SlideShare a Scribd company logo
1 of 10
Download to read offline
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 25, No. 1, January 2022, pp. 540~549
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v25.i1.pp540-549 ๏ฒ 540
Journal homepage: http://ijeecs.iaescore.com
Fixed point theorem between cone metric space and quasi-cone
metric space
Abdullah Al-Yaari1,2
, Hamzah Sakidin1
, Yousif Alyousifi3
, Qasem Al-Tashi4,5
1
Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
2
Department of Mathematics, Faculty of Education, Thamar University, Dhamar, Yemen
3
Department of Mathematics, Faculty of Applied Science, Thamar University, Dhamar, Yemen
4
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
5
Faculty of Administrative and Computer Sciences, University of Albaydha, Albaydha, Yemen
Article Info ABSTRACT
Article history:
Received Jul 28 2021
Revised Nov 1, 2021
Accepted Nov 26, 2021
This study involves new notions of continuity of mapping between quasi-cone
metrics spaces (QCMSs), cone metric spaces (CMSs), and vice versa. The
relation between all notions of continuity were thoroughly studied and
supported with the help of examples. In addition, these new continuities were
compared with various types of continuities of mapping between two QCMSs.
The continuity types are ๐’‡๐’‡-continuous, ๐’ƒ๐’ƒ-continuous, ๐’‡๐’ƒ-continuous, and
๐’ƒ๐’‡-continuous. The results demonstrated that the new notions of continuity
could be generalized to the continuity of mapping between two QCMSs. It also
showed a fixed point for this continuity map between a complete Hausdorff
CMS and QCMS. Overall, this study supports recent research results.
Keywords:
Cone metric spaces second
Fixed point theorem
Quasi-cone metric spaces
This is an open access article under the CC BY-SA license.
Corresponding Author:
Abdullah Al-Yaari
Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS
32610 Seri Iskandar, Malaysia
E-mail: abdullah_20001447@utp.edu.my
1. INTRODUCTION
More than two decades ago, Huang and Zhang had proposed the notion of a cone metric space [1].
The Cauchy and convergent sequences and a few fixed-point theorems were used for the contractive form of
mappings in cone metric spaces (CMSs). This notion is exciting because of the usual metric space where an
ordered Banach space switches to the real numbers. Abbas and Jungck [2] have shown some noncommuting
mapping causes CMSs. Furthermore, several researchers have proved different contractive-type maps in
CMS and fixed points [3]-[8].
The function of a quasi-metric is to verify the triangle disparity. However, quasi-metric is
considered an asymmetric metric. As compared to metric space, quasi-metric space (QMS) is more inclusive.
It is also a topic of exhaustive research in computer science and the framework for topology. For instance, a
quasi-cone metric space (QCMS) definition expands to the QMS given by Turkoglu and Abuloha [3].
Morales and Rojas have introduced the continuity of mapping between CMS (๐‘‹, ๐ถ), ๐‘ƒ a cone along with
constant ๐พ and ๐‘‡: ๐‘‹ โŸถ ๐‘‹ and it self [4]. Yaying et al. introduced the continuity of mapping between QCMS
(๐‘‹, ๐‘ž) and itself [5]. In addition, although the concept of normality in CMSs is monumental in developing
fixed point theory in CMSs, Rezapour and Hamlbarani [6] have rejected it. Several researchers have
simplified fixed points in CMSs in many directions. For instance, Jankovic et al. [7] surveyed the latest
outcomes in CMSs. Abdeljawad and Karapinar [8] have verified fixed point theorems in QCMSs. They
introduced many Cauchy sequences in QCMSs, which are studied as an extension of the Banach contraction
Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ
Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari)
541
mapping and other areas. Yaying et al. [9] have defined arithmetic ๐‘“๐‘- continuity and arithmetic ๐‘“๐‘“-
continuity based on the notions of forward and backward arithmetic convergence in asymmetric metric
spaces. Also, they have proven some interesting results.
For functions between (MSs), (CMSs) and (QCMSs) and themselves, many continuity ideas have
been established [4], [5]. The continuity function between (QCMSs) and (CMSs) and vice versa, however,
has yet to be implemented. As a result, we have introduced these definitions and looked at how they relate to
one another. Our ideas are based on the continuation of a function mapping between two (MSs), a function
mapping between two (CMSs), and a function mapping between two (QCMSs). There have been numerous
fixed-point theorems presented between (MSs) and themselves, (CMSs) and themselves, and (QCMSs) and
themselves [1], [8]. We looked at prior results of a fixed-point to introduce a fixed point in a function
mapping between (CMSs) and (QCMSs).
This paper introduces new notions of continuity of mapping, some theorems, and propositions. It
compares the new notions to each other through specific examples. Additionally, the paper introduces the
fixed-point theorem of the newly introduced notion. The paper also supports the results of other recent
research with the help of examples. Finally, some general concepts, definitions, and outcomes are recalled
and applied in this paper.
This study will make a significant contribution to the field of mapping continuity and fixed-point
theorems. Fixed point theorems are used to solve problems in estimate theory, game theory, and mathematical
economics in a variety of disciplines including mathematics, statistics, computer science, engineering, and
economics. The following is how the rest of the paper is structured: The study's preliminary findings are
presented in section 2, the results are clarified in section 3, and the paper is completed in section 4.
2. PRELIMINARIES
In this part, the elementary facts about the CMSs and QCMSs and their continuity, which can be
observed in [1], [10]-[26], are given in a shortened form.
- Definition 2. 1 (see [17]). The cone is considered to be regular if each expanding sequence in ๐‘ƒ that is
bounded from is convergent in ๐ธ. If {๐‘ข๐‘›}๐‘›โˆˆโ„• is a sequence such that,
๐‘ข1 โ‰ค ๐‘ข2 โ‰ค ยท ยท ยท โ‰ค ๐‘ข๐‘› โ‰ค ยท ยท ยท โ‰ค ๐‘ฃ (1)
for a few ๐‘ฃ โˆˆ ๐ธ, there is also some ๐‘ข โˆˆ ๐ธ that satisfies โ€– ๐‘ข๐‘› โˆ’ ๐‘ขโ€– โŸถ 0๐ธ. As (๐‘› โ†’ โˆž).
In the following, we continually assume ๐ธ is a space of Banach, ๐‘ƒ is a cone.
- Definition 2. 2 (see [18]). Assume ๐‘‹ is a nonempty set. Presume the mapping ๐ถ โˆถ ๐‘‹ ร— ๐‘‹ โŸถ ๐ธ assures,
(C1) ๐ถ(๐‘ข, ๐‘ฃ) โ‰ฅ 0๐ธ for all ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹ and ๐ถ(๐‘ข, ๐‘ฃ) = 0๐ธ if and only if ๐‘ข = ๐‘ฃ
(C2) ๐ถ(๐‘ข, ๐‘ฃ) = ๐ถ(๐‘ฃ, ๐‘ข) for all ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹
(C3) ๐ถ(๐‘ข, ๐‘ฃ) โ‰ค ๐ถ(๐‘ข, ๐‘ค) + ๐ถ(๐‘ฃ, ๐‘ค) for all ๐‘ข, ๐‘ฃ, ๐‘ค โˆˆ ๐‘‹
then, ๐ถ is a cone metric on ๐‘‹, and (๐‘‹, ๐ถ) is a CMS.
- Proposition 2. 3 (see [4]). Assume (๐‘‹, ๐ถ1) and (๐‘Œ, ๐ถ2) are a CMS, ๐‘ƒ a cone with constant ๐พ and ๐‘‡: ๐‘‹ โŸถ
๐‘Œ. The following are equivalent,
the map ๐‘‡ is continuous.
If lim
๐‘›โ†’โˆž
๐‘ข๐‘› = ๐‘ข, implies that lim
๐‘›โ†’โˆž
๐‘‡๐‘ข๐‘› = ๐‘‡๐‘ข for every {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹.
- Definition 2. 4 (see [24]). Assume ๐‘‹ is a set. Presume that the mapping ๐‘ž: ๐‘‹ ร— ๐‘‹ โ†’ ๐ธ satisfies the
subsequent,
(Q1) 0๐ธ โ‰ค ๐‘ž(๐‘ข, ๐‘ฃ) for all ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹,
(Q2) ๐‘ž(๐‘ข, ๐‘ฃ) = 0๐ธ if and only if ๐‘ข = ๐‘ฃ,
(Q3) ๐‘ž(๐‘ข, ๐‘ฃ) โ‰ค ๐‘ž(๐‘ข, ๐‘ค) + ๐‘ž(๐‘ค, ๐‘ฃ), for all ๐‘ข, ๐‘ฃ, ๐‘ค โˆˆ ๐‘‹.
Then, ๐‘ž is known as a QCM on ๐‘‹, and the pair (๐‘‹, ๐‘ž) is called a QCMS.
- Example 2. 5 (see [25]). Assume ๐‘‹ = โ„, ๐ธ = โ„2
, ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: โ„ ร— โ„ โŸถ โ„2
is
defined by (2),
๐‘ž(๐‘ข, ๐‘ฃ) = {
(0,0) if ๐‘ข = ๐‘ฃ,
(1,0) if ๐‘ข > ๐‘ฃ,
(0,1) if ๐‘ข < ๐‘ฃ.
(2)
Then, (๐‘ž, โ„) is a QCMS because it satisfies all conditions of QCMS, for all ๐‘ข, ๐‘ฃ, ๐‘ค โˆˆ โ„.
๏ฒ ISSN: 2502-4752
Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 540-549
542
- Definition 2. 6 (see [27]). A sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• forward converges to ๐‘ข0 โˆˆ ๐‘‹ if for each ๐‘ โˆˆ ๐ธ along with
0๐ธ โ‰ช ๐‘ (i.e., ๐‘ โˆˆ int ๐‘ƒ) there exists a number ๐‘›0 that satisfies ๐‘ž(๐‘ข0, ๐‘ข๐‘›) โ‰ช ๐‘ for all ๐‘› โ‰ฅ ๐‘›0. We indicate
it through ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข0.
- Definition 2. 7 (see [3]). A sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• backward joins to ๐‘ข0 โˆˆ ๐‘‹ if for each ๐‘ โˆˆ ๐ธ along with
0๐ธ โ‰ช ๐‘ (i.e., ๐‘ โˆˆ int ๐‘ƒ) there is a number ๐‘›0 that satisfies ๐‘ž(๐‘ข๐‘›, ๐‘ข0) โ‰ช ๐‘ for all ๐‘› โ‰ฅ ๐‘›0. We show it by
๐‘ข๐‘›
๐‘
โ†’ ๐‘ข0.
- Definition 2. 8 (see [5]). Assume (๐‘‹, ๐‘ž๐‘‹) and (๐‘Œ, ๐‘ž๐‘Œ) are two QCMSs. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“๐‘“-continuous
at ๐‘ข โˆˆ ๐‘‹ if whenever ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข in (๐‘‹, ๐‘ž๐‘‹) we have ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž๐‘Œ).
- Definition 2. 9 (see [5]). Assume (๐‘‹, ๐‘ž๐‘‹) and (๐‘Œ, ๐‘ž๐‘Œ) are two QCMSs. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“๐‘-continuous
at ๐‘ข โˆˆ ๐‘‹ if whenever ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข in (๐‘‹, ๐‘ž๐‘‹) we have ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž๐‘Œ).
- Definition 2. 10 (see [5]). Assume (๐‘‹, ๐‘ž๐‘‹) and (๐‘Œ, ๐‘ž๐‘Œ) are two QCMSs. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘๐‘“-
continuous at ๐‘ข โˆˆ ๐‘‹ if whenever ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข in (๐‘‹, ๐‘ž๐‘‹) we have ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž๐‘Œ).
- Definition 2. 11 (see [5]). Assume (๐‘‹, ๐‘ž๐‘‹) and (๐‘Œ, ๐‘ž๐‘Œ) are two QCMSs. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘๐‘-
continuous at ๐‘ข โˆˆ ๐‘‹ if whenever ๐‘ข๐‘›
๐‘
โ†’ ๐‘ฅ in (๐‘‹, ๐‘ž๐‘‹) we have ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž๐‘Œ).
- Definition 2. 12 (see [5]). A set ๐‘‹ is compact in the forward sequence if every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹
possesses a forward convergent subsequence {๐‘ข๐‘›๐‘˜
}๐‘›๐‘˜โˆˆโ„• to ๐‘ข0 โˆˆ ๐‘‹ if for all ๐‘ โˆˆ ๐ธ along with 0๐ธ โ‰ช ๐‘ (i.e.,
๐‘ โˆˆ int ๐‘ƒ) there is number ๐‘›0 as a result ๐‘ž(๐‘ข0, ๐‘ข๐‘›๐‘˜
) โ‰ช ๐‘ for all ๐‘›๐‘˜ โ‰ฅ ๐‘›0.
- Definition 2. 13 (see [5]). A set ๐‘‹ is compact in the backward sequence if every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹
possesses a backward convergent subsequence {๐‘ข๐‘›๐‘˜
}๐‘›๐‘˜โˆˆโ„• to ๐‘ข0 โˆˆ ๐‘‹ if for all ๐‘ โˆˆ ๐ธ along with 0๐ธ โ‰ช ๐‘
(i.e., ๐‘ โˆˆ int ๐‘ƒ) there exists a number ๐‘›0 as a result ๐‘ž(๐‘ข๐‘›๐‘˜
, ๐‘ข0) โ‰ช ๐‘) for all ๐‘›๐‘˜ โ‰ฅ ๐‘›0.
- Lemma 2. 14 (see [5]). Assume (๐‘‹, ๐‘ž) is a QCMS. Then ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข if and only if each subsequence of it is
backward convergent to ๐‘ข.
Proof. Suppose ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข. Then for ๐‘ โˆˆ ๐ธ along with 0๐ธ โ‰ช ๐‘ there exists an ๐‘›0 โˆˆ โ„• such that ๐‘ž(๐‘ข๐‘›, ๐‘ข) โ‰ช ๐‘,
which means ๐‘ โˆ’ ๐‘ž(๐‘ข๐‘›, ๐‘ข) โˆˆ int ๐‘ƒ for all ๐‘› โ‰ฅ ๐‘›0. Suppose {๐‘ข๐‘›๐‘˜
}
๐‘˜โˆˆโ„•
is a random subsequence of {๐‘ข๐‘›}๐‘›โˆˆโ„•.
If ๐‘›๐‘˜ โ‰ฅ ๐‘›0, we got ๐‘ โˆ’ ๐‘ž(๐‘ข๐‘›๐‘˜
, ๐‘ข) โˆˆ int ๐‘ƒ, i.e., ๐‘ž(๐‘ข๐‘›๐‘˜
, ๐‘ข) โ‰ช ๐‘. So ๐‘ข๐‘›๐‘˜
๐‘
โ†’ ๐‘ข.
- Lemma 2. 15 (see [5]). Assume (๐‘‹, ๐‘ž) is a QCMS. Then ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข if and only if each subsequence of it is
forward convergent to ๐‘ข.
Proof. Suppose ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข. Then, for ๐‘ โˆˆ ๐ธ along sequence with 0๐ธ โ‰ช ๐‘ there exists an ๐‘›0 โˆˆ โ„• that satisfies
๐‘ž(๐‘ข, ๐‘ข๐‘›) โ‰ช ๐‘, which means ๐‘ โˆ’ ๐‘ž(๐‘ข, ๐‘ข๐‘›) โˆˆ int ๐‘ƒ for all ๐‘› โ‰ฅ ๐‘›0. Suppose {๐‘ข๐‘›๐‘˜
}
๐‘˜โˆˆโ„•
is a random
subsequence of {๐‘ข๐‘›}๐‘›โˆˆโ„•. If ๐‘›๐‘˜ โ‰ฅ ๐‘›0, we got ๐‘ โˆ’ ๐‘ž(๐‘ข, ๐‘ข๐‘›๐‘˜
) โˆˆ int ๐‘ƒ, i.e., ๐‘ž(๐‘ข, ๐‘ข๐‘›๐‘˜
) โ‰ช ๐‘. So ๐‘ข๐‘›๐‘˜
๐‘“
โ†’ ๐‘ข.
The converseโ€™ proof is evident. Thus, it is removed. As a result, the proof is complete.
- Lemma 2. 16 (see [5]). If {๐‘ข๐‘›}๐‘›โˆˆโ„• forward converges to ๐‘ข โˆˆ ๐‘‹ and backward converges to ๐‘ฃ โˆˆ ๐‘‹, it
means ๐‘ข = ๐‘ฃ.
- Theorem 2. 17 (see [5]). Assume ๐‘ž โˆถ ๐‘‹ ร— ๐‘‹ โ†’ ๐ธ is a QCMS. If (๐‘‹, ๐‘ž) is a forward sequentially compact
and ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข. It means ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข.
3. MAIN RESULTS
Because of the established concepts in CMSs and QCMSs [5] and [26], we introduce new notions of
continuity of mapping between QCMS and CMS and vice versa. The relation between all notions of
continuity is thoroughly studied and support with the help of examples. We also find a fixed point for this
continuity map between a complete Hausdorff CMS and QCMS.
- Definition 3.1. Suppose (๐‘‹, ๐‘ž) is a QCMS and (๐‘Œ, ๐ถ) a CMS. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘-continuous at ๐‘ข if for
any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ backward converges to an element ๐‘ข in ๐‘‹ (๐‘ข๐‘›
๐‘
โ†’ ๐‘ข as ๐‘› โ†’ โˆž), then the
sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• converges to ๐‘‡(๐‘ข) in ๐‘Œ, (๐ถ(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) โ†’ 0๐ธ as ๐‘› โ†’ โˆž). ๐‘‡ is considered ๐‘-
continuous if it is ๐‘-continuous at each ๐‘ข โˆˆ ๐‘‹.
- Example 3.2. Suppose (๐‘‹, ๐‘ž) is a QCMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2
: ๐‘ข, ๐‘ฃ โ‰ฅ
0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2
is defined by (3),
๐‘ž(๐‘ข, ๐‘ฃ) = {
(๐‘ข โˆ’ ๐‘ฃ, ๐›ผ(๐‘ข โˆ’ ๐‘ฃ)), if ๐‘ข โ‰ฅ ๐‘ฃ,
(๐›ผ, 1), if ๐‘ข < ๐‘ฃ.
(3)
Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ
Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari)
543
assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0,1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2
: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and
๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2
is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). A map ๐‘‡: [0, 1] โŸถ [0, 1] defined
by ๐‘‡(๐‘ข) =
๐‘ข
2
is ๐‘-continuous at {0}.
- Proposition 3.3. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘-continuous at ๐‘ข. Then, a map ๐‘‡ is ๐‘๐‘-continuous at ๐‘ข
and ๐‘๐‘“-continuous at ๐‘ข.
Proof. Since a map ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘-continuous at ๐‘ข, then for every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘‹, ๐‘ž)
that backward converges to an element ๐‘ข in (๐‘‹, ๐‘ž), i.e., ๐‘ž(๐‘ข๐‘›, ๐‘ข) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, we have a sequence
{๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• that converges to ๐‘‡(๐‘ข) in (๐‘Œ, ๐ถ), i.e., ๐ถ(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, where every CMS is
QCMS and ๐ถ(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) = ๐ถ(๐‘‡(๐‘ข), ๐‘‡(๐‘ข๐‘›)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, thus, a map ๐‘‡ is ๐‘๐‘-continuous at ๐‘ข and
๐‘๐‘“-continuous at ๐‘ข.
- Remark 3.4. Every ๐‘๐‘-continuous (or ๐‘๐‘“-continuous) is not always the case ๐‘-continuous as every
QCMS is not always CMS.
- Definition 3.5. Assume (๐‘‹, ๐‘ž) is a QCMS and (๐‘Œ, ๐ถ) a CMS. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“-continuous at ๐‘ข if for
any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ forward converges to an element ๐‘ข in (๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข as ๐‘› โ†’ โˆž). Then, the
sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• approaches to ๐‘‡(๐‘ข) in (๐ถ(๐‘‡(๐‘ข๐‘›),๐‘‡(๐‘ข)) โ†’ 0๐ธ as ๐‘› โ†’ โˆž). ๐‘‡ is considered ๐‘“-
continuous if it is ๐‘“-continuous at all ๐‘ข โˆˆ ๐‘‹.
- Example 3.6. Assume (๐‘‹, ๐‘ž) is a QCMS, where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2
: ๐‘ข, ๐‘ฃ โ‰ฅ
0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2
is defined by (4),
๐‘ž(๐‘ข, ๐‘ฃ) = {
(๐‘ฃ โˆ’ ๐‘ข, ๐›ผ(๐‘ฃ โˆ’ ๐‘ข)), if ๐‘ฃ โ‰ฅ ๐‘ข,
(๐›ผ, 1), if ๐‘ฃ < ๐‘ข.
(4)
suppose (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0,1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2
: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and
๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2
is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). A map ๐‘‡: [0, 1] โŸถ [0, 1] defined
by ๐‘‡(๐‘ข) =
๐‘ข
3
is ๐‘“-continuous at {0}.
- Proposition 3.7. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘“-continuous at ๐‘ฅ. Then, a map ๐‘‡ is ๐‘“๐‘“-continuous at ๐‘ฅ
and ๐‘“๐‘-continuous at ๐‘ฅ. Proof. Since a map ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘“-continuous at ๐‘ข, then for all sequence
{๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘‹, ๐‘ž) forward approaches to an element ๐‘ข in (๐‘‹, ๐‘ž), i.e., ๐‘ž(๐‘ข, ๐‘ข๐‘›) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, we have
a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• that converges to ๐‘‡(๐‘ข) in (๐‘Œ, ๐ถ), i.e., ๐ถ(๐‘‡(๐‘ข๐‘›),๐‘‡(๐‘ข)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, where
every CMS is QCMS and ๐ถ(๐‘‡(๐‘ข๐‘›),๐‘‡(๐‘ข)) = ๐ถ(๐‘‡(๐‘ข), ๐‘‡(๐‘ข๐‘›)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, thus, a map ๐‘‡ is ๐‘“๐‘“-
continuous at ๐‘ข and ๐‘“๐‘-continuous at ๐‘ข.
- Remark 3.8. Every ๐‘“๐‘“-continuous (or ๐‘“๐‘-continuous) is not always the case ๐‘“-continuous as every
QCMS is not CMS.
- Theorem 3.9. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘-continuous at ๐‘ข. If (๐‘‹, ๐‘ž) is forward sequentially compact,
then, ๐‘‡ is ๐‘“-continuous at ๐‘ข.
Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘-continuous at ๐‘ข, any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ backward converges to ๐‘ข โˆˆ ๐‘‹.
Then, the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• approaches to ๐‘‡(๐‘ข) โˆˆ ๐‘Œ.
In other words, ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข โŸน ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž, where (๐‘‹, ๐‘ž) is forward sequentially compact, the
sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• possesses a forward convergent subsequence in ๐‘‹ say ๐‘ข๐‘›๐‘˜
๐‘“
โ†’ ๐‘ฃ by Lemma 2.15, so ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ฃ โˆˆ ๐‘‹. Since ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข โˆˆ ๐‘‹ and ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ฃ โˆˆ ๐‘‹ by Lemma 2.16, subsequently ๐‘ข = ๐‘ฃ. Thus, ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข. Since
๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข as ๐‘› โ†’ โˆž, so ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข as ๐‘› โ†’ โˆž. Then, ๐‘‡ is ๐‘“-
continuous at ๐‘ข.
- Example 3.10. Assume (๐‘‹, ๐‘ž) is a QCMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ
0}
and ๐‘ž: [0,1] ร— [0,1] โŸถ โ„2
is defined by (5),
๐‘ž(๐‘ข, ๐‘ฃ) = {
(0,0) if ๐‘ฃ โ‰ฅ ๐‘ข,
(๐‘ข, ๐›ผ๐‘ข) if ๐‘ฃ < ๐‘ข.
(5)
Assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0,1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and
๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2
is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). A map ๐‘‡: [0, 1] โŸถ [0, 1] defined
by ๐‘‡(๐‘ข) =
๐‘ข
4
is ๐‘-continuous at {0}.
- Lemma 3.11. Assume ๐‘ž: ๐‘‹ ร— ๐‘‹ โ†’ ๐ธ is a QCM. If (๐‘‹, ๐‘ž) is backward sequentially compact and ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข.
Then ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข.
๏ฒ ISSN: 2502-4752
Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 540-549
544
Proof. Assume {๐‘ข๐‘›}๐‘›โˆˆโ„• is a sequence so ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข for a few ๐‘ข โˆˆ ๐‘‹. Via the backward sequentially
compactness, the sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• has a backward convergent subsequence, as ๐‘ข๐‘›๐‘˜
๐‘
โ†’ ๐‘ฃ by lemma 2.14,
so, ๐‘ข๐‘›
๐‘
โ†’ ๐‘ฃ. Since ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข โˆˆ ๐‘‹ and ๐‘ข๐‘›
๐‘
โ†’ ๐‘ฃ โˆˆ ๐‘‹, by Lemma 2.16, subsequently ๐‘ข = ๐‘ฃ. Thus, ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข.
- Theorem 3.12. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘“-continuous at ๐‘ฅ. If (๐‘‹, ๐‘ž) is backward sequentially
compact. Then, ๐‘‡ is ๐‘-continuous at ๐‘ฅ.
Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“-continuous at ๐‘ข that means any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ forward converges to
๐‘ข โˆˆ ๐‘‹. Then, a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• approaches to ๐‘‡(๐‘ข) โˆˆ ๐‘Œ. In other words, ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข โŸน ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข)
as ๐‘› โ†’ โˆž, by Lemma 3.11, so ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข. Since ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘›
๐‘“
โ†’ ๐‘ข as ๐‘› โ†’ โˆž, so ๐‘‡(๐‘ข๐‘›) โ†’
๐‘‡(๐‘ข) whenever ๐‘ข๐‘›
๐‘
โ†’ ๐‘ข as ๐‘› โ†’ โˆž. Then, ๐‘‡ is ๐‘-continuous at ๐‘ข.
- Example 3.13. Assume (๐‘‹, ๐‘ž) is a QCMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ
0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2
is defined by (6),
๐‘ž(๐‘ข, ๐‘ฃ) = {
(0,0) if ๐‘ข โ‰ฅ ๐‘ฃ,
(๐‘ฃ, ๐›ผ๐‘ฃ) if ๐‘ข < ๐‘ฃ.
(6)
assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0,1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐ถ: [0, 1] ร—
[0, 1] โŸถ โ„2
is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). A map ๐‘‡: [0, 1] โŸถ [0,1] defined by ๐‘‡(๐‘ข) =
๐‘ข
3
is ๐‘“-continuous at {0}.
- Remarks 3.14. Assume (๐‘‹, ๐‘ž) is a QCMS and {๐‘ข๐‘›}๐‘›โˆˆโ„• a backward convergent sequence in ๐‘‹, the
sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• is not always the case a forward convergent sequence in ๐‘‹. Assume (๐‘‹, ๐‘ž) is a QCMS
and {๐‘ข๐‘›}๐‘›โˆˆโ„• a forward convergent sequence in ๐‘‹, the sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• is not always the case a
backward convergent sequence in ๐‘‹.
- Corollary 3.15. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘-continuous at ๐‘ฅ. If (๐‘‹, ๐‘ž) is forward sequentially
compact, then ๐‘‡ is ๐‘๐‘-continuous, ๐‘๐‘“-continuous, ๐‘“๐‘-continuous and ๐‘“๐‘“-continuous at ๐‘ข.
Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘-continuous at ๐‘ข and (๐‘‹, ๐‘ž) is forward sequentially compact by โ€“
Proposition 3.3, a map ๐‘‡ is ๐‘๐‘-continuous and ๐‘๐‘“-continuous at ๐‘ข, and by Theorem 3.9, a map ๐‘‡ is ๐‘“-
continuous then, by Proposition 3.7, a map ๐‘‡ is ๐‘“๐‘“-continuous and ๐‘“๐‘-continuous at ๐‘ข.
- Corollary 3.16. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘“-continuous at ๐‘ข. If (๐‘‹, ๐‘ž) is backward sequentially
compact, then ๐‘‡ is ๐‘๐‘-continuous, ๐‘๐‘“-continuous, ๐‘“๐‘-continuous and ๐‘“๐‘“-continuous at ๐‘ข.
Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘-continuous at ๐‘ข and (๐‘‹, ๐‘ž) is backward sequentially compact by Proposition
3.7, a map ๐‘‡ is ๐‘“๐‘“-continuous and ๐‘“๐‘-continuous at ๐‘ข, and by Theorem 3.12, a map ๐‘‡ is ๐‘-continuous
then, by Proposition 3.3, a map ๐‘‡ is ๐‘๐‘-continuous and ๐‘๐‘“-continuous at ๐‘ข.
- Definition 3.17. Assume (๐‘‹, ๐ถ) is a CMS and (๐‘Œ, ๐‘ž) a QCMS. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘โˆ—
-continuous at ๐‘ข if
for any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘‹, ๐ถ) converges to an element ๐‘ข in (๐‘‹, ๐ถ), (๐ถ(๐‘ข๐‘›, ๐‘ฅ) โ†’ 0๐ธ as ๐‘› โ†’ โˆž).
Then, a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• in (๐‘Œ, ๐‘ž) backward converges to ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž) (๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’
โˆž). Provided ๐‘‡ is ๐‘โˆ—
-continuous at each ๐‘ข โˆˆ ๐‘‹, then it is called ๐‘โˆ—
-continuous.
- Example 3.18. Assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2
: ๐‘ข, ๐‘ฃ โ‰ฅ
0} and ๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2
is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). Suppose(๐‘‹, ๐‘ž) is a QCMS
where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0, 1), = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2
: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2
is defined
by (7),
๐‘ž(๐‘ข, ๐‘ฃ) = {
(๐‘ข โˆ’ ๐‘ฃ, ๐›ผ(๐‘ข โˆ’ ๐‘ฃ)), if ๐‘ข โ‰ฅ ๐‘ฃ,
(๐›ผ, 1), if ๐‘ข < ๐‘ฃ.
(7)
a map ๐‘‡: [0, 1] โŸถ [0, 1] defined by ๐‘‡(๐‘ข) =
๐‘ข
2
is ๐‘โˆ—
-continuous at {0}.
- Definition 3.19. Assume (๐‘‹, ๐ถ) is a CMS and (๐‘Œ, ๐‘ž) a QCMS. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“โˆ—
-continuous at ๐‘ข if
for any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘‹, ๐ถ) converges to an element ๐‘ข in (๐‘‹, ๐ถ) (๐ถ(๐‘ข๐‘›, ๐‘ข) โ†’ 0๐ธ as ๐‘› โ†’ โˆž).
Then, a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• in (๐‘Œ, ๐‘ž) forward converges to ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž) (๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž).
Provided ๐‘‡ is ๐‘“โˆ—
-continuous at each ๐‘ข โˆˆ ๐‘‹, then it is called ๐‘“โˆ—
-continuous.
- Example 3.20. Assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2
: ๐‘ข, ๐‘ฃ โ‰ฅ
0} and ๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2
is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). Assume (๐‘‹, ๐‘ž) is a QCMS
Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ
Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari)
545
where ๐‘‹ = [0,1], ๐ธ = โ„2
, ๐›ผ โˆˆ [0, 1), = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2
: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2
is defined
by (8),
๐‘ž(๐‘ข, ๐‘ฃ) = {
(๐‘ฃ โˆ’ ๐‘ข, ๐›ผ(๐‘ฃ โˆ’ ๐‘ข)), if ๐‘ฃ โ‰ฅ ๐‘ข,
(๐›ผ, 1), if ๐‘ฃ < ๐‘ข.
(8)
a map ๐‘‡: [0, 1] โŸถ [0, 1] defined by ๐‘‡(๐‘ข) =
๐‘ข
3
is ๐‘“โˆ—
-continuous at {0}.
- Proposition 3.21. Assume ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘โˆ—
-continuous at ๐‘ข. Then, a map ๐‘‡ is ๐‘๐‘-continuous at ๐‘ข
and ๐‘“๐‘-continuous at ๐‘ข.
Proof. Since a map ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘โˆ—
-continuous at ๐‘ข, then for every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘Œ, ๐ถ)
approaches to an element ๐‘ข in (๐‘Œ, ๐ถ), i.e., ๐ถ(๐‘ข๐‘›, ๐‘ข) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, we have a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„•
that backward approaches to ๐‘‡(๐‘ข) in (๐‘‹, ๐‘ž), i.e., ๐‘ž(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, where every CMS is
QCMS and ๐ถ(๐‘ข๐‘›,๐‘ข) = ๐ถ(๐‘ข, ๐‘ข๐‘›) โŸถ 0๐ธ as ๐‘› โ†’ โˆž . Thus, a map ๐‘‡ is ๐‘๐‘-continuous at ๐‘ข and ๐‘“๐‘-
continuous at ๐‘ข.
- Remark 3.22. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐‘ž) is ๐‘๐‘-continuous at ๐‘ข, or ๐‘“๐‘-continuous at ๐‘ข; then, a map ๐‘‡ is
not ๐‘โˆ—
-continuous at ๐‘ข because not every QCMS is necessarily CMS.
- Proposition 3.23. Assume ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘“โˆ—
-continuous at ๐‘ข. Then a map ๐‘‡ is ๐‘“๐‘“-continuous at ๐‘ข
and ๐‘๐‘“-continuous at ๐‘ข.
Proof. Since a map ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘“โˆ—
-continuous at ๐‘ข, then for any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘Œ, ๐ถ)
approaches to an element ๐‘ข in (๐‘Œ, ๐ถ), i.e., ๐ถ(๐‘ข๐‘›, ๐‘ข) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, we have a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„•
that forward approaches to ๐‘‡(๐‘ข) in (๐‘‹, ๐‘ž), i.e., ๐‘ž(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, where every CMS is a
QCMS and ๐ถ(๐‘ข๐‘›,๐‘ข) = ๐ถ(๐‘ข, ๐‘ข๐‘›) โŸถ 0๐ธ as ๐‘› โ†’ โˆž . Thus, a map ๐‘‡ is ๐‘“๐‘“-continuous at ๐‘ข and ๐‘๐‘“-
continuous at ๐‘ข.
- Theorem 3.24. Assume ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘โˆ—
-continuous at ๐‘ข. If (๐‘‹, ๐‘ž) is forward sequentially
compact, then ๐‘‡ is ๐‘“โˆ—
-continuous at ๐‘ข.
Proof. Since ๐‘‡: ๐‘Œ โŸถ ๐‘‹ is ๐‘โˆ—
-continuous at ๐‘ข, every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘Œ converges to ๐‘ข โˆˆ ๐‘Œ, then the
sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• backward approaches to ๐‘‡(๐‘ข) โˆˆ ๐‘‹.In other words, ๐‘ข๐‘› โ†’ ๐‘ข โŸน ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข) as
๐‘› โ†’ โˆž, where (๐‘‹, ๐‘ž) is forward sequentially compact, the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• has a forward
convergent subsequence in ๐‘‹ say ๐‘‡(๐‘ข๐‘›๐‘˜
)
๐‘“
โ†’ ๐‘‡(๐‘ฃ) by Lemma 2.15, so ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ฃ) โˆˆ ๐‘‹. Since
๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข) โˆˆ ๐‘‹ and ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ฃ) โˆˆ ๐‘‹ by Lemma 2.16, subsequently ๐‘‡(๐‘ข) = ๐‘‡(๐‘ฃ). Thus, ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ข). Since ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› โ†’ ๐‘ข as ๐‘› โ†’ โˆž, ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› โ†’ ๐‘ข as ๐‘› โ†’ โˆž.
Then, ๐‘‡ is ๐‘“โˆ—
-continuous at ๐‘ข.
- Theorem 3.25. Assume ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘“โˆ—
-continuous at ๐‘ข. If (๐‘‹, ๐‘ž) is backward sequentially
compact, then ๐‘‡ is ๐‘โˆ—
-continuous at ๐‘ข.
Proof. Since ๐‘‡: ๐‘Œ โŸถ ๐‘‹ is ๐‘“โˆ—
-continuous at ๐‘ข, then any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘Œ converges to ๐‘ข โˆˆ ๐‘Œ, then
the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• forward approaches to ๐‘‡(๐‘ข) โˆˆ ๐‘‹.
In other words, ๐‘ข๐‘› โ†’ ๐‘ข โŸน ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž, where (๐‘‹, ๐‘ž) is backward sequentially compact, the
sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• has a backward convergent subsequence in ๐‘‹ say ๐‘‡(๐‘ข๐‘›๐‘˜
)
๐‘
โ†’ ๐‘‡(๐‘ฃ) by Lemma 2.14,
so ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ฃ) โˆˆ ๐‘‹. Since ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข) โˆˆ ๐‘‹ and ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ฃ) โˆˆ ๐‘‹ by Lemma 2.16, subsequently
๐‘‡(๐‘ข) = ๐‘‡(๐‘ฃ). Thus, ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข). Since ๐‘‡(๐‘ข๐‘›)
๐‘“
โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› โ†’ ๐‘ข as ๐‘› โ†’ โˆž, so ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ข)
whenever ๐‘ข๐‘› โ†’ ๐‘ข as ๐‘› โ†’ โˆž. Then ๐‘‡ is ๐‘โˆ—
-continuous at ๐‘ข. Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“โˆ—
-continuous at ๐‘ข
and (๐‘‹, ๐‘ž) is backward sequentially compact by Proposition 3.23, a map ๐‘‡ is ๐‘“-continuous and ๐‘๐‘“-
continuous at ๐‘ข, and by Theorem 3.25, a map ๐‘‡ is ๐‘โˆ—
-continuous then, by Proposition 3.21, a map ๐‘‡ is
๐‘๐‘-continuous and ๐‘“๐‘-continuous at ๐‘ข.
- Corollary 3.26. Assume ๐‘‡: (๐‘‹, ๐ถ) โŸถ (๐‘Œ, ๐‘ž) is ๐‘โˆ—
-continuous at ๐‘ข, if (๐‘Œ, ๐‘ž) is forward sequentially
compact. Then a map ๐‘‡ is ๐‘๐‘“-continuous, ๐‘“๐‘“-continuous, ๐‘๐‘-continuous and ๐‘“๐‘-continuous at ๐‘ข.
Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘โˆ—
-continuous at ๐‘ข and (๐‘‹, ๐‘ž) is forward sequentially compact by Proposition
3.21, a map ๐‘‡ is ๐‘๐‘-continuous and ๐‘“๐‘-continuous at ๐‘ข, and by Theorem 3.24, a map ๐‘‡ is ๐‘“โˆ—
-continuous
then, by Proposition 3.23, a map ๐‘‡ is ๐‘“๐‘“-continuous and ๐‘๐‘“-continuous at ๐‘ข.
- Corollary 3.27. Assume ๐‘‡: (๐‘‹, ๐ถ) โŸถ (๐‘Œ, ๐‘ž) is ๐‘“โˆ—
-continuous at ๐‘ข, if (๐‘Œ, ๐‘ž) is backward sequentially
compact, then a map ๐‘‡ is ๐‘๐‘“-continuous, ๐‘“๐‘“-continuous, ๐‘๐‘-continuous and ๐‘“๐‘-continuous at ๐‘ข.
- Lemma 3.28. Assume (๐‘‹, ๐ถ) is a CMS and {๐‘ข๐‘›}๐‘›โ‰ฅ1 a sequence in ๐‘‹. Assume there is an order of non-
negative natural numbers {๐œ†๐‘›}๐‘›โ‰ฅ1 such that โˆ‘ ๐›พ๐‘› < โˆž
โˆž
๐‘›=1 , in which ๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1) โ‰ค ๐›พ๐‘›๐‘€, for some ๐‘€ โˆˆ
๐‘ƒ, and for all ๐‘› โˆˆ โ„•. Then, the sequence {๐‘ข๐‘›}๐‘›โ‰ฅ1 is Cauchy order in (๐‘‹, ๐ถ).
Proof. For ๐‘› > ๐‘š, we get,
๏ฒ ISSN: 2502-4752
Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 540-549
546
๐ถ(๐‘ข๐‘š,๐‘ข๐‘›) โ‰ค ๐ถ(๐‘ข๐‘š, ๐‘ข๐‘š+1) + ๐ถ(๐‘ข๐‘š+1, ๐‘ข๐‘š+2) + โ‹ฏ + ๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) โ‰ค ๐‘€ โˆ‘ ๐›พ๐‘–
โˆž
๐‘š=1
suppose ๐‘ โˆˆ int ๐‘ƒ and choose ๐›ฟ > 0 such that ๐‘ + ๐‘๐›ฟ(0) โŠ‚ ๐‘ƒ where,
๐‘๐›ฟ(0) = {๐‘ฃ โˆˆ ๐ธ โˆถ โ€–๐‘ฃโ€– < ๐›ฟ}
since โˆ‘ ๐›พ๐‘› < โˆž
โˆž
๐‘›=1 , there exists an actual number ๐‘›0 to the extent that for all ๐‘š โ‰ฅ ๐‘›0 ๐‘€ โˆ‘ ๐›พ๐‘–
โˆž
๐‘š=1 โˆˆ
๐‘๐›ฟ(0), also โˆ’๐‘€ โˆ‘ ๐›พ๐‘–
โˆž
๐‘š=๐‘– โˆˆ ๐‘๐›ฟ(0) since ๐‘ + ๐‘๐›ฟ(0) is open. Thus, ๐‘ + ๐‘๐›ฟ(0) โˆˆ int ๐‘ƒ; that is ๐‘ โˆ’
๐‘€ โˆ‘ ๐›พ๐‘–
โˆž
๐‘š=๐‘– โˆˆ int ๐‘ƒ. Thus, ๐‘€ โˆ‘ ๐›พ๐‘–
โˆž
๐‘š=๐‘– โ‰ช ๐‘ for ๐‘š โ‰ฅ ๐‘›0 and so, ๐ถ(๐‘ข๐‘š, ๐‘ข๐‘›) โ‰ช c for ๐‘› > ๐‘š โ‰ฅ ๐‘›0. Thus,
{๐‘ข๐‘›}๐‘›โ‰ฅ1 is a Cauchy order.
- Theorem 3.29. Assume (๐‘‹, ๐ถ) is a complete Hausdorff CMS, (๐‘‹, ๐‘ž) a QCMS and suppose ๐‘‡: (๐‘‹, ๐ถ) โŸถ
(๐‘‹, ๐‘ž) is a ๐‘โˆ—
-continuous mapping. Suppose that there are functions ๐œ‚, ๐œ†, ๐œ, ๐œ‡, ๐œ‰: ๐‘‹ โŸถ [0, 1) which satisfy
the following for ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹,
(1) ๐œ‚(๐‘‡(๐‘ข)) โ‰ค ๐œ‚(๐‘ข), ๐œ†(๐‘‡(๐‘ข)) โ‰ค ๐œ†(๐‘ข), ๐œ(๐‘‡(๐‘ข)) โ‰ค ๐œ(๐‘ข), ๐œ‡(๐‘‡(๐‘ข)) โ‰ค ๐œ‡(๐‘ข) and ๐œ‰(๐‘‡(๐‘ข)) โ‰ค ๐œ‰(๐‘ข)
(2) ๐œ‚(๐‘ข) + ๐œ†(๐‘ข) + ๐œ(๐‘ข) + ๐œ‡(๐‘ข) + ๐œ‰(๐‘ข) < 1
(3) ๐‘ž(๐‘‡(๐‘ข), ๐‘‡(๐‘ฃ)) โ‰ค ๐œ‚(๐‘ข)๐‘ž(๐‘ข, ๐‘ฃ) + ๐œ†(๐‘ข)๐‘ž(๐‘ข, ๐‘‡(๐‘ข)) + ๐œ(๐‘ข)๐‘ž(๐‘ฃ, ๐‘‡(๐‘ฃ)) + ๐œ‡(๐‘ข)๐‘ž(๐‘‡(๐‘ข), ๐‘ฃ) +
๐œ‰(๐‘ข)๐‘ž(๐‘ฃ, ๐‘‡(๐‘ฃ))
(4) ๐ถ(๐‘‡(๐‘ข), ๐‘‡(๐‘ฃ)) โ‰ค ๐œ‚(๐‘ข)๐ถ(๐‘ข, ๐‘ฃ) + ๐œ†(๐‘ข)๐ถ(๐‘ข, ๐‘‡(๐‘ข)) + ๐œ(๐‘ข)๐ถ(๐‘ฃ, ๐‘‡(๐‘ฃ)) + ๐œ‡(๐‘ข)๐ถ(๐‘‡(๐‘ข), ๐‘ฃ) +
๐œ‰(๐‘ข)๐ถ(๐‘ข, ๐‘‡(๐‘ฃ))
๐‘‡ then has a distinctive fixed point.
Proof. Let ๐‘ข0 โˆˆ ๐‘‹ be arbitrary and fixed, and we consider the sequence of orbit of ๐‘ข0, ๐‘ข๐‘› = ๐‘‡(๐‘ข๐‘›โˆ’1) for
all ๐‘› โˆˆ โ„•. If we take ๐‘ข = ๐‘ข๐‘›โˆ’1 and ๐‘ฃ = ๐‘ข๐‘› in (4) we have,
๐ถ(๐‘ข๐‘›,๐‘ข๐‘›+1) = ๐ถ(๐‘‡(๐‘ข๐‘›โˆ’1), ๐‘‡(๐‘ข๐‘›))
โ‰ค ๐œ‚(๐‘ข๐‘›โˆ’1)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘ข๐‘›โˆ’1)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘‡(๐‘ข๐‘›โˆ’1)) +
๐œ(๐‘ข๐‘›โˆ’1)๐ถ(๐‘ข๐‘›, ๐‘‡(๐‘ข๐‘›)) + ๐œ‡(๐‘ข๐‘›โˆ’1)๐ถ(๐‘‡(๐‘ข๐‘›โˆ’1), ๐‘ข๐‘›) + ๐œ‰(๐‘ข๐‘›โˆ’1)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘‡(๐‘ข๐‘›))
= ๐œ‚(๐‘‡(๐‘ข๐‘›โˆ’2))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘‡(๐‘ข๐‘›โˆ’2))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) +
๐œ(๐‘‡(๐‘ข๐‘›โˆ’2))๐ถ(๐‘ข๐‘› ,๐‘ข๐‘›+1) + ๐œ‡(๐‘‡(๐‘ข๐‘›โˆ’2))๐‘‡(๐‘ข๐‘›, ๐‘ข๐‘›) +
๐œ‰(๐‘‡(๐‘ข๐‘›โˆ’2))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›+1))
โ‰ค ๐œ‚(๐‘ข๐‘›โˆ’2)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘ข๐‘›โˆ’2)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘ข๐‘›โˆ’2)๐ถ(๐‘ข๐‘› , ๐‘ข๐‘›+1) +
๐œ‰(๐‘ข๐‘›โˆ’2)(๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1))
โ‹ฎ
โ‰ค ๐œ‚(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘ข0)๐ถ(๐‘ข๐‘› , ๐‘ข๐‘›+1) + ๐œ‰(๐‘ข0)(๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1))
= ๐œ‚(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘ข0)๐ถ(๐‘ข๐‘› , ๐‘ข๐‘›+1) + ๐œ‰(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) +
๐œ‰(๐‘ข0)๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1)
= (๐œ‚(๐‘ข0) + ๐œ†(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘ข0)๐ถ(๐‘ข๐‘› , ๐‘ข๐‘›+1) + ๐œ‰(๐‘ข0)๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1)
= (๐œ‚(๐‘ข0) + ๐œ†(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + (๐œ(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1).
so,
๐ถ(๐‘ข๐‘›,๐‘ข๐‘›+1) โˆ’ (๐œ(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1) โ‰ค (๐œ‚(๐‘ข0) + ๐œ†(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›)
so,
๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1)(1 โˆ’ (๐œ(๐‘ข0) + ๐œ‰(๐‘ข0))) โ‰ค (๐œ‚(๐‘ข0) + ๐œ†(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›)
Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ
Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari)
547
so,
๐ถ(๐‘ข๐‘›,๐‘ข๐‘›+1) โ‰ค (
๐œ‚(๐‘ข0)+๐œ†(๐‘ข0)+ ๐œ‰(๐‘ข0)
1โˆ’ ๐œ(๐‘ข0)โˆ’ ๐œ‰(๐‘ข0)
) ๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›)
= โ„Ž ๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›)
โ‰ค โ„Ž2
๐ถ(๐‘ข๐‘›โˆ’2, ๐‘ข๐‘›โˆ’1)
โ‹ฎ
โ‰ค โ„Ž๐‘›
๐ถ(๐‘ข0, ๐‘ข1)
thus, by Lemma 3.28, {๐‘ข๐‘›}๐‘›โ‰ฅ1 is Cauchy in ๐‘‹. Because of completeness of ๐‘‹ and ๐‘‡ is a ๐‘โˆ—
-continuous
mapping, there exists ๐‘ค โˆˆ ๐‘‹ such that ๐‘ข๐‘› โ†’ ๐‘ค and ๐‘ข๐‘›+1 = ๐‘‡(๐‘ข๐‘›)
๐‘
โ†’ ๐‘‡(๐‘ค).
For uniqueness, let ๐‘ค1 be another fixed point of ๐‘‡, then,
๐‘ž(๐‘ค, ๐‘ค1) = ๐‘ž(๐‘‡(๐‘ค), ๐‘‡(๐‘ค1))
โ‰ค ๐œ‚(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ†(๐‘ค)๐‘ž(๐‘ค, ๐‘‡(๐‘ค)) + ๐œ(๐‘ค)๐‘ž(๐‘ค1, ๐‘‡(๐‘ค1)) + ๐œ‡(๐‘ค)๐‘ž(๐‘‡(๐‘ค), ๐‘ค1) + ๐œ‰(๐‘ค)๐‘ž(๐‘ค, ๐‘‡(๐‘ค1))
= ๐œ‚(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ†(๐‘ค)๐‘ž(๐‘ค, ๐‘ค) + ๐œ(๐‘ค)๐‘ž(๐‘ค1, ๐‘ค1) + ๐œ‡(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ‰(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1)
= ๐œ‚(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ‡(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ‰(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1)
= (๐œ‚(๐‘ค) + ๐œ‡(๐‘ค) + ๐œ‰(๐‘ค))๐‘ž(๐‘ค, ๐‘ค1)
Therefore; ๐œ‚(๐‘ค) + ๐œ‡(๐‘ค) + ๐œ‰(๐‘ค) โ‰ฅ 1, contradicts to (2). Thus, ๐‘ž(๐‘ค, ๐‘ค1) = 0 โŸน ๐‘ค = ๐‘ค1.
- Corollary 3.30. Assume (๐‘‹, ๐ถ) is a complete Hausdorff CMS, (๐‘‹, ๐‘ž) a QCMS and suppose ๐‘‡: (๐‘‹, ๐ถ) โŸถ
(๐‘‹, ๐‘ž) is a ๐‘โˆ—
-continuous mapping. Suppose that there are functions ๐œ‚, ๐œ†, ๐œ‡: ๐‘‹ โ†’ [0, 1), which gratify the
following for ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹,
๐œ‚(๐‘‡(๐‘ข)) โ‰ค ๐œ‚(๐‘ข), ๐œ†(๐‘‡(๐‘ข)) โ‰ค ๐œ†(๐‘ข) and ๐œ‡(๐‘‡(๐‘ข)) โ‰ค ๐œ‡(๐‘ข),
(1) ๐œ‚(๐‘ข) + 2๐œ†(๐‘ข) + 2๐œ‡(๐‘ข) < 1
(2) ๐‘ž(๐‘‡(๐‘ข), ๐‘‡(๐‘ฃ)) โ‰ค ๐œ‚(๐‘ข)๐‘ž(๐‘ข, ๐‘ฃ) + ๐œ†(๐‘ข)(๐‘ž(๐‘ข, ๐‘‡(๐‘ฃ)) + ๐‘ž(๐‘ฃ, ๐‘‡(๐‘ฃ))) + ๐œ‡(๐‘ข)(๐‘ž(๐‘‡(๐‘ข), ๐‘ฃ) +
๐‘ž(๐‘ข, ๐‘‡(๐‘ฃ)))
(3) ๐ถ(๐‘‡(๐‘ข), ๐‘‡(๐‘ฃ)) โ‰ค ๐œ‚(๐‘ข)๐ถ(๐‘ข, ๐‘ฃ) + ๐œ†(๐‘ข)(๐ถ(๐‘ข, ๐‘‡(๐‘ข)) + ๐ถ(๐‘ฃ, ๐‘‡(๐‘ฃ))) + ๐œ‡(๐‘ข)(๐ถ(๐‘‡(๐‘ข), ๐‘ฃ) +
๐ถ(๐‘ข, ๐‘‡(๐‘ฃ)))
then, ๐‘‡ has a unique fixed point.
4. CONCLUSION
This study was mainly concerned with introducing four new notions of continuity of mapping, some
theorems and propositions comparing these new notions to each other, illustrating them with some examples.
Furthermore, in this paper, the fixed-point theorem of this newly introduced notion has been introduced.
Future research can investigate a unique fixed point between CMS and QCMS to prove a fixed point between
QCMS and CMS.
ACKNOWLEDGEMENTS
Authors would like to thank Department of fundamental and applied science, Universiti Teknologi
PETRONAS UTP for their support. The funder of this work is Yayasan YUTP under grant cost center
015LC0-272.
REFERENCES
[1] L. G. Huang and X. Zhang, โ€œCone metric spaces and fixed point theorems of contractive mappings,โ€ J. Math. Anal. Appl., vol.
332, no. 2, pp. 1468-1476, 2007, doi: 10.1016/j.jmaa.2005.03.087.
[2] M. Abbas and G. Jungck, โ€œCommon fixed point results for noncommuting mappings without continuity in cone metric spaces,โ€ J.
Math. Anal. Appl., vol. 341, no. 1, pp. 416-420, 2008, doi: 10.1016/j.jmaa.2007.09.070.
[3] D. Turkoglu and M. Abuloha, โ€œCone metric spaces and fixed point theorems in diametrically contractive mappings,โ€ Acta Math.
Sin. Engl. Ser., vol. 26, no. 3, pp. 489-496, 2010, doi: 10.1007/s10114-010-8019-5.
๏ฒ ISSN: 2502-4752
Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 540-549
548
[4] Z. E. D. D. Olia, M. E. Gordji, and D. E. Bagha, โ€œBanach Fixed Point Theorem on Orthogonal Cone Metric Spaces,โ€ Facta Univ.
Ser. Math. Informatics, vol. 35, p. 1239, 2021, doi: 10.22190/fumi2005239e.
[5] T. Yaying, B. Hazarika, and H. Cakalli, โ€œNew results in quasi cone metric spaces,โ€ J. Math. Comput. Sci., vol. 16, no. 03, pp. 435-
444, 2017, doi: 10.22436/jmcs.016.03.13.
[6] S. Rezapour and R. Hamlbarani, โ€œSome notes on the paper โ€˜Cone metric spaces and fixed point theorems of contractive
mappings,โ€ J. Math. Anal. Appl., vol. 345, no. 2, pp. 719-724, 2008, doi:10.1016/j.jmaa.2008.04.049.
[7] S. Jankoviฤ‡, Z. Kadelburg, and S. Radenoviฤ‡, โ€œOn cone metric spaces: a survey,โ€ Nonlinear Anal. Theory, Methods & Appl., vol.
74, no. 7, pp. 2591-2601, 2011, doi:10.1016/j.na.2010.12.014.
[8] T. Abdeljawad and E. Karapinar, โ€œQuasicone metric spaces and generalizations of caristi kirkโ€™s theorem,โ€ Fixed Point Theory
Appl., vol. 2009, no. 1, pp. 9-18, 2009, doi:10.1155/2009/574387.
[9] T. Yaying, B. Hazarika, and S. A. Mohiuddine, โ€œSome New Types of Continuity in Asymmetric Metric Spaces,โ€ Facta Univ. Ser.
Math. Informatics, p. 485, 2020, doi: 10.22190/FUMI2002485Y.
[10] M. Abbas, B. E. Rhoades, and T. Nazir, โ€œCommon fixed points for four maps in cone metric spaces,โ€ Appl. Math. Comput., vol.
216, no. 1, pp. 80-86, 2010, doi: 10.1016/j.amc.2010.01.003.
[11] Q. Yan, J. Yin, and T. Wang, โ€œFixed point and common fixed point theorems on ordered cone metric spaces over Banach
algebras,โ€ J. Nonlinear Sci. Appl., vol. 9, no. 4, pp. 1581-1589, 2016, doi: 10.22436/jnsa.009.04.15.
[12] Altun and G. Durmaz, โ€œSome fixed point theorems on ordered cone metric spaces,โ€ Rend. del Circ. Mat. di Palermo, vol. 58, no.
2, pp. 319-325, 2009, doi: 10.1007/s12215-009-0026-y.
[13] D. Ilic and V. Rakocevic, โ€œCommon fixed points for maps on cone metric space,โ€ J. Math. Anal. Appl., vol. 341, no. 2, pp. 876-
882, 2008, doi:10.1016/j.jmaa.2007.10.065.
[14] D. Iliฤ‡ and V. Rakoฤeviฤ‡, โ€œQuasi-contraction on a cone metric space,โ€ Appl. Math. Lett., vol. 22, no. 5, pp. 728-731, 2009, doi:
10.1016/j.aml.2008.08.011.
[15] S. Radenoviฤ‡ and B. E. Rhoades, โ€œFixed point theorem for two non-self mappings in cone metric spaces,โ€ Comput. Math. with
Appl., vol. 57, no. 10, pp. 1701-1707, 2009, doi: 10.1016/j.camwa.2009.03.058.
[16] N. Sadigh and S. Ghods, โ€œCoupled coincidence point in ordered cone metric spaces with examples in game theory,โ€ Int. J.
Nonlinear Anal. Appl., vol. 7, no. 1, pp. 183-194, 2016, doi: 10.22075/IJNAA.2015.305.
[17] X. Ge and S. Yang, โ€œSome fixed point results on generalized metric spaces [J],โ€ AIMS Math., vol. 6, no. 2, pp. 1769-1780, 2021,
doi: 10.3934/Math.2021106.
[18] R. Mustafa, S. Omran, and Q. N. Nguyen, โ€œFixed Point Theory Using $ฯˆ$ Contractive Mapping in Cโˆ—-Algebra Valued B-Metric
Space,โ€ Mathematics, vol. 9, no. 1, p. 92, 2021, doi: 10.3390/math9010092.
[19] J. Fernandez, N. Malviya, Z. D. Mitroviฤ‡, A. Hussain, and V. Parvaneh, โ€œSome fixed point results on Nb -cone metric spaces over
Banach algebra,โ€ Adv. Differ. Equations, vol. 2020, no. 1, pp. 1-15, 2020, doi: 10.1186/s13662-020-02991-5.
[20] N. Sadigh and S. Ghods, โ€œCoupled coincidence point in ordered cone metric spaces with examples in game theory,โ€ Int. J.
Nonlinear Anal. Appl., vol. 7, no. 1, pp. 183-194, 2016, doi: 10.22075/ijnaa.2015.305.
[21] L.-G. Huang and X. Zhang, โ€œCone metric spaces and fixed point theorems of contractive mappings,โ€ J. Math. Anal. Appl., vol.
332, no. 2, pp. 1468-1476, 2007, doi: 10.1016/j.jmaa.2006.03.087.
[22] Z. M. Fadail and S. M. Abusalim, โ€œT-Reich contraction and fixed point results in cone metric spaces with c-distance,โ€ Int. J.
Math. Anal., vol. 11, no. 8, pp. 397-405, 2017, doi: 10.12988/ijma.2017.7338.
[23] S. U. Rehman and H.-X. Li, โ€œFixed point theorems in fuzzy cone metric spaces,โ€ J. Nonlinear Sci. Appl. JNSA, vol. 10, no. 11, pp.
5763-5769, 2017, doi:10.22436/jnsa.010.11.14.
[24] M. Abbas, A. R. Khan, and T. Nazir, โ€œCommon fixed point of multivalued mappings in ordered generalized metric spaces,โ€
Filomat, vol. 26, no. 5, pp. 1045-1053, 2012, doi: 10.2298/FIL1205045A.
[25] R. George, H. A. Nabwey, J. Vujakoviฤ‡, R. Rajagopalan, and S. Vinayagam, โ€œDislocated quasi cone b-metric space over Banach
algebra and contraction principles with application to functional equations,โ€ Open Math., vol. 17, no. 1, pp. 1065-1081, 2019, doi:
10.1515/math-2019-0086.
[26] T. Abdeljawad and E. Karapinar, โ€œQuasicone metric spaces and generalizations of Caristi Kirkโ€™s theorem,โ€ Fixed Point Theory
Appl., vol. 2009, pp. 1-9, 2009, doi: 10.1155/2009/574387.
[27] K. Abodayeh, T. Qawasmeh, W. Shatanawi, and A. Tallafha, โ€œฮ•ฯ•-Contraction and Some Fixed Point Results Via Modified ฮฉ-
Distance Mappings in the Frame of Complete Quasi Metric Spaces and Applications,โ€ International Journal of Electrical and
Computer Engineering (IJECE), vol. 10, no. 4, pp. 3839-3853, 2020, doi: 10.11591/ijece.v10i4.pp3839-3853.
BIOGRAPHIES OF AUTHORS
Abdullah Al-Yaari received a B.Sc. degree in Mathematics (Honors) from
Thamar University, in 2007, as well as M.Sc. in Mathmatics from University Kebangsaan
Malaysia. He is currently a doctoral stusent at Universiti Teknologi PETRONAS (UTP)
and an Academic Staff at Thamar University, Yemen. His research interests lie in fixed
point theorem and nanofluid flow in porous media. He can be contacted Phone: +60-1-
8310-3931, Fax: +60-3-8925-4519 and at email: abdullah_20001447@utp.edu.my.
Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ
Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari)
549
Hamzah Bin Sakidin is a Senior Lecturer at Universiti Teknologi
PETRONAS (UTP) Seri Iskandar Perak since September 2013. His research interest is in
the field of Applied Mathematics and mathematical modelling. He has received several
research grants, acting as the head researcher or co-researcher for some research grants. He
is also the author of several mathematics book for tertiary level of education. The author
also has more than 20 years of experience teaching in secondary and tertiary level of
education. He can be contacted at email: hamzah.sakidin@utp.edu.my.
Yousif Alyousifi received a B.Sc. degree in Mathematics (Honors) from
Thamar University, in 2007, as well as M.Sc. and PhD degrees in Statistics from University
Kebangsaan Malaysia. He is currently an Academic Staff at Thamar University, Yemen. His
research interests lie in statistical modeling and advanced time series analysis and stochastic
process under classic and Bayesian approaches. He can be contacted at email:
yalyousify@tu.edu.ye.
Qasem Al-Tashi is currently a Postdoctoral Fellow at The University of
Texas MD Anderson Cancer Center, Houston, Texas, United States. He was a Research
Scientist at Universiti Teknologi PETRONAS. He received the B.Sc. degree in software
engineering from Universiti Teknologi Malaysia, in 2012, and the M.Sc. degree in
software engineering from Universiti Kebangsaan Malaysia, in 2017. He obtained his PhD
in Information in early 2021 from Universiti Teknologi PETRONAS. He is also an
Academic Staff with Albaydha University, Yemen. His research interests include artificial
neural networks, multi-objective optimization, feature selection, swarm intelligence
evolutionary algorithms, classification and data analytics. He is a section editor for the
Journal of Applied Artificial Intelligence (JAAI) and Journal of Information Technology
and Computing (JITC) and a reviewer for several high impact factor journals such as
Artificial Intelligence Review, the IEEE ACCESS, Knowledge-Based Systems, Soft
Computing, Journal of Ambient Intelligence and Humanized Computing, Applied Soft
Computing, Neurocomputing, Applied Artificial Intelligence, and Plos One. He can be
contacted at email: qaal@mdanderson.org, qasemacc22@gmail.com.

More Related Content

Similar to Fixed point theorem between cone metric space and quasi-cone metric space

STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...
STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...
STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...IAEME Publication
ย 
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...inventionjournals
ย 
2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)Komal Goyal
ย 
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij (Stepan Douplii)
ย 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
ย 
A common fixed point theorem for two random operators using random mann itera...
A common fixed point theorem for two random operators using random mann itera...A common fixed point theorem for two random operators using random mann itera...
A common fixed point theorem for two random operators using random mann itera...Alexander Decker
ย 
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...QUESTJOURNAL
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
ย 
IRJET- Common Fixed Point Results in Menger Spaces
IRJET-  	  Common Fixed Point Results in Menger SpacesIRJET-  	  Common Fixed Point Results in Menger Spaces
IRJET- Common Fixed Point Results in Menger SpacesIRJET Journal
ย 
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...IJERA Editor
ย 
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...IJRES Journal
ย 
Stability criterion of periodic oscillations in a (14)
Stability criterion of periodic oscillations in a (14)Stability criterion of periodic oscillations in a (14)
Stability criterion of periodic oscillations in a (14)Alexander Decker
ย 
ITERATIVE METHODS FOR THE SOLUTION OF SADDLE POINT PROBLEM
ITERATIVE METHODS FOR THE SOLUTION OF SADDLE POINT PROBLEMITERATIVE METHODS FOR THE SOLUTION OF SADDLE POINT PROBLEM
ITERATIVE METHODS FOR THE SOLUTION OF SADDLE POINT PROBLEMIAEME Publication
ย 
Iterative methods for the solution of saddle point problem
Iterative methods for the solution of saddle point problemIterative methods for the solution of saddle point problem
Iterative methods for the solution of saddle point problemIAEME Publication
ย 
A05920109
A05920109A05920109
A05920109IOSR-JEN
ย 

Similar to Fixed point theorem between cone metric space and quasi-cone metric space (20)

AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
ย 
STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...
STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...
STATIC ANALYSIS OF COMPLEX STRUCTURE OF BEAMS BY INTERPOLATION METHOD APPROAC...
ย 
30120140505003
3012014050500330120140505003
30120140505003
ย 
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
Cocentroidal and Isogonal Structures and Their Matricinal Forms, Procedures a...
ย 
2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)2. Prasad_Komal JNU2015 (1)
2. Prasad_Komal JNU2015 (1)
ย 
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
ย 
lec1.ppt
lec1.pptlec1.ppt
lec1.ppt
ย 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
ย 
A common fixed point theorem for two random operators using random mann itera...
A common fixed point theorem for two random operators using random mann itera...A common fixed point theorem for two random operators using random mann itera...
A common fixed point theorem for two random operators using random mann itera...
ย 
I0744347
I0744347I0744347
I0744347
ย 
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid ...
ย 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
ย 
IRJET- Common Fixed Point Results in Menger Spaces
IRJET-  	  Common Fixed Point Results in Menger SpacesIRJET-  	  Common Fixed Point Results in Menger Spaces
IRJET- Common Fixed Point Results in Menger Spaces
ย 
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
ย 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
ย 
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
ย 
Stability criterion of periodic oscillations in a (14)
Stability criterion of periodic oscillations in a (14)Stability criterion of periodic oscillations in a (14)
Stability criterion of periodic oscillations in a (14)
ย 
ITERATIVE METHODS FOR THE SOLUTION OF SADDLE POINT PROBLEM
ITERATIVE METHODS FOR THE SOLUTION OF SADDLE POINT PROBLEMITERATIVE METHODS FOR THE SOLUTION OF SADDLE POINT PROBLEM
ITERATIVE METHODS FOR THE SOLUTION OF SADDLE POINT PROBLEM
ย 
Iterative methods for the solution of saddle point problem
Iterative methods for the solution of saddle point problemIterative methods for the solution of saddle point problem
Iterative methods for the solution of saddle point problem
ย 
A05920109
A05920109A05920109
A05920109
ย 

More from nooriasukmaningtyas

A deep learning approach based on stochastic gradient descent and least absol...
A deep learning approach based on stochastic gradient descent and least absol...A deep learning approach based on stochastic gradient descent and least absol...
A deep learning approach based on stochastic gradient descent and least absol...nooriasukmaningