SlideShare a Scribd company logo
1 of 7
Download to read offline
Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com
ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.69-75
www.ijera.com 69 | P a g e
Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold
Admitting a Quater Symmetric Metric Connection
Nikhat Zulekha1
, Shadab Ahmad Khan2
and Mobin Ahmad3
1,2
Department of Mathematics, Integral University, Kursi Road Lucknow-226026, India
3
Department of Mathematics, Faculty of Science, Jazan University, Jazan-2069, Saudi Arabia.
ABSTRACT
We consider a nearly hyperbolic Kenmotsu manifold with a quarter symmetric metric connection and study CR-
submanifolds of a nearly hyperbolic Kenmotsu manifold with quarter symmetric metric connection. We also
study parallel distributions on nearly hyperbolic Kenmotsu manifold with quarter symmetric metric connection
and find the integrability conditions of some distributions on nearly hyperbolic Kenmotsu manifold with quarter
symmetric metric connection.
Keywords: CR-submanifolds, nearly hyperbolic Kenmotsu manifold, quarter symmetric metric connection,
integrability conditions, parallel distribution.
I. Introduction
The study of CR-submanifolds of a Kaehler manifold was initiated by A. Bejancu in ([1], [2]). Since then,
several papers on Kaehler manifolds were published. CR-submanifolds of Sasakian manifold was studied by
C.J. Hsu in [4] and M. Kobayashi in [14]. CR-submanifolds of Kenmotsu manifold was studied by A. Bejancu
and N. Papaghuic in [3]. Later, several geometers (see, [6], [9] [10], [11] [12] [16] [17]) enriched the study of
CR- submanifolds of almost contact manifolds.The almost hyperbolic (𝑓, 𝑔, πœ‚, πœ‰) -structure was defined and
studied by Upadhyay and Dube in [13]. Dube and Bhatt studied CR-submanifolds of trans-hyperbolic Sasakian
manifold in [7]. On the other hand, S. Golab introduced the idea of semi-symmetric and quarter symmetric
connections in [5]. CR-submanifolds of LP-Sasakian manifold with quarter symmetric metric connection were
studied by the first author and S.K. Lovejoy Das in [8]. CR-submanifolds of a nearly hyperbolic Sasakian
manifold admitting a semi-symmetric semi-metric connection were studied by the first author, M.D. Siddiqi and
S. Rizvi in [15]. In this paper, we study some properties of CR-submanifolds of a nearly hyperbolic Kenmotsu
manifold with a quarter symmetric metric connection.
The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic Kenmotsu
manifold with a quarter symmetric metric connection. In section 3, some properties of CR- Submanifold of
nearly hyperbolic Kenmotsu manifold with a quarter symmetric metric connection are investigated. In section
4,We study some result on parallel distribution on ΞΎ-horizontal and ΞΎ-vertical CR- Submanifold of nearly
hyperbolic Kenmotsu manifold with a quarter symmetric metric connections.
II. Preliminaries
Let 𝑀 be an 𝑛-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact
metric structure βˆ…, πœ‰, πœ‚. 𝑔 , where a tensor βˆ… of type 1,1 , a vector field πœ‰, called structure vector field and πœ‚,
the dual 1-form of πœ‰ satisfying the following
2.1 βˆ…2
𝑋 = 𝑋 + πœ‚ 𝑋 𝝃, 𝑔 𝑋, πœ‰ = πœ‚ 𝑋 ,
2.2 πœ‚ πœ‰ = βˆ’1, βˆ… πœ‰ = 0, πœ‚π‘œβˆ… = 0,
2.3 𝑔 βˆ…π‘‹, βˆ…π‘Œ = βˆ’π‘” 𝑋, π‘Œ βˆ’ πœ‚ 𝑋 πœ‚ π‘Œ
For any 𝑋, π‘Œ tangent to 𝑀 [17]. In this case
2.4 𝑔 βˆ…π‘‹, π‘Œ = βˆ’π‘” βˆ…π‘Œ, 𝑋 .
An almost hyperbolic contact metric structure βˆ…, πœ‰, πœ‚, 𝑔 on 𝑀 is called hyperbolic Kenmotsu manifold [7 ]
if and only if
2.5 βˆ‡ π‘‹βˆ… π‘Œ = 𝑔 βˆ…π‘‹, π‘Œ πœ‰ βˆ’ πœ‚ π‘Œ βˆ…π‘‹
for all 𝑋, π‘Œ tangent to 𝑀.
Further, an almost hyperbolic contact metric manifold 𝑀 on βˆ…, πœ‰, πœ‚, 𝑔 is called nearly-hyperbolic Kenmotsu
[ 7] if
2.6 βˆ‡ π‘‹βˆ… π‘Œ + βˆ‡ π‘Œβˆ… 𝑋 = βˆ’πœ‚ 𝑋 βˆ…π‘Œ βˆ’ πœ‚ π‘Œ βˆ…π‘‹.
Now, Let M be a submanifold immersed in 𝑀. The Riemannian metric induced on 𝑀 is denoted by the
same symbol 𝑔. Let 𝑇𝑀 π‘Žπ‘›π‘‘ 𝑇βŠ₯
𝑀 be the Lie algebra of vector fields tangential to 𝑀 and normal to 𝑀
RESEARCH ARTICLE OPEN ACCESS
Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com
ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.00-00
www.ijera.com 70 |
P a g e
respectively and βˆ‡βˆ—
be the induced Levi-Civita connection on 𝑁, then the Gauss and Weingarten formulas are
given respectively by
2.7 βˆ‡ 𝑋 π‘Œ = βˆ‡ 𝑋
βˆ—
π‘Œ + 𝑕 𝑋, π‘Œ ,
2.8 βˆ‡ 𝑋 𝑁 = βˆ’π΄ 𝑁 𝑋 + βˆ‡ 𝑋
βŠ₯
𝑁
for any 𝑋, π‘Œ ∈ 𝑇𝑀 π‘Žπ‘›π‘‘ 𝑁 ∈ 𝑇βŠ₯
𝑀, where βˆ‡βŠ₯
is a connection on the normal bundle 𝑇βŠ₯
𝑀, 𝑕 is the second
fundamental form and 𝐴 𝑁 is the Weingarten map associated with N as
2.9 𝑔 𝐴 𝑁 𝑋, π‘Œ = 𝑔 𝑕 𝑋, π‘Œ , 𝑁
for any π‘₯ ∈ 𝑀 π‘Žπ‘›π‘‘ 𝑋 ∈ 𝑇π‘₯ 𝑀.We write
2.10 𝑋 = 𝑃𝑋 + 𝑄𝑋,
where𝑃𝑋 ∈ 𝐷 π‘Žπ‘›π‘‘ 𝑄𝑋 ∈ 𝐷βŠ₯
.
Similarly, for 𝑁 normal to 𝑀, we have
2.11 βˆ…π‘ = 𝐡𝑁 + 𝐢𝑁,
where, 𝐡𝑁 π‘Ÿπ‘’π‘ π‘. 𝐢𝑁 is the tangential component π‘Ÿπ‘’π‘ π‘. π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘π‘œπ‘šπ‘π‘œπ‘›π‘’π‘›π‘‘ of βˆ…π‘.
Now, we define a quarter symmetric metric connection by
(2.12) βˆ‡ 𝑋 π‘Œ = βˆ‡ 𝑋 π‘Œ + πœ‚ π‘Œ πœ™π‘‹ βˆ’ 𝑔(πœ™π‘‹, π‘Œ)πœ‰
Such that,
βˆ‡ 𝑋 𝑔 π‘Œ, 𝑍 = βˆ’πœ‚ π‘Œ 𝑔 πœ™π‘‹, 𝑍 βˆ’ πœ‚ 𝑍 𝑔(πœ™π‘‹, π‘Œ)
Using (2.13) and (2.6), We have
(2.13) βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹
+ 2 𝑔 𝑋, π‘Œ πœ‰
An almost hyperbolic contact manifold 𝑀 satisfying (2.13) is called nearly hyperbolic Kenmotsu manifold with
quarter symmetric metric connection.
For a nearly hyperbolic Kenmotsu manifold with quarter symmetric metric connection, we have
2.14 βˆ‡ 𝑋 𝝃 = βˆ’πœΆ βˆ…π‘‹ + 𝛽 𝑋 βˆ’ πœ‚ 𝑋 πœ‰ + βˆ…π‘‹.
Gauss and Weingarten formula for quarter symmetric non-metric connection are given respectively by
2.15 βˆ‡ 𝑋 π‘Œ = βˆ‡ 𝑋 π‘Œ + 𝑕 𝑋, π‘Œ ,
(2.16) βˆ‡ 𝑋 𝑁 = βˆ’π΄ 𝑁 𝑋 + βˆ‡ 𝑋
βŠ₯
𝑁 βˆ’ 𝑔 πœ™π‘‹, 𝑁 πœ‰ .
Definition 1.An m-dimensional submanifold M of𝑀 is called a CR-Submanifold of almost nearly hyperbolic
contact manifold 𝑀, if there exist a differentiable distribution 𝐷: π‘₯ ⟢ 𝐷π‘₯ on M satisfying the following
conditions:
i. D is invariant, that is βˆ…π·π‘₯ βŠ‚ 𝐷π‘₯ π‘“π‘œπ‘Ÿ π‘’π‘Žπ‘π‘• π‘₯ ∈ 𝑀.
ii. The complementary orthogonal distribution 𝐷βŠ₯
of D is anti-invariant, that is
βˆ…π·π‘₯
βŠ₯
βŠ‚ 𝑇π‘₯
βŠ₯
𝑀. If dim 𝐷π‘₯
βŠ₯
= 0 (π‘Ÿπ‘’π‘ π‘. , dim 𝐷π‘₯ = 0), then the CR-Submanifold is called an invariant (resp.,
anti-invariant) submanifold. The distribution 𝐷 π‘Ÿπ‘’π‘ π‘. , 𝐷βŠ₯
is called the horizontal (resp., vertical)
distribution. Also, the pair 𝐷, 𝐷βŠ₯
is called πœ‰ βˆ’ π‘•π‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π‘Ÿπ‘’π‘ π‘. , π‘£π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ 𝑖𝑓 πœ‰ 𝑋 ∈ 𝐷𝑋 π‘Ÿπ‘’π‘ π‘. , πœ‰ 𝑋 ∈
𝐷𝑋βŠ₯.
III. Some Basic Lemmas
Lemma -3.1 If M be a CR-submanifold of nearly hyperbolic Kenmotsu manifold 𝑴 with quarter
symmetric metric connection. Then
(3.1) βˆ’πœΌ 𝑿 𝑷𝒀 βˆ’ 𝜼 𝒀 𝑷𝑿 βˆ’ 𝜼 𝑿 𝝓𝑷𝒀 βˆ’ 𝜼 𝒀 𝝓𝑷𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝑷𝝃 + 𝝓𝑷 𝛁 𝑿 𝒀 +
𝝓𝑷 𝛁 𝒀 𝑿 = 𝑷 𝛁 𝑿 𝝓𝑷𝒀 + 𝑷 𝛁 𝒀 𝝓𝑷𝑿 βˆ’ 𝑷 𝐀 𝝓𝑸𝒀 𝑿 βˆ’ 𝑷 𝐀 𝝓𝑸𝑿 𝒀 βˆ’ π’ˆ 𝝓𝑿, 𝝓𝑸𝒀 𝑷𝝃 βˆ’
π’ˆ(𝝓𝒀, 𝝓𝑸𝑿) 𝑷𝝃
(3.2) βˆ’πœΌ 𝑿 𝑸𝒀 βˆ’ 𝜼 𝒀 𝑸𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝑸𝝃 + πŸπ‘©π’‰ 𝒀, 𝑿
= (𝑸)𝛁 𝑿 𝝓𝑷𝒀 + (𝑸)𝛁 𝒀 𝝓𝑷𝑿 βˆ’ (𝑸)𝐀 𝝓𝑸𝒀 𝑿 βˆ’ (𝑸)𝐀 𝝓𝑸𝑿 𝒀 βˆ’ π’ˆ(𝝓𝑿, 𝝓𝑸𝒀) 𝑸𝝃 βˆ’ π’ˆ(𝝓𝒀, 𝝓𝑸𝑿) 𝑸𝝃
(3.3)βˆ’ 𝜼 𝑿 𝝓𝑸𝒀 βˆ’ 𝜼 𝒀 𝝓𝑸𝑿 + 𝝓𝑸 𝛁 𝑿 𝒀 + 𝝓𝑸 𝛁 𝒀 𝑿 + 𝟐π‘ͺ𝒉 𝒀, 𝑿
= 𝒉 𝑿, 𝝓𝑷𝒀 + 𝒉 𝒀, 𝝓𝑷𝑿 + 𝛁 𝑿
βŠ₯
𝝓𝑸𝒀 + 𝛁 𝒀
βŠ₯
𝝓𝑸𝑿
Proof: From (2.10) , we have
πœ™π‘Œ = πœ™π‘ƒπ‘Œ + πœ™π‘„π‘Œ
Differentiating covariantly and using (2.15) and (2.16), we get
βˆ‡ 𝑋 πœ™ π‘Œ + πœ™βˆ‡ 𝑋 π‘Œ + πœ™π‘• 𝑋, π‘Œ = βˆ‡ 𝑋 πœ™π‘ƒπ‘Œ + 𝑕 𝑋, πœ™π‘ƒπ‘Œ βˆ’ A πœ™π‘„π‘Œ 𝑋 + βˆ‡ 𝑋
βŠ₯
πœ™π‘„π‘Œ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘„π‘Œ)πœ‰
Interchanging X and Y
βˆ‡ π‘Œ πœ™ 𝑋 + πœ™βˆ‡ π‘Œ 𝑋 + πœ™π‘• π‘Œ, 𝑋 = βˆ‡ π‘Œ πœ™π‘ƒπ‘‹ + 𝑕 π‘Œ, πœ™π‘ƒπ‘‹ βˆ’ A πœ™π‘„π‘‹ π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘„π‘‹ βˆ’ 𝑔(πœ™π‘Œ, πœ™π‘„π‘‹)πœ‰
Adding above two equations, we obtain
Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com
ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.69-75
www.ijera.com 71 | P a g e
βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 + πœ™βˆ‡ 𝑋 π‘Œ + πœ™βˆ‡ π‘Œ 𝑋 + 2πœ™π‘• π‘Œ, 𝑋
= βˆ‡ 𝑋 πœ™π‘ƒπ‘Œ + βˆ‡ π‘Œ πœ™π‘ƒπ‘‹ + 𝑕 𝑋, πœ™π‘ƒπ‘Œ + 𝑕 π‘Œ, πœ™π‘ƒπ‘‹ βˆ’ A πœ™π‘„π‘Œ 𝑋 βˆ’ A πœ™π‘„π‘‹ π‘Œ + βˆ‡ 𝑋
βŠ₯
πœ™π‘„π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘„π‘‹
βˆ’ 𝑔(πœ™π‘‹, πœ™π‘„π‘Œ)πœ‰ βˆ’ 𝑔(πœ™π‘Œ, πœ™π‘„π‘‹)πœ‰
Using eqution (2.13) in above equation, we get
(3.4) βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ + πœ™βˆ‡ 𝑋 π‘Œ + πœ™βˆ‡ π‘Œ 𝑋 + 2πœ™π‘• π‘Œ, 𝑋
