SlideShare a Scribd company logo
1 of 194
Download to read offline
_____tt~--- MassachusettsInstituteofTechnologyMITVideoCOurseVideoCourseStudyGuideFiniteElementProceduresforSolidsandStructuresLinearAnalys isKlaus-JOrgenBatheProfessorofMechanicalEngineering,MITPublishedbyMITCenterforAdvancedEngineeringstudyReorderNo672-2100
PREFACETheanalysisofcomplexstaticanddynamicproblemsinvolvesinessencethreestages: selectionofamathematicalmodel,analysisofthemodel,andinterpretationoftheresults. Duringrecentyearsthefiniteelementmethodimplementedonthedigitalcomputerhasbeenusedsuccessfullyinmodelingverycomplexproblemsinvariousareasofengineeringandhassignificantlyincreasedthepossibilitiesforsafeandcosteffectivedesign. However,theefficientuseofthemethodisonlypossibleifthebasicassumptionsoftheproceduresemployedareknown,andthemethodcanbeexercisedconfidentlyonthecomputer. Theobjectiveinthiscourseistosummarizemodernandeffectivefiniteelementproceduresforthelinearanalysesofstaticanddynamicproblems.Thematerialdiscussedinthelecturesincludesthebasicfiniteelementformulationsemployed, theeffectiveimplementationoftheseformulationsincomputerprograms,andrecommendationsontheactualuseofthemethodsinengineeringpractice.Thecourseisintendedforpracticingengineersandscientistswhowanttosolveproblemsusingmodemandefficientfiniteelementmethods. Finiteelementproceduresforthenonlinearanalysisofstructuresarepresentedinthefollow-upcourse,FiniteElementProceduresforSolidsandStructures-NonlinearAnalysis. Inthisstudyguideshortdescriptionsofthelecturesandtheviewgraphsusedinthelecturepresentationsaregiven. Belowtheshortdescriptionofeachlecture,referenceismadetotheaccompanyingtextbookforthecourse:FiniteElementProceduresinEngineeringAnalysis,byK.J.Bathe,PrenticeHall, Inc.,1982. Thetextbooksectionsandexamples,listedbelowtheshortdescriptionofeachlecture,provideimportantreadingandstudymaterialtothecourse.
ContentsLecturesl.Somebasicconceptsofengineeringanalysis1-12.Analysisofcontinuoussystems;differentialandvariationalformulations2-13.Formulationofthedisplacement-basedfiniteelementmethod_3-14.Generalizedcoordinatefiniteelementmodels4-15.Implementationofmethodsincomputerprograms; examplesSAp,ADINA5-16.Formulationandcalculationofisoparametricmodels6-17.Formulationofstructuralelements7-18.Numericalintegrations,modelingconsiderations8-19.Solutionoffiniteelementequilibriumequationsinstaticanalysis9-110.Solutionoffiniteelementequilibriumequationsindynamicanalysis10-11l.Modesuperpositionanalysis;timehistory11-112.Solutionmethodsforcalculationsoffrequenciesandmodeshapes12-1
SOMEBASICCONCEPTSOFENGINEERINGANALYSISLECTURE146MINUTESI-I
SolIebasicccnaceplsofeugiDeeriDgualysisLECTURE1Introductiontothecourse.objectiveoflecturesSomebasicconceptsofengineeringanalysis. discreteandcontinuoussystems.problemtypes:steady-state.propagationandeigenvalueproblemsAnalysisofdiscretesystems: exampleanalysisofaspringsystemBasicsolutionrequirementsUseandexplanationofthemoderndirectstiffnessmethodVariationalformulation TEXTBOOK:Sections:3.1and3.2.1.3.2.2.3.2.3.3.2.4Examples:3.1.3.2.3.3.3.4.3.5.3.6.3.7.3.8.3.9.3.10.3.11.3.12.3.13.3.141-2
Somebasicconcepts01engineeringaulysisINTRODUCTIONTOLINEARANALYSISOFSOLIDSANDSTRUCTURES•Thefiniteelementmethodisnowwidelyusedforanalysisofstructuralengineeringproblems. •'ncivil,aeronautical,mechanical, ocean,mining,nuclear,biomechanical,... engineering•Sincethefirstapplicationstwodecadesago, -wenowseeapplicationsinlinear,nonlinear,staticanddynamicanalysis. -variouscomputerprogramsareavailableandinsignificantuseMyobjectiveinthissetoflecturesis: •tointroducetoyoufiniteelementmethodsforthelinearanalysisofsolidsandstructures. ["Iinear"meaninginfinitesimallysmalldisplacementsandlinearelasticmaterialproeerties( Hooke'slawapplies)j•toconsider-theformulationofthefiniteelementequilibriumequations-thecalculationoffiniteelementmatrices-methodsforsolutionofthegoverningequations-computerimplementations.todiscussmodernandeffectivetechniques,andtheirpracticalusage. 1·3
SomebasicconceptsofengineeringanalysisREMARKS•Emphasisisgiventophysicalexplanationsratherthanmathematicalderivations• TechniquesdiscussedarethoseemployedinthecomputerprogramsSAPandADINASAP== StructuralAnalysisProgramADINA=AutomaticDynamicIncrementalNonlinearAnalysis•Thesefewlecturesrepresentaverybriefandcompactintroductiontothefieldoffiniteelementanalysis•WeshallfollowquitecloselycertainsectionsinthebookFiniteElementProceduresinEngineeringAnalysis, Prentice-Hall,Inc. (byK.J.Bathe). FiniteElementSolutionProcessPhysicalproblemEstablishfiniteelement...--~modelofphysicalproblem1I:I,-__S_ol_v_e_th_e_m_o_d_el__ I~ ~---iL-_I_n_te_r.;..p_re_t_t_h_e_re_s_u_lt_S_....JRevise(refine) themodel? 1-4
SolIebasicconceptsofengiDeeringanalysis10ft15ftI12at15°,. Analysisofcoolingtower. K~~~~~-~,-Fault(norestraintassumed) Altered'gritE=toEc., Analysisofdam. 1·5
SomebasicconceptsofengineeringanalysisB. t Wo E~~;;C=-------_........ FFiniteelementmeshfortireinflationanalysis. 1·6
SolDebasicconceptsofengineeringanalysisSegmentofasphericalcoverofalaservacuumtargetchamber. l,WppPINCHEDCYLINDRICALSHELLOD;:...,...----.---~~~~~~CEtW-50P-100-150•16x16MESH-200- DISPLACEMENTDISTRIBUTIONALONGDCOFPINCHEDCYLINDRICALSHELL•16x16MESH-0.2Mil""=0.1~CBENDINGMOMENTDISTRIBUTIONALONGDCOFPINCHEDCYLINDRICALSHELL1-7
SoBlebasicconcepts01engineeringanalysisIFiniteelementidealizationofwindtunnelfordynamicanalysisSOMEBASICCONCEPTSOFENGINEERINGANALYSISTheanalysisofanengineeringsystemrequires: -idealizationofsystem-formulationofequilibriumequations- solutionofequations-interpretationofresults1·8
SYSTEMSSomebasicconceptsofengineeringanalysisDISCRETEresponseisdescribedbyvariablesatafinitenumberofpointssetofalgebraic-- equationsCONTINUOUSresponseisdescribedbyvariablesataninfinitenumberofpointssetofdifferentialequationsPROBLEMTYPESARE• STEADY-STATE(statics) •PROPAGATION(dynamics) •EIGENVALUEFordiscreteandcontinuoussystemsAnalysisofcomplexcontinuoussystemrequiressolutionofdifferentialequationsusingnumerica lproceduresreductionofcontinuoussystemtodiscreteformpowerfulmechanism: thefiniteelementmethods, implementedondigitalcomputersANALYSISOFDISCRETESYSTEMSStepsinvolved: -systemidealizationintoelements-evaluationofelementequilibriumrequirements-elementassemblage-solutionofresponse1·9
SomebasicconceptsofengineeringanalysisExample: steady-stateanalysisofsystemofrigidcartsinterconnectedbyspringsPhysicallayoutELEMENTSU1U3I~:~l)..F(4)..31F(4) k,u1-F(')1-1]["1].[F14']-, '4[1u2-11UF(4) 33-F(2) F(2)---2, '2[1-1]["I]fF}]1uF(2)--122F(S)F(S) 23u,u2-t][F(5l]'5[1k3F(3)1u2=F1S)-1-----233F(3),-r1]fPl]'3[] -11uF(3) 221·10
SolIebasiccOIceplsofengineeringanalysisElementinterconnectionrequirements: F(4)+F(S)=R333TheseequationscanbewrittenintheformKU=E. EquilibriumequationsKU=R(a) +k4k1+k2+k3~-k2-k3UT=[u-1RT=[R-1 ·· ···: -k4....'"...............................·.·.. K=-k2-k3~k2+k3+kS~-kS·...................•................•.....•........·.·.1·11
Somebasicconceptsofengineeringanalysisandwenotethat~=t~(i) i=1where::] o0etc... ThisassemblageprocessiscalledthedirectstiffnessmethodThesteady-stateanalysisiscompletedbysolvingtheequationsin(a) 1·12
Somebasicconcepls01engineeringanalysisu,· .................::............... ·. ·.~....·.·.·.·.·.·.·u, K1....::............... ·. K= ·.....·.·.·: U1...............................:. K~•••~~.~•••••••••~~•••••••••••:...............~1---.JI.lfl--r/A~,111~~r/A1·13
SOlDebasicconceptsofengineeringanalysis ·....::.·.·u, ·.•'O••••••••••••••••••••••••••••••••••••••••••••••·.·.·. K= u, +K4; K1+K2+K3;-K2-K3·.'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O'O:'O'O'O'O'O'O'O'O'O'O'O'O'O'O:'O'O'O'O'O'O'O'O'O'O'O'O'O'O•·.·. K= ·.'O'O••••••••••••••••••••••••••••••••••••••••••••••·.··. . +K4; K1+K2+K3~-K2-K3-K4'O'O••••••••••••••••••••••••••••••••••••••••••••• K=-K2-K3~K2+K3+K5-K5'O'O•••••••••••••••:••••••••••••••••••••••••••••• u, IK1·14
SomebasicconceptsofengineeringanalysisInthisexampleweusedthedirectapproach;alternativelywecouldhaveusedavariationalapproach. Inthevariationalapproachweoperateonanextremumformulation: u=strainenergyofsystemW=totalpotentialoftheloadsEquilibriumequationsareobtainedfroman-0(b)~- 1IntheaboveanalysiswehaveU=~UT!!! W=UTRInvoking(b)weobtainKU=RNote:toobtainUandWweagainaddthecontributionsfromallelements1·15
SOlDebasicconceptsofengineeringanalysisPROPAGATIONPROBLEMSmaincharacteristic:theresponsechangeswithtime~needtoincludethed'Alembertforces: Fortheexample: m,aaM=am2aaam3EIGENVALUEPROBLEMSweareconcernedwiththegeneralizedeigenvalueproblem(EVP) Av=ABv!l,.!laresymmetricmatricesofordernvisavectorofordernAisascalarEVPsariseindynamicandbucklinganalysis1·16
SomebasicconceptsofengineeringanalysisExample:systemofrigidcarts~lU+KU=OLetU=<psinW(t-T) Thenweobtain_w2~~sinW(t-T) +K<psinW(t-T)=0--- HenceweobtaintheequationThereare3solutionsw,,~, (l)2'~2eigenpairsw3'~3Ingeneralwehavensolutions1·17
ANALYSISOFCONTINUOUSSYSTEMS; DIFFEBENTIALANDVABIATIONALFOBMULATIONSLECTURE259MINUTES2-1
Analysis01continnoussystems;differentialandvariationallonnDlationsLECTURE2BasicconceptsintheanalysisofcontinuoussystemsDifferentialandvariationalformulationsEssentialandnaturalboundaryconditionsDefinitionofem-IvariationalproblemPrincipleofvirtualdisplacementsRelationbetweenstationarityoftotalpotential,theprincipleofvirtualdisplacements,andthedifferentialformulationWeightedresidualmethods, Galerkin,leastsquaresmethodsRitzanalysismethodPropertiesoftheweightedresidualandRitzmethodsExampleanalysisofanonuniformbar,solutionaccuracy,introductiontothefiniteelementmethodTEXTBOOK:Sections:3.3.1,3.3.2,3.3.3Examples:3.15,3.16,3.17,3.18,3.19,3.20,3.21,3.22,3.23,3.24,3.252·2
Analysisofcontinuoussystems;differentialandvariationalformulationsBASICCONCEPTSOFFINITEELEMENTANALYSISCONTINUOUSSYSTEMS• Wediscussedsomebasicconceptsofanalysisofdiscretesystems•SomeadditionalbasicconceptsareusedinanalysisofcontinuoussystemsCONTINUOUSSYSTEMSdifferentialformulationtWeightedresidualmethods Galerkin_.._-----41~_ leastsquaresvariationalformulationRitzMethod.... finiteelementmethod2·3
