..., x1, . . . , xd,..., xd) = λ xpd−2
d xd xd pd
= 1
7 / 20
7/20
σ−eigenvalues and eigenvectors
T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1
|σ1| times
x1, . . . , x1,
|σ2| times
x2, . . . , x2, . . . ,
|σd| times
xd, . . . , xd
(⋆)



T[s1](x1,..., x1, . . . , xd,..., xd) = λ xp1−2
1 x1 x1 p1 = 1
...
T[sd](x1,..., x1, . . . , xd,..., xd) = λ xpd−2
d xd xd pd
= 1
(T, σ, p) −→ r(T) = max{|λ| : λ fulfill (⋆)}
7 / 20
8/20
Multi-homogeneous map associated to (T, σ, p)
We characterize the existence, uniqueness and maximality of
positive σ−eigenpairs of T.
To this end we consider a particular multi-homogeneous map
8 / 20
8/20
Multi-homogeneous map associated to (T, σ, p)
We characterize the existence, uniqueness and maximality of
positive σ−eigenpairs of T.
To this end we consider a particular multi-homogeneous map
F = (f1, . . . , fm) : RN1 × · · · × RNm −→ RN1 × · · · × RNm s.t.
fi(x1, . . . , λ xj, . . . , xm) = λAij
fi(x1, . . . , xj, . . . , xm)
8 / 20
8/20
Multi-homogeneous map associated to (T, σ, p)
We characterize the existence, uniqueness and maximality of
positive σ−eigenpairs of T.
To this end we consider a particular multi-homogeneous map
F = (f1, . . . , fm) : RN1 × · · · × RNm −→ RN1 × · · · × RNm s.t.
fi(x1, . . . , λ xj, . . . , xm) = λAij
fi(x1, . . . , xj, . . . , xm)
A = A(F) = homogeneity matrix of F
8 / 20
9/20
Multi-homogeneous map associated to (T, σ, p)
Given T, σ and p we define FT,σ,p = (f1, . . . , fd) by
fi(x) = T[si]
|σ1| times
x1, . . . , x1, . . . ,
|σd| times
xd, . . . , xd
1
pi−1
9/20
Multi-homogeneous map associated to (T, σ, p)
Given T, σ and p we define FT,σ,p = (f1, . . . , fd) by
fi(x) = T[si]
|σ1| times
x1, . . . , x1, . . . ,
|σd| times
xd, . . . , xd
1
pi−1
A =












|σ1|−1
p1−1
|σ2|
p1−1 · · · |σd|
p1−1
|σ1|
p2−1
|σ2|−1
p2−1 · · · |σd|
p2−1
... ... ... ...
|σ1|
pd−1
|σ2|
pd−1 · · · |σd|−1
pd−1












9 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
10 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
Theorem
If ρ(A) < 1 and T is σ-strictly nonnegative
10 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
σ-strictly nonnegative
For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that:
tj1,...,jm > 0 with jsi = ki
Theorem
If ρ(A) < 1 and T is σ-strictly nonnegative
10 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
σ-strictly nonnegative
For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that:
tj1,...,jm > 0 with jsi = ki
Theorem
If ρ(A) < 1 and T is σ-strictly nonnegative, then:
• There exists a entry-wise positive σ-eigenvector u of T
associated with r(T)
10 / 20
10/20
Perron-Frobenius theorem for “contractive” (T, σ, p)
σ-strictly nonnegative
For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that:
tj1,...,jm > 0 with jsi = ki
Theorem
If ρ(A) < 1 and T is σ-strictly nonnegative, then:
• There exists a entry-wise positive σ-eigenvector u of T
associated with r(T)
• u is the unique positive σ-eigenvector of T
10 / 20
11/20
Example: ℓp,q,r
-singular value problem
T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)
11 / 20
11/20
Example: ℓp,q,r
-singular value problem
T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)



T[1](x, y, z) = λ xp−2x
T[2](x, y, z) = λ yq−2y
T[3](x, y, z) = λ zr−2z
(⋆⋆)
11 / 20
11/20
Example: ℓp,q,r
-singular value problem
T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)



T[1](x, y, z) = λ xp−2x
T[2](x, y, z) = λ yq−2y
T[3](x, y, z) = λ zr−2z
(⋆⋆)
There exists a unique positive u = (x, y, z) that solves (⋆⋆) with
λ = r(T) if:
• ρ(A) < 1 and strictly nonnegative
[Gautier, T., Hein, 2018]
11 / 20
11/20
Example: ℓp,q,r
-singular value problem
T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)