= βˆ‡ 𝑋 πœ™π‘ƒπ‘Œ + βˆ‡ π‘Œ πœ™π‘ƒπ‘‹ + 𝑕 𝑋, πœ™π‘ƒπ‘Œ + 𝑕 π‘Œ, πœ™π‘ƒπ‘‹ βˆ’ A πœ™π‘„π‘Œ 𝑋 βˆ’ A πœ™π‘„π‘‹ π‘Œ + βˆ‡ 𝑋
βŠ₯
πœ™π‘„π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘„π‘Œ)πœ‰
βˆ’ 𝑔(πœ™π‘Œ, πœ™π‘„π‘‹)πœ‰
Comparing tangential, Vertical and Normal components from both sides of (3.4), we get the desired results
Hence the Lemma is Proved.
Lemma -3.2 If M be a CR-submanifold of nearly hyperbolic Kenmotsu manifold 𝑴 with quarter
symmetric metric connection. Then
πŸ‘. πŸ“ 𝟐(𝛁 π‘Ώβˆ…)𝒀 = βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝑿 𝝓𝒀 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 + 𝛁 π‘Ώβˆ…π’€ + 𝒉 𝑿, βˆ…π’€ βˆ’ 𝛁 π’€βˆ…π‘Ώ
βˆ’ 𝒉 𝒀, βˆ…π‘Ώ βˆ’ βˆ… 𝑿, 𝒀
(3.6) 2(𝛁 π’€βˆ…)𝑿 = βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝑿 𝝓𝒀 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 βˆ’ 𝛁 π‘Ώβˆ…π’€ βˆ’ 𝒉 𝑿, βˆ…π’€ +
𝛁 π’€βˆ…π‘Ώ + 𝒉 𝒀, βˆ…π‘Ώ + βˆ… 𝑿, 𝒀
For any X ,Y ∈ 𝑫.
Proof : From Gauss Formula (2.15), We get
(3.7) βˆ‡ 𝑋 πœ™π‘Œ βˆ’ βˆ‡ π‘Œ πœ™π‘‹ = βˆ‡ π‘‹βˆ…π‘Œ + 𝑕 𝑋, βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹
Also we have
(3.8) βˆ‡ π‘‹βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ = (βˆ‡ π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡ π‘Œβˆ…)𝑋 + βˆ… 𝑋, π‘Œ
From (3.7) and (3.8)
3.9 (βˆ‡ π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡ π‘Œβˆ…)𝑋 = βˆ‡ π‘‹βˆ…π‘Œ + 𝑕 𝑋, βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ βˆ’ βˆ… 𝑋, π‘Œ
Adding (2.13) and (3.9)
2(βˆ‡ π‘‹βˆ…)π‘Œ = βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ + βˆ‡ π‘‹βˆ…π‘Œ + 𝑕 𝑋, βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹
βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ βˆ’ βˆ… 𝑋, π‘Œ
Subtracting (3.9) from (2.13) ,
2(βˆ‡ π‘Œβˆ…)𝑋 = βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ βˆ’ βˆ‡ π‘‹βˆ…π‘Œ βˆ’ 𝑕 𝑋, βˆ…π‘Œ + βˆ‡ π‘Œβˆ…π‘‹ +
𝑕 π‘Œ, βˆ…π‘‹ + βˆ… 𝑋, π‘Œ
Hence Lemma is proved.
Corollary 3.3. If M be a 𝝃 βˆ’vertical CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with
quarter symmetric metric connection. Then
𝟐(𝛁 π‘Ώβˆ…)𝒀 = 𝛁 π‘Ώβˆ…π’€ βˆ’ 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝑿, βˆ…π’€ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 βˆ’ βˆ… 𝑿, 𝒀
and
2(𝛁 π’€βˆ…)𝑿 = 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝛁 π‘Ώβˆ…π’€ + 𝒉 𝒀, βˆ…π‘Ώ βˆ’ 𝒉 𝑿, βˆ…π’€ + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 + βˆ… 𝑿, 𝒀
For any X,Y ∈ D.
Lemma 3.4 If M be a CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter
symmetric metric connection . Then
(3.10) 2 𝛁 𝒀 𝝓 𝒁 = 𝐀 𝝓𝒀 𝒁 βˆ’ 𝐀 𝝓𝒁 𝒀 + 𝛁 𝒀
βŠ₯
𝝓𝒁 βˆ’ 𝛁 𝒁
βŠ₯
𝝓𝒀 βˆ’ βˆ… 𝒀, 𝒁 βˆ’ 𝜼 𝒀 𝒁 βˆ’ 𝜼 𝒁 𝒀 βˆ’ 𝜼 𝒀 𝝓𝒁 βˆ’
𝜼 𝒁 𝝓𝒀 + 𝟐 π’ˆ 𝒀, 𝒁 𝝃
(3.11) 2 𝛁 𝒁 𝝓 𝒀 = 𝐀 𝝓𝒁 𝒀 βˆ’ 𝐀 𝝓𝒀 𝒁 + 𝛁 𝒁
βŠ₯
𝝓𝒀 βˆ’ 𝛁 𝒀
βŠ₯
𝝓𝒁 + βˆ… 𝒀, 𝒁 βˆ’ 𝜼 𝒀 𝒁 βˆ’ 𝜼 𝒁 𝒀 βˆ’ 𝜼 𝒀 𝝓𝒁 βˆ’
𝜼 𝒁 𝝓𝒀 + 𝟐 π’ˆ 𝒀, 𝒁 𝝃
For any Y,Z ∈ 𝑫βŠ₯
.
Proof : Let, Y,Z ∈ 𝐷βŠ₯
. From Weingarten formula (2.16), we get
3.12 βˆ‡ π‘Œβˆ…π‘ βˆ’ βˆ‡ π‘βˆ…π‘Œ = A πœ™π‘Œ 𝑍 βˆ’ A πœ™π‘ π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘ βˆ’ βˆ‡ 𝑍
βŠ₯
πœ™π‘Œ
Also we have, from equation (3.8)
3.13 βˆ‡ π‘Œβˆ…π‘ βˆ’ βˆ‡ π‘βˆ…π‘Œ = (βˆ‡ π‘Œβˆ…)𝑍 βˆ’ (βˆ‡ π‘βˆ…)π‘Œ + βˆ… π‘Œ, 𝑍
From (3.12) and (3.13)
3.14 (βˆ‡ π‘Œβˆ…)𝑍 βˆ’ (βˆ‡ π‘βˆ…)π‘Œ = A πœ™π‘Œ 𝑍 βˆ’ A πœ™π‘ π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘ βˆ’ βˆ‡ 𝑍
βŠ₯
πœ™π‘Œ βˆ’ βˆ… π‘Œ, 𝑍
For nearly Hyperbolic Kenmotsu manifold, we have
3.15 βˆ‡ π‘Œ πœ™ 𝑍 + βˆ‡ 𝑍 πœ™ π‘Œ = βˆ’ πœ‚ π‘Œ 𝑍 βˆ’ πœ‚ 𝑍 π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘ βˆ’ πœ‚ 𝑍 πœ™π‘Œ + 2 𝑔 π‘Œ, 𝑍 πœ‰
Adding (3.14) and (3.15),
Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com
ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.00-00
www.ijera.com 72 |
P a g e
2 βˆ‡ π‘Œ πœ™ 𝑍 = A πœ™π‘Œ 𝑍 βˆ’ A πœ™π‘ π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘ βˆ’ βˆ‡ 𝑍
βŠ₯
πœ™π‘Œ βˆ’ βˆ… π‘Œ, 𝑍 βˆ’ πœ‚ π‘Œ 𝑍 βˆ’ πœ‚ 𝑍 π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘ βˆ’ πœ‚ 𝑍 πœ™π‘Œ +
2 𝑔 π‘Œ, 𝑍 πœ‰
Subtracting (3.14) from (3.15),
2 βˆ‡ 𝑍 πœ™ π‘Œ = A πœ™π‘ π‘Œ βˆ’ A πœ™π‘Œ 𝑍 + βˆ‡ 𝑍
βŠ₯
πœ™π‘Œ βˆ’ βˆ‡ π‘Œ
βŠ₯
πœ™π‘ + βˆ… π‘Œ, 𝑍 βˆ’ πœ‚ π‘Œ 𝑍 βˆ’ πœ‚ 𝑍 π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘ βˆ’ πœ‚ 𝑍 πœ™π‘Œ +
2 𝑔 π‘Œ, 𝑍 πœ‰
For Y,Z ∈ 𝐷βŠ₯
Hence Lemma is proved.
Corollary 3.5 If M be a 𝝃 βˆ’ horizontal CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴
with quarter symmetric metric connection . Then
2 𝛁 𝒀 𝝓 𝒁 = 𝐀 𝝓𝒀 𝒁 βˆ’ 𝐀 𝝓𝒁 𝒀 + 𝛁 𝒀
βŠ₯
𝝓𝒁 βˆ’ 𝛁 𝒁
βŠ₯
𝝓𝒀 βˆ’ βˆ… 𝒀, 𝒁 + 𝟐 π’ˆ 𝒀, 𝒁 𝝃 ,and
2 𝛁 𝒁 𝝓 𝒀 = 𝐀 𝝓𝒁 𝒀 βˆ’ 𝐀 𝝓𝒀 𝒁 + 𝛁 𝒁
βŠ₯
𝝓𝒀 βˆ’ 𝛁 𝒀
βŠ₯
𝝓𝒁 + βˆ… 𝒀, 𝒁 + 𝟐 π’ˆ 𝒀, 𝒁 𝝃
For any Y,Z ∈ 𝑫βŠ₯
.
Lemma 3.6 If M be a CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter
symmetric metric connection . Then
(3.16) 2(𝛁 π‘Ώβˆ…)𝒀 = βˆ’π€ 𝝓𝒀 𝑿 + 𝛁 𝑿
βŠ₯
𝝓𝒀 – π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 βˆ’ 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ βˆ’ βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝑿 𝒀 βˆ’
𝜼 𝒀 𝑿 βˆ’ 𝜼 𝑿 𝝓𝒀 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃
And
(3.17) 2 𝛁 𝒀 𝝓 𝑿 = 𝐀 𝝓𝒀 𝑿 βˆ’ 𝛁 𝑿
βŠ₯
𝝓𝒀 + π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 + 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝒀, βˆ…π‘Ώ + βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝑿 𝒀 βˆ’
𝜼 𝒀 𝑿 βˆ’ 𝜼 𝑿 𝝓𝒀 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃
For any X ∈ D , Y ∈ 𝑫βŠ₯
Proof : Let X ∈ D ,Y ∈ 𝐷βŠ₯
From Gauss and Weingarten formulae, we have
3.18 βˆ‡ π‘‹βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘Œ)πœ‰ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹
Also we have
3.19 βˆ‡ π‘‹βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ = (βˆ‡ π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡ π‘Œβˆ…)𝑋 + βˆ… 𝑋, π‘Œ
From (3.18) and (3.19)
3.20 (βˆ‡ π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡ π‘Œβˆ…)𝑋 = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ βˆ’ 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ βˆ’ βˆ… 𝑋, π‘Œ
Also For nearly Hyperbolic Kenmotsu manifold, we have
(3.21) βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰
Adding (3.20) and (3.21), We obtain
2(βˆ‡ π‘‹βˆ…)π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ – 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ βˆ’ βˆ… 𝑋, π‘Œ βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋
βˆ’πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰
Subtracting (3.20) from (3.21),
2 βˆ‡ π‘Œ πœ™ 𝑋 = A πœ™π‘Œ 𝑋 βˆ’ βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ + 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ + βˆ‡ π‘Œβˆ…π‘‹ + 𝑕 π‘Œ, βˆ…π‘‹ + βˆ… 𝑋, π‘Œ βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋
βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰
Corollary 3.7 If M be a𝝃 βˆ’ horizontal CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴
with quarter symmetric metric connection . Then
2(𝛁 π‘Ώβˆ…)𝒀 = βˆ’π€ 𝝓𝒀 𝑿 + 𝛁 𝑿
βŠ₯
𝝓𝒀 – π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 βˆ’ 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ βˆ’ βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝑿 𝝓𝒀
+ 𝟐 π’ˆ 𝑿, 𝒀 𝝃
And
2 𝛁 𝒀 𝝓 𝑿 = 𝐀 𝝓𝒀 𝑿 βˆ’ 𝛁 𝑿
βŠ₯
𝝓𝒀 + π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 + 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝒀, βˆ…π‘Ώ + βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝑿 𝝓𝒀
+ 𝟐 π’ˆ 𝑿, 𝒀 𝝃
For any X ∈ D ,Y ∈ 𝑫βŠ₯
Corollary 3.8. If M be a 𝝃 βˆ’vertical CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with
quarter symmetric metric connection. Then
2(𝛁 π‘Ώβˆ…)𝒀 = βˆ’π€ 𝝓𝒀 𝑿 + 𝛁 𝑿
βŠ₯
𝝓𝒀 – π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 βˆ’ 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ βˆ’ βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝒀 𝝓
+𝟐 π’ˆ 𝑿, 𝒀 𝝃
And
2 𝛁 𝒀 𝝓 𝑿 = 𝐀 𝝓𝒀 𝑿 βˆ’ 𝛁 𝑿
βŠ₯
𝝓𝒀 + π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 + 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝒀, βˆ…π‘Ώ + βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝒀 𝝓𝑿
+ 𝟐 π’ˆ 𝑿, 𝒀 𝝃
For any X ∈ D ,Y ∈ 𝑫βŠ₯
Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com
ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.69-75
www.ijera.com 73 | P a g e
IV. PARALLEL DISTRIBUTION
Definition 2. The horizontal (resp., vertical) distribution D (resp. , 𝐷βŠ₯
) is said to be Parallel [3] with respect to
the connection on M if βˆ‡ 𝑋 π‘Œ ∈ 𝐷 (resp. , if βˆ‡ 𝑍 π‘Š ∈ 𝐷βŠ₯
) for any vector field X,Y ∈ 𝐷 (resp. , π‘Š, 𝑍 ∈ 𝐷βŠ₯
)
Theorem 4.1 Let 𝑴 be a𝝃 βˆ’ π’—π’†π’“π’•π’Šπ’„π’‚π’ CR-submanifold of a nearly hyperbolic Kenmotsu manifold𝑴
with quarter symmetric metric connection. Then