AnalysisofcontinuoussysteDlS;differentialand,arialionalIOl'llulali. Example-DifferentialformulationaAI+A~aIdx-aAIxxoXX/ Young'smodulus,E~Lt:)massdensity, cross-sectionalarea,AR..~------- TheproblemgoverningdifferentialequationisDerivationofdifferentialequationTheelementforceequilibriumrequirementofatypicaldiffer entialelementisusingd'Alembert'sprincipler~.-;+~~dxI~ AreaA,massdensityp2=pAau~ Theconstitutiverelationisaua=EaxCombiningthetwoequationsaboveweobtain2 ·4
baIysis01COitiDlOUsystems;differatialaDdvariationaliOl'lDDlatiODSTheboundaryconditionsareu(O,t}=° EA~~(L,t)=ROwithinitialconditionsu(x,O}=° ~(xO)=°at' 9essential(displ.)B.C. 9natural(force)B.C. Ingeneral,wehavehighestorderof(spatial)derivativesinproblem- governingdifferentialequationis2m. highestorderof(spatial)derivativesinessentialb. c.is(m-1) highestorderofspatialderivativesinnaturalb. c.is(2m-1) Definition: WecallthisproblemaCm-1variationalproblem. 2·5
Analysis01continuoussystems;differentialandvariatioD,a1fOl'llolatiODSExample-VariationalformulationWehaveingeneralII=U-WFortherodfLII=J}EAoandiLau2B(--)dx-ufdx-uRaxLou=0oandwehave0II=0Thestationarycondition6II=0givesrLauaurL.BJO(EAax)(6ax)dx-)06ut-dx-6uLR=0Thisistheprincipleofvirtualdisplacementsgoverningtheproblem.Ingeneral,wewritethisprincipleasor(seealsoLecture3) 2·6
lIiIysisof..IiDIGUSsystems;differentialandvariatiooallormulatioDSHowever,wecannowderivethedifferentialequationofequilibriumandtheb.c.atx=l. Writinga8ufor8au,re-axaxcallingthatEAisconstantandusingintegrationbypartsyieldsdx+[EA~Iaxx=L-EA~dXx=oSinceQUOiszerobutQUisarbitraryatallotherpoints,wemusthaveandauIEAax-x=L=RBa2uAlsof=-Ap-and,at2hencewehave2·7
AnalysisofcODtiDaoassyst_diIIereatialandvariatioulfOlllalatiODSTheimportantpointisthatinvokingoIT=0andusingtheessentialb.c.onlywegenerate•theprincipleofvirtualdisplacements•theproblem-governingdifferentialaquatio!) •thenaturalb.c.(theseareinessence"containedin"IT, i.e.,inW). Inthederivationoftheproblemgoverningdifferentialequationweusedintegrationbyparts• thehighestspatialderivativeinITisoforderm. •Weuseintegrationbypartsm-times. TotalPotentialITIUseoIT=0andessential"b.c. ~ 2·8PrincipleofVirtualDisplacementsIIntegrationbyparts~ DifferentialEquationofEquilibriumandnaturalb.c. _solveproblem_solveproblem
balysisofaDa.syst-:diBerentialandvariatiouallnaiatiOlSWeightedResidualMethodsConsiderthesteady-stateproblem(3.6) withtheB.C. B.[</>]=q.,i=1,2,••• 11atboundary(3.7) Thebasicstepintheweightedresidual(andtheRitzanalysis) istoassumeasolutionoftheform(3.10) wherethefiarelinearlyindependenttrialfunctionsandtheaiaremultipliersthataredeterminedintheanalysis. Usingtheweightedresidualmethods, wechoosethefunctionsfiin(3.10) soastosatisfyallboundaryconditionsin(3.7)andwethencalculatetheresidual, nR=r-L2mCLa·f.](3.11) 1=111ThevariousweightedresidualmethodsdifferinthecriterionthattheyemploytocalculatetheaisuchthatRissmall. InalltechniqueswedeterminetheaisoastomakeaweightedaverageofRvanish. 2·9
Analysis01C.tinnoDSsystems;differentialandvariational10000nlationsGalerkinmethodInthistechniquetheparametersaiaredeterminedfromthenequationsff.RdD=O;=1,2,•••,nD1Leastsquaresmethod(3.12) Inthistechniquetheintegralofthesquareoftheresidualisminimizedwithrespecttotheparametersai'aaa. 1;=1,2,•••,n[Themethodscanbeextendedtooperatealsoonthenaturalboundaryconditions,ifthesearenotsatisfiedbythetrialfunctions.] RITZANALYSISMETHODLetnbethefunctionaloftheem-1variationalproblemthatisequivalenttothedifferentialformulationgivenin(3.6)and(3.7). IntheRitzmethodwesubstitutethetrialfunctions<pgivenin(3.10) intonandgeneratensimultaneousequationsfortheparametersaiusingthestationaryconditiononn, 2·10an0aa.= 1;=1,2,•••,n(3.14)
Analysisofcontinuoussystems;differentialandvariationalformulationsProperties•ThetrialfunctionsusedintheRitzanalysisneedonlysatisfytheessentialb.c. •SincetheapplicationofoIl=0generatestheprincipleofvirtualdisplacements,weineffectusethisprincipleintheRitzanalysis. •Byinvoking0II=0weminimizetheviolationoftheinternalequilibriumrequirementsandtheviolationofthenaturalb.c. •Asymmetriccoefficientmatrixisgenerated,offormKU=RExampleR=100N2Area=1em( ........_-x,u----------~---r;;;-==-e- .F---.;;B;",.,.CI-...--~~---·-I-..--------·-I100em80emFig.3.19.Barsubjectedtoconcentratedendforce. 2·11
AnalysisofCOitiDlOISsystems;differeatialad,ariali"fOllDaialiODSHerewehave1180IT=1EA(~)2dx2axo-100uIx=180andtheessentialboundaryconditionisuIx=O=0LetusassumethedisplacementsCase1u=a1x+a2iCase2~ u=I1JO0<x<100100<x<180WenotethatinvokingoIT=0weobtain1180oIT=(EA~~)o(~~)dx-100OUIx=180o=0ortheprincipleofvirtualdisplacements£180(~~u)(EA~~)dx=100OUIx=180oJETTdV=IT.F. --11V2·12
Analysisofcontinuoussystems;differentialandvariationalformulationsExactSolutionUsingintegrationbypartsweobtain~(EA~)=0axaxEA~=100axx=180Thesolutionisu=1~Ox;0<x<100100<x<180Thestressesinthebararea=100;0<x<100a=100;100<x<180(l+x-l00)2402·13
Analysisofcontinuoussystems;differentialandvariationalformulationsPerformingnowtheRitzanalysis: Case1f180dx+I(1+x-l00)2240100Invokingthatorr=0weobtainE[0.4467116and11634076128.6a1=---=E=---a-0.3412--EHence,wehavetheapproximatesolutionu=12C.60.341Ex-E2x2·14a=128.6-0.682x
Analysisofcontinuoussystems;differentialandvariationalformulationsCase2Herewehave100EJ12n=2(100uB) af180dx+I(1+x-l00)2240100Invokingagainon=0weobtainE[15.4-13][~:]=[~oo]240-1313Hence,wenowhave1000011846.2U=EUcEBando=1000<x<1001846.2=23.08x>100o=802-15
AulysisofCOilinDmassystems;diUerenliaiandvarialiOlla1I01'1BDlaIiGlSuEXACT~------::.:--~~~.-.-. "Solution2---..I~..,-__--r-__--.,r---~X15000E10000E5000-E- 100180CALCULATEDDISPLACEMENTS(J50100-I=:::==-==_==_:=os:=_=_=,==_=_== ""EXACT"I~ ~SOLUTION1I-<,JSOLUTION2L._._.~._._ -+---,~--------r-------~X100180CALCULATEDSTRESSES2·18
balysisofcoatiDloassystms;diBerenlialudvariationalfonnllatioasWenotethatinthislastanalysiseweusedtrialfunctionsthatdonotsatisfythenaturalb.c. ethetrialfunctionsthemselvesarecontinuous,butthederivativesarediscontinuousatpointB. 1foraem-variationalproblemweonlyneedcontinuityinthe(m-1)stderivativesofthefunctions; inthisproblemm=1. edomainsA-BandB-earefiniteelementsandWEPERFORMEDAFINITEELEMENTANALYSIS. 2·17
FORMULATIONOFTHEDISPLACEMENT-BASEDFINITEELEMENTMETHODLECTURE358MINUTES3·1
Formulationofthedisplacement-basedfiniteelementmethodLECTURE3Generaleffectiveformulationofthedisplacement- basedfiniteelementmethodPrincipleofvirtualdisplacementsDiscussionofvariousinterpolationandelementmatricesPhysicalexplanationofderivationsandequationsDirectstiffnessmethodStaticanddynamicconditionsImpositionofboundaryconditionsExampleanalysisofanonunifor mbar.detaileddiscussionofelementmatricesTEXTBOOK:Sections:4.1.4.2.1.4.2.2Examples:4.1.4.2.4.3.4.43·2
Formulationofthedisplacement-basedfiniteelementmethodFORMULATIONOFTHEDISPLACEMENTBASEDFINITEELEMENTMETHOD- Averygeneralformulation-Providesthebasisofalmostallfiniteelementanalysesperformedinpractice- TheformulationisreallyamodernapplicationoftheRitz/ Gelerkinproceduresdiscussedinlecture2-Considerstaticanddynamicconditions,butlinearanalysisFig.4.2.Generalthree-dimensionalbody. 3·3
FOl'DlulationofthedisplaceDlent·basedfinitee1mnentlDethodTheexternalforcesarefBf~FiXXfB=fBfS=fSFi=Fi(4.1)yyyfBfSFiZZZThedisplacementsofthebodyfromtheunloadedconfigurationaredenotedbyU,whereuT=[uVw] ThestrainscorrespondingtoUare, (4.2) ~T=[EXXEyyEZZYXyYyZYZX](4.3) andthestressescorrespondingto€ are3·4
Formulationofthedisplacement-basedfiniteelementmethodPrincipleofvirtualdisplacementswhereITT=[ITIfw](4.6) Fig.4.2.Generalthree-dimensionalbody. 3·5
Formulationofthedisplaceaenl-basedfililee1eDlenl.ethodx,u,, "" FiniteelementForelement(m)weuse: !!(m)(x,y,z)=!:!.(m)(x,y,z)0(4.8) "T!!=[U,V,W,U2V2W2•••UNVNWN] "T!!=[U,U2U3...Un](4.9) §.(m)(x,y,z)=~(m)(x,y,z)!!(4.'0) !.(m)=f(m)~(m)+-rI(m)(4.'1) 3·&
'OI'IIalationofthedisplaceDlenl-basedfilileeleDlenlmethodRewrite(4.5)asasumofintegrationsovertheelements(4.12) Substituteinto(4.12)fortheelementdisplacements,strains,andstresses, using(4.8),to(4.10),____---..ll.c=~~-------(m)Tj-I--£ 'iTl~1B(m)Tc(m)B(m)dv(m)jU=If~v(m)-l--£1----~(m)=f.(m)~(m) j[IT(m)j(-£)(m)=B(m)l..u·) TLl(m)!!(m)1.BdV(m)--- I1mVI()T_",._~m:,.Lf. m)!!sCm)Tim)dScmljy:(m)=!!(m)~ _m_JV...:........<,==~I______(m)TElB(m)TTI(m)dv(m)j-USm;rm)---(m)T-___.r__.........1------....~ "<I::: (4.13) 3·7
Formulationofthedisplacement-basedfiniteelement.ethodWeobtainKU=Rwhere(4.14) R=.Ba+Rs-R1+~(4.15) K=~fB(m)Tc(m)B(m)dV(m) -mJV(m)----(4.16) R="'1.H(m)TfB(m)dV(m)(4.17) ~~lm)-- R="'1HS(m)Tfs(m)dS(m)(4.18) -S~~m)-- R="'1B(m)TT1(m)dV(m)(4.19) -1~V(m)-- R=F~- Indynamicanalysiswehavef(m)T-B(m) ~B=~V(m).!:!.[1. _p(m).!:!.(m)~]dV(m) MD+KU=R(4.21) (4.22) (4.20) B(m)-B(m)••(m) 1.=1.-p!! 3·8
Formulationofthedisplacement-basedfiniteelementmethodToimposetheboundaryconditions, weuse~a~b~a~b+ ~at!t>b-~ =(4.38) .... ~a~+~a~=~-~b~-~b~ (4.39) ~=~a~+~b~+~a~+~b~ (4.40) ransformedegreesofeedomiA!•VTId!-fGlobaldegreesoffreedom;-VC,-:~:e)~I(restrained~ rl'fuL[ COSaT= sina-sina] cosa'/..U=TITFig.4.10.Transformationtoskewboundaryconditions3·9
Formulationofthedisplacement-basedfiniteelementmethodForthetransformationonthetotaldegreesoffreedomweusesothat.. Mu+Ku=Rwhere.th.th1Jcolumn!1.••j(4.41)ithrow1cosa.-sina. T= }h1(4.42)sina.cosa. 1LFig.4.11.Skewboundaryconditionimposedusingspringelement. Wecannowalsousethisprocedure(penaltymethod) SayUi=b,thentheconstraintequationis___3·10kU.=kb, wherek»k.. " (4.44)
FormDlationofthedisplacement·basedfiniteelementmethodExampleanalysis80xzy100Finiteelementsarea=1element® 100area=9J~ I"100-I80~I3·11
Formulationofthedisplacement·basedfiniteelementmethodElementinterpolationfunctions1.0I... L--IDisplacementandstraininterpolationmatrices: H(l}=[(l-L)ya]-100100v(m}=H(m}U!:!.(2}=[a(1-L):0]80!!(l)=[11a] 100100av=B(m}U!!(2)=[11ay-- a8080] 3·12
FOI'IDDlationofthedisplacement·basedfiniteelementmethodstiffnessmatrix-11005.=(1HEllOl~O[-l~Ol~Oo}YaaU1-80180HenceE[2.4-2.4=240-2.415.4a-13SimilarlyforM'.!!B'andsoon. Boundaryconditionsmuststillbeimposed. 3·13