T[1](x, y, z) = λ xp−2x
T[2](x, y, z) = λ yq−2y
T[3](x, y, z) = λ zr−2z
(⋆⋆)
There exists a unique positive u = (x, y, z) that solves (⋆⋆) with
λ = r(T) if:
• ρ(A) < 1 and strictly nonnegative
[Gautier, T., Hein, 2018]
• p, q, r ≥ 3 and irreducibility conditions
[Friedland, Gaubert, Han, 2013]
11 / 20
12/20
The “non-exapansive” case ρ(A) = 1
Example: Matrix case
T ∼ N × N, σ = {1, 2}, p = 2 ⇐⇒ Tx = λx
12/20
The “non-exapansive” case ρ(A) = 1
Example: Matrix case
T ∼ N × N, σ = {1, 2}, p = 2 ⇐⇒ Tx = λx
A =
|σ1| − 1
p1 − 1
= 1
We know that we need irreducibility conditions
12 / 20
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
• Edge (ik) → (jh) exists if
tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi
13 / 20
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
• Edge (ik) → (jh) exists if
tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi
Example:
T ∼ 2 × 3 × 3
σ = {{1}, {2, 3}}, d = 2
n1 = 2, s1 = 1, n2 = 3, s2 = 2
1211 {1}
2221 23 {2,3}
13 / 20
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
• Edge (ik) → (jh) exists if
tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi
Example:
T ∼ 2 × 3 × 3
σ = {{1}, {2, 3}}, d = 2
n1 = 2, s1 = 1, n2 = 3, s2 = 2
1211 {1}
2221 23 {2,3}
t2,2,1 = 1
13 / 20
13/20
σ−graph of T
Gσ(T) = (V, E), σ = {σ1, . . . , σd}
• Nodes are pairs:
V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
• Edge (ik) → (jh) exists if
tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi
Example:
T ∼ 2 × 3 × 3
σ = {{1}, {2, 3}}, d = 2
n1 = 2, s1 = 1, n2 = 3, s2 = 2
1211 {1}
2221 23 {2,3}
t2,2,1 = 1 t1,3,1 = 1
13 / 20
14/20
Perron-Frobenius thm for “non-expansive” (T, σ, p)
Theorem
If ρ(A) ≤ 1 and T is σ-weakly irreducible
14 / 20
14/20
Perron-Frobenius thm for “non-expansive” (T, σ, p)
σ-weakly irreducible
The graph Gσ(T) is strongly connected
Theorem
If ρ(A) ≤ 1 and T is σ-weakly irreducible
14 / 20
14/20
Perron-Frobenius thm for “non-expansive” (T, σ, p)
σ-weakly irreducible
The graph Gσ(T) is strongly connected
σ-weakly irreducible =⇒ σ-strictly nonnegative
Theorem
If ρ(A) ≤ 1 and T is σ-weakly irreducible
14 / 20
14/20
Perron-Frobenius thm for “non-expansive” (T, σ, p)
σ-weakly irreducible
The graph Gσ(T) is strongly connected
σ-weakly irreducible =⇒ σ-strictly nonnegative
Theorem
If ρ(A) ≤ 1 and T is σ-weakly irreducible, then additionally:
• It holds λ < r(T) for every σ-eigenvalue λ
corresponding to a nonnegative eigenvector
14 / 20
15/20
σ−strongly irreducibile T
Example: Matrix case
G(M) is strongly connected if and only if for any x0 ≥ 0 there
exists n > 0 such that xn = (I + M)nx0 > 0
xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · ·
15 / 20
15/20
σ−strongly irreducibile T
Example: Matrix case
G(M) is strongly connected if and only if for any x0 ≥ 0 there
exists n > 0 such that xn = (I + M)nx0 > 0
xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · ·
F = FT,σ,p = multi-homogeneous map associated with (T, σ, p)
15 / 20
15/20
σ−strongly irreducibile T
Example: Matrix case
G(M) is strongly connected if and only if for any x0 ≥ 0 there
exists n > 0 such that xn = (I + M)nx0 > 0
xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · ·
F = FT,σ,p = multi-homogeneous map associated with (T, σ, p)
σ-strongly irreducible
For any x0 ≥ 0 there exists n > 0 s.t. xn = (id + F)n(x0) > 0
xn = xn−1 + F(xn−1) = xn−1 + F(xn−2 + F(xn−2)) = · · ·
15 / 20
16/20
Perron-Frobenius thm for σ-strongly irreducible T
16 / 20
16/20
Perron-Frobenius thm for σ-strongly irreducible T
Theorem
σ-strongly irreducible =⇒ σ-weakly irreducible
(=⇒ σ-strictly nonnegative)
16 / 20
16/20
Perron-Frobenius thm for σ-strongly irreducible T
Theorem
σ-strongly irreducible =⇒ σ-weakly irreducible
(=⇒ σ-strictly nonnegative)
Theorem
If ρ(A) ≤ 1 and T is σ-strongly irreducible, then additionally:
16 / 20
16/20
Perron-Frobenius thm for σ-strongly irreducible T
Theorem
σ-strongly irreducible =⇒ σ-weakly irreducible
(=⇒ σ-strictly nonnegative)
Theorem
If ρ(A) ≤ 1 and T is σ-strongly irreducible, then additionally:
• T has no nonnegative eigenvectors other than u
16 / 20
17/20
A final remark:
Previous conditions for particular choices of σ
• σ-strictly nonnegativity for σ = {1, . . . , m}
[Hu, Huang, Qi, 2014]
• σ-weak irreducibility and σ-strong irreducibility for
σ = {1, . . . , m}
σ = {1, . . . , k}, {k + 1, . . . , m}
σ = {1}, . . . , {m}
[Chang, Pearson, Zhang, 2008] & [Chang, Qi, Zhou, 2010] &
[Friedland, Gaubert, Han, 2013] & [Ling, Qi, 2013]
17 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
18 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
• If T ≥ 0 and it does not have fully zero unfoldings, then look
at the matrix A = A(FT,σ,p):
18 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
• If T ≥ 0 and it does not have fully zero unfoldings, then look
at the matrix A = A(FT,σ,p):
• If ρ(A) < 1, then PF holds
18 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
• If T ≥ 0 and it does not have fully zero unfoldings, then look
at the matrix A = A(FT,σ,p):
• If ρ(A) < 1, then PF holds
• If ρ(A) = 1 and Gσ(T) is connected,
then PF holds + r(T) > λ
18 / 20
18/20
Conclusion
• A large class of eigenvalue problems for tensors can be written
in terms of (T, σ ,p)
• If T ≥ 0 and it does not have fully zero unfoldings, then look
at the matrix A = A(FT,σ,p):
• If ρ(A) < 1, then PF holds
• If ρ(A) = 1 and Gσ(T) is connected,
then PF holds + r(T) > λ
• If id + FT,σ,p is “eventually positive”,
then unique nonnegative eigenvector
18 / 20
19/20
References
A. Gautier, F. T. and M. Hein,
A unifying Perron-Frobenius theorem for nonnegative tensors
via multi-homogeneous maps, SIAM J Matrix Anal Appl 2019
A. Gautier, F. T. and M. Hein,
The Perron-Frobenius theorem for multi-homogeneous
mapping, SIAM J Matrix Anal Appl 2019
19 / 20
20/20
Thank you for your kind attention!
MS20
Nonlinear Perron-Frobenius theory and applications
jointly organized with Antoine Gautier
Today
4:15PM – 6:15PM
WLB103
Speakers:
• Antoine Gautier
• Francesca Arrigo
• Shmuel Friedland
• Jiang Zhou
20 / 20