(4.1) 𝒉 𝑿, βˆ…π’€ = 𝒉 𝒀, βˆ…π‘Ώ
𝒇𝒐𝒓 π’‚π’π’š 𝑿, 𝒀 ∈ 𝑫.
Proof :Using Parallelism of horizontal distribution D, We have
(4.2) βˆ‡ 𝑋 βˆ…π‘Œ ∈ 𝐷 π‘Žπ‘›π‘‘ βˆ‡ π‘Œβˆ…π‘‹ ∈ 𝐷 π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑋, π‘Œ ∈ 𝐷.
From (3.2), we have
(4.3) 𝐡𝑕 𝑋, π‘Œ = βˆ’g(X,Y)πœ‰
π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑋, π‘Œ ∈ 𝐷
Also from (2.11) we have
(4.4) πœ™π‘• 𝑋, π‘Œ = 𝐡𝑕 𝑋, π‘Œ + 𝐢𝑕 𝑋, π‘Œ
Using (4.3) in (4.4)
(4.5) 2𝐢𝑕 π‘Œ, 𝑋 = 𝑕 𝑋, πœ™π‘Œ + 𝑕 π‘Œ, πœ™π‘‹
Next,from (3.3) we have
From (4.4) ,Applying ( 4.5)
2πœ™π‘• 𝑋, π‘Œ = βˆ’2𝑔 𝑋, π‘Œ πœ‰ + 𝑕 𝑋, πœ™π‘Œ + 𝑕 π‘Œ, πœ™π‘‹
(4.6) 𝑕 𝑋, πœ™π‘Œ + 𝑕 π‘Œ, πœ™π‘‹ = 2πœ™π‘• 𝑋, π‘Œ +2𝑔 𝑋, π‘Œ πœ‰
Replacing X to πœ™π‘‹
(4.7) 𝑕 πœ™π‘‹, πœ™π‘Œ + 𝑕 π‘Œ, 𝑋 = 2πœ™π‘• πœ™π‘‹, π‘Œ +2𝑔 πœ™π‘‹, π‘Œ πœ‰
Now replacing Y to πœ™π‘Œ in (4.6)
(4.8) 𝑕 πœ™π‘‹, πœ™π‘Œ + 𝑕 π‘Œ, 𝑋 = 2πœ™π‘• 𝑋, πœ™π‘Œ +2𝑔 𝑋, πœ™π‘Œ πœ‰
From (4.7) and (4.8)
𝑕 πœ™π‘‹, π‘Œ = 𝑕 𝑋, πœ™π‘Œ
π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑋, π‘Œ ∈ 𝐷.
Hence theorem is proved.
Theorem 4.2. Let 𝑴 be a 𝝃 βˆ’ π’—π’†π’“π’•π’Šπ’„π’‚π’ submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with
quarter symmetric metric connection. If the distribution 𝑫βŠ₯
is parallel with respect to the connection on
M, then
(4.9) π‘¨βˆ…π’€ 𝑿 + π‘¨βˆ…π‘Ώ 𝒀 ∈ 𝑫βŠ₯
𝒇𝒐𝒓 π’‚π’π’š 𝑿, 𝒀 ∈ 𝑫βŠ₯
.
Proof : Let, 𝑋, π‘Œ ∈ 𝐷βŠ₯
.then using Weingarten Formula .We have
βˆ‡ 𝑋 𝑁 = βˆ’A 𝑁 𝑋 + βˆ‡ 𝑋
βŠ₯
𝑁 – 𝑔 πœ™π‘‹, 𝑁 πœ‰
Putting N= πœ™π‘Œ
βˆ‡ 𝑋 πœ™π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ – 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰
βˆ‡ 𝑋 πœ™ π‘Œ + πœ™ βˆ‡ 𝑋 π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ – 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰
Using Gauss formula
βˆ‡ 𝑋 πœ™ π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ – 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ βˆ’ πœ™(βˆ‡ 𝑋 π‘Œ + 𝑕 𝑋, π‘Œ )
(4.11) βˆ‡ 𝑋 πœ™ π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ βˆ’ πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™π‘• 𝑋, π‘Œ βˆ’ 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰
Interchanging X and Y
(4.12) βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’A πœ™π‘‹ π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘‹ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’ πœ™π‘• π‘Œ, 𝑋 βˆ’ 𝑔 πœ™π‘Œ, πœ™π‘‹ πœ‰
Adding (4.11) and (4.12) ,we get
βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’A πœ™π‘Œ 𝑋 βˆ’ A πœ™π‘‹ π‘Œ + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘‹ βˆ’ πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’ 2πœ™π‘• 𝑋, π‘Œ βˆ’ 2𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰
(4.13) βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’A πœ™π‘Œ 𝑋 βˆ’ A πœ™π‘‹ π‘Œ + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘‹ βˆ’ πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’ 2πœ™π‘• 𝑋, π‘Œ
βˆ’2𝑔 𝑋, π‘Œ πœ‰ + 2πœ‚ 𝑋 πœ‚(π‘Œ)πœ‰
From (2.13) and (4.13)
βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ = βˆ’A πœ™π‘Œ 𝑋 βˆ’ A πœ™π‘‹ π‘Œ + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘‹
βˆ’πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’ 2πœ™π‘• 𝑋, π‘Œ βˆ’ 2𝑔 𝑋, π‘Œ πœ‰ + 2πœ‚ 𝑋 πœ‚(π‘Œ)πœ‰
βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ = βˆ’A πœ™π‘Œ 𝑋 βˆ’ A πœ™π‘‹ π‘Œ + βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘‹ βˆ’ πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™βˆ‡ π‘Œ 𝑋
βˆ’2πœ™π‘• 𝑋, π‘Œ + 2πœ‚ 𝑋 πœ‚(π‘Œ)πœ‰
Operating g bothside w.r.to Z ∈ 𝐷
Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com
ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.00-00
www.ijera.com 74 |
P a g e
βˆ’ πœ‚ 𝑋 𝑔 π‘Œ, 𝑍 βˆ’ πœ‚ π‘Œ 𝑔 𝑋, 𝑍 βˆ’ πœ‚ 𝑋 𝑔 πœ™π‘Œ, 𝑍 βˆ’ πœ‚ π‘Œ 𝑔 πœ™π‘‹, 𝑍
= βˆ’π‘” A πœ™π‘Œ 𝑋, 𝑍 βˆ’ 𝑔 A πœ™π‘‹ π‘Œ, 𝑍 + 𝑔 βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ, 𝑍 + 𝑔 βˆ‡ π‘Œ
βŠ₯
πœ™π‘‹, 𝑍 βˆ’ 𝑔 πœ™βˆ‡ 𝑋 π‘Œ, 𝑍 βˆ’ 𝑔 πœ™βˆ‡ π‘Œ 𝑋 , 𝑍
βˆ’ 2πœ™π‘” 𝑕 𝑋, π‘Œ , 𝑍 + 2πœ‚ 𝑋 πœ‚ π‘Œ 𝑔 πœ‰, 𝑍
𝑔 A πœ™π‘Œ 𝑋 + 𝑔 A πœ™π‘‹ π‘Œ = 0
𝑔 A πœ™π‘Œ 𝑋 + A πœ™π‘‹ π‘Œ = 0
This implies that
A πœ™π‘Œ 𝑋 + A πœ™π‘‹ π‘Œ ∈ 𝑫βŠ₯
𝒇𝒐𝒓 π’‚π’π’š 𝑿, 𝒀 ∈ 𝑫βŠ₯
.
Hence theorem is proved.
Definition3.A CR-submanifold is said to be mixed-totally geodesic if𝑕 𝑋, 𝑍 = 0
π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑋 ∈ 𝐷 π‘Žπ‘›π‘‘ 𝑍 ∈ 𝐷βŠ₯
.
Definition 4.A Normal vector field 𝑁 β‰  0 is called𝐷 βˆ’ π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™ normal section if
βˆ‡ 𝑋
βŠ₯
𝑁 = 0for all 𝑋 ∈ 𝐷.
Theorem 4.3.Let 𝑀 be a mixed totally geodesic πœ‰ βˆ’ π‘£π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ CR-submanifold of a nearly hyperbolic
Kenmotsu manifold𝑀 with quarter symmetric metric connection. Then the normal section 𝑁 ∈ βˆ…π·βŠ₯
is 𝐷 βˆ’
π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’l if and only if βˆ‡ π‘‹βˆ…π‘ ∈ 𝐷 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑋 ∈ 𝐷.
Proof.Let 𝑁 ∈ βˆ…π·βŠ₯
, then from (3.2) we have
βˆ’πœ‚ 𝑋 π‘„π‘Œ βˆ’ πœ‚ π‘Œ 𝑄𝑋 + 2 𝑔 𝑋, π‘Œ π‘„πœ‰ + 2𝐡𝑕 π‘Œ, 𝑋
= (𝑄)βˆ‡ 𝑋 πœ™π‘ƒπ‘Œ + (𝑄)βˆ‡ π‘Œ πœ™π‘ƒπ‘‹ βˆ’ (𝑄)A πœ™π‘„π‘Œ 𝑋 βˆ’ (𝑄)A πœ™π‘„π‘‹ π‘Œ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘„π‘Œ) π‘„πœ‰
βˆ’ 𝑔(πœ™π‘Œ, πœ™π‘„π‘‹) π‘„πœ‰
(4.15) 2 𝑔 𝑋, π‘Œ πœ‰ + 2𝐡𝑕 𝑋, π‘Œ = π‘„βˆ‡ π‘Œ βˆ…π‘‹ βˆ’ π‘„π΄βˆ…π‘Œ 𝑋.
Using definition of mixed geodesic CR-submanifold,
𝑕 𝑋, π‘Œ = 0 , 𝑖𝑓 𝑋 ∈ 𝐷 π‘Žπ‘›π‘‘ 𝑍 ∈ 𝐷βŠ₯
(4.16) 2 𝑔 𝑋, π‘Œ πœ‰ = π‘„βˆ‡ π‘Œ βˆ…π‘‹ βˆ’ π‘„π΄βˆ…π‘Œ 𝑋.
As π΄βˆ…π‘Œ 𝑋 ∈ 𝐷, for 𝑋 ∈ 𝐷.
4.17 2 𝑔 𝑋, π‘Œ πœ‰ = π‘„βˆ‡ π‘Œ βˆ…π‘‹
Operating πœ™ both side
2 𝑔 𝑋, π‘Œ πœ™πœ‰ = πœ™π‘„βˆ‡ π‘Œ βˆ…π‘‹
πœ™π‘„βˆ‡ π‘Œ βˆ…π‘‹ = 0
In particular,
(4.18) π‘„βˆ‡ π‘Œ βˆ…π‘‹ = 0
From (3.3)
βˆ’ πœ‚ 𝑋 πœ™π‘„π‘Œ _ πœ‚ π‘Œ πœ™π‘„π‘‹ + πœ™π‘„ βˆ‡ 𝑋 π‘Œ + πœ™π‘„ βˆ‡ π‘Œ 𝑋 + 2𝐢𝑕 π‘Œ, 𝑋
= 𝑕 𝑋, πœ™π‘ƒπ‘Œ + 𝑕 π‘Œ, πœ™π‘ƒπ‘‹ + βˆ‡ 𝑋
βŠ₯
πœ™π‘„π‘Œ + βˆ‡ π‘Œ
βŠ₯
πœ™π‘„π‘‹
πœ™π‘„ βˆ‡ 𝑋 π‘Œ = βˆ‡ 𝑋
βŠ₯
πœ™π‘Œ
Putting , Y=πœ™π‘
πœ™π‘„ βˆ‡ 𝑋 πœ™π‘ = βˆ‡ 𝑋
βŠ₯
πœ™2
𝑁
πœ™π‘„ βˆ‡ 𝑋 πœ™π‘ = βˆ‡ 𝑋
βŠ₯
𝑁 + πœ‚ 𝑁 πœ‰
Then by Definition of Parallelism of N, We have
πœ™π‘„ βˆ‡ 𝑋 πœ™π‘ = 0
Consequently , We get
βˆ‡ 𝑋 πœ™π‘ ∈ 𝐷 , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑋 ∈ 𝐷.
This completes the Proof.
References
[1] A.Bejancu, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978),135-142.
[2] CR-submanifolds of a Kaehler manifold II, Trans. Amer. Math. Soc. 250 (1979),333-345.
[3] A. Bejancu and N.Papaghuic, CR-submanifolds of Kenmotsu manifold, Rend. Math. 7 (1984), 607-
622.
[4] C.J.Hsu, On CR-submanifolds of Sasakian manifolds I,Math.Research Center Reports, Symposium
Summer 1983, 117-140.
[5] Golab,S., On semi-symmetric and quarter-symmetric linear connections, Tensor 29 (1975), 249-254.
Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com
ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.69-75
www.ijera.com 75 | P a g e
[6] Ahmad, M, Siddiqui, M D, and Ojha, J P, Semi-invariant submanifolds of Kenmotsu manifold
immersed in a generalized almost r-contact structure admitting a quarter symmetric non-metric
connection, J. Math. Comput. Sci. 2(2012), No.4, 982-998. Romania.
[7] L.Bhatt and K.K.Dube, CR-submanifolds of a trans-hyperbolic Sasakian manifold, ActaCienciaIndica
31 (2003), 91-96.
[8] Lovejoy S.K. Das and M. Ahmad, CR-submanifolds of LP-Sasakian manifolds with quarter symmetric
non-metric connection, Math. Sci.J. 13 (7), 2009, 161-169.
[9] Blair, D.E, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509,
Springer-Verlag, Berlin, 1976.
[10] C. Ozgur, M.Ahmad and A.Haseeb, CR-submanifolds of LP-Sasakian manifolds with semi symmetric
metric connection, Hacettepe J. Math. And Stat. vol. 39 (4)(2010), 489-496.
[11] K.Matsumoto, On CR-submanifolds of locally conformal Kaehler manifolds, J.Korean Math.Soc.
21(1984), 49-61.
[12] Ahmad M. and Ali K. β€œCR- Submanifold of nearly hyperbolic cosymplectic manifold ” IOSR-JM,e-
ISSN: 2278-5728, p-ISSN: 2319-765X,vol. X, Issue X (May –June,2013).
[13] M.D.Upadhyayand K.K.Dube, Almost contact hyperbolic (βˆ…, πœ‰, πœ‚. 𝑔)-structure, Acta. Math. Acad.
Scient. Hung. Tomus 28(1976), 1-4.
[14] M.Kobayash, CR-submanifolds of Sasakian manifold, Tensor N.S. 35 (1981), 297-307.
[15] M. Ahmad, M.D.Siddiqi and S. Rizvi, CR-submanifolds of a nearly hyperbolic Sasakian manifolds
admitting semi symmetric semi metric connection, International J. Math. Sci & Engg Appls., vol
6(2012), 145-155.
[16] M Ahmad and J.P.Ojha, CR-submanifolds of LP-Sasakian manifolds with the canonical semi
symmetric semi-metric connection, Int. J.Contemt. Math. Science, vol.5(2010), no. 33, 1637-1643.