GENERALIZEDCOORDINATEFINITEELEMENTMODELSLECTURE457MINUTES4·1
GeneralizedcoordinatefiniteelementmodelsLECTURE4Classificationofproblems:truss,planestress,planestrain,axisymmetric,beam,plateandshellconditions: correspondingdisplacement,strain,andstressvariablesDerivationofgeneralizedcoordinatemodelsOne-,two-,three-dimensionalelements,plateandshellelementsExampleanalysisofacantileverplate,detailedderivationofelementmatricesLumpedandconsistentloadingExampleresultsSummaryofthefiniteelementsolutionprocessSolutionerrorsConvergencerequirements,physicalexplanations, thepatchtestTEXTBOOK:Sections:4.2.3,4.2.4,4.2.5,4.2.6Examples:4.5,4.6,4.7,4.8,4.11,4.12,4.13,4.14,4.15,4.16,4.17,4.184-2
GeneralizedcoordinatefiniteeleDlentmodelsDERIVATIONOFSPECIFICFINITEELEMENTS•Generalizedcoordinatefiniteelementmodels~(m)=iB(m)TC(m)B(m)dV(m) V(m) aW)=JH(m)TLB(m)dV(m) V(m) R(m)=fHS(m)TfS(m)dS(m) !!S(m)-- Setc. Inessence,weneedH(m)B(m)C(m)-,-'- •ConvergenceofanalysisresultsAAcrosssectionA-A: TXXisuniform. Allotherstresscomponentsarezero. Fig.4.14.Variousstressandstrainconditionswithillustrativeexamples. (a)Uniaxialstresscondition:frameunderconcentratedloads. 4·3
Ge.raJizedcoordiDalefiniteelementlDOIIeIsHale I6I --1ZI TXX'Tyy,TXYareuniformacrossthethickness. Allotherstresscomponentsarezero. Fig.4.14.(b)Planestressconditions: membraneandbeamunderin-planeactions. u(x,y),v(x,y) arenon-zerow=0,Ezz=0Fig.4.14.(e)Planestraincondition: longdamsubjectedtowaterpressure. 4·4
GeneralizedcoordinatefiniteelementmodelsStructureandloadingareaxisymmetric. j( I III,I I-- Allotherstresscomponentsarenon-zero. Fig.4.14.(d)Axisymmetriccondition: cylinderunderinternalpressure. (beforedeformation) (afterdeformation) / SHELLFig.4.14.(e)Plateandshellstructures. 4·5
GeneralizedcoordinatefiniteelementmodelsProblemBarBeamPlanestressPlanestrainAxisymmetricThree-dimensionalPlateBendingDisplacementComponents uw u,vu,vu,vu,v,wwTable4.2(a)CorrespondingKinematicandStaticVariablesinVariousProblems. ProblemBarBeamPlanestressPlanestrainAxisymmetricThree-dimensionalPlateBendingStrainVector~T- (E"...,) [IC...,] (E"...,El'l')'"7) (E...,EJ"7)'..7) [E...,E"77)'''7Eu) [E...,E"77Eu)'''7)'76)'...,) (IC...,1(771("7) .auauauauNolallon:E..=ax'£7=a/)'''7=ay+ax'a1wa1wa1w•••,IC...,=-dxZ'IC77=-OyZ,IC..,=20xoyTable4.2(b)CorrespondingKinematicandStaticVariablesinVariousProblems. 4·&
ProblemBarBeamPlanestressPlanestrainAxisymmetricThree-dimensionalPlateBendingGeneralizedcoordinatefiniteelementmodelsStressVector1:T[T;u,] [Mn] [TnTJIJIT"'JI] [TnTJIJIT"'JI] [TnTJIJIT"'JITn] [TnTYJITnT"'JITJI'Tu] [MnMJIJIM"'JI] Table4.2(e)CorrespondingKinematicandStaticVariablesinVariousProblems. ProblemMaterialMatrix.£ BarBeamPlaneStressEEl[ 1vEv11-1':&o01~.] Table4.3GeneralizedStress-StrainMatricesforIsotropicMaterialsandtheProblemsinTable4.2.4·7
GeneralizedcoordinatefiniteelementmodelsELEMENTDISPLACEMENTEXPANSIONS: Forone-dimensionalbarelementsFortwo-dimensionalelements(4.47) Forplatebendingelements2w(x,y)=Y,+Y2x+Y3Y+Y4xy+Y5x+•.. (4.48) Forthree-dimensionalsolidelementsu(x,y,z)=a,+Ozx+~Y+Ci4Z+~xy+... w(x,y,z)=Y,+y2x+y3y+y4z+y5xy+... (4.49) 4·8
Hence,ingeneralu=~exGeneralizedcoordinatefiniteelementmodels(4.50) (4.51/52) (4.53/54) Example(4.55) Y.VX.Vla)CantileverplaterNodalpoint6lp9Element0058CD@ Y.VV7147X.VV7(blFiniteelementidealizationFig.4.5.Finiteelementplanestressanalysis;i.e.TZZ=TZy=TZX=04·9
Generalizedcoordinatefiniteelementmodels2LJ2.=US--II--.......---------....~ element® Elementnodalpointno.4=structurenodalpointno.5. Fig.4.6.Typicaltwo-dimensionalfour-nodeelementdefinedinlocalcoordinatesystem. Forelement2wehave[ U{X,y)](2) =H(2)uv{x,y)-- whereuT=[U-14·10
GeneralizedcoordinateliniteelementmodelsToestablishH(2)weuse: or[ U(X,y)]=_~l!. v(x,y) where!=[~~}!=[1xyxy] andDefiningwehaveQ=Aa. HenceH=iPA-14·11
GeneralizedcoordinatefiniteelementmodelsHenceH=fl-l4and(1+x)(Hy)::aI•••IIa::(1+x)(1+y): H'ZJ=[0-0Ull:HII:HZIUJVJUzt':u.v. U2U3U4UsU6U7UsU9U1aI0:HIJH17:HI.H16:00:HI.Hu: o:HZJH21:H::H:6:00:H..Ha: VI-elementdegreesoffreedomU12U13U14UIS-assemblagedegreesHIs:00zerosOJoffreedomHzs:00zerosO2x18(a)Elementlayout(b)Local-globaldegreesoffreedomFig.4.7.Pressureloadingonelement(m) 4·12
GeneralizedcoordinatefiniteelementmodelsInplane-stressconditionstheelementstrainsarewhereE-au.E_av._au+avxx-ax'yy-ay,Yxy-ayaxHencewhereI=[~10Iy'OI00010I01IX10I4·13
GeneralizedcoordinatefiniteelementmodelsACTUALPHYSICALPROBLEMGEOMETRICDOMAINMATERIALLOADINGBOUNDARYCONDITIONS1MECHANICALIDEALIZATIONKINEMATICS,e.g.trussplanestressthree-dimensionalKirchhoffplateetc. MATERIAL,e.g.isotropiclinearelasticMooney-Rivlinrubberetc. LOADING,e.g.concentratedcentrifugaletc. BOUNDARYCONDITIONS,e.g.prescribed1displacementsetc. FINITEELEMENTSOLUTIONCHOICEOFELEMENTSANDSOLUTIONPROCEDURESYIELDS: GOVERNINGDIFFERENTIALEQUATIONSOFMOTIONe.g. ..!..(EA.!!!)=-p(x)axaxYIELDS: APPROXIMATERESPONSESOLUTIONOFMECHANICALIDEALIZATIONFig.4.23.FiniteElementSolutionProcess4·14
GeneralizedcoordinatefiniteelementmodelsSECTIONERRORERROROCCURRENCEINdiscussingerrorDISCRETIZATIONuseoffiniteelement4.2.5interpolationsNUMERICALevaluationoffinite5.8.1INTEGRATIONelementmatricesusing6.5.3INSPACEnumericalintegrationEVALUATIONOFuseofnonlinearmaterial6.4.2CONSTITUTIVEmodelsRELATIONSSOLUTIONOFdirecttimeintegration,9.2DYNAMICEQUILI-.modesuperposition9.4BRIUMEQUATIONSSOLUTIONOFGauss-Seidel,Newton-8.4FINITEELEr1ENTRaphson,Quasi-Newton8.6EQUATIONSBYmethods,eigenso1utions9.5ITERATION10.4ROUND-OFFsetting-upequationsand8.5theirsolutionTable4.4FiniteElementSolutionErrors4·15
GeneralizedcoordinatefiniteelementmodelsCONVERGENCEAssumeacompatibleelementlayoutisused, thenwehavemonotonicconvergencetothesolutionoftheproblemgoverningdifferentialequation, providedtheelementscontain: 1)allrequiredrigidbodymodes2)allrequiredconstantstrainstates~compatibleLWlayoutCDincompatiblelayout~ t:=no.ofelementsIfanincompatibleelementlayoutisused,theninadditioneverypatchofelementsmustbeabletorepresenttheconstantstrainstates.Thenwehaveconvergencebutnon-monotonicconvergence. 4·16
Geuralizedcoordinatefinitee1eJDeDtmodels7" /"'r->,; / ( ""1----- ,I IIII IIiI (a)Rigidbodymodesofaplanestresselement......~_QIIII(b)AnalysistoillustratetherigidbodymodeconditionRigidbodytranslationandrotation; elementmustbestressfree. Fig.4.24.Useofplanestresselementinanalysisofcantilever4·17
Generalizedcoordinatefiliteelellent.adels------- RigidbodymodeA2=0Poisson'sratio"0.30Young'sr------, modulus=1.0II 10-l II I II _1RigidbodymodeAl=0ItIII 01I II •I1. ...--,.".-~--      .J--- ('  ---   ,........... _-I--IIIIIIfRigidbodymodeA3=0.....I'JFlexuralmodeA4=0.57692Fig.4.25(a)Eigenvectorsandeigenvaluesoffour-nodeplanestresselement~- ......"   ...~-, ........~      .----"'"="""- --~ I'- FlexuralmodeAs=0.57692ShearmodeA.=0.76923r--------1IIIIIII: IIIIIIL.J,-----, IIIIIIIIIIIIIIIIIStretchingmodeA7=0.76923UniformextensionmodeAs=1.92308Fig.4.25(b)Eigenvectorsandeigenvaluesoffour-nodeplanestresselement4·18
(0®G) ®®-.® /@) @@ GeneralizedcoordiDatefiniteelementlDodels ·11~17'c. IT,I>~.f: 20ISa)compatibleelementmesh;2constantstressa=1000N/cmineachelement.YYb)incompatibleelementmesh; node17belongstoelement4, nodes19and20belongtoelement5,andnode18belongstoelement6. Fig.4.30(a)Effectofdisplacementincompatibilityinstressprediction0yystresspredictedbytheincompatibleelementmesh: PointOyy(N/m2) A1066B716C359D1303E1303Fig.4.30(b)Effectofdisplacementincompatibilityinstressprediction4·19
IMPLEMENTATIONorMETHODSINCOMPUTERPROGRAMS; EXAMPLESSAP,ADINALECTURE556MINUTES5·1
"pi_entationofmetllodsincomputerprograDlS;examplesSIP,ADlRALECTURE5ImplementationofthefiniteelementmethodThecomputerprogramsSAPandADINADetailsofallocationofnodalpointdegreesoffreedom.calculationofmatrices.theassemblageprocessExampleanalysisofacantileverplateOut- of-coresolutionEff&ctivenodal-pointnumberingFlowchartoftotalsolutionprocessIntroductiontodifferenteffectivefiniteelementsusedinone.two.three-dimensional.beam. plateandshellanalysesTEXTBOOK:AppendixA,Sections:1.3.8.2.3Examples:A.I.A.2.A.3.A.4.ExampleProgramSTAP5·2
l_pIg_talioaof_ethodsinCODIpDterprogram;mDlplesSAP,ADINAN=no.ofd.o.f. oftotalstructureTK(m)=1.B(m)C(m)B(m)dV(m) -V(m)--- R(m)=1.H(m)TfB(m)dV(m) -Bv(m)-- H(m)B(m)-- kxN.hNIMPLEMENTATIONOFTHEFINITEELEMENTMETHODWederivedtheequilibriumequationswhereInpractice, wecalculatecompactedelementmatrices. K=~K(m);R=~R(m) -m--Bm!..!B~,~B'nxnnxln=no.ofelementd.o.f. tl~ kxnR,xnThestressanalysisprocesscanbeunderstoodtoconsistofessentiallythreephases: 1.CalculationofstructurematricesK,M,C,andR,whicheverareapplicable. 2.Solutionofequilibriumequations. 3.Evaluationofelementstresses. 5·3
IDlpl_81taliolofDlethodsintoDlpulerprogrw;mDlplesSAP,ADIlIThecalculationofthestructurematricesisperformedasfollows: 1.Thenodalpointandelementinformationarereadand/ orgenerated. 2.Theelementstiffnessmatrices, massanddampingmatrices,andequivalentnodalloadsarecalculated. 3.ThestructurematricesK,M, C,andR,whicheverareapplicable,areassembled. lSz::6tW::3Zx/U::1/Sx::4r-----yV::2Sy::5Fig.A.1.Possibledegreesoffreedomatanodalpoint. I-nodalpoint_.-... -....iID(I,J)= Degreeoffreedom5·4
....taIiOiofIIeIWsincoaplerP....UUlplesSIP,ABilATemperatureattopfaceal00"CaOem<D® E=l(Jl1N/cm22E=2xl(Jl1NIcm2t.,-0.15t"=0.2084_17-7~TemperatureatDegreeofbottomface=70'Cfreedomnumberat659t~l1@4ElementE.2xl(Jl1Nlem2numberE·lOSN/em2t4II'"0.20t10.,-0.153825__-9NodeFig.A.2.Finiteelementcantileveridealization. 1nthiscasethe10arrayisgivenby11100000011100000010=1111111111111111111111111111111111]15·5
0.040.080.0] 0.00.00.0] 70.085.0100.0] IJDpleDIeDtatiODofmethodsinCODIpater.programs;examplesSAP,ADIIAandthen00013579110002468101210=000000000000000000000000000000000000AlsoXT=[0.00.00.060.060.060.0120.0120.0120.0] TY=[0.040.080.00.040.080.0TZ=[0.00.00.00.00.00.0TT=[70.085.0100.070.085.0100.05·6