More Related Content

What's hot

What's hot (20)

A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
Divergence clustering
Divergence clusteringDivergence clustering
Divergence clustering
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9Ecfft zk studyclub 9.9
Ecfft zk studyclub 9.9
 
Darmon Points: an Overview
Darmon Points: an OverviewDarmon Points: an Overview
Darmon Points: an Overview
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
On learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihoodOn learning statistical mixtures maximizing the complete likelihood
On learning statistical mixtures maximizing the complete likelihood
 
Divergence center-based clustering and their applications
Divergence center-based clustering and their applicationsDivergence center-based clustering and their applications
Divergence center-based clustering and their applications
 
Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
Proximal Splitting and Optimal Transport
Proximal Splitting and Optimal TransportProximal Splitting and Optimal Transport
Proximal Splitting and Optimal Transport
 
Ijmet 10 01_046
Ijmet 10 01_046Ijmet 10 01_046
Ijmet 10 01_046
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014Levitan Centenary Conference Talk, June 27 2014
Levitan Centenary Conference Talk, June 27 2014
 
Clustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometryClustering in Hilbert simplex geometry
Clustering in Hilbert simplex geometry
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
 
Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...Hyperfunction method for numerical integration and Fredholm integral equation...
Hyperfunction method for numerical integration and Fredholm integral equation...
 