More Related Content

What's hot

On Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesOn Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesIJMER
Β 
Hx3513811385
Hx3513811385Hx3513811385
Hx3513811385IJERA Editor
Β 
Maxwell's formulation - differential forms on euclidean space
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean spacegreentask
Β 
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"Muhammad Faizan Musa
Β 
Hydraulic similitude and model analysis
Hydraulic similitude and model analysisHydraulic similitude and model analysis
Hydraulic similitude and model analysisMohsin Siddique
Β 
Instantons in 1D QM
Instantons in 1D QMInstantons in 1D QM
Instantons in 1D QMScott Shermer
Β 
Lecture 1.6 further graphs and transformations of quadratic equations
Lecture 1.6 further graphs and transformations of quadratic equationsLecture 1.6 further graphs and transformations of quadratic equations
Lecture 1.6 further graphs and transformations of quadratic equationsnarayana dash
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdfoxtrot jp R
Β 
2 borgs
2 borgs2 borgs
2 borgsYandex
Β 
Second Order Parallel Tensors and Ricci Solitons in S-space form
Second Order Parallel Tensors and Ricci Solitons in S-space formSecond Order Parallel Tensors and Ricci Solitons in S-space form
Second Order Parallel Tensors and Ricci Solitons in S-space forminventionjournals
Β 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysisRonak Parmar
Β 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaafoxtrot jp R
Β 
Change variablethm
Change variablethmChange variablethm
Change variablethmJasonleav
Β 

What's hot (20)

On Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesOn Some Partial Orderings for Bimatrices
On Some Partial Orderings for Bimatrices
Β 
Classical mechanics
Classical mechanicsClassical mechanics
Classical mechanics
Β 
Hx3513811385
Hx3513811385Hx3513811385
Hx3513811385
Β 
Maxwell's formulation - differential forms on euclidean space
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean space
Β 
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
Fundamentals of Physics "MOTION IN TWO AND THREE DIMENSIONS"
Β 
Dimensions and Dimensional Analysis
Dimensions and Dimensional AnalysisDimensions and Dimensional Analysis
Dimensions and Dimensional Analysis
Β 
J0744851
J0744851J0744851
J0744851
Β 
Hydraulic similitude and model analysis
Hydraulic similitude and model analysisHydraulic similitude and model analysis
Hydraulic similitude and model analysis
Β 
Instantons in 1D QM
Instantons in 1D QMInstantons in 1D QM
Instantons in 1D QM
Β 
Lecture 1.6 further graphs and transformations of quadratic equations
Lecture 1.6 further graphs and transformations of quadratic equationsLecture 1.6 further graphs and transformations of quadratic equations
Lecture 1.6 further graphs and transformations of quadratic equations
Β 
I0744347
I0744347I0744347
I0744347
Β 
Parallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrdParallel transport additional explorations part1&2 sqrd
Parallel transport additional explorations part1&2 sqrd
Β 
2 borgs
2 borgs2 borgs
2 borgs
Β 
Part VI - Group Theory
Part VI - Group TheoryPart VI - Group Theory
Part VI - Group Theory
Β 
Second Order Parallel Tensors and Ricci Solitons in S-space form
Second Order Parallel Tensors and Ricci Solitons in S-space formSecond Order Parallel Tensors and Ricci Solitons in S-space form
Second Order Parallel Tensors and Ricci Solitons in S-space form
Β 
O0703093097
O0703093097O0703093097
O0703093097
Β 
Second application of dimensional analysis
Second application of dimensional analysisSecond application of dimensional analysis
Second application of dimensional analysis
Β 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysis
Β 
Parallel tansportsqrdaa
Parallel tansportsqrdaaParallel tansportsqrdaa
Parallel tansportsqrdaa
Β 
Change variablethm
Change variablethmChange variablethm
Change variablethm
Β 

Viewers also liked

A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02IJERA Editor
Β 
Ab04603165169
Ab04603165169Ab04603165169
Ab04603165169IJERA Editor
Β 
A Mixed Approach For Nutrient Management Planning In Southeast Asian Countries
A Mixed Approach For Nutrient Management Planning In Southeast Asian CountriesA Mixed Approach For Nutrient Management Planning In Southeast Asian Countries
A Mixed Approach For Nutrient Management Planning In Southeast Asian CountriesIJERA Editor
Β 
Construction Cost Prediction by Using Building Information Modeling
Construction Cost Prediction by Using Building Information ModelingConstruction Cost Prediction by Using Building Information Modeling
Construction Cost Prediction by Using Building Information ModelingIJERA Editor
Β 
3D Graph Drawings: Good Viewing for Occluded Vertices
3D Graph Drawings: Good Viewing for Occluded Vertices3D Graph Drawings: Good Viewing for Occluded Vertices
3D Graph Drawings: Good Viewing for Occluded VerticesIJERA Editor
Β 
Natural Vibration Analysis of Femur Bone Using Hyperworks
Natural Vibration Analysis of Femur Bone Using HyperworksNatural Vibration Analysis of Femur Bone Using Hyperworks
Natural Vibration Analysis of Femur Bone Using HyperworksIJERA Editor
Β 
The optimum seeking method of Pavement maintenance based on interval fuzzy so...
The optimum seeking method of Pavement maintenance based on interval fuzzy so...The optimum seeking method of Pavement maintenance based on interval fuzzy so...
The optimum seeking method of Pavement maintenance based on interval fuzzy so...IJERA Editor
Β 
Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy ...
Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy ...Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy ...
Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy ...IJERA Editor
Β 
Dipolar interaction and the Manning formula
Dipolar interaction and the Manning formulaDipolar interaction and the Manning formula
Dipolar interaction and the Manning formulaIJERA Editor
Β 
Effectiveness Analysis of Travel Time For Mode Alternatife Trnasportation Bec...
Effectiveness Analysis of Travel Time For Mode Alternatife Trnasportation Bec...Effectiveness Analysis of Travel Time For Mode Alternatife Trnasportation Bec...
Effectiveness Analysis of Travel Time For Mode Alternatife Trnasportation Bec...IJERA Editor
Β 
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...IJERA Editor
Β 
Investigating the Performance of NoC Using Hierarchical Routing Approach
Investigating the Performance of NoC Using Hierarchical Routing ApproachInvestigating the Performance of NoC Using Hierarchical Routing Approach
Investigating the Performance of NoC Using Hierarchical Routing ApproachIJERA Editor
Β 
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...IJERA Editor
Β 
Denoising of ECG -- A discrete time approach using DWT.
Denoising of ECG -- A discrete time approach using DWT.Denoising of ECG -- A discrete time approach using DWT.
Denoising of ECG -- A discrete time approach using DWT.IJERA Editor
Β 
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...IJERA Editor
Β 
Comparative Study of Structure Using Composite Members And Conventional Members
Comparative Study of Structure Using Composite Members And Conventional MembersComparative Study of Structure Using Composite Members And Conventional Members
Comparative Study of Structure Using Composite Members And Conventional MembersIJERA Editor
Β 
Efficient Safety Culture as Sustainable Development in Construction Industry
Efficient Safety Culture as Sustainable Development in Construction IndustryEfficient Safety Culture as Sustainable Development in Construction Industry
Efficient Safety Culture as Sustainable Development in Construction IndustryIJERA Editor
Β 
A Brief Survey on Vertex and Label Anonymization Techniques of Online Social ...
A Brief Survey on Vertex and Label Anonymization Techniques of Online Social ...A Brief Survey on Vertex and Label Anonymization Techniques of Online Social ...
A Brief Survey on Vertex and Label Anonymization Techniques of Online Social ...IJERA Editor
Β 
A Comparative Study of Group Key Management in MANET
A Comparative Study of Group Key Management in MANETA Comparative Study of Group Key Management in MANET
A Comparative Study of Group Key Management in MANETIJERA Editor
Β 
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...IJERA Editor
Β 