Implementationofmethodsincomputerprograms;examplesSAP,ADINAFortheelementswehaveElement1:nodenumbers:5,2,1,4; materialpropertyset:1Element2:nodenumbers:6325·I,,, materialpropertyset:1Element3:nodenumbers:8547·,,,, materialpropertyset:2Element4:nodenumbers:9658-,,,, materialpropertyset:2CORRESPONDINGCOLUMNANDROWNUMBERSForcompactedImatrix12345678For!1..,4000012oJLMT=[34000012] 5·7
Implementationofmethodsincomputerprograms;examplesSAP,ADINASimilarly,wecanobtaintheLMarraysthatcorrespondtotheelements2,3,and4.Wehaveforelement2, LMT=[56000034] forelement3, LMT=[910341278] andforelement4, LMT=[11125634910] JSkYline.~000"o000"------m=3ok36'006'- k45k460"0(a)ActualstiffnessmatrixksskS6k6612461012161822A(21)storeskS8Fig.A.3.Storageschemeusedforatypicalstiffnessmatrix. A(17) A(16) A(15tA(14) A(13) A(12) A(91A(8) A(7) A(6)A(lllA(lO) Symmetric(b)ArrayAstoringelementsofK. A(l)A(3) A(2)A(S) A(4) ,.mK=3·1"kllk120k14knk230k33k34K= k44A= 5·8
_pl••taiioooflDeIJaodsinCOIDpaterprograJDS;eDIIIplesSAP,ADINAx=NONZEROELEMENT0=ZEROELEMENT.--,COLUMNHEIGHTSIIIX00010010o000:00:0xixx0100xXIX001000XIX00X00X0X1000IxxlxXIOxixXiXSYMMETRICIXXlXXIXIXELEMENTSINORIGINALSTIFFNESSMATRIXFig.10.Typicalelementpatterninastiffnessmatrixusingblockstorage. BLOCK1BLOCK2~---~ IX0X0XIXXiXXiXIX~_BLOCK4ELEMENTSINDECOMPOSEDSTIFFNESSMATRIXFig.10.Typicalelementpatterninastiffnessmatrixusingblockstorage. 5·9
IIIlpl••tationofmethodsincomputerprograms;examplesSAP,ABilA203~1234567891011121,141516171819~21222324252627282930313233322283033(b)Goodnodalpointnumbering, mk+1=16. Fig.A.4.Badandgoodnodalpointnumberingforfiniteelementassemblage. (a)Badnodalpointnumbering, mk+1=46.911141619212426293164512712172227~, ,3810131518202355·10
"pI••tationofIlethodsincOIlpulerprogram;exallplesSAP,ADINASTARTREADNEXTDATACASEReadnodalpointdata(coordinates,boundaryconditions)andestablishequationnumbersinthe10array. Calculateandstoreloadvectonforallloadcases. Read.generate.andstoreelementdata.Loopoverallelementgroups. Readelementgroupdata,andassembleglobalstructurestiffnessmatrix.Loopoverallelementgroups. Calculate.b..Q..!:.Tfactorizationofglobalstiffnessmatrix(·) FOREACHLOADCASEReadloadvectorandcalculatenodalpointdisplacements.~---1Readelementgroupdataandcalculateelementstresses. Loopoverallelementgroups. ENDFig.A.5.FlowchartofprogramSTAP.*SeeSection8.2.2.5-11
Implementationofmethodsincomputerprograms;examplesSAP,ADINAzONE-DIMENSIONALELEMENTI-'-------4!RINGELEMENTx;--.-------------...yFig.12.Trusselementp.A.42.5-12z23Fig.13.Two-dimensionalplanestress,planestrainandaxisymmetricelements. p..A.43. y
yImplementationofmetbodsincomputerprograms;examplesSAP,ADINA2---5x~------Fig.14.Three-dimensionalsolid-------....~ andthickshellelementp.A.44. zyFig.15.Three-dimensionalbeamelementpA.45.5·13
Implementationofmethodsincomputerprograms;examplesSAP,ADINA3-16NODESTRANSITIONELEMENT• • ----.__e_ ---L~-----• yxFig.16.Thinshellelement(variable-number-nodes) p.A.46.5·14
FOBMULATIONANDCALCULATIONOFISOPABAMETBICMODELSLECTURE657MINUTES6·1
FOl'DlolationandcalculationofisoparmetricmodelsLECTURE6FormulationandcalculationofisoparametriccontinuumelementsTruss.plane-stress.plane-strain.axisymmetricandthree-dimensionalelementsVariable-number-nodeselements.curvedelementsDerivationofinterpolations. displacementandstraininterpolationmatrices.theJacobiantransformationVariousexamples:shiftingofinternalnodestoachievestresssingularitiesforfracturemechanicsanalysisTEXTBOOK: Sections:5.1.5.2.5.3.1.5.3.3.5.5.1Examples:5.1.5.2.5.3.5.4.5.5.5.6.5.7.5.8.5.9.5.10.5.11,5.12.5.13.5.14.5.15.5.16.5.176·2
FOI'DlDlatiOludcalculationofisopariUHbicmodelsFORMULATIONANDCALCULATIONOFISOPARAMETRICFINITEELEMENTSinterpolationmatricesandel ementmatrices-Weconsideredearlier(lecture4)generalizedcoordinatefiniteelementmodels-WenowwanttodiscussamoregeneralapproachtoderivingtherequiredisoparametricelementslsoparametricElementsBasicConcept:(ContinuumElements) InterpolateGeometryNx=Li=lh.x.; IINy=Li=1h.y.; IINz=Li=lh.z. IIInterpolateDisplacementsNu=1: i=1h.u. IINv=Li==1h.v. IINw=Li=1h.w. IIN=numberofnodes&·3
Formulationandcalculationofisoparametricmodels1/0ElementTruss2/0ElementsPlanestressContinuumPlanestrainElementsAxisymmetricAnalysis3/0ElementsThree-dimensionalThickShell(a)Trussandcableelements(b)Two-dimensionalelementsFig.5.2.Sometypicalcontinuumelements6·4
FOI'IlalationandcalcalatioD01isoparametricmodels(c)Three-dimensionalelementsFig.5.2.SometypicalcontinuumelementsConsiderspecialgeometriesfirst: ~~==-=l======~I=-==r======r==~1Truss,2unitslong6·5
F..utioaandcalculationofisoparalDebiclDodelsSIll( 11~J~ll(- 11- r1-DElement2Nodes: 2/Delement,2x2unitsSimilarly3/Delement2x2x2units(r-s-taxes) -11.0~~-+-.._h1=%(1+r) 2-r1-r
Formulationudcalculation01isoparUletriclIodeis1.0----...-e_----......:::::...::::=---..:...::-:::;.h2=Y.z(1-r)-Y.z(1-r2) 2312-0Element4Nodes: 3Similarlyh2=%(1-r)(1+5) h3=%(1-r)(1-5) h4=%(1+r)(1-s) /-r-r----+~~-rh1=~(1+r)(1+5) 46-7
Formulationandcalculationofisoparametricmodels6·833ConstructionofSnodeelement(2dimensional) firstobtainhS: ....--+-+--+~_.....1-+--+-I--I--I---I--------I--.._rThenobtainh1andh2: tfF--.-~-_-_-~-r~~_------..1L...4.!1.01h1=%(1+r)(1+s) -%hSSim.h2=%(1-r)(1+s) -%hS4
Formulationandcalculationofisoparametricmodelsr=+1y63  r=-1 ---;q-----   r=0s=o---.. 8rx(a)Fourto9variable-number-nodestwo-dimensionalelementFig.5.5.Interpolationfunctionsoffourtoninevariable-number-nodestwo-dimensionalelement. -~hs·1·.-~hs-~hs-;h6...-~h6-~h7Includeonlyifnodeiisdefinedh,=~(l+r)(l+s) h2=~(l-r)(l+s) h3=~(l-r)(1-s) h.=~(1+r)(l-s) hs=~(1-r2)(1+s) 'h6=~(1-S2)(1-r) h7=~(1-r2)(1-s) hs=i(1-s2)(1+r) h~::(1-r"")(1-S'") i=5i=6i=7i=8I::r-~her-~h<j-ihq-~hq-ihq-1h<j-th" -th<f(b)InterpolationfunctionsFig.5.5.Interpolationfunctionsoffourtoninevariable-number-nodestwo-dimensionalelement: 6·9
FonnulationandcalculationofisoparametricmodelsHavingobtainedthehiwecanconstructthematricesHand!!: -TheelementsofHarethe·h· -I(orzero) -TheelementsofBarethederivativesofthehi(orzero), Becauseforthe2x2x2elements~wecanuse1:;'=~ x==ry==sz==tEXAMPLE4node2dim.element6·10
Formulationandcalculationofisoparametricmodelsah10ah40araru1[ Erlah1ah4v100ESSasasu2Yrsah1ah13h4ah4asat'asarv4..Iv- BWenoteagainr==xs=yGENERALELEMENTSY,vsr=+1s=+1r---t---4_r• 6·11
FormulationandcalculationofisoparametricmodelsDisplacementandgeometryinter- polationasbefore,but[:]=[:::]l~]Aside:asasasaycannotuseoraaar---ax+...axaraa-=Jax(ingeneral)ar- a_J-1a(5.25)a-x-arUsing(5.25)wecanfindthematrix.!!.ofgeneralelementsThe!:!andJ!matricesareafunctionofr,s,t;fortheintegrationthususedv=detJdrdsdt6·12
FOI'Dlalationudcalculationofisoparmebic.odelsFig.5.9.Sometwo-dimensionalelementsElement1z.._----+----......-"·r+-3,'4- """1--1-----------t..~16em. XElement22. ... J= +--_1<'0'II=> 1+3.....-------.....; cDG-W o112132&-13
FormulationandcalculationofisoparametricmodelsElement3c.1V (1+5)] (3+r) 2cl"l12. I• -+---~~--,c:'3,.~'t'.....,.. .I. ...L...3-"' 1------14--, 1c.W'I3r=-INaturalspace3 •I I,-.-I'L/4ActualphysicalspaceFig.5.23.Quarter-pointonedimensionalelement. 6·14
FormulationandcalculationofisoparametricmodelsHerewehave3x=L: i=1henceL2h.x.9x=-4(1+r) 11J=[!:..+!'-LJ-22andorSincer=2.Jf-1Wenote1singularityatX=0! /x6·15
FormulationandcalculationofisoparaDlebicDlodelsNumericalIntegrationGaussIntegrationNewton-CotesFormulasK='"a··kF··k-!:JIJ-IJI,J,kxx6·16
FORMULATIONOFSTRUCTURALELEMENTSLECTURE752MINUTES7·1
FormulationofstructuralelementsLECTURE7FormulationandcalculationofisoparametricstructuralelementsBeam,plateandshellelementsFormulationusingMindlinplatetheoryandunifiedgeneJ," alcontinuumformulationAssumptionsusedincludingsheardeformationsDemonstrativeexamples:two-dimensionalbeam, plateelementsDiscussionofgeneralvariable-number-nodeselementsTransitionelementsbetweenstructuralandcontinuumelementsLow- versushigh-orderelementsTEXTBOOK:Sections:5.4.1,5.4.2,5.5.2,5.6.1Examples:5.20,5.21,5.22,5.23,5.24,5.25,5.26,5.277·2
FORMULATIONOFSTRUCTURALELEMENTS•beam,plateandshellelements•isoparametricapproachforinterpolationsContinuumApproachFOI'IIDlati....slnclDraie1U11DIsStrengthofMaterialsApproach•straightbeamelementsusebeamtheoryincludingsheareffects•plateelementsuseplatetheoryincludingsheareffects(ReissnerIMindlin) "particlesremainonastraightlineduringdeformation" Usethegeneralprincipleofvirtlialdisplacements,but--excludethestresscomponentsnotapplicable--usekinematicconstraintsforparticlesonsectionsoriginallvnormaltothemidsurfacee. g. beame.g. shell7·3
Formulationofstructuralelements.. xNeutralaxisBeamsectionBoundaryconditionsbetweenbeamelementsDeformationofcross-sectionwi=wi;-0+0xxdw_dwdx-0-dx+0xxa)BeamdeformationsexcludingsheareffectFig.5.29.BeamdeformationmechanismsNeutralaxisBeamsectionDeformationofcross-sectionWI-Wix-Ox+OBoundaryconditionsbetweenbeamelements./ b)BeamdeformationsincludingsheareffectFig.5.29.Beamdeformationmechanisms7·4
FormulationofstructuralelementsWeusedwS=--ydx(5.48) (5.49) _(LJpwdxoL-LmSdxo(5.50) L+GAkJ(~~-S)o(~~-S)dxoL-ipoWdxoL-imoSdx=0o(5.51) 7·5
Formulationofstructuralelements(a)BeamwithappliedloadingE=Young'smodulus,G=shearmodulus3k=§..A=abI=ab6',12Fig.5.30.Formulationoftwodimensionalbeamelement( b)Two,three-andfour-nodemodels; 0i={3i'i=1,...,q(InterpolationfunctionsaregiveninFig.5.4) Fig.5.30.Formulationoftwodimensionalbeamelement7 ·6
FormulationofstructuralelementsTheinterpolationsarenowqW=~h.w.L..J11i=, qB=~h.e.L..J11i=, (5.52) w=HU'B=HU1-/-'.:...:.s- dW=BU'~=BUdX1-/-'dX~- WhereTQ.=[w,Wq8,8qJ~=[h,hq0OJ~=[00h,hqJ(5.53) (5.54) and!!w=J-1[:~l...:>0...0] __,f,dh,dhq] ~-JLO...adr'...ar(5.55) 7·7
FormulationofstructuralelementsSothatK=E1f1T~~detJdr-1and+GAkt-1T(~-tla)(~-~)detJdr(5.56) R=f~pdetJdr-1+/~mdetJdr(5.57) -1Consideringtheorderofinterpolationsrequired, westudyGAk(5.60) ex.=ITHence-useparabolic(orhigher-order) elements.discreteKirchhofftheory-reducednumericalintegration7-8
FormulationofstructuralelementsFig.5.33.Three-dimensionalmoregeneralbeamelementHereweuse(5.61) qQ,z(r,s,t)=Lk=lq+~'bhQ,Vk2L.-kksxk=lqqQ,y(r,s,t)=LhkQ,Yk+iLakhkQ,V~yk=lk=lq+~'"bhQ,Vk2LJkksyk=lqhkQ,Zk+iLakhkQ,V~Zk=lq+~2'"bh£VkLJkkszk=l7·9