Similar to A new Perron-Frobenius theorem for nonnegative tensors

Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
tomoyukiichiba
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
Amir Rafati
 
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PaperNo14-Habibi-IJMA-n-Tuples and ChaoticityPaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
Mezban Habibi
 
PaperNo23-habibiIJCMS5-8-2014-IJCMS
PaperNo23-habibiIJCMS5-8-2014-IJCMSPaperNo23-habibiIJCMS5-8-2014-IJCMS
PaperNo23-habibiIJCMS5-8-2014-IJCMS
Mezban Habibi
 

Similar to A new Perron-Frobenius theorem for nonnegative tensors (20)

research paper publication
research paper publicationresearch paper publication
research paper publication
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
 
160511 hasegawa lab_seminar
160511 hasegawa lab_seminar160511 hasegawa lab_seminar
160511 hasegawa lab_seminar
 
Talk in BayesComp 2018
Talk in BayesComp 2018Talk in BayesComp 2018
Talk in BayesComp 2018
 
On fixed point theorems in fuzzy metric spaces in integral type
On fixed point theorems in fuzzy metric spaces in integral typeOn fixed point theorems in fuzzy metric spaces in integral type
On fixed point theorems in fuzzy metric spaces in integral type
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
 
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALESNONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
NONLINEAR DIFFERENCE EQUATIONS WITH SMALL PARAMETERS OF MULTIPLE SCALES
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptx
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
On fixed point theorems in fuzzy metric spaces
On fixed point theorems in fuzzy metric spacesOn fixed point theorems in fuzzy metric spaces
On fixed point theorems in fuzzy metric spaces
 
Slides erasmus
Slides erasmusSlides erasmus
Slides erasmus
 
Stochastic Processes - part 6
Stochastic Processes - part 6Stochastic Processes - part 6
Stochastic Processes - part 6
 
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PaperNo14-Habibi-IJMA-n-Tuples and ChaoticityPaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
PaperNo14-Habibi-IJMA-n-Tuples and Chaoticity
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
 
Existance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential EquartionExistance Theory for First Order Nonlinear Random Dfferential Equartion
Existance Theory for First Order Nonlinear Random Dfferential Equartion
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Nonlinear perturbed difference equations
Nonlinear perturbed difference equationsNonlinear perturbed difference equations
Nonlinear perturbed difference equations
 
ch9.pdf
ch9.pdfch9.pdf
ch9.pdf
 
PaperNo23-habibiIJCMS5-8-2014-IJCMS
PaperNo23-habibiIJCMS5-8-2014-IJCMSPaperNo23-habibiIJCMS5-8-2014-IJCMS
PaperNo23-habibiIJCMS5-8-2014-IJCMS
 

Recently uploaded

Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
Cherry
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
RaunakRastogi4
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
Cherry
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
Cherry
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Cherry
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cherry
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Cherry
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 

Recently uploaded (20)

Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
BHUBANESHWAR ODIA CALL GIRL SEIRVEC ❣️ 72051//37929❣️ CALL GIRL IN ODIA HAND ...
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 