Viewers also liked (20)

A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02
Β 
Ab04603165169
Ab04603165169Ab04603165169
Ab04603165169
Β 
A Mixed Approach For Nutrient Management Planning In Southeast Asian Countries
A Mixed Approach For Nutrient Management Planning In Southeast Asian CountriesA Mixed Approach For Nutrient Management Planning In Southeast Asian Countries
A Mixed Approach For Nutrient Management Planning In Southeast Asian Countries
Β 
Construction Cost Prediction by Using Building Information Modeling
Construction Cost Prediction by Using Building Information ModelingConstruction Cost Prediction by Using Building Information Modeling
Construction Cost Prediction by Using Building Information Modeling
Β 
3D Graph Drawings: Good Viewing for Occluded Vertices
3D Graph Drawings: Good Viewing for Occluded Vertices3D Graph Drawings: Good Viewing for Occluded Vertices
3D Graph Drawings: Good Viewing for Occluded Vertices
Β 
Natural Vibration Analysis of Femur Bone Using Hyperworks
Natural Vibration Analysis of Femur Bone Using HyperworksNatural Vibration Analysis of Femur Bone Using Hyperworks
Natural Vibration Analysis of Femur Bone Using Hyperworks
Β 
The optimum seeking method of Pavement maintenance based on interval fuzzy so...
The optimum seeking method of Pavement maintenance based on interval fuzzy so...The optimum seeking method of Pavement maintenance based on interval fuzzy so...
The optimum seeking method of Pavement maintenance based on interval fuzzy so...
Β 
Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy ...
Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy ...Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy ...
Cholesteric Liquid-Crystal Copolyester, Poly[oxycarbonyl- 1,4-phenylene- oxy ...
Β 
Dipolar interaction and the Manning formula
Dipolar interaction and the Manning formulaDipolar interaction and the Manning formula
Dipolar interaction and the Manning formula
Β 
Effectiveness Analysis of Travel Time For Mode Alternatife Trnasportation Bec...
Effectiveness Analysis of Travel Time For Mode Alternatife Trnasportation Bec...Effectiveness Analysis of Travel Time For Mode Alternatife Trnasportation Bec...
Effectiveness Analysis of Travel Time For Mode Alternatife Trnasportation Bec...
Β 
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Β 
Investigating the Performance of NoC Using Hierarchical Routing Approach
Investigating the Performance of NoC Using Hierarchical Routing ApproachInvestigating the Performance of NoC Using Hierarchical Routing Approach
Investigating the Performance of NoC Using Hierarchical Routing Approach
Β 
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Comparing the two techniques Tripod Beta and Mort at a critical accident anal...
Β 
Denoising of ECG -- A discrete time approach using DWT.
Denoising of ECG -- A discrete time approach using DWT.Denoising of ECG -- A discrete time approach using DWT.
Denoising of ECG -- A discrete time approach using DWT.
Β 
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
Β 
Comparative Study of Structure Using Composite Members And Conventional Members
Comparative Study of Structure Using Composite Members And Conventional MembersComparative Study of Structure Using Composite Members And Conventional Members
Comparative Study of Structure Using Composite Members And Conventional Members
Β 
Efficient Safety Culture as Sustainable Development in Construction Industry
Efficient Safety Culture as Sustainable Development in Construction IndustryEfficient Safety Culture as Sustainable Development in Construction Industry
Efficient Safety Culture as Sustainable Development in Construction Industry
Β 
A Brief Survey on Vertex and Label Anonymization Techniques of Online Social ...
A Brief Survey on Vertex and Label Anonymization Techniques of Online Social ...A Brief Survey on Vertex and Label Anonymization Techniques of Online Social ...
A Brief Survey on Vertex and Label Anonymization Techniques of Online Social ...
Β 
A Comparative Study of Group Key Management in MANET
A Comparative Study of Group Key Management in MANETA Comparative Study of Group Key Management in MANET
A Comparative Study of Group Key Management in MANET
Β 
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Β 

Similar to Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater Symmetric Metric Connection

Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...QUESTJOURNAL
Β 
Fixed point theorem between cone metric space and quasi-cone metric space
Fixed point theorem between cone metric space and quasi-cone metric spaceFixed point theorem between cone metric space and quasi-cone metric space
Fixed point theorem between cone metric space and quasi-cone metric spacenooriasukmaningtyas
Β 
Qausi Conformal Curvature Tensor on ν‘³ν‘ͺν‘Ί 풏-Manifolds
Qausi Conformal Curvature Tensor on ν‘³ν‘ͺν‘Ί 풏-ManifoldsQausi Conformal Curvature Tensor on ν‘³ν‘ͺν‘Ί 풏-Manifolds
Qausi Conformal Curvature Tensor on ν‘³ν‘ͺν‘Ί 풏-Manifoldsinventionjournals
Β 
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...inventionjournals
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxHassaan Saleem
Β 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Spaceinventionjournals
Β 
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsUniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsIOSR Journals
Β 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves PosterChristopher Wai
Β 
Matrix Product (Modulo-2) Of Cycle Graphs
Matrix Product (Modulo-2) Of Cycle GraphsMatrix Product (Modulo-2) Of Cycle Graphs
Matrix Product (Modulo-2) Of Cycle Graphsinventionjournals
Β 
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsm - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsIOSR Journals
Β 

Similar to Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater Symmetric Metric Connection (20)

Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Β 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
Β 
Fixed point theorem between cone metric space and quasi-cone metric space
Fixed point theorem between cone metric space and quasi-cone metric spaceFixed point theorem between cone metric space and quasi-cone metric space
Fixed point theorem between cone metric space and quasi-cone metric space
Β 
Qausi Conformal Curvature Tensor on ν‘³ν‘ͺν‘Ί 풏-Manifolds
Qausi Conformal Curvature Tensor on ν‘³ν‘ͺν‘Ί 풏-ManifoldsQausi Conformal Curvature Tensor on ν‘³ν‘ͺν‘Ί 풏-Manifolds
Qausi Conformal Curvature Tensor on ν‘³ν‘ͺν‘Ί 풏-Manifolds
Β 
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La VallΓ©e-...
Β 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
Β 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
Β 
Waveguides
WaveguidesWaveguides
Waveguides
Β 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
Β 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptx
Β 
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric SpaceFixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Fixed Point Results for Weakly Compatible Mappings in Convex G-Metric Space
Β 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
Β 
C0560913
C0560913C0560913
C0560913
Β 
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized EquationsUniformity of the Local Convergence of Chord Method for Generalized Equations
Uniformity of the Local Convergence of Chord Method for Generalized Equations
Β 
ParallelABX
ParallelABXParallelABX
ParallelABX
Β 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
Β 
Matrix Product (Modulo-2) Of Cycle Graphs
Matrix Product (Modulo-2) Of Cycle GraphsMatrix Product (Modulo-2) Of Cycle Graphs
Matrix Product (Modulo-2) Of Cycle Graphs
Β 
D0611923
D0611923D0611923
D0611923
Β 
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsm - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
Β 

Recently uploaded

(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Β 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”soniya singh
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Β 

Recently uploaded (20)

(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Β 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
Β 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
Β 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Model Call Girl in Narela Delhi reach out to us at πŸ”8264348440πŸ”
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Β 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
Β 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Β 

Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater Symmetric Metric Connection