FormulationofstructuralelementsSothat10u(r,s,t)=x-xv(r,s,t)=ly_0y(5.62) 10w(r,s,t)=z-zqv(r,s,t)=L: k=landqtqku(r,s,t)=L:hkuk+"2L:akhkVtxk=lk=lq+t.EbkhkV~xk=ltqhkvk+2Lk=lq+tL: k=lqw(r,s,t)=L: k=l(5.63) 7·10
FormulationofstructuralelementsFinally,weexpressthevectorsV~ andV~intermsofrotationsabouttheCartesianaxesx,y,z, kakv=ex'is...:..s~ whereekxe=ek~yekz(5.65) (5.66) Wecannowfind£nnqYni;=~!4~(5.67) k=lYnl;; whereuT=[Ukvkwkekekek](5.68)~xyzandthenalsohaveTnnEaa£nnTn~=aGkaYn~ TnI';;0aGkYnl;; (5.77) 7-11
Formulationofstructuralelementsandw=w(x,y) ....------ (5.78) HenceFig.5.36.DeformationmechanismsinanalysisofplateincludingsheardeformationsEXXdl dXdSEyy=z_-.1.(5.79)dyYxydSX_dSydydXdWSyYyzdy- =(5.80) dWYzx-+SdXx7·12
FormulationofstructuralelementsandLXX1vaLyy=z_E_v1a2l-vaal-vLxy2(5.81) awLyzay-ByE(5.82)=2(1+v) LZXaw+BaxxThetotalpotentialfortheelementis: 1II=- 2LxydzdA+~ 2ffh/yyZYzx]~yzJdxdAA-h/2~zx-fwPdAA(5.83) 7·13
FormulationofstructuralelementsorperformingtheintegrationthroughthethicknessIT=tiT.<q,.<dA+t//f,;ydAAA-I:PdA(5.84) AwhereK= as_.-J.- ayasx_~ ayax;y= aw+saxx(5.86) 1v0Eh310C=.v~12(l-v2)1-v0027·14[ 1Ehkf.s=2{1+v)0(5.87)
FormulationofstructuralelementsUsingtheconditionc5TI=0weobtaintheprincipleofvirtualdisplacementsfortheplateelement. -fwpdA=0A(5.88) Weusetheinterpolationsqw=~h.w.LJ11i=lqS=~h.eiyLJ1xi=landqx=~h.x.LJ11i=l(5.89) qY=~h.y.LJ11;=17·15
FormulationofstructuralelementssMid-surfacer....-~-----t~ Fig.5.38.9-nodeshellelementForshellelementsweproceedasintheformulationofthegeneralbeamelements, (5.90) 7·16
FormulationofstructuralelementsTherefore, whereToexpressY~intermsofrotationsatthenodal-pointkwedefine(5.91) (5.92) °V1k=(exOvk)/Iex°Vkl(5.93a)--y-n-y-nthenVk°Vk°VkS..:...n=-~O',k+-1k(5.94) 7·17
Finally,weneedtorecognizetheuseofthefollowingstress-strainlawl=~h~(5.100) 1vaaaa1aaaaJlaaaT(1_~2)!2sh~h=~h1-vaa-2- 1-va-2- symmetric1-v2(5.101) 16·nodeparentelementwithcubicinterpolationI-2-I5•• 2•• Somederivedelements: 64£>-[> 000o'.'. Variable-number-nodesshellelement7·18
Formnlalionofstructuralelementsa)Shellintersections• b)SolidtoshellintersectionFig.5.39.Useofshelltransitionelements7·19
NUMERICALINTEGRATIONS, MODELINGCONSIDERATIONSLECTURE847MINUTES8·1
Numericalintegrations,modelingconsiderationsLECTURE8EvaluationofisoparametricelementmatricesNumercialintegrations.Gauss.Newton-CotesformulasBasicconceptsusedandactualnumericaloperationsperformedPracticalconsiderationsRequiredorderofintegration. simpleexamplesCalculationofstressesRecommendedelementsandintegrationordersforone-,two-.three-dimensionalanalysis.andplateandshellstructuresModelingconsiderationsusingtheelements. TEXTBOOK:Sections:5.7.1.5.7.2.5.7.3.5.7.4.5.8.1.5.8.2.5.8.3Examples:5.28.5.29.5.30.5.31.5.32.5.33.5.34.5.35.5.36.5.37.5.38.5.398·2
Numericalintegrations.modelingconsiderationsNUMERICALINTEGRATION. SOMEMODELINGCONSIDERATIONS•Newton-Cotesformulas•Gaussintegration•Practicalconsiderations•ChoiceofelementsWehadK=fBTCBdV(4.29) -V--- M=JpHTHdV(4.30) -V-- R=fHTfBdV(4.31) ~V-- TR=fHSfSdS(4.32)-sS-- Rr=f~T!.rdV(4..33) V8·3
Numericalintegrations,modelingconsiderationsInisoparametricfiniteelementanalysiswehave: -thedisplacementinterpolationmatrixt:!(r,s,t) -thestrain-displacementinterpolationmatrix~(r,s,t) Wherer,s,tvaryfrom-1to+1. Henceweneedtouse: dV=det.4drdsdtHence,wenowhave,forexampleintwo-dimensionalanalysis: +1+1!$=ff~T~~detAdrds-1-1+1+1M=ffptlTttdetJdrds-1-1etc... 8·4
Numericalintegrations,modelingconsiderationsTheevaluationoftheintegralsiscarriedouteffectivelyusingnumericalintegration,e.g.: K=L~a.·.F..-.4JlJ-lJ1Jwherea... IJF··-IJi,jdenotetheintegrationpoints=weightcoefficients=B··TCB··detJ··-IJ--IJ~J-r-r=±O.5775=±O.577r=±O.7755=±0.775r=05=0,  2x2-pointintegration8·5
Numericalintegrations.modelingcoDSideratiODSzL.-----.~Y3x3-pointintegrationConsiderone-dimensionalintegrationandtheconceptofaninterpolatingpolynomial. 1storderinterpolating---"'--polynomialinx. .-8a II a+b-2- xb
Numericalintegrations,modelingconsiderationsIactualfunctionF2ndorderinterpolating~~~~polynomialinx. aa+b2betc.... InNewton-Cotesintegrationweusesamplingpointsatequaldistances, andbn{F(r)dr=(b-a)~C.nF.+RJLJ11na;=0(5.123) n=numberofintervalsCin=Newton-Cotesconstantsinterpolatingpolynomialisofordern. 8·7
Numericalintegrations,modelingconsiderationsUpperBoundonErrorR.asNumberofaFunctionofIntervalsnqqCncnqC·CntheDerivativeofF23561110-I(b-a}lF"(r)"2T214110-3(b-a)5PV(r)6"6"6" 313311O-3(b-a)5F'V(r)"8"8"8"847321232710-6(b-a)7FVI(r)9090909090519755050751910-6(b-a)7Fv'(r)288288US288ill288641216272722721641lO-'(b-a)'FVIU(r)840840840840840840840Table5.1.Newton-Cotesnumbersanderrorestimates. InGaussnumericalintegrationweusebfF(r)dr"U1F(r1)+u2F(r2)+••. a+0.F(r)+Rnnn(5.124) whereboththeweightsa1•...•anandthesamplingpointsr1•...•~ arevariables. Theinterp(llatingpolynomialisnowoforder2n-1.8·8
Numericalintegrations,modelingconsiderationsnrj/X, 1O.(I5zeros)2.(I5zeros) 2±0.5773502691896261.0ססoo0ססoo0ססoo3±0.7745966692414830.5555555555555560.0ססoo0ססoo0ססoo0.8888888888888894±0.8611363115940530.347854845137454±0.3399810435848560.6521451548625465±0.9061798459386640.236926885056189±0.5384693101056830.4786286704993660.0ססoo0ססoo0ססoo0.5688888888888896±0.9324695142031520.171324492379170±0.6612093864662650.360761573048139±0.2386191860831970.467913934572691Table5.2.SamplingpointsandweightsinGauss-Legendrenumeri- calintegration. Nowlet, ribeasamplingpointandelibethecorrespondingweightfortheinterval-1to+1. Thentheactualsamplingpointandweightfortheintervalatobarea+b+b-ar.andb-ael. -2-212IandtheriandelicanbetabulatedasinTable5.2.8·9
Numericalintegrations,modelingconsiderationsIntwo-andthree-dimensionalanalysisweuse+1+1ffF(r,s)drds=I:"1-1-11or+1fF(ri's)ds-1(5.131) +1+1ffF(r,s)drds=I:,,;,,/(ri'sj) -1-1i,j(5.132) andcorrespondingto(5.113), a·IJ•=a.a.,wherea.anda. IJIJaretheintegrationweightsforone-dimensionalintegration. Similarly, +1+1+1ff1F(r,s,t}drdsdt-1-1-1=~a.·a.·a.kF(r.,s.,tk)LJ1J1Ji,j,k(5.133) anda··k=a.Q.Qk.IJIJ8·10
Numericalintegrations,modelingconsiderationsPracticaluseofnumericalintegration.Theintegrationorderrequiredtoevaluateaspecificelementmatrixexactlycanbeevaluatedbystudyingthefunctionftobeintegrated. •Inpractice,theintegrationisfrequentlynotperformedexactly, butthe·integrationordermustbehighenough. Consideringtheevaluationoftheelementmatrices,wenotethefollowingrequirements: a)stiffnessmatrixevaluation: (1)theelementmatrixdoesnotcontainanyspuriouszeroenergymodes(i.e.,therankoftheelementstiffnessmatrixisnotsmallerthanevaluatedexactly);and(2)theelementcontainstherequiredconstantstrainstates. b)massmatrixevaluation: thetotalelementmassmustbeincluded. c)forcevectorevaluations: thetotalloadsmustbeincluded. 8·11
Numericalintegrations,modelingconsiderationsDemonstrativeexample2x2Gaussintegration"absurd"results3x3GaussintegrationcorrectresultsFig.5.46.8-nodeplanestresselementsupportedatBbyaspring. Stresscalculations(5.136) •stressescanbecalculatedatanypointoftheelement. •stressesare,ingeneral,discontinuousacrosselementboundaries. 8-12
Numericalintegrations.modelingconsiderationsthickness=1cmA-p3xl0721~[E=N/cm<3>e.CD)=0.3I1>p300N=c· :.....,--of3c.m.3Coft'1. A8... '100N!Crrt'l. / (a)Cantileversubjectedtobendingmomentandfiniteelementsolutions. Fig.5.47.Predictedlongitudinalstressdistributionsinanalysisofcantilever. =a. 8·13
NumericalintegratiODS.modelingcoDSideratioDS'?,A, ~@B<D4l, ,C. I,s_a~"? v=0.3P=lOON"" 8&<DCo174+/lA/e-t'- CoAA ®B8<DCoc~I".00"'Ie-." (b)Cantileversubjectedtotip-shearforceandfiniteelementsolutionsFig.5.47.Predictedlongitudinalstressdistributionsinanalysisofcantilever. SomemodelingconsiderationsWeneed•aqualitativeknowledgeoftheresponsetobepredicted•athoroughknowledgeoftheprinciplesofmechanicsandthefiniteelementproceduresavailable•parabolic/undistortedelementsusuallymosteffective8-14
Numericalintegrations,modelingconsiderationsTable5.6Elementsusuallyeffectiveinanalysis. TYPEOFPROBLEMTRUSSORCABLETWO-DIMENSIONALPLANESTRESSPLANESTRAINAXISYMMETRICTHREE-DIMENSIONALELEMENT2-node8-nodeor9-node20-node DD 3-DBEAM-=~ 3-nodeor4-node-/..... PLATESHELL9-node9-nodeor16-nodeL7~~ 8·15
Numericalintegrations,modelingconsiderations4/'1odeIelEJmerrt1SnodegI'oole..~kl'7ll'"t~ e1er1l(1'It.iJII a)4-nodeto8-nodeelementtransitionregion84-Ioc:(e4nodeele,"~"t. eIemtnt"" A4-nodeel....~I"tc119BU.sVAA'Ve-llA~ CU, ConstraintuA=(uC+uB)/2equations: vA=(vC+vB)/2b)4-nodeto4-nodeelementtransition/. ! c)8-nodetofiner8-nodeelementlayouttransitionregionFig.5.49.Sometransitionswithcompatibleelementlayouts8·16
SOLUTIONOFFINITEELEMENTEQUILIBRIUMEQUATIONSINSTATICANALYSISLECTURE960MINUTES9·1
SolutionofIiDilee1eDleulequilihrilllequationsiuslaticaaalysisLECTURE9SolutionoffiniteelementequationsinstaticanalysisBasicGausseliminationStaticcondensationSubstructuringMulti-levelsubstructuringFrontalsolutiontl>tT-factorization(columnreductionscheme) asusedinSAPandADINACholeskyfactorizationOut-of-coresolutionoflargesystemsDemonstrationofbasictechniquesusingsimpleexamplesPhysicalinterpretationofthebasicoperationsusedTEXTBOOK:Sections:8.1.8.2.1.8.2.2.8.2.3.8.2.4. Examples:8.1.8.2.8.3.8.4.8.5.8.6.8.7.8.8.8.9.8.109·2
SoJutiODoffililee1emenlequilihrillDequationsinslaticanalysisSOLUTIONOFEQUILIBRIUMEQUATIONSINSTATICANALYSIS•Iterativemethods, e.g.Gauss-8eidel•DireetmethodsthesearebasicallyvariationsofGausselimination-staticcondensation-substructuring-frontalsolution-.LQ..bTfactorization-Choleskydecomposition-Crout-columnreduction(skyline)solverTHEBASICGAUSSELIMINATIONPROCEDUREConsidertheGausseliminationsolutionof5-4,0U,0-46-4,U2, =(8.2),-46-4U300,-45U409·3
SolationoffiniteelementeqailihriUlequationsinstaticanalysisSTEP1:Subtractamultipleofequation1fromequations2and3toobtainzeroelementsinthefirstcolumnofK. r------------ oll!16I5-5 II oI_~29:55Io:-45-41o1-45(8.3) 5-4oo9·4ooo14165-5r-------- 0:~_20I77I0:_2065I714I=(8.4)
SolationoffiniteelementeqailillriUlequationsinstaticanalysisSTEP3: 5-410U10014161U21S-s1520.-8(8.5) 007-TU3"7r--- 7000I5U4I"6"6II Nowsolvefortheunknownsu4, U3'U2andU,: 12=5(8.6) 1-(-156)U3-(1)U4_13U=--------:;-;;-----214-S519367o-(-4)35-(1)15-(0)"5_8U=----~----15-"59·5