A new Perron-Frobenius theorem for nonnegative tensors

  • 1. A new Perron–Frobenius theorem for nonnegative tensors Francesco Tudisco joint work with Antoine Gautier and Matthias Hein (Saarland University) Department of Mathematics and Statistics, University of Strathclyde, UK SIAM ALA Conference • Hong Kong Baptist University May 5, 2018 0/20
  • 2. 1/20 Outline Huge literature on eigenvalues of nonnegative tensors [Bai, Caccetta, Chang, Friedland, Gaubert, Han, Hu, Huang, Kang, Kolda, Lim, Ling, Liu, Mayo, Ng, Pearson, Ottaviani, Qi, Sun, Xie, Yang, You, Yuan, Wang, Zhang, Zhou, ...] 1 / 20
  • 3. 1/20 Outline Huge literature on eigenvalues of nonnegative tensors [Bai, Caccetta, Chang, Friedland, Gaubert, Han, Hu, Huang, Kang, Kolda, Lim, Ling, Liu, Mayo, Ng, Pearson, Ottaviani, Qi, Sun, Xie, Yang, You, Yuan, Wang, Zhang, Zhou, ...] 1. Shape partitions: A unifying eigenvalue problem formulation for tensors 2. Homogeneity matrix: Perron-Frobenius thm for tensors via multi-homogeneous map 1 / 20
  • 4. 2/20 Notation T ∼ N1 × · · · × Nm T = (ti1,...,im ) ∈ RN1×···×Nm + nonnegative tensor x = (x1, · · · , xm) ∈ RN1 × · · · × RNm 2 / 20
  • 5. 3/20 Notation Two useful maps T ∼ N1 × · · · × Nm T : RN1 × · · · × RNm −→ R T(x) = i1,...,im ti1,...,im x1,i1 · · · xm,im 3 / 20
  • 6. 3/20 Notation Two useful maps T ∼ N1 × · · · × Nm T : RN1 × · · · × RNm −→ R T(x) = i1,...,im ti1,...,im x1,i1 · · · xm,im T[k] : RN1 × · · · × RNm −→ RNk T[k](x)ik = i1,...,ik−1,ik+1,...,im ti1,...,ik,...,im x1,i1 · · · xk−1,ik−1 xk+1,ik+1 · · · xm,im 3 / 20
  • 7. 3/20 Notation Two useful maps T ∼ N1 × · · · × Nm T : RN1 × · · · × RNm −→ R T(x) = i1,...,im ti1,...,im x1,i1 · · · xm,im T[k] : RN1 × · · · × RNm −→ RNk T[k](x)ik = i1,...,ik−1,ik+1,...,im ti1,...,ik,...,im x1,i1 · · · xk−1,ik−1 xk+1,ik+1 · · · xm,im Example: Matrix case T ∼ N × N, i.e. T = matrix A T(x) = xTAx T[1](x) = Ax T[2](x) = ATx 3 / 20
  • 8. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor f1 = T(x, x, x) x 3 p f2 = T(x, y, y) x p y 2 q f3 = T(x, y, z) x p y q z r 4 / 20
  • 9. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor f1 = T(x, x, x) x 3 p ℓp-eigenvalues If T is symmetric (tijk = tikj = tkij = tkji) Crit. points f1 ⇐⇒ T[1](x, x, x) = λ xp−2 x 4 / 20
  • 10. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor f2 = T(x, y, y) x p y 2 q ℓp,q-singular values If T is partially symmetric (tijk = tikj) Crit. points f2 ⇐⇒ T[1](x, y, y) = λ xp−2x T[2](x, y, y) = λ yq−2y 4 / 20
  • 11. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor f3 = T(x, y, z) x p y q z r ℓp,q,r-singular values For any T Crit. points f3 ⇐⇒    T[1](x, y, z) = λ xp−2x T[2](x, y, z) = λ yq−2y T[3](x, y, z) = λ zr−2z 4 / 20
  • 12. 4/20 Example m = 3 and N1 = N2 = N3 Eigenvalue problems T ∼ N1 × N1 × N1, square tensor We introduce a unifying formulation 4 / 20
  • 13. 5/20 Shape partition Shape partition of T ∼ N1 × · · · × Nm: σ = {σ1, . . . , σd} is a partition of {1, . . . , m} s.t. • j, k ∈ σi =⇒ Ni = Nk • j ∈ σi, k ∈ σi+1 =⇒ j < k • |σi| ≤ |σi+1| Examples: T ∼ N × N × N × N σ1 = {1, 2, 3, 4} σ2 = {1}, {2, 3, 4} σ3 = {1, 2}, {3, 4} σ4 = {1}, {2}, {3, 4} σ5 = {1}, {2}, {3}, {4} T ∼ N × N × M × M σ3 = {1, 2}, {3, 4} σ4 = {1}, {2}, {3, 4} σ5 = {1}, {2}, {3}, {4} 5 / 20
  • 14. 6/20 Indexing associated with σ T ∼ N1 × · · · × Nm σ = {σ1, . . . , σd} 6 / 20
  • 15. 6/20 Indexing associated with σ T ∼ N1 × · · · × Nm σ = {σ1, . . . , σd} • si = min{k : k ∈ σi} • ni = Nsi for all i = 1, . . . , d σ1 N1 × . . . × Ns2−1 = = n1 × . . . × n1 |σ1| times × = × σ2 Ns2 × . . . × Ns3−1 = = n2 × . . . × n2 |σ2| times × . . . × = = × . . . × σd Nsd × . . . × Nm = = nd × . . . × nd |σd| times 6 / 20