  • 1. Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.69-75 www.ijera.com 69 | P a g e Cr-Submanifolds of a Nearly Hyperbolic Kenmotsu Manifold Admitting a Quater Symmetric Metric Connection Nikhat Zulekha1 , Shadab Ahmad Khan2 and Mobin Ahmad3 1,2 Department of Mathematics, Integral University, Kursi Road Lucknow-226026, India 3 Department of Mathematics, Faculty of Science, Jazan University, Jazan-2069, Saudi Arabia. ABSTRACT We consider a nearly hyperbolic Kenmotsu manifold with a quarter symmetric metric connection and study CR- submanifolds of a nearly hyperbolic Kenmotsu manifold with quarter symmetric metric connection. We also study parallel distributions on nearly hyperbolic Kenmotsu manifold with quarter symmetric metric connection and find the integrability conditions of some distributions on nearly hyperbolic Kenmotsu manifold with quarter symmetric metric connection. Keywords: CR-submanifolds, nearly hyperbolic Kenmotsu manifold, quarter symmetric metric connection, integrability conditions, parallel distribution. I. Introduction The study of CR-submanifolds of a Kaehler manifold was initiated by A. Bejancu in ([1], [2]). Since then, several papers on Kaehler manifolds were published. CR-submanifolds of Sasakian manifold was studied by C.J. Hsu in [4] and M. Kobayashi in [14]. CR-submanifolds of Kenmotsu manifold was studied by A. Bejancu and N. Papaghuic in [3]. Later, several geometers (see, [6], [9] [10], [11] [12] [16] [17]) enriched the study of CR- submanifolds of almost contact manifolds.The almost hyperbolic (𝑓, 𝑔, πœ‚, πœ‰) -structure was defined and studied by Upadhyay and Dube in [13]. Dube and Bhatt studied CR-submanifolds of trans-hyperbolic Sasakian manifold in [7]. On the other hand, S. Golab introduced the idea of semi-symmetric and quarter symmetric connections in [5]. CR-submanifolds of LP-Sasakian manifold with quarter symmetric metric connection were studied by the first author and S.K. Lovejoy Das in [8]. CR-submanifolds of a nearly hyperbolic Sasakian manifold admitting a semi-symmetric semi-metric connection were studied by the first author, M.D. Siddiqi and S. Rizvi in [15]. In this paper, we study some properties of CR-submanifolds of a nearly hyperbolic Kenmotsu manifold with a quarter symmetric metric connection. The paper is organized as follows. In section 2, we give a brief description of nearly hyperbolic Kenmotsu manifold with a quarter symmetric metric connection. In section 3, some properties of CR- Submanifold of nearly hyperbolic Kenmotsu manifold with a quarter symmetric metric connection are investigated. In section 4,We study some result on parallel distribution on ΞΎ-horizontal and ΞΎ-vertical CR- Submanifold of nearly hyperbolic Kenmotsu manifold with a quarter symmetric metric connections. II. Preliminaries Let 𝑀 be an 𝑛-dimensional almost hyperbolic contact metric manifold with the almost hyperbolic contact metric structure βˆ…, πœ‰, πœ‚. 𝑔 , where a tensor βˆ… of type 1,1 , a vector field πœ‰, called structure vector field and πœ‚, the dual 1-form of πœ‰ satisfying the following 2.1 βˆ…2 𝑋 = 𝑋 + πœ‚ 𝑋 𝝃, 𝑔 𝑋, πœ‰ = πœ‚ 𝑋 , 2.2 πœ‚ πœ‰ = βˆ’1, βˆ… πœ‰ = 0, πœ‚π‘œβˆ… = 0, 2.3 𝑔 βˆ…π‘‹, βˆ…π‘Œ = βˆ’π‘” 𝑋, π‘Œ βˆ’ πœ‚ 𝑋 πœ‚ π‘Œ For any 𝑋, π‘Œ tangent to 𝑀 [17]. In this case 2.4 𝑔 βˆ…π‘‹, π‘Œ = βˆ’π‘” βˆ…π‘Œ, 𝑋 . An almost hyperbolic contact metric structure βˆ…, πœ‰, πœ‚, 𝑔 on 𝑀 is called hyperbolic Kenmotsu manifold [7 ] if and only if 2.5 βˆ‡ π‘‹βˆ… π‘Œ = 𝑔 βˆ…π‘‹, π‘Œ πœ‰ βˆ’ πœ‚ π‘Œ βˆ…π‘‹ for all 𝑋, π‘Œ tangent to 𝑀. Further, an almost hyperbolic contact metric manifold 𝑀 on βˆ…, πœ‰, πœ‚, 𝑔 is called nearly-hyperbolic Kenmotsu [ 7] if 2.6 βˆ‡ π‘‹βˆ… π‘Œ + βˆ‡ π‘Œβˆ… 𝑋 = βˆ’πœ‚ 𝑋 βˆ…π‘Œ βˆ’ πœ‚ π‘Œ βˆ…π‘‹. Now, Let M be a submanifold immersed in 𝑀. The Riemannian metric induced on 𝑀 is denoted by the same symbol 𝑔. Let 𝑇𝑀 π‘Žπ‘›π‘‘ 𝑇βŠ₯ 𝑀 be the Lie algebra of vector fields tangential to 𝑀 and normal to 𝑀 RESEARCH ARTICLE OPEN ACCESS
  • 2. Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.00-00 www.ijera.com 70 | P a g e respectively and βˆ‡βˆ— be the induced Levi-Civita connection on 𝑁, then the Gauss and Weingarten formulas are given respectively by 2.7 βˆ‡ 𝑋 π‘Œ = βˆ‡ 𝑋 βˆ— π‘Œ + 𝑕 𝑋, π‘Œ , 2.8 βˆ‡ 𝑋 𝑁 = βˆ’π΄ 𝑁 𝑋 + βˆ‡ 𝑋 βŠ₯ 𝑁 for any 𝑋, π‘Œ ∈ 𝑇𝑀 π‘Žπ‘›π‘‘ 𝑁 ∈ 𝑇βŠ₯ 𝑀, where βˆ‡βŠ₯ is a connection on the normal bundle 𝑇βŠ₯ 𝑀, 𝑕 is the second fundamental form and 𝐴 𝑁 is the Weingarten map associated with N as 2.9 𝑔 𝐴 𝑁 𝑋, π‘Œ = 𝑔 𝑕 𝑋, π‘Œ , 𝑁 for any π‘₯ ∈ 𝑀 π‘Žπ‘›π‘‘ 𝑋 ∈ 𝑇π‘₯ 𝑀.We write 2.10 𝑋 = 𝑃𝑋 + 𝑄𝑋, where𝑃𝑋 ∈ 𝐷 π‘Žπ‘›π‘‘ 𝑄𝑋 ∈ 𝐷βŠ₯ . Similarly, for 𝑁 normal to 𝑀, we have 2.11 βˆ…π‘ = 𝐡𝑁 + 𝐢𝑁, where, 𝐡𝑁 π‘Ÿπ‘’π‘ π‘. 𝐢𝑁 is the tangential component π‘Ÿπ‘’π‘ π‘. π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘π‘œπ‘šπ‘π‘œπ‘›π‘’π‘›π‘‘ of βˆ…π‘. Now, we define a quarter symmetric metric connection by (2.12) βˆ‡ 𝑋 π‘Œ = βˆ‡ 𝑋 π‘Œ + πœ‚ π‘Œ πœ™π‘‹ βˆ’ 𝑔(πœ™π‘‹, π‘Œ)πœ‰ Such that, βˆ‡ 𝑋 𝑔 π‘Œ, 𝑍 = βˆ’πœ‚ π‘Œ 𝑔 πœ™π‘‹, 𝑍 βˆ’ πœ‚ 𝑍 𝑔(πœ™π‘‹, π‘Œ) Using (2.13) and (2.6), We have (2.13) βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ An almost hyperbolic contact manifold 𝑀 satisfying (2.13) is called nearly hyperbolic Kenmotsu manifold with quarter symmetric metric connection. For a nearly hyperbolic Kenmotsu manifold with quarter symmetric metric connection, we have 2.14 βˆ‡ 𝑋 𝝃 = βˆ’πœΆ βˆ…π‘‹ + 𝛽 𝑋 βˆ’ πœ‚ 𝑋 πœ‰ + βˆ…π‘‹. Gauss and Weingarten formula for quarter symmetric non-metric connection are given respectively by 2.15 βˆ‡ 𝑋 π‘Œ = βˆ‡ 𝑋 π‘Œ + 𝑕 𝑋, π‘Œ , (2.16) βˆ‡ 𝑋 𝑁 = βˆ’π΄ 𝑁 𝑋 + βˆ‡ 𝑋 βŠ₯ 𝑁 βˆ’ 𝑔 πœ™π‘‹, 𝑁 πœ‰ . Definition 1.An m-dimensional submanifold M of𝑀 is called a CR-Submanifold of almost nearly hyperbolic contact manifold 𝑀, if there exist a differentiable distribution 𝐷: π‘₯ ⟢ 𝐷π‘₯ on M satisfying the following conditions: i. D is invariant, that is βˆ…π·π‘₯ βŠ‚ 𝐷π‘₯ π‘“π‘œπ‘Ÿ π‘’π‘Žπ‘π‘• π‘₯ ∈ 𝑀. ii. The complementary orthogonal distribution 𝐷βŠ₯ of D is anti-invariant, that is βˆ…π·π‘₯ βŠ₯ βŠ‚ 𝑇π‘₯ βŠ₯ 𝑀. If dim 𝐷π‘₯ βŠ₯ = 0 (π‘Ÿπ‘’π‘ π‘. , dim 𝐷π‘₯ = 0), then the CR-Submanifold is called an invariant (resp., anti-invariant) submanifold. The distribution 𝐷 π‘Ÿπ‘’π‘ π‘. , 𝐷βŠ₯ is called the horizontal (resp., vertical) distribution. Also, the pair 𝐷, 𝐷βŠ₯ is called πœ‰ βˆ’ π‘•π‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π‘Ÿπ‘’π‘ π‘. , π‘£π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ 𝑖𝑓 πœ‰ 𝑋 ∈ 𝐷𝑋 π‘Ÿπ‘’π‘ π‘. , πœ‰ 𝑋 ∈ 𝐷𝑋βŠ₯. III. Some Basic Lemmas Lemma -3.1 If M be a CR-submanifold of nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection. Then (3.1) βˆ’πœΌ 𝑿 𝑷𝒀 βˆ’ 𝜼 𝒀 𝑷𝑿 βˆ’ 𝜼 𝑿 𝝓𝑷𝒀 βˆ’ 𝜼 𝒀 𝝓𝑷𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝑷𝝃 + 𝝓𝑷 𝛁 𝑿 𝒀 + 𝝓𝑷 𝛁 𝒀 𝑿 = 𝑷 𝛁 𝑿 𝝓𝑷𝒀 + 𝑷 𝛁 𝒀 𝝓𝑷𝑿 βˆ’ 𝑷 𝐀 𝝓𝑸𝒀 𝑿 βˆ’ 𝑷 𝐀 𝝓𝑸𝑿 𝒀 βˆ’ π’ˆ 𝝓𝑿, 𝝓𝑸𝒀 𝑷𝝃 βˆ’ π’ˆ(𝝓𝒀, 𝝓𝑸𝑿) 𝑷𝝃 (3.2) βˆ’πœΌ 𝑿 𝑸𝒀 βˆ’ 𝜼 𝒀 𝑸𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝑸𝝃 + πŸπ‘©π’‰ 𝒀, 𝑿 = (𝑸)𝛁 𝑿 𝝓𝑷𝒀 + (𝑸)𝛁 𝒀 𝝓𝑷𝑿 βˆ’ (𝑸)𝐀 𝝓𝑸𝒀 𝑿 βˆ’ (𝑸)𝐀 𝝓𝑸𝑿 𝒀 βˆ’ π’ˆ(𝝓𝑿, 𝝓𝑸𝒀) 𝑸𝝃 βˆ’ π’ˆ(𝝓𝒀, 𝝓𝑸𝑿) 𝑸𝝃 (3.3)βˆ’ 𝜼 𝑿 𝝓𝑸𝒀 βˆ’ 𝜼 𝒀 𝝓𝑸𝑿 + 𝝓𝑸 𝛁 𝑿 𝒀 + 𝝓𝑸 𝛁 𝒀 𝑿 + 𝟐π‘ͺ𝒉 𝒀, 𝑿 = 𝒉 𝑿, 𝝓𝑷𝒀 + 𝒉 𝒀, 𝝓𝑷𝑿 + 𝛁 𝑿 βŠ₯ 𝝓𝑸𝒀 + 𝛁 𝒀 βŠ₯ 𝝓𝑸𝑿 Proof: From (2.10) , we have πœ™π‘Œ = πœ™π‘ƒπ‘Œ + πœ™π‘„π‘Œ Differentiating covariantly and using (2.15) and (2.16), we get βˆ‡ 𝑋 πœ™ π‘Œ + πœ™βˆ‡ 𝑋 π‘Œ + πœ™π‘• 𝑋, π‘Œ = βˆ‡ 𝑋 πœ™π‘ƒπ‘Œ + 𝑕 𝑋, πœ™π‘ƒπ‘Œ βˆ’ A πœ™π‘„π‘Œ 𝑋 + βˆ‡ 𝑋 βŠ₯ πœ™π‘„π‘Œ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘„π‘Œ)πœ‰ Interchanging X and Y βˆ‡ π‘Œ πœ™ 𝑋 + πœ™βˆ‡ π‘Œ 𝑋 + πœ™π‘• π‘Œ, 𝑋 = βˆ‡ π‘Œ πœ™π‘ƒπ‘‹ + 𝑕 π‘Œ, πœ™π‘ƒπ‘‹ βˆ’ A πœ™π‘„π‘‹ π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘„π‘‹ βˆ’ 𝑔(πœ™π‘Œ, πœ™π‘„π‘‹)πœ‰ Adding above two equations, we obtain