SolutionoffiniteelementeqDilihriDlDequationsinslaticanalysisSTATICCONDENSATIONPartitionmatricesinto[~a~-ac][!!a][Ba] .!Sea~-ec!!c=BeHenceand(8.28) (-1)-1~a-~ilC.!Sec.!Sea!!a=Ba-~c.!Sec~---------KaaExampleteer:~ aIU105I-410I---+------------ -46-41U21= 1-46-4U3001-45U40~c'---y----' ~aHence(8.30)gives~-,-- 6-4-4[1/5][-41Kaa=-46-411-450'---1....- 9·8sothat141615-5K=1629-4-a.a-550]1-45~- andwehaveobtainedthe3x3unreducedmatrixin(8.3)
SoIltiOloffiniteelemelteqlilihrilDlequationsinstaticaualysis5-40VI:1-46-4U21-46-4U3:101-45U414-!§U2"55-!§29-4U305-5-45V40Fig.8.1PhysicalsystemsconsideredintheGausseliminationsolutionofthesimplysupportedbeam. 9-7
SolutiouoffiniteelementeqDilihriomequationsinstaticanalysisSUBSTRUCTURING•Weusestaticcondensationontheinternaldegreesoffreedomofasubstructure•theresultisanewstiffnessmatrixofthesubstructureinvolvingboundarydegreesoffreedomonly-?-? -~-o--oe--c>---nl-650x50Example......--.-L32x32Fig.8.3.Trusselementwithlinearlyvaryingarea. Wehavefortheelement. 9·8[ 17~~-206L3-2048-28
SoIali.oIliDilee1emealeqailihrilDleqaaliODSiastalicaaalysisFirstrearrangetheequationsEA,['76"L3-20StaticcondensationofU2givesEA,Ir76L33][-20]-[lJ[-2025-2848orll.EA,[19L-1and9·9
SolutionoffiDileelemeulequilibrilllequati.inslaticaDalysisMulti-levelSubstructuringI'L'I'L~,L,I.L.1A2A4A,ISA,II16A, ,,'~-&-o=2:E~f'·'n-~-UUr;,U6U7UsUgIU2U3u.RsBarwithlinearlyvaryingarea-II1- U,-u3u2---I•.-U,u3(a)First-levelsubstructure---IIII1- U,-Usu3_II•I1- U,Us(b)Second-levelsubstructure_IIIIIIII1- U,-ugUs.Rr;,-.IIIIIII1- U,ug(c)Third-levelsubstructureandactualstructure. Fig.8.5.Analysisofbarusingsubstructuring. '-10
SolutionoffiDilee1eDleulequilihrioequti.illstaticanalysisFrontalSolutionElementqElementq+1Elementq+2Elementq+3-------- mm+3~IN:" Element1Element44WavefrontWavefrontfornode1fornode2Fig.8.6.Frontalsolutionofplanestressfiniteelementidealization. •Thefrontalsolutionconsistsofsuccessivestaticcondensationofnodaldegreesoffreedom. •Solutionisperformedintheorderoftheelementnumbering. •Samenumberofoperationsareperformedinthefrontalsolutionasintheskylinesolution,iftheelementnumberinginthewavefrontsolutioncorrespondstothenodalpointnumberingintheskylinesolution. 9·11
SolutionoffiniteelementequilibriumequationsinstaticanalysisLDLTFACTORIZATION-isthebasisoftheskylinesolu- tion(columnreductionscheme) -BasicStepL-1K=K--1--1Example: 5-4a5-4a4-46-4a~416555= 1a-46-4a_1629-4-555aaaa-45a-45Wenote44-1-5-5L=1~11-1aa5S- oaaaaa9·12
SolutionoffiniteelementequilibriumequationsinstaticanalysisProceedinginthesameway-1-11.21.1K:=SxxxxxxxxxSx.......xupper:=triangularxxmatrixxxHenceorAlso,because~issymmetricwhere0:=diagona1rnatrixd..:=s.. 11119·13
SolutionoffiniteeleJDentequilihriDIIequationsinstaticanalysisIntheCholeskyfactorization,weusewheret=LD~ SOLUTIONOFEQUATIONSUsing9·14K=L0LTwehaveLV=RoLTU=Vwhere-IV:=L--n-land(8.16) (8.17) (8.18) (8.19) (8.20)
SolutionoffiniteelementequilibrimnequationsinstaticanalysisCOLUMNREDUCTIONSCHEME5-416-416-45~ 4545-5514-414-4-556-46-455~ 541541-55-551481148575-715-415-4TT559·15
Solationoffiniteelementeqailihriameqaati.instaticanalysisX=NONZEROELEMENT0=ZEROELEMENT_~COLUMNHEIGHTSSYMMETRICo0000o0000'-----, X000Xo0000o0x00oX000XXXX0XXXXXXXXXELEMENTSINORIGINALSTIFFNESSMATRIXTypicalelementpatterninastiffnessmatrixSKYLINEo0000o0000L...-_ X000XX000XX0X0XXXX0XXXXXXXXXXXXXXXXELEMENTSINDECOMPOSEDSTIFFNESSMATRIXTypicalelementpatterninastiffnessmatrix9-16
SYMMETRICSolutionoffiniteelementequilibriumequationsinstaticanalysisx=NONZEROELEMENT0=ZEROELEMENTCOLUMNHEIGHTSIII-x000100:0o000:0010xixx0100xXlX001000xIx00x00x0XO00xxixXIOxixxixIxXlXxIxIxELEMENTSINORIGINALSTIFFNESSMATRIXTypicalelementpatterninastiffnessmatrixusingblockstorage. 9·17
SOLUTIONOFFINITEELEMENTEQUILIBRIUMEQUATIONSINDYNAMICANALYSISLECTURE1056MINUTES10·1
Solotionoffinitee1mnenteqoiIihrioequationsindynaDlicanalysisLECTURE10SolutionofdynamicresponsebydirectintegrationBasicconceptsusedExplicitandimplicittechniquesImplementationofmethodsDetaileddiscussionofcentraldifferenceandNewmarkmethodsStabilityandaccuracyconsiderationsIntegrationerrorsModelingofstructuralvibrationandwavepropagationproblemsSelectionofelementandtimestepsizesIRec ommendationsontheuseofthemethodsinpracticeTEXTBOOK:Sections:9.1.9.2.1.9.2.2.9.2.3.9.2.4.9.2.5.9.4.1.9.4.2.9.4.3.9.4.4Examples:9.1.9.2.9.3.9.4.9.5.9.1210·2
SolutionoffiniteelementequilihriDlequationsindyDalDicualysisDIRECTINTEGRATIONSOLUTIONOFEQUILIBRIUMEQUATIONSINDYNAMICANALYSISMU+CU+KU=R------- •explicit,implicitintegration•computationalconsiderations•selectionofsolutiontimestep(b.t) •somemodelingconsiderationsEquilibriumequationsindynamicanalysisMU+CU+KU=R(9.1) or10·3
SolutionoffiniteelelleulequilihrilllequatiolSindynaJDicanalysisLoaddescriptiontimetime-- Fig.1.EvaluationofexternallyappliednodalpointloadvectortRattimet. THECENTRALDIFFERENCEMETHOD(COM) to=_l_(_t-tltu+t+tltU)(9.4) -2tlt-- anexplicitintegrationscheme10·4
SolationoffiniteeleDlenteqailibrimnequationsindynanaicanalysisCombining(9.3)to(9.5)weobtain(-'-M+-'-c)t+~tu=tR_~K__2_M)tu2-2~t----2-- ~t~t-(-'-M_-'-c)t-~tu2-2~t--~t(9.6) wherewenote!t!!=(~!(mT!! =~(l5-(m)tlL)=~t£(m) Computationalconsiderations•tostartthesolution.use(9.7) •inpractice.mostlyusedwithlumpedmassmatrixandlow-orderelements. 10·5
SolutionoffiniteelementequilibriumequationsindynamicanalysisStabilityandAccuracyofCOM-l'Itmustbesmallerthanl'IterTnl'Iter=TI;Tn=smallestnaturalperiodinthesystemhencemethodisconditionallystable_inpractice,useforcontinuumelements, l'It<l'IL-ee=~ forlower-orderelementsL'lL=smallestdistancebetweennodesforhigh-orderelementsl'IL=(smallestdistancebetweennodes)/(rel.stiffnessfactor) •methodusedmainlyforwavepropagationanalysis•numberofoperationsexno.ofelementsandno.oftimesteps10·6
SolutionoffiniteelelDenteqoiIibriDIIeqoatiouindynandcanalysisTHENEWMARKMETHOD(9.28) {9.29Janimplicitintegrationschemesolutionisobtainedusing.Inpractice,weusemostlya.=la,0=~ whichistheconstant-average-accelerationmethod(Newmark'smethod) •methodisunconditionallystable•methodisusedprimarilyforanalysisofstructuraldynamicsproblems•numberofoperations==~nm2+2nmt10·7
SolutionoffiniteelementequilibriDIIequationsindynmicanalysisAccuracyconsiderations•timestep!'1tischosenbasedonaccuracyconsiderationsonly•Considertheequations~1U+KU=RandwhereK¢. --1Using¢"1K¢=0.22::w·~1<p. 1--1whereweobtainnequationsfromwhichtosolveforxi(t)(seelecture11) 10·8..2Tx.+w.x.=~.R111~1-i=l,...,n
Solution01finiteeleDlentequilibriDllequationsindynaDlicanalysisHence,thedirectstep-by-stepsolutionofr~O+KU=Rcorrespondstothedirectstep-bystepsolutionof.. 2x·+w.x·111withi=l,...,nnU=~<I>.x. -~-l1i=1Therefore,tostudytheaccuracyoftheNewmarkmethod,wecanstudythesolutionofthesingledegreeoffreedomequation..2x+wx=rConsiderthecase..2x+wx=ao·ax=0··2x=-w10·9
SolotionoffiniteelementeqoiIihriDlequationsindynandcanalysis19.019.015.0Houbolt15.0method § 11.011.0.. le....5-wE!:...Cle.g7.007.0'"~C/IC0> "iii'"u"85.0'"5.0"0.;:'"'""0Co~ '".~ C/IQ.:! 3.0E3.0c'"'"8.l:! tf:! c'.01~4t€'"1.~l:! '"Q" 1.01.0~PE0.060.100.140.180.060.100.140.18Fig.9.8(a)Percentageperiodelonga-Fig.9.8(b)Percentageperiodelonga- tionsandamplitudedecays.tionsandamplitudedecays. 4t-----r----:--r--r----r-----,...-----,-----, equation..2.2.tx+~wx+wx=S1npstaticresponse2131----+--f-+-+----t-----t-----.,t----'-1...o'0~ "t:JCtIoCJ'ECtIc:: >o123Fig. 9.4.Thedynamicloadfactor10·10
SoIIIi.offilile81••1eqailihrillDeqaaliOlSindJllillicanalysisD:.r•1.05-nYNAMICRESPONSE_..-STATICRESPONSE~=0.05g7T+gir.itz~~.:.::::7'--!2C' ~1-.j.'",fs! ,;1•1!T 8174-._--+---t-"---....__..--t----+-._--+_..-........-..._-.-1'c.oeo.."~fl.'JOn.7~I.00II,.,~. Responseofasingledegreeoffreedomsystem. DLF..0.50-DYNAMICRESPONSE---STATIc.:RESPONSE.f...=3.0w.... ....,-------.//' --~-----=~---':....;-,,---=__==_7'~---_.~~.:.--==---/-/"7--_____...... + g, ::i-+-~--+---+---"..-------t-----+---+I--t-__---+--+1~--+--+I::-:---+----,+1:::---+----,+1::-:---+------::+-'::-:---+-----:<' c.':;:C.25~.I)C:."L:.00:..?~I.SO1.752.002.252.502.753.00TIllEResponseofasingledegreeoffreedomsystem. 10·11
SolutionoffiniteelementequilibriumequationsindynamicanalysisModelingofastructuralvibrationproblem1)Identifythefrequenciescontainedintheloading, usingaFourieranalysisifnecessary. 2)Chooseafiniteelementmeshthataccuratelyrepresentsallfrequenciesuptoaboutfourtimesthehighestfrequencywcontainedintheloading. u3)Performthedirectintegrationanalysis.Thetimestep/':,tforthissolutionshouldequalabout120Tu,whereTu=2n/wu'orbesmallerforstabilityreasons. ModelingofawavepropagationproblemIfweassumethatthewavelengthisLw'thetotaltimeforthewavetotravelpastapointis(9.100) wherecisthewavespeed.Assumingthatntimestepsarenecessarytorepresentthewave,weuse(9.101) andthe"effectivelength"ofafiniteelementshouldbe10·12c/':,t(9.102)
SoIaliOi..filile81••1eqailihriDleqaali_indJUlDicualysisSUMMARYOFSTEP-BY-STEPINTEGRATIONS-INITIALCALCULATIONS--- 1.FormlinearstiffnessmatrixK, massmatrixManddampingmatrix~,whicheverapplicable; Calculatethefollowingconstants: Newmarkmethod:0>0.50,ex.2:.0.25(0.5+0)22aO=,/(aAt) a4=0/ex.-, as=-a3a,=O/(aAt) as=I1t(O/ex.-2)/2ag=I1t('-0) a3=,/(2ex.)-, a7=-a2Centraldifferencemethod: a,='/2I1t...0O·0·· 2.Inltlahze!!.,!!.,!!.; Forcentraldifferencemethodonly,calculateI1tufrominitialconditions:- 3.Formeffectivelinearcoefficientmatrix; inimplicittimeintegration: inexplicittimeintegration: M=a~+a,f. 10·13
Solutionoffiniteelementequilibriumequationsindynamicanalysis4.IndynamicanalysisusingimplicittimeintegrationtriangularizeR:. ---FOREACHSTEP--- (j)Formeffectiveloadvector; inimplicittimeintegration: inexplicittimeintegration: (ii)Solvefordisplacementincrements; inimplicittimeintegration: inexplicittimeintegration: 10·14
SoI.ti.offilileelOl.1equilihriDlequationsindynamicanalysisNewmarkMethod: CentralDifferenceMethod: 10·15
MODESUPERPOSITIONANALYSIS;TIMEBISTORYLECTURE1148MINUTES11·1