  • 16. 7/20 σ−eigenvalues and eigenvectors T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1 |σ1| times x1, . . . , x1, |σ2| times x2, . . . , x2, . . . , |σd| times xd, . . . , xd 7 / 20
  • 17. 7/20 σ−eigenvalues and eigenvectors T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1 |σ1| times x1, . . . , x1, |σ2| times x2, . . . , x2, . . . , |σd| times xd, . . . , xd (⋆)    T[s1](x1,..., x1, . . . , xd,..., xd) = λ xp1−2 1 x1 x1 p1 = 1 ... T[sd](x1,..., x1, . . . , xd,..., xd) = λ xpd−2 d xd xd pd = 1 7 / 20
  • 18. 7/20 σ−eigenvalues and eigenvectors T ∼ N1 × · · · × Nm, σ = {σ1, . . . , σd}, p = (p1, . . . , pd) > 1 |σ1| times x1, . . . , x1, |σ2| times x2, . . . , x2, . . . , |σd| times xd, . . . , xd (⋆)    T[s1](x1,..., x1, . . . , xd,..., xd) = λ xp1−2 1 x1 x1 p1 = 1 ... T[sd](x1,..., x1, . . . , xd,..., xd) = λ xpd−2 d xd xd pd = 1 (T, σ, p) −→ r(T) = max{|λ| : λ fulfill (⋆)} 7 / 20
  • 19. 8/20 Multi-homogeneous map associated to (T, σ, p) We characterize the existence, uniqueness and maximality of positive σ−eigenpairs of T. To this end we consider a particular multi-homogeneous map 8 / 20
  • 20. 8/20 Multi-homogeneous map associated to (T, σ, p) We characterize the existence, uniqueness and maximality of positive σ−eigenpairs of T. To this end we consider a particular multi-homogeneous map F = (f1, . . . , fm) : RN1 × · · · × RNm −→ RN1 × · · · × RNm s.t. fi(x1, . . . , λ xj, . . . , xm) = λAij fi(x1, . . . , xj, . . . , xm) 8 / 20
  • 21. 8/20 Multi-homogeneous map associated to (T, σ, p) We characterize the existence, uniqueness and maximality of positive σ−eigenpairs of T. To this end we consider a particular multi-homogeneous map F = (f1, . . . , fm) : RN1 × · · · × RNm −→ RN1 × · · · × RNm s.t. fi(x1, . . . , λ xj, . . . , xm) = λAij fi(x1, . . . , xj, . . . , xm) A = A(F) = homogeneity matrix of F 8 / 20
  • 22. 9/20 Multi-homogeneous map associated to (T, σ, p) Given T, σ and p we define FT,σ,p = (f1, . . . , fd) by fi(x) = T[si] |σ1| times x1, . . . , x1, . . . , |σd| times xd, . . . , xd 1 pi−1
  • 23. 9/20 Multi-homogeneous map associated to (T, σ, p) Given T, σ and p we define FT,σ,p = (f1, . . . , fd) by fi(x) = T[si] |σ1| times x1, . . . , x1, . . . , |σd| times xd, . . . , xd 1 pi−1 A =             |σ1|−1 p1−1 |σ2| p1−1 · · · |σd| p1−1 |σ1| p2−1 |σ2|−1 p2−1 · · · |σd| p2−1 ... ... ... ... |σ1| pd−1 |σ2| pd−1 · · · |σd|−1 pd−1             9 / 20
  • 24. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) 10 / 20
  • 25. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) Theorem If ρ(A) < 1 and T is σ-strictly nonnegative 10 / 20
  • 26. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) σ-strictly nonnegative For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that: tj1,...,jm > 0 with jsi = ki Theorem If ρ(A) < 1 and T is σ-strictly nonnegative 10 / 20
  • 27. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) σ-strictly nonnegative For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that: tj1,...,jm > 0 with jsi = ki Theorem If ρ(A) < 1 and T is σ-strictly nonnegative, then: • There exists a entry-wise positive σ-eigenvector u of T associated with r(T) 10 / 20
  • 28. 10/20 Perron-Frobenius theorem for “contractive” (T, σ, p) σ-strictly nonnegative For every (i, ki) ∈ Iσ there exist j1, . . . , jm such that: tj1,...,jm > 0 with jsi = ki Theorem If ρ(A) < 1 and T is σ-strictly nonnegative, then: • There exists a entry-wise positive σ-eigenvector u of T associated with r(T) • u is the unique positive σ-eigenvector of T 10 / 20