  • 3. Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.69-75 www.ijera.com 71 | P a g e βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 + πœ™βˆ‡ 𝑋 π‘Œ + πœ™βˆ‡ π‘Œ 𝑋 + 2πœ™π‘• π‘Œ, 𝑋 = βˆ‡ 𝑋 πœ™π‘ƒπ‘Œ + βˆ‡ π‘Œ πœ™π‘ƒπ‘‹ + 𝑕 𝑋, πœ™π‘ƒπ‘Œ + 𝑕 π‘Œ, πœ™π‘ƒπ‘‹ βˆ’ A πœ™π‘„π‘Œ 𝑋 βˆ’ A πœ™π‘„π‘‹ π‘Œ + βˆ‡ 𝑋 βŠ₯ πœ™π‘„π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘„π‘‹ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘„π‘Œ)πœ‰ βˆ’ 𝑔(πœ™π‘Œ, πœ™π‘„π‘‹)πœ‰ Using eqution (2.13) in above equation, we get (3.4) βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ + πœ™βˆ‡ 𝑋 π‘Œ + πœ™βˆ‡ π‘Œ 𝑋 + 2πœ™π‘• π‘Œ, 𝑋 = βˆ‡ 𝑋 πœ™π‘ƒπ‘Œ + βˆ‡ π‘Œ πœ™π‘ƒπ‘‹ + 𝑕 𝑋, πœ™π‘ƒπ‘Œ + 𝑕 π‘Œ, πœ™π‘ƒπ‘‹ βˆ’ A πœ™π‘„π‘Œ 𝑋 βˆ’ A πœ™π‘„π‘‹ π‘Œ + βˆ‡ 𝑋 βŠ₯ πœ™π‘„π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘„π‘Œ)πœ‰ βˆ’ 𝑔(πœ™π‘Œ, πœ™π‘„π‘‹)πœ‰ Comparing tangential, Vertical and Normal components from both sides of (3.4), we get the desired results Hence the Lemma is Proved. Lemma -3.2 If M be a CR-submanifold of nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection. Then πŸ‘. πŸ“ 𝟐(𝛁 π‘Ώβˆ…)𝒀 = βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝑿 𝝓𝒀 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 + 𝛁 π‘Ώβˆ…π’€ + 𝒉 𝑿, βˆ…π’€ βˆ’ 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ βˆ’ βˆ… 𝑿, 𝒀 (3.6) 2(𝛁 π’€βˆ…)𝑿 = βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝑿 𝝓𝒀 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 βˆ’ 𝛁 π‘Ώβˆ…π’€ βˆ’ 𝒉 𝑿, βˆ…π’€ + 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝒀, βˆ…π‘Ώ + βˆ… 𝑿, 𝒀 For any X ,Y ∈ 𝑫. Proof : From Gauss Formula (2.15), We get (3.7) βˆ‡ 𝑋 πœ™π‘Œ βˆ’ βˆ‡ π‘Œ πœ™π‘‹ = βˆ‡ π‘‹βˆ…π‘Œ + 𝑕 𝑋, βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ Also we have (3.8) βˆ‡ π‘‹βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ = (βˆ‡ π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡ π‘Œβˆ…)𝑋 + βˆ… 𝑋, π‘Œ From (3.7) and (3.8) 3.9 (βˆ‡ π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡ π‘Œβˆ…)𝑋 = βˆ‡ π‘‹βˆ…π‘Œ + 𝑕 𝑋, βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ βˆ’ βˆ… 𝑋, π‘Œ Adding (2.13) and (3.9) 2(βˆ‡ π‘‹βˆ…)π‘Œ = βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ + βˆ‡ π‘‹βˆ…π‘Œ + 𝑕 𝑋, βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ βˆ’ βˆ… 𝑋, π‘Œ Subtracting (3.9) from (2.13) , 2(βˆ‡ π‘Œβˆ…)𝑋 = βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ βˆ’ βˆ‡ π‘‹βˆ…π‘Œ βˆ’ 𝑕 𝑋, βˆ…π‘Œ + βˆ‡ π‘Œβˆ…π‘‹ + 𝑕 π‘Œ, βˆ…π‘‹ + βˆ… 𝑋, π‘Œ Hence Lemma is proved. Corollary 3.3. If M be a 𝝃 βˆ’vertical CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection. Then 𝟐(𝛁 π‘Ώβˆ…)𝒀 = 𝛁 π‘Ώβˆ…π’€ βˆ’ 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝑿, βˆ…π’€ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 βˆ’ βˆ… 𝑿, 𝒀 and 2(𝛁 π’€βˆ…)𝑿 = 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝛁 π‘Ώβˆ…π’€ + 𝒉 𝒀, βˆ…π‘Ώ βˆ’ 𝒉 𝑿, βˆ…π’€ + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 + βˆ… 𝑿, 𝒀 For any X,Y ∈ D. Lemma 3.4 If M be a CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection . Then (3.10) 2 𝛁 𝒀 𝝓 𝒁 = 𝐀 𝝓𝒀 𝒁 βˆ’ 𝐀 𝝓𝒁 𝒀 + 𝛁 𝒀 βŠ₯ 𝝓𝒁 βˆ’ 𝛁 𝒁 βŠ₯ 𝝓𝒀 βˆ’ βˆ… 𝒀, 𝒁 βˆ’ 𝜼 𝒀 𝒁 βˆ’ 𝜼 𝒁 𝒀 βˆ’ 𝜼 𝒀 𝝓𝒁 βˆ’ 𝜼 𝒁 𝝓𝒀 + 𝟐 π’ˆ 𝒀, 𝒁 𝝃 (3.11) 2 𝛁 𝒁 𝝓 𝒀 = 𝐀 𝝓𝒁 𝒀 βˆ’ 𝐀 𝝓𝒀 𝒁 + 𝛁 𝒁 βŠ₯ 𝝓𝒀 βˆ’ 𝛁 𝒀 βŠ₯ 𝝓𝒁 + βˆ… 𝒀, 𝒁 βˆ’ 𝜼 𝒀 𝒁 βˆ’ 𝜼 𝒁 𝒀 βˆ’ 𝜼 𝒀 𝝓𝒁 βˆ’ 𝜼 𝒁 𝝓𝒀 + 𝟐 π’ˆ 𝒀, 𝒁 𝝃 For any Y,Z ∈ 𝑫βŠ₯ . Proof : Let, Y,Z ∈ 𝐷βŠ₯ . From Weingarten formula (2.16), we get 3.12 βˆ‡ π‘Œβˆ…π‘ βˆ’ βˆ‡ π‘βˆ…π‘Œ = A πœ™π‘Œ 𝑍 βˆ’ A πœ™π‘ π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘ βˆ’ βˆ‡ 𝑍 βŠ₯ πœ™π‘Œ Also we have, from equation (3.8) 3.13 βˆ‡ π‘Œβˆ…π‘ βˆ’ βˆ‡ π‘βˆ…π‘Œ = (βˆ‡ π‘Œβˆ…)𝑍 βˆ’ (βˆ‡ π‘βˆ…)π‘Œ + βˆ… π‘Œ, 𝑍 From (3.12) and (3.13) 3.14 (βˆ‡ π‘Œβˆ…)𝑍 βˆ’ (βˆ‡ π‘βˆ…)π‘Œ = A πœ™π‘Œ 𝑍 βˆ’ A πœ™π‘ π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘ βˆ’ βˆ‡ 𝑍 βŠ₯ πœ™π‘Œ βˆ’ βˆ… π‘Œ, 𝑍 For nearly Hyperbolic Kenmotsu manifold, we have 3.15 βˆ‡ π‘Œ πœ™ 𝑍 + βˆ‡ 𝑍 πœ™ π‘Œ = βˆ’ πœ‚ π‘Œ 𝑍 βˆ’ πœ‚ 𝑍 π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘ βˆ’ πœ‚ 𝑍 πœ™π‘Œ + 2 𝑔 π‘Œ, 𝑍 πœ‰ Adding (3.14) and (3.15),
  • 4. Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.00-00 www.ijera.com 72 | P a g e 2 βˆ‡ π‘Œ πœ™ 𝑍 = A πœ™π‘Œ 𝑍 βˆ’ A πœ™π‘ π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘ βˆ’ βˆ‡ 𝑍 βŠ₯ πœ™π‘Œ βˆ’ βˆ… π‘Œ, 𝑍 βˆ’ πœ‚ π‘Œ 𝑍 βˆ’ πœ‚ 𝑍 π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘ βˆ’ πœ‚ 𝑍 πœ™π‘Œ + 2 𝑔 π‘Œ, 𝑍 πœ‰ Subtracting (3.14) from (3.15), 2 βˆ‡ 𝑍 πœ™ π‘Œ = A πœ™π‘ π‘Œ βˆ’ A πœ™π‘Œ 𝑍 + βˆ‡ 𝑍 βŠ₯ πœ™π‘Œ βˆ’ βˆ‡ π‘Œ βŠ₯ πœ™π‘ + βˆ… π‘Œ, 𝑍 βˆ’ πœ‚ π‘Œ 𝑍 βˆ’ πœ‚ 𝑍 π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘ βˆ’ πœ‚ 𝑍 πœ™π‘Œ + 2 𝑔 π‘Œ, 𝑍 πœ‰ For Y,Z ∈ 𝐷βŠ₯ Hence Lemma is proved. Corollary 3.5 If M be a 𝝃 βˆ’ horizontal CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection . Then 2 𝛁 𝒀 𝝓 𝒁 = 𝐀 𝝓𝒀 𝒁 βˆ’ 𝐀 𝝓𝒁 𝒀 + 𝛁 𝒀 βŠ₯ 𝝓𝒁 βˆ’ 𝛁 𝒁 βŠ₯ 𝝓𝒀 βˆ’ βˆ… 𝒀, 𝒁 + 𝟐 π’ˆ 𝒀, 𝒁 𝝃 ,and 2 𝛁 𝒁 𝝓 𝒀 = 𝐀 𝝓𝒁 𝒀 βˆ’ 𝐀 𝝓𝒀 𝒁 + 𝛁 𝒁 βŠ₯ 𝝓𝒀 βˆ’ 𝛁 𝒀 βŠ₯ 𝝓𝒁 + βˆ… 𝒀, 𝒁 + 𝟐 π’ˆ 𝒀, 𝒁 𝝃 For any Y,Z ∈ 𝑫βŠ₯ . Lemma 3.6 If M be a CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection . Then (3.16) 2(𝛁 π‘Ώβˆ…)𝒀 = βˆ’π€ 𝝓𝒀 𝑿 + 𝛁 𝑿 βŠ₯ 𝝓𝒀 – π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 βˆ’ 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ βˆ’ βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝑿 𝝓𝒀 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 And (3.17) 2 𝛁 𝒀 𝝓 𝑿 = 𝐀 𝝓𝒀 𝑿 βˆ’ 𝛁 𝑿 βŠ₯ 𝝓𝒀 + π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 + 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝒀, βˆ…π‘Ώ + βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝑿 𝝓𝒀 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 For any X ∈ D , Y ∈ 𝑫βŠ₯ Proof : Let X ∈ D ,Y ∈ 𝐷βŠ₯ From Gauss and Weingarten formulae, we have 3.18 βˆ‡ π‘‹βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘Œ)πœ‰ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ Also we have 3.19 βˆ‡ π‘‹βˆ…π‘Œ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ = (βˆ‡ π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡ π‘Œβˆ…)𝑋 + βˆ… 𝑋, π‘Œ From (3.18) and (3.19) 3.20 (βˆ‡ π‘‹βˆ…)π‘Œ βˆ’ (βˆ‡ π‘Œβˆ…)𝑋 = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ βˆ’ 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ βˆ’ βˆ… 𝑋, π‘Œ Also For nearly Hyperbolic Kenmotsu manifold, we have (3.21) βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ Adding (3.20) and (3.21), We obtain 2(βˆ‡ π‘‹βˆ…)π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ – 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ βˆ’ βˆ‡ π‘Œβˆ…π‘‹ βˆ’ 𝑕 π‘Œ, βˆ…π‘‹ βˆ’ βˆ… 𝑋, π‘Œ βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ Subtracting (3.20) from (3.21), 2 βˆ‡ π‘Œ πœ™ 𝑋 = A πœ™π‘Œ 𝑋 βˆ’ βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ + 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ + βˆ‡ π‘Œβˆ…π‘‹ + 𝑕 π‘Œ, βˆ…π‘‹ + βˆ… 𝑋, π‘Œ βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ Corollary 3.7 If M be a𝝃 βˆ’ horizontal CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection . Then 2(𝛁 π‘Ώβˆ…)𝒀 = βˆ’π€ 𝝓𝒀 𝑿 + 𝛁 𝑿 βŠ₯ 𝝓𝒀 – π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 βˆ’ 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ βˆ’ βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝑿 𝝓𝒀 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 And 2 𝛁 𝒀 𝝓 𝑿 = 𝐀 𝝓𝒀 𝑿 βˆ’ 𝛁 𝑿 βŠ₯ 𝝓𝒀 + π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 + 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝒀, βˆ…π‘Ώ + βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝑿 𝒀 βˆ’ 𝜼 𝑿 𝝓𝒀 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 For any X ∈ D ,Y ∈ 𝑫βŠ₯ Corollary 3.8. If M be a 𝝃 βˆ’vertical CR-submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection. Then 2(𝛁 π‘Ώβˆ…)𝒀 = βˆ’π€ 𝝓𝒀 𝑿 + 𝛁 𝑿 βŠ₯ 𝝓𝒀 – π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 βˆ’ 𝛁 π’€βˆ…π‘Ώ βˆ’ 𝒉 𝒀, βˆ…π‘Ώ βˆ’ βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝒀 𝝓 +𝟐 π’ˆ 𝑿, 𝒀 𝝃 And 2 𝛁 𝒀 𝝓 𝑿 = 𝐀 𝝓𝒀 𝑿 βˆ’ 𝛁 𝑿 βŠ₯ 𝝓𝒀 + π’ˆ 𝝓𝑿, 𝝓𝒀 𝝃 + 𝛁 π’€βˆ…π‘Ώ + 𝒉 𝒀, βˆ…π‘Ώ + βˆ… 𝑿, 𝒀 βˆ’ 𝜼 𝒀 𝑿 βˆ’ 𝜼 𝒀 𝝓𝑿 + 𝟐 π’ˆ 𝑿, 𝒀 𝝃 For any X ∈ D ,Y ∈ 𝑫βŠ₯