ModeslperpClilionanalysis;lilliebistoryLECTURE11SolutionofdynamicresponsebymodesuperpositionThebasicideaofmodesuperpositionDerivationofdecoupledequations SolutionwithandwithoutdampingCaugheyandRayleighdampingCalculationofdampingmatrixforgivendampingratiosSelectionofnumberofmodalcoordinatesErrorsanduseofstaticcorrectionPracticalconsiderationsTEXTBOOK:Sections:9.3.1.9.3.2.9.3.3Examples:9.6.9.7.9.8.9.9.9.10.9.1111·2
Modesuperpositionanalysis;timehistoryModeSuperpositionAnalysisBasicideais: transformdynamicequilibriumequationsintoamoreeffectiveformforsolution, using!L=1:.!(t) nxlnxnnxlP=transformationmatrix!(t)=generalizeddisplacementsUsing!L(t)=1:.!(t) onMU+c0+KU=Rweobtain(9.30) (9.1) ~R(t)+fi(t)+R!(t)~(t) (9.31) whereCfT~f; R=PTR(9.32) 11·3
(9.34) ModesDperJMlilionualysis;tiDlehistoryAneffectivetransformationmatrixfisestablishedusingthedisplacementsolutionsofthefreevibrationequilibriumequationswi thdampingneglected, M0+KU=0Usingweobtainthegeneralizedeigenproblem, (9.36) withtheneigensolutions(w~,p..,), 22(ul2'~),...,(wn'.P.n),and11·4T1==0'<P1"M'""-_.:t:..Ji=ji.,j2<W-n(9.37) (9.38)
Modesuperpositionanalysis;timehistoryDefining(9.39) wecanwriteandhave(9.40) Nowusing!L(t)=!~Jt) ¢TM¢=I(9.41) (9.42) weobtainequilibriumequationsthatcorrespondtothemodalgeneralizeddisplacements!(t)+!T~!!(t)+r;i~(t)=!T!S.(t) (9.43) Theinitialconditionson~(t)areobtainedusing(9.42)andtheM-orthonormalityof¢;i.e., attime0wehave(9.44) 11·5
ModeSUperpClitiODaualysis;tilDebisloryAnalysiswithDampingNeglected(9.45) i.e.,nindividualequationsoftheform2.x.(t)+w.x.(t)=r.(t)1111wherewithTaX'I=lj).MU1-1--t=O•.TO'X'I=-'--cp.MU1-1--t=Oi=',2,...,n(9.46) (9.47) UsingtheDuhamelintegralwehave=-'jtr1·(T)sinw.(t-T)dTw.110(9.48) +a..sinw.t+8.cosw·t1111wherea.iand8iaredeterminedfromtheinitialconditionsin(9.47). Andthen11-& (9.49)
ModesDperp.itionanalysis;timehistory4f----..-----:--..--r----,..----~---_r_---..., equation••2.2.x+E;,wx+WX=S1nPtstaticresponse~=-031-__-+__+--+-+-__+-__-+-+-__--., 02.... 0..... uCtI..... -0CtI0uECtIr::::: >- 023Fig.9.4.ThedynamicloadfactorHenceweuseuP=~¢.x·(t) --~--l1i=1whereuP-UTheerrorcanbemeasuredusing(9.50) 11·7
Modesuperpositionanalysis;timehistoryStaticcorrectionAssumethatweusedpmodestoobtain~p,thenletn~_=LriUl~) i=1HenceTr.=¢.R1-1- ThenandKflUfiRAnalysiswithDampingIncludedRecall,wehave!(t)+!Tf!i(t)+fi!(t)=!T~(t) (9.43) IfthedampingisproportionalT¢.C(po=2w.E;,.cS.. -1---J111Jandwehave(9.51) x.(t)+2w.E;,.x.(t)+w~x.(t)=r1 ·(t) 111111i=l,...,n(9.52) 11·8
Modesuperpositionanalysis;timehistoryAdampingmatrixthatsatisfiestherelationin(9.51)isobtainedusingtheCaugheyseries, (9.56) wherethecoefficientsak'k=,,•••,p, arecalculatedfromthepsimultane- ousequationsAspecialcaseisRayleighdamping, C=a~1+BK----- example: Assume~,=0.02w,=2calculateaandBWeuse(9.55) or'/ a+Bw:-2w.~. --1112w.~. 1111·9
Modesuperpositionanalysis;timehistoryUsingthisrelationforwl'[,1andw2'[,2'weobtaintwoequationsforaand13: a+4ii=0.08a+913=0.60Thesolutionisa=-0.336and13=O.104.ThusthedampingmatrixtobeusedisC=-0.336M+0.104KNotethatsince2a+13w.=2w.[,. 111foranyi,wehave,onceaand13havebeenestablished, E,.= 12a+SW. 12w. 1a13=-+-w2w.2i111·10
ModesDperp.itionanalysis;timehistoryResponsesolutionAsinthecaseofnodamping. wesolvePequationsx.+2w.E,.x·+w~x.=r. 1111111withr·1ITOxit=0"--.!i!i.!:L•ITO'xit=0=!if1.!:LandthenPuP~¢.x.(t)LJ-11i=1Practicalconsiderationsmodesuperpositionanalysisiseffective-whentheresponseliesinafewmodesonly,P«n-whentheresponseistobeobtainedovermanytimeintervals( orthemodalresponsecanbeobtainedinclosedform). e.g.earthquakeengineeringvibrationexcitation-itmaybeimportanttocalculateEp(t)orthestaticcorrection. 11·11
SOLUTIONMETHODSFORCALCULATIONSOFFREQUENCIESANDMODESBAPESLECTURE1258MINUTES12·1
SolutionmethodsforcalculationsoffrequenciesandmodeshapesLECTURE12SolutionmethodsforfiniteelementeigenproblemsStandardandgeneralizedeigenproblemsBasicconceptsofvectoriterationmethods. polynomialiterationtechniques.Sturmsequencemethods.'transformationmethodsLargeeigenproblemsDetailsofthedeterminantsearchandsubspaceiterationmethodsSelectionofappropriatetechnique.practicalconsiderationsTEXTBOOK:Sections:12.1.12.2.1.12.2.2.12.2.3.12.3.1.12.3.2.12.3.3.12.3.4.12.3.6(thematerialinChapter11isalsoreferredto) Examples:12.1.12.2.12.3.12.412·2
SolatiumethodsforcalculationsoffrequenciesandmodeshapesSOLUTIONMETHODSFOREIGENPROBLEMSStandardEVP: r!=! nxnGeneralizedEVP: !sP.-=!i!-(=w2) QuadraticEVP: MostemphasisonthegeneralizedEVPe.g.earthquakeengineering"LargeEVP"n>500m>601p=l,...,3"nIndynamicanalysis,proportionaldampingrsP.-=w2!i! Ifzerofreq.arepresentwecanusethefollowingprocedurersP.-+)1IisP.-=(w2+~r)!isP.- or(r+)1!i)sP.-=!isP.= w2+)1or2W=-)112·3
SolationlIethodslorcalcalatiouoIlreqa.ciesandlIodeshapesp(A) p(A)=det(K-A~) Inbucklinganalysis.!$.!=A~! wherep(A)=det(~-A~) p(A) 12·4
SolutionmethodsforcalculationsoffrequenciesandmodeshapesRewriteproblemas: andsolveforlargestK: ....---~ (~-~~)!=n.K2£. TraditionalApproach:TransformthegeneralizedEVPorquadraticEVPintoastandardform, thensolveusingoneofthemanytechniquesavailablee.g. .Ki=;!iiM=I::I::Ti=hTjJhence~:t=;i;K=1::-1K[-TorM=W02WTetc... 12·5
SolotiOl.elhodslorcalcolationsoIlreqoeaciesud.odesllapesDirectsolutionismoreeffective. ConsidertheGen.EVP!!=AM! with1.3...1neigenpairs(Ai'1.i) arerequiredori=l,,pi=r,,sThesolutionproceduresinuseoperateonthebasicequationsthathavetobesatisfied. 1)VECTORITERATIONTECHNIQUESEquation: e.g.InverseIt. ~P_=A~~ !~+l=M~ ~+l•ForwardIteration•RayleighQuotientIterationcanbeemployedtocalculateoneeigenvalueandvector, deflatethentocalculateadditionaleigenpairConvergenceto"aneigenpair", whichoneisnotguaranteed(convergencemayalsobeslow) 12·6
Solutionmethodsforcalculationsoffrequenciesandmodeshapes2)POLYNOMIALITERATIONMETHODS!~=A~~~(K-AM)¢0Hencep(A)det(~-A!:1)=0,,, NewtonIterationp(A)2naO+alA+a2A+...+anAbO(A-Al)(A-A2)'"(A-An) Implicitpolynomialiteration: Explicitpolynomialiteration: eExpandthepolynomialanditerateforzeros. eTechniquenotsuitableforlargerproblems-muchworktoobtainai's-unstableprocessp(Pi)=det(IS.-Pi!y!) =detLDLT=IId.. ---.IIIeaccurate,providedwedonotencounterlargemultipliersewedirectlysolveforAl,... euseSECANTITERATION: Pi+l=Pi- edeflatepolynomialafterconvergencetoA112-7
Solutionmethodsforcalculationsoffrequenciesandmodeshapes]J.11- p(A)/(A-A,) II IIIConvergenceguaranteedtoA1'thenA2,etc.butcanbeslowwhenwecalculatemultipleroots. CareneedbetakeninLDLTfactorization. 12·8
SaI.liOi.6Jdsforcalculali.offreql8ciesiIIldoleshapes3)STURMSEQUENCEMETHODS1234t:::}·..... !<p=A!119·~;;.·....-....·..·...·.. NumberofnegativeelementsinDisequaltothenumberofeigenvaluessmallerthanJ.1S. 3rdassociatedconstraintproblem2ndassociatedconstraintproblem1stassociatedconstraintproblem12·9
SolutionlDethodslorcalculations01frequenciesudlDodeshapes3)STURMSEQUENCEMETHODSTCalculate~-].lS.~=hQh, CountnumberofnegativeelementsinQanduseastrategytoisolateeigenvalue(s). interval, ,, ,/ ].ls1].lS2Tf..•NeedtotakecareinLDLaetonzatlon--- •Convergencecanbeveryslow4)TRANSFORMATIONMETHODSj<PTK<P=A~!=A~!--T--< PM<P=I--- Construct<Piteratively: _ n=[Al...'n]<P=[~,...~J;HA-----...... " 12·10
5oI1tiOi.elhodsforcalculations01frequenciesad.odeshapesTTT~...~~lff1~...~-~ TTT~...~f1!if1~...~-le.g.generalizedJacobimethod•Herewecalculatealleigenpairssimultaneously•Expensiveandineffective(impossible)orlargeproblems. Forlargeeigenproblemsitisbesttousecombinationsoftheabovebasictechniques: •Determinantsearchtogetneararoot•Vectoriterationtoobtaineigenvectorandeigenvalue•Transformationmethodfororthogonalizationofiterationvectors. •Sturmsequencemethodtoensurethatrequiredeigenvalue(s)has(orhave)beencalculated12·11
SolutionmethodsforcalCl1atiouoffrequenciesandmodesJlapesTHEDETERMINANTSEARCHMETHODp(A) A1)IterateonpolynomialtoobtainshiftsclosetoA1P(l1;)=det(~-11;~) T=detLDL=nd.. ---;1111;+1=].1;-nP(l1;)-P(11;_1) 11;-11;_1nisnormally=1.0n=2.,4.,8.,...whenconvergenceisslowSameprocedurecanbeemployedtoobtainshiftnearA;,providedP(A)isdeflatedofA1'...,A;_12)UseSturmsequencepropertytocheckwhether11;+1islargerthananunknowneigenvalue. 12·12~-.. /...
.... .... .... SolutionlOethodsforcalculationsoffreqoBciesudlOodeshapes3)OncelJi+1islargerthananunknowneigenvalue,useinverseiterationtocalculatetheeigenvectorandeigenvaluelJi+1k=1,2,... •~+l~+l=-T-~ (~+l!i~+l) -Tp(~+l)= ~+l!i~k-T~ ~+l!i~+l4)Iterationvectormustbedeflatedofthepreviouslycalculatedeigenvectorsusing,e.g.GramSchmidtorthogonalization. IfconvergenceisslowuseRayleighquotientiteration12·13
SolutionmethodslorcalculationsoIlrequenciesudmodeshapesAdvantage: Calculatesonlyeigenpairsactuallyrequired;nopriortransformationofeigenproblemDisadvantage: Manytriangularfactorizations•EffectiveonlyforsmallbandedsystemsWeneedanalgorithmwithlessfactorizationsandmorevectoriterationswhenthebandwidthofthesystemislarge. SUBSPACEITERATIONMETHODIteratewithqvectorswher:'thelowestpeigenvaluesandeigenvectorsarerequired. inverse{K4+1=',14k=1,2,... iteration-- ~+1-TK-~+1=4+1~+1-T~14+1=4+1~+1~+1=~+1~+1~+14+1=~+1~+112·14
Solutionmethodsforcalculationsoffrequenciesandmodeshapes"Underconditions"wehaveCONDITION: startingsubspacespannedbyX,mustnotbeorthogonaltoleastdominantsubspacerequired. UseSturmsequencecheckeigenvaluepeigenvaluesT!5.-flSt1=~Q~ no.of-veelementsinDmustbeequaltop. Convergencerate: flSconvergencereachedwhen<tal12·15
SolutionmethodsforcalculationsoffrequenciesandmodeshapesStartingVectorsTwochoices1)~lx.=e., ~~ j=2,...,q-l2. x=randomvector42)LanczosmethodHereweneedtouseqmuchlargerthanp. Checksoneigenpairs1.Sturmsequencechecks11~!~Q,+1)_A~Q,+l)~!~Q,+1)[12E:.= 1[IK¢~9,+l)II--12importantin!!!.solutions. Reference:AnAcceleratedSubspaceIterationMethod,J.ComputerMethodsinAppliedMechanicsandEngineering,Vol.23, pp.313-331,1980.12·16
MIT OpenCourseWare 
http://ocw.mit.edu 
Resource: Finite Element Procedures for Solids and Structures 
Klaus-Jürgen Bathe 
The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource. 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More Related Content