  • 29. 11/20 Example: ℓp,q,r -singular value problem T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r) 11 / 20
  • 30. 11/20 Example: ℓp,q,r -singular value problem T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)    T[1](x, y, z) = λ xp−2x T[2](x, y, z) = λ yq−2y T[3](x, y, z) = λ zr−2z (⋆⋆) 11 / 20
  • 31. 11/20 Example: ℓp,q,r -singular value problem T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)    T[1](x, y, z) = λ xp−2x T[2](x, y, z) = λ yq−2y T[3](x, y, z) = λ zr−2z (⋆⋆) There exists a unique positive u = (x, y, z) that solves (⋆⋆) with λ = r(T) if: • ρ(A) < 1 and strictly nonnegative [Gautier, T., Hein, 2018] 11 / 20
  • 32. 11/20 Example: ℓp,q,r -singular value problem T ∼ N1 × N2 × N3, σ = {{1}, {2}, {3}}, p = (p, q, r)    T[1](x, y, z) = λ xp−2x T[2](x, y, z) = λ yq−2y T[3](x, y, z) = λ zr−2z (⋆⋆) There exists a unique positive u = (x, y, z) that solves (⋆⋆) with λ = r(T) if: • ρ(A) < 1 and strictly nonnegative [Gautier, T., Hein, 2018] • p, q, r ≥ 3 and irreducibility conditions [Friedland, Gaubert, Han, 2013] 11 / 20
  • 33. 12/20 The “non-exapansive” case ρ(A) = 1 Example: Matrix case T ∼ N × N, σ = {1, 2}, p = 2 ⇐⇒ Tx = λx
  • 34. 12/20 The “non-exapansive” case ρ(A) = 1 Example: Matrix case T ∼ N × N, σ = {1, 2}, p = 2 ⇐⇒ Tx = λx A = |σ1| − 1 p1 − 1 = 1 We know that we need irreducibility conditions 12 / 20
  • 35. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd}
  • 36. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd} • Edge (ik) → (jh) exists if tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi 13 / 20
  • 37. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd} • Edge (ik) → (jh) exists if tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi Example: T ∼ 2 × 3 × 3 σ = {{1}, {2, 3}}, d = 2 n1 = 2, s1 = 1, n2 = 3, s2 = 2 1211 {1} 2221 23 {2,3} 13 / 20
  • 38. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd} • Edge (ik) → (jh) exists if tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi Example: T ∼ 2 × 3 × 3 σ = {{1}, {2, 3}}, d = 2 n1 = 2, s1 = 1, n2 = 3, s2 = 2 1211 {1} 2221 23 {2,3} t2,2,1 = 1 13 / 20
  • 39. 13/20 σ−graph of T Gσ(T) = (V, E), σ = {σ1, . . . , σd} • Nodes are pairs: V = {1} × {1, . . . , n1} ∪ · · · ∪ {d} × {1, . . . , nd} • Edge (ik) → (jh) exists if tℓ1,...,ℓm > 0 with ℓsi = k and ℓα = h for some α ∈ σi Example: T ∼ 2 × 3 × 3 σ = {{1}, {2, 3}}, d = 2 n1 = 2, s1 = 1, n2 = 3, s2 = 2 1211 {1} 2221 23 {2,3} t2,2,1 = 1 t1,3,1 = 1 13 / 20
  • 40. 14/20 Perron-Frobenius thm for “non-expansive” (T, σ, p) Theorem If ρ(A) ≤ 1 and T is σ-weakly irreducible 14 / 20
  • 41. 14/20 Perron-Frobenius thm for “non-expansive” (T, σ, p) σ-weakly irreducible The graph Gσ(T) is strongly connected Theorem If ρ(A) ≤ 1 and T is σ-weakly irreducible 14 / 20
  • 42. 14/20 Perron-Frobenius thm for “non-expansive” (T, σ, p) σ-weakly irreducible The graph Gσ(T) is strongly connected σ-weakly irreducible =⇒ σ-strictly nonnegative Theorem If ρ(A) ≤ 1 and T is σ-weakly irreducible 14 / 20
  • 43. 14/20 Perron-Frobenius thm for “non-expansive” (T, σ, p) σ-weakly irreducible The graph Gσ(T) is strongly connected σ-weakly irreducible =⇒ σ-strictly nonnegative Theorem If ρ(A) ≤ 1 and T is σ-weakly irreducible, then additionally: • It holds λ < r(T) for every σ-eigenvalue λ corresponding to a nonnegative eigenvector 14 / 20
  • 44. 15/20 σ−strongly irreducibile T Example: Matrix case G(M) is strongly connected if and only if for any x0 ≥ 0 there exists n > 0 such that xn = (I + M)nx0 > 0 xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · · 15 / 20
  • 45. 15/20 σ−strongly irreducibile T Example: Matrix case G(M) is strongly connected if and only if for any x0 ≥ 0 there exists n > 0 such that xn = (I + M)nx0 > 0 xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · · F = FT,σ,p = multi-homogeneous map associated with (T, σ, p) 15 / 20
  • 46. 15/20 σ−strongly irreducibile T Example: Matrix case G(M) is strongly connected if and only if for any x0 ≥ 0 there exists n > 0 such that xn = (I + M)nx0 > 0 xn = xn−1 + Mxn−1 = xn−1 + Mxn−2 + M2xn−2 = · · · F = FT,σ,p = multi-homogeneous map associated with (T, σ, p) σ-strongly irreducible For any x0 ≥ 0 there exists n > 0 s.t. xn = (id + F)n(x0) > 0 xn = xn−1 + F(xn−1) = xn−1 + F(xn−2 + F(xn−2)) = · · · 15 / 20
  • 47. 16/20 Perron-Frobenius thm for σ-strongly irreducible T 16 / 20
  • 48. 16/20 Perron-Frobenius thm for σ-strongly irreducible T Theorem σ-strongly irreducible =⇒ σ-weakly irreducible (=⇒ σ-strictly nonnegative) 16 / 20
  • 49. 16/20 Perron-Frobenius thm for σ-strongly irreducible T Theorem σ-strongly irreducible =⇒ σ-weakly irreducible (=⇒ σ-strictly nonnegative) Theorem If ρ(A) ≤ 1 and T is σ-strongly irreducible, then additionally: 16 / 20
  • 50. 16/20 Perron-Frobenius thm for σ-strongly irreducible T Theorem σ-strongly irreducible =⇒ σ-weakly irreducible (=⇒ σ-strictly nonnegative) Theorem If ρ(A) ≤ 1 and T is σ-strongly irreducible, then additionally: • T has no nonnegative eigenvectors other than u 16 / 20
  • 51. 17/20 A final remark: Previous conditions for particular choices of σ • σ-strictly nonnegativity for σ = {1, . . . , m} [Hu, Huang, Qi, 2014] • σ-weak irreducibility and σ-strong irreducibility for σ = {1, . . . , m} σ = {1, . . . , k}, {k + 1, . . . , m} σ = {1}, . . . , {m} [Chang, Pearson, Zhang, 2008] & [Chang, Qi, Zhou, 2010] & [Friedland, Gaubert, Han, 2013] & [Ling, Qi, 2013] 17 / 20
  • 52. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) 18 / 20
  • 53. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) • If T ≥ 0 and it does not have fully zero unfoldings, then look at the matrix A = A(FT,σ,p): 18 / 20
  • 54. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) • If T ≥ 0 and it does not have fully zero unfoldings, then look at the matrix A = A(FT,σ,p): • If ρ(A) < 1, then PF holds 18 / 20
  • 55. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) • If T ≥ 0 and it does not have fully zero unfoldings, then look at the matrix A = A(FT,σ,p): • If ρ(A) < 1, then PF holds • If ρ(A) = 1 and Gσ(T) is connected, then PF holds + r(T) > λ 18 / 20
  • 56. 18/20 Conclusion • A large class of eigenvalue problems for tensors can be written in terms of (T, σ ,p) • If T ≥ 0 and it does not have fully zero unfoldings, then look at the matrix A = A(FT,σ,p): • If ρ(A) < 1, then PF holds • If ρ(A) = 1 and Gσ(T) is connected, then PF holds + r(T) > λ • If id + FT,σ,p is “eventually positive”, then unique nonnegative eigenvector 18 / 20
  • 57. 19/20 References A. Gautier, F. T. and M. Hein, A unifying Perron-Frobenius theorem for nonnegative tensors via multi-homogeneous maps, SIAM J Matrix Anal Appl 2019 A. Gautier, F. T. and M. Hein, The Perron-Frobenius theorem for multi-homogeneous mapping, SIAM J Matrix Anal Appl 2019 19 / 20
  • 58. 20/20 Thank you for your kind attention! MS20 Nonlinear Perron-Frobenius theory and applications jointly organized with Antoine Gautier Today 4:15PM – 6:15PM WLB103 Speakers: • Antoine Gautier • Francesca Arrigo • Shmuel Friedland • Jiang Zhou 20 / 20