  • 5. Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.69-75 www.ijera.com 73 | P a g e IV. PARALLEL DISTRIBUTION Definition 2. The horizontal (resp., vertical) distribution D (resp. , 𝐷βŠ₯ ) is said to be Parallel [3] with respect to the connection on M if βˆ‡ 𝑋 π‘Œ ∈ 𝐷 (resp. , if βˆ‡ 𝑍 π‘Š ∈ 𝐷βŠ₯ ) for any vector field X,Y ∈ 𝐷 (resp. , π‘Š, 𝑍 ∈ 𝐷βŠ₯ ) Theorem 4.1 Let 𝑴 be a𝝃 βˆ’ π’—π’†π’“π’•π’Šπ’„π’‚π’ CR-submanifold of a nearly hyperbolic Kenmotsu manifold𝑴 with quarter symmetric metric connection. Then (4.1) 𝒉 𝑿, βˆ…π’€ = 𝒉 𝒀, βˆ…π‘Ώ 𝒇𝒐𝒓 π’‚π’π’š 𝑿, 𝒀 ∈ 𝑫. Proof :Using Parallelism of horizontal distribution D, We have (4.2) βˆ‡ 𝑋 βˆ…π‘Œ ∈ 𝐷 π‘Žπ‘›π‘‘ βˆ‡ π‘Œβˆ…π‘‹ ∈ 𝐷 π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑋, π‘Œ ∈ 𝐷. From (3.2), we have (4.3) 𝐡𝑕 𝑋, π‘Œ = βˆ’g(X,Y)πœ‰ π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑋, π‘Œ ∈ 𝐷 Also from (2.11) we have (4.4) πœ™π‘• 𝑋, π‘Œ = 𝐡𝑕 𝑋, π‘Œ + 𝐢𝑕 𝑋, π‘Œ Using (4.3) in (4.4) (4.5) 2𝐢𝑕 π‘Œ, 𝑋 = 𝑕 𝑋, πœ™π‘Œ + 𝑕 π‘Œ, πœ™π‘‹ Next,from (3.3) we have From (4.4) ,Applying ( 4.5) 2πœ™π‘• 𝑋, π‘Œ = βˆ’2𝑔 𝑋, π‘Œ πœ‰ + 𝑕 𝑋, πœ™π‘Œ + 𝑕 π‘Œ, πœ™π‘‹ (4.6) 𝑕 𝑋, πœ™π‘Œ + 𝑕 π‘Œ, πœ™π‘‹ = 2πœ™π‘• 𝑋, π‘Œ +2𝑔 𝑋, π‘Œ πœ‰ Replacing X to πœ™π‘‹ (4.7) 𝑕 πœ™π‘‹, πœ™π‘Œ + 𝑕 π‘Œ, 𝑋 = 2πœ™π‘• πœ™π‘‹, π‘Œ +2𝑔 πœ™π‘‹, π‘Œ πœ‰ Now replacing Y to πœ™π‘Œ in (4.6) (4.8) 𝑕 πœ™π‘‹, πœ™π‘Œ + 𝑕 π‘Œ, 𝑋 = 2πœ™π‘• 𝑋, πœ™π‘Œ +2𝑔 𝑋, πœ™π‘Œ πœ‰ From (4.7) and (4.8) 𝑕 πœ™π‘‹, π‘Œ = 𝑕 𝑋, πœ™π‘Œ π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ 𝑋, π‘Œ ∈ 𝐷. Hence theorem is proved. Theorem 4.2. Let 𝑴 be a 𝝃 βˆ’ π’—π’†π’“π’•π’Šπ’„π’‚π’ submanifold of a nearly hyperbolic Kenmotsu manifold 𝑴 with quarter symmetric metric connection. If the distribution 𝑫βŠ₯ is parallel with respect to the connection on M, then (4.9) π‘¨βˆ…π’€ 𝑿 + π‘¨βˆ…π‘Ώ 𝒀 ∈ 𝑫βŠ₯ 𝒇𝒐𝒓 π’‚π’π’š 𝑿, 𝒀 ∈ 𝑫βŠ₯ . Proof : Let, 𝑋, π‘Œ ∈ 𝐷βŠ₯ .then using Weingarten Formula .We have βˆ‡ 𝑋 𝑁 = βˆ’A 𝑁 𝑋 + βˆ‡ 𝑋 βŠ₯ 𝑁 – 𝑔 πœ™π‘‹, 𝑁 πœ‰ Putting N= πœ™π‘Œ βˆ‡ 𝑋 πœ™π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ – 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ βˆ‡ 𝑋 πœ™ π‘Œ + πœ™ βˆ‡ 𝑋 π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ – 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ Using Gauss formula βˆ‡ 𝑋 πœ™ π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ – 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ βˆ’ πœ™(βˆ‡ 𝑋 π‘Œ + 𝑕 𝑋, π‘Œ ) (4.11) βˆ‡ 𝑋 πœ™ π‘Œ = βˆ’A πœ™π‘Œ 𝑋 + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ βˆ’ πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™π‘• 𝑋, π‘Œ βˆ’ 𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ Interchanging X and Y (4.12) βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’A πœ™π‘‹ π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘‹ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’ πœ™π‘• π‘Œ, 𝑋 βˆ’ 𝑔 πœ™π‘Œ, πœ™π‘‹ πœ‰ Adding (4.11) and (4.12) ,we get βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’A πœ™π‘Œ 𝑋 βˆ’ A πœ™π‘‹ π‘Œ + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘‹ βˆ’ πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’ 2πœ™π‘• 𝑋, π‘Œ βˆ’ 2𝑔 πœ™π‘‹, πœ™π‘Œ πœ‰ (4.13) βˆ‡ 𝑋 πœ™ π‘Œ + βˆ‡ π‘Œ πœ™ 𝑋 = βˆ’A πœ™π‘Œ 𝑋 βˆ’ A πœ™π‘‹ π‘Œ + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘‹ βˆ’ πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’ 2πœ™π‘• 𝑋, π‘Œ βˆ’2𝑔 𝑋, π‘Œ πœ‰ + 2πœ‚ 𝑋 πœ‚(π‘Œ)πœ‰ From (2.13) and (4.13) βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ + 2 𝑔 𝑋, π‘Œ πœ‰ = βˆ’A πœ™π‘Œ 𝑋 βˆ’ A πœ™π‘‹ π‘Œ + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘‹ βˆ’πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’ 2πœ™π‘• 𝑋, π‘Œ βˆ’ 2𝑔 𝑋, π‘Œ πœ‰ + 2πœ‚ 𝑋 πœ‚(π‘Œ)πœ‰ βˆ’ πœ‚ 𝑋 π‘Œ βˆ’ πœ‚ π‘Œ 𝑋 βˆ’ πœ‚ 𝑋 πœ™π‘Œ βˆ’ πœ‚ π‘Œ πœ™π‘‹ = βˆ’A πœ™π‘Œ 𝑋 βˆ’ A πœ™π‘‹ π‘Œ + βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘‹ βˆ’ πœ™βˆ‡ 𝑋 π‘Œ βˆ’ πœ™βˆ‡ π‘Œ 𝑋 βˆ’2πœ™π‘• 𝑋, π‘Œ + 2πœ‚ 𝑋 πœ‚(π‘Œ)πœ‰ Operating g bothside w.r.to Z ∈ 𝐷
  • 6. Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.00-00 www.ijera.com 74 | P a g e βˆ’ πœ‚ 𝑋 𝑔 π‘Œ, 𝑍 βˆ’ πœ‚ π‘Œ 𝑔 𝑋, 𝑍 βˆ’ πœ‚ 𝑋 𝑔 πœ™π‘Œ, 𝑍 βˆ’ πœ‚ π‘Œ 𝑔 πœ™π‘‹, 𝑍 = βˆ’π‘” A πœ™π‘Œ 𝑋, 𝑍 βˆ’ 𝑔 A πœ™π‘‹ π‘Œ, 𝑍 + 𝑔 βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ, 𝑍 + 𝑔 βˆ‡ π‘Œ βŠ₯ πœ™π‘‹, 𝑍 βˆ’ 𝑔 πœ™βˆ‡ 𝑋 π‘Œ, 𝑍 βˆ’ 𝑔 πœ™βˆ‡ π‘Œ 𝑋 , 𝑍 βˆ’ 2πœ™π‘” 𝑕 𝑋, π‘Œ , 𝑍 + 2πœ‚ 𝑋 πœ‚ π‘Œ 𝑔 πœ‰, 𝑍 𝑔 A πœ™π‘Œ 𝑋 + 𝑔 A πœ™π‘‹ π‘Œ = 0 𝑔 A πœ™π‘Œ 𝑋 + A πœ™π‘‹ π‘Œ = 0 This implies that A πœ™π‘Œ 𝑋 + A πœ™π‘‹ π‘Œ ∈ 𝑫βŠ₯ 𝒇𝒐𝒓 π’‚π’π’š 𝑿, 𝒀 ∈ 𝑫βŠ₯ . Hence theorem is proved. Definition3.A CR-submanifold is said to be mixed-totally geodesic if𝑕 𝑋, 𝑍 = 0 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑋 ∈ 𝐷 π‘Žπ‘›π‘‘ 𝑍 ∈ 𝐷βŠ₯ . Definition 4.A Normal vector field 𝑁 β‰  0 is called𝐷 βˆ’ π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™ normal section if βˆ‡ 𝑋 βŠ₯ 𝑁 = 0for all 𝑋 ∈ 𝐷. Theorem 4.3.Let 𝑀 be a mixed totally geodesic πœ‰ βˆ’ π‘£π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ CR-submanifold of a nearly hyperbolic Kenmotsu manifold𝑀 with quarter symmetric metric connection. Then the normal section 𝑁 ∈ βˆ…π·βŠ₯ is 𝐷 βˆ’ π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’l if and only if βˆ‡ π‘‹βˆ…π‘ ∈ 𝐷 π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑋 ∈ 𝐷. Proof.Let 𝑁 ∈ βˆ…π·βŠ₯ , then from (3.2) we have βˆ’πœ‚ 𝑋 π‘„π‘Œ βˆ’ πœ‚ π‘Œ 𝑄𝑋 + 2 𝑔 𝑋, π‘Œ π‘„πœ‰ + 2𝐡𝑕 π‘Œ, 𝑋 = (𝑄)βˆ‡ 𝑋 πœ™π‘ƒπ‘Œ + (𝑄)βˆ‡ π‘Œ πœ™π‘ƒπ‘‹ βˆ’ (𝑄)A πœ™π‘„π‘Œ 𝑋 βˆ’ (𝑄)A πœ™π‘„π‘‹ π‘Œ βˆ’ 𝑔(πœ™π‘‹, πœ™π‘„π‘Œ) π‘„πœ‰ βˆ’ 𝑔(πœ™π‘Œ, πœ™π‘„π‘‹) π‘„πœ‰ (4.15) 2 𝑔 𝑋, π‘Œ πœ‰ + 2𝐡𝑕 𝑋, π‘Œ = π‘„βˆ‡ π‘Œ βˆ…π‘‹ βˆ’ π‘„π΄βˆ…π‘Œ 𝑋. Using definition of mixed geodesic CR-submanifold, 𝑕 𝑋, π‘Œ = 0 , 𝑖𝑓 𝑋 ∈ 𝐷 π‘Žπ‘›π‘‘ 𝑍 ∈ 𝐷βŠ₯ (4.16) 2 𝑔 𝑋, π‘Œ πœ‰ = π‘„βˆ‡ π‘Œ βˆ…π‘‹ βˆ’ π‘„π΄βˆ…π‘Œ 𝑋. As π΄βˆ…π‘Œ 𝑋 ∈ 𝐷, for 𝑋 ∈ 𝐷. 4.17 2 𝑔 𝑋, π‘Œ πœ‰ = π‘„βˆ‡ π‘Œ βˆ…π‘‹ Operating πœ™ both side 2 𝑔 𝑋, π‘Œ πœ™πœ‰ = πœ™π‘„βˆ‡ π‘Œ βˆ…π‘‹ πœ™π‘„βˆ‡ π‘Œ βˆ…π‘‹ = 0 In particular, (4.18) π‘„βˆ‡ π‘Œ βˆ…π‘‹ = 0 From (3.3) βˆ’ πœ‚ 𝑋 πœ™π‘„π‘Œ _ πœ‚ π‘Œ πœ™π‘„π‘‹ + πœ™π‘„ βˆ‡ 𝑋 π‘Œ + πœ™π‘„ βˆ‡ π‘Œ 𝑋 + 2𝐢𝑕 π‘Œ, 𝑋 = 𝑕 𝑋, πœ™π‘ƒπ‘Œ + 𝑕 π‘Œ, πœ™π‘ƒπ‘‹ + βˆ‡ 𝑋 βŠ₯ πœ™π‘„π‘Œ + βˆ‡ π‘Œ βŠ₯ πœ™π‘„π‘‹ πœ™π‘„ βˆ‡ 𝑋 π‘Œ = βˆ‡ 𝑋 βŠ₯ πœ™π‘Œ Putting , Y=πœ™π‘ πœ™π‘„ βˆ‡ 𝑋 πœ™π‘ = βˆ‡ 𝑋 βŠ₯ πœ™2 𝑁 πœ™π‘„ βˆ‡ 𝑋 πœ™π‘ = βˆ‡ 𝑋 βŠ₯ 𝑁 + πœ‚ 𝑁 πœ‰ Then by Definition of Parallelism of N, We have πœ™π‘„ βˆ‡ 𝑋 πœ™π‘ = 0 Consequently , We get βˆ‡ 𝑋 πœ™π‘ ∈ 𝐷 , π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑋 ∈ 𝐷. This completes the Proof. References [1] A.Bejancu, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978),135-142. [2] CR-submanifolds of a Kaehler manifold II, Trans. Amer. Math. Soc. 250 (1979),333-345. [3] A. Bejancu and N.Papaghuic, CR-submanifolds of Kenmotsu manifold, Rend. Math. 7 (1984), 607- 622. [4] C.J.Hsu, On CR-submanifolds of Sasakian manifolds I,Math.Research Center Reports, Symposium Summer 1983, 117-140. [5] Golab,S., On semi-symmetric and quarter-symmetric linear connections, Tensor 29 (1975), 249-254.
  • 7. Nikhat Zulekha et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 3) September 2015, pp.69-75 www.ijera.com 75 | P a g e [6] Ahmad, M, Siddiqui, M D, and Ojha, J P, Semi-invariant submanifolds of Kenmotsu manifold immersed in a generalized almost r-contact structure admitting a quarter symmetric non-metric connection, J. Math. Comput. Sci. 2(2012), No.4, 982-998. Romania. [7] L.Bhatt and K.K.Dube, CR-submanifolds of a trans-hyperbolic Sasakian manifold, ActaCienciaIndica 31 (2003), 91-96. [8] Lovejoy S.K. Das and M. Ahmad, CR-submanifolds of LP-Sasakian manifolds with quarter symmetric non-metric connection, Math. Sci.J. 13 (7), 2009, 161-169. [9] Blair, D.E, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976. [10] C. Ozgur, M.Ahmad and A.Haseeb, CR-submanifolds of LP-Sasakian manifolds with semi symmetric metric connection, Hacettepe J. Math. And Stat. vol. 39 (4)(2010), 489-496. [11] K.Matsumoto, On CR-submanifolds of locally conformal Kaehler manifolds, J.Korean Math.Soc. 21(1984), 49-61. [12] Ahmad M. and Ali K. β€œCR- Submanifold of nearly hyperbolic cosymplectic manifold ” IOSR-JM,e- ISSN: 2278-5728, p-ISSN: 2319-765X,vol. X, Issue X (May –June,2013). [13] M.D.Upadhyayand K.K.Dube, Almost contact hyperbolic (βˆ…, πœ‰, πœ‚. 𝑔)-structure, Acta. Math. Acad. Scient. Hung. Tomus 28(1976), 1-4. [14] M.Kobayash, CR-submanifolds of Sasakian manifold, Tensor N.S. 35 (1981), 297-307. [15] M. Ahmad, M.D.Siddiqi and S. Rizvi, CR-submanifolds of a nearly hyperbolic Sasakian manifolds admitting semi symmetric semi metric connection, International J. Math. Sci & Engg Appls., vol 6(2012), 145-155. [16] M Ahmad and J.P.Ojha, CR-submanifolds of LP-Sasakian manifolds with the canonical semi symmetric semi-metric connection, Int. J.Contemt. Math. Science, vol.5(2010), no. 33, 1637-1643.