What's hot

Full_resume_Dr_Russell_John_Childs
Full_resume_Dr_Russell_John_ChildsFull_resume_Dr_Russell_John_Childs
Full_resume_Dr_Russell_John_ChildsRussell Childs
 
On average case analysis through statistical bounds linking theory to practice
On average case analysis through statistical bounds  linking theory to practiceOn average case analysis through statistical bounds  linking theory to practice
On average case analysis through statistical bounds linking theory to practicecsandit
 
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICEON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICEcscpconf
 
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...VLSICS Design
 
Introduction to networks simulation
Introduction to networks simulationIntroduction to networks simulation
Introduction to networks simulationahmed L. Khalaf
 
New books dec 2013
New books dec 2013New books dec 2013
New books dec 2013maethaya
 
Analysis of intelligent system design by neuro adaptive control no restriction
Analysis of intelligent system design by neuro adaptive control no restrictionAnalysis of intelligent system design by neuro adaptive control no restriction
Analysis of intelligent system design by neuro adaptive control no restrictioniaemedu
 
Analysis of intelligent system design by neuro adaptive control
Analysis of intelligent system design by neuro adaptive controlAnalysis of intelligent system design by neuro adaptive control
Analysis of intelligent system design by neuro adaptive controliaemedu
 
Control chart pattern recognition using k mica clustering and neural networks
Control chart pattern recognition using k mica clustering and neural networksControl chart pattern recognition using k mica clustering and neural networks
Control chart pattern recognition using k mica clustering and neural networksISA Interchange
 
Review on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
Review on Algorithmic and Non Algorithmic Software Cost Estimation TechniquesReview on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
Review on Algorithmic and Non Algorithmic Software Cost Estimation Techniquesijtsrd
 

What's hot (15)

Full_resume_Dr_Russell_John_Childs
Full_resume_Dr_Russell_John_ChildsFull_resume_Dr_Russell_John_Childs
Full_resume_Dr_Russell_John_Childs
 
Engineering simulations and testing by atoast
Engineering simulations and testing by atoastEngineering simulations and testing by atoast
Engineering simulations and testing by atoast
 
On average case analysis through statistical bounds linking theory to practice
On average case analysis through statistical bounds  linking theory to practiceOn average case analysis through statistical bounds  linking theory to practice
On average case analysis through statistical bounds linking theory to practice
 
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICEON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
ON AVERAGE CASE ANALYSIS THROUGH STATISTICAL BOUNDS : LINKING THEORY TO PRACTICE
 
Course 06
Course 06Course 06
Course 06
 
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
COVERAGE DRIVEN FUNCTIONAL TESTING ARCHITECTURE FOR PROTOTYPING SYSTEM USING ...
 
Dj4201737746
Dj4201737746Dj4201737746
Dj4201737746
 
Introduction to networks simulation
Introduction to networks simulationIntroduction to networks simulation
Introduction to networks simulation
 
New books dec 2013
New books dec 2013New books dec 2013
New books dec 2013
 
20320140507006 2-3
20320140507006 2-320320140507006 2-3
20320140507006 2-3
 
Analysis of intelligent system design by neuro adaptive control no restriction
Analysis of intelligent system design by neuro adaptive control no restrictionAnalysis of intelligent system design by neuro adaptive control no restriction
Analysis of intelligent system design by neuro adaptive control no restriction
 
Analysis of intelligent system design by neuro adaptive control
Analysis of intelligent system design by neuro adaptive controlAnalysis of intelligent system design by neuro adaptive control
Analysis of intelligent system design by neuro adaptive control
 
Control chart pattern recognition using k mica clustering and neural networks
Control chart pattern recognition using k mica clustering and neural networksControl chart pattern recognition using k mica clustering and neural networks
Control chart pattern recognition using k mica clustering and neural networks
 
Hybrid systems
Hybrid systemsHybrid systems
Hybrid systems
 
Review on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
Review on Algorithmic and Non Algorithmic Software Cost Estimation TechniquesReview on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
Review on Algorithmic and Non Algorithmic Software Cost Estimation Techniques
 

Viewers also liked

Introduction to-automata-theo
Introduction to-automata-theo Introduction to-automata-theo
Introduction to-automata-theo baharn1
 
A textbook of orthodontics by t. d. foster 1991
A textbook of orthodontics by t. d. foster 1991A textbook of orthodontics by t. d. foster 1991
A textbook of orthodontics by t. d. foster 1991doctor_fadi
 
Chowtodoprogram solutions
Chowtodoprogram solutionsChowtodoprogram solutions
Chowtodoprogram solutionsMusa Gürbüz
 
The photoshop element book revised 2013 uk
The photoshop element book revised   2013  ukThe photoshop element book revised   2013  uk
The photoshop element book revised 2013 ukNasr Zaara
 
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]Simona Belu
 
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
65487681 60444264-engineering-optimization-theory-and-practice-4th-editionAshish Arora
 

Viewers also liked (7)

Introduction to-automata-theo
Introduction to-automata-theo Introduction to-automata-theo
Introduction to-automata-theo
 
A textbook of orthodontics by t. d. foster 1991
A textbook of orthodontics by t. d. foster 1991A textbook of orthodontics by t. d. foster 1991
A textbook of orthodontics by t. d. foster 1991
 
Chowtodoprogram solutions
Chowtodoprogram solutionsChowtodoprogram solutions
Chowtodoprogram solutions
 
The photoshop element book revised 2013 uk
The photoshop element book revised   2013  ukThe photoshop element book revised   2013  uk
The photoshop element book revised 2013 uk
 
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
Manual of local anesthesia in dentistry, 2 e (2010) [pdf][unitedvrg]
 
Modern inorganic chemistry
Modern inorganic chemistryModern inorganic chemistry
Modern inorganic chemistry
 
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
65487681 60444264-engineering-optimization-theory-and-practice-4th-edition
 

Similar to Mitres2 002 s10_linear

Application of CI in Motor Modeling
Application of CI in Motor ModelingApplication of CI in Motor Modeling
Application of CI in Motor ModelingYousuf Khan
 
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02NNfamily
 
A M ULTI -O BJECTIVE B ASED E VOLUTIONARY A LGORITHM AND S OCIAL N ETWOR...
A M ULTI -O BJECTIVE  B ASED  E VOLUTIONARY  A LGORITHM AND  S OCIAL  N ETWOR...A M ULTI -O BJECTIVE  B ASED  E VOLUTIONARY  A LGORITHM AND  S OCIAL  N ETWOR...
A M ULTI -O BJECTIVE B ASED E VOLUTIONARY A LGORITHM AND S OCIAL N ETWOR...IJCI JOURNAL
 
wp-electrical-engineering-mechatronic-data-model-en
wp-electrical-engineering-mechatronic-data-model-enwp-electrical-engineering-mechatronic-data-model-en
wp-electrical-engineering-mechatronic-data-model-enThomas Gessner
 
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...IJECEIAES
 
International journal of engineering issues vol 2015 - no 2 - paper4
International journal of engineering issues   vol 2015 - no 2 - paper4International journal of engineering issues   vol 2015 - no 2 - paper4
International journal of engineering issues vol 2015 - no 2 - paper4sophiabelthome
 
A Review on Prediction of Compressive Strength and Slump by Using Different M...
A Review on Prediction of Compressive Strength and Slump by Using Different M...A Review on Prediction of Compressive Strength and Slump by Using Different M...
A Review on Prediction of Compressive Strength and Slump by Using Different M...IRJET Journal
 
Analytical transformations software for stationary modes of induction motors...
Analytical transformations software for stationary modes of  induction motors...Analytical transformations software for stationary modes of  induction motors...
Analytical transformations software for stationary modes of induction motors...IJECEIAES
 
Mathematical models and algorithms challenges
Mathematical models and algorithms challengesMathematical models and algorithms challenges
Mathematical models and algorithms challengesijctcm
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionActiveEon
 
Glenn Vanderburg — Real software engineering
Glenn Vanderburg — Real software engineeringGlenn Vanderburg — Real software engineering
Glenn Vanderburg — Real software engineeringatr2006
 
Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Editor IJARCET
 
Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Editor IJARCET
 
Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...journalBEEI
 
IRJET- Use of Artificial Neural Network in Construction Management
IRJET- Use of Artificial Neural Network in Construction ManagementIRJET- Use of Artificial Neural Network in Construction Management
IRJET- Use of Artificial Neural Network in Construction ManagementIRJET Journal
 

Similar to Mitres2 002 s10_linear (20)

Micro Electro Mechanical Systems (MEMS) - Lecture 05
Micro Electro Mechanical Systems (MEMS) - Lecture 05Micro Electro Mechanical Systems (MEMS) - Lecture 05
Micro Electro Mechanical Systems (MEMS) - Lecture 05
 
Application of CI in Motor Modeling
Application of CI in Motor ModelingApplication of CI in Motor Modeling
Application of CI in Motor Modeling
 
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
Performancepredictionforsoftwarearchitectures 100810045752-phpapp02
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
A M ULTI -O BJECTIVE B ASED E VOLUTIONARY A LGORITHM AND S OCIAL N ETWOR...
A M ULTI -O BJECTIVE  B ASED  E VOLUTIONARY  A LGORITHM AND  S OCIAL  N ETWOR...A M ULTI -O BJECTIVE  B ASED  E VOLUTIONARY  A LGORITHM AND  S OCIAL  N ETWOR...
A M ULTI -O BJECTIVE B ASED E VOLUTIONARY A LGORITHM AND S OCIAL N ETWOR...
 
[1] artigo modelherarquicos
[1] artigo modelherarquicos[1] artigo modelherarquicos
[1] artigo modelherarquicos
 
wp-electrical-engineering-mechatronic-data-model-en
wp-electrical-engineering-mechatronic-data-model-enwp-electrical-engineering-mechatronic-data-model-en
wp-electrical-engineering-mechatronic-data-model-en
 
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
Unknown input observer for Takagi-Sugeno implicit models with unmeasurable pr...
 
International journal of engineering issues vol 2015 - no 2 - paper4
International journal of engineering issues   vol 2015 - no 2 - paper4International journal of engineering issues   vol 2015 - no 2 - paper4
International journal of engineering issues vol 2015 - no 2 - paper4
 
A Review on Prediction of Compressive Strength and Slump by Using Different M...
A Review on Prediction of Compressive Strength and Slump by Using Different M...A Review on Prediction of Compressive Strength and Slump by Using Different M...
A Review on Prediction of Compressive Strength and Slump by Using Different M...
 
08. cad&amp;cam
08. cad&amp;cam08. cad&amp;cam
08. cad&amp;cam
 
Analytical transformations software for stationary modes of induction motors...
Analytical transformations software for stationary modes of  induction motors...Analytical transformations software for stationary modes of  induction motors...
Analytical transformations software for stationary modes of induction motors...
 
Mathematical models and algorithms challenges
Mathematical models and algorithms challengesMathematical models and algorithms challenges
Mathematical models and algorithms challenges
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer Vision
 
Glenn Vanderburg — Real software engineering
Glenn Vanderburg — Real software engineeringGlenn Vanderburg — Real software engineering
Glenn Vanderburg — Real software engineering
 
pam_1997
pam_1997pam_1997
pam_1997
 
Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204
 
Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204Volume 2-issue-6-2200-2204
Volume 2-issue-6-2200-2204
 
Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...Using queuing theory to describe adaptive mathematical models of computing sy...
Using queuing theory to describe adaptive mathematical models of computing sy...
 
IRJET- Use of Artificial Neural Network in Construction Management
IRJET- Use of Artificial Neural Network in Construction ManagementIRJET- Use of Artificial Neural Network in Construction Management
IRJET- Use of Artificial Neural Network in Construction Management
 

More from manojg1990

Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanicsmanojg1990
 
Mech ug curriculum and syllabus
Mech ug curriculum and syllabusMech ug curriculum and syllabus
Mech ug curriculum and syllabusmanojg1990
 
203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)manojg1990
 
257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)manojg1990
 
98021616 fusion
98021616 fusion98021616 fusion
98021616 fusionmanojg1990
 
nuclear reactor98021616 fusion
nuclear reactor98021616 fusionnuclear reactor98021616 fusion
nuclear reactor98021616 fusionmanojg1990
 
Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)manojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modelingmanojg1990
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modelingmanojg1990
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modelingmanojg1990
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-conceptsmanojg1990
 
29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniquesmanojg1990
 

More from manojg1990 (20)

Qb103355
Qb103355Qb103355
Qb103355
 
Qb103353
Qb103353Qb103353
Qb103353
 
Qb103352
Qb103352Qb103352
Qb103352
 
Qb103351
Qb103351Qb103351
Qb103351
 
Qb103354
Qb103354Qb103354
Qb103354
 
Aptitude
AptitudeAptitude
Aptitude
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Mech ug curriculum and syllabus
Mech ug curriculum and syllabusMech ug curriculum and syllabus
Mech ug curriculum and syllabus
 
203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)203109245 lean-manufacturing (1)
203109245 lean-manufacturing (1)
 
257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)257341652 reactor-shielding-for-engineers-pdf (1)
257341652 reactor-shielding-for-engineers-pdf (1)
 
98021616 fusion
98021616 fusion98021616 fusion
98021616 fusion
 
nuclear reactor98021616 fusion
nuclear reactor98021616 fusionnuclear reactor98021616 fusion
nuclear reactor98021616 fusion
 
Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)Geometric modeling111431635 geometric-modeling-glad (1)
Geometric modeling111431635 geometric-modeling-glad (1)
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
 
191483523 geometric-modeling
191483523 geometric-modeling191483523 geometric-modeling
191483523 geometric-modeling
 
187186134 5-geometric-modeling
187186134 5-geometric-modeling187186134 5-geometric-modeling
187186134 5-geometric-modeling
 
78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts78307635 geometric-modeling-concepts
78307635 geometric-modeling-concepts
 
29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques29882464 chapter-6-geometric-modeling-techniques
29882464 chapter-6-geometric-modeling-techniques
 

Recently uploaded

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZTE
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
ZXCTN 5804 / ZTE PTN / ZTE POTN / ZTE 5804 PTN / ZTE POTN 5804 ( 100/200 GE Z...
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Mitres2 002 s10_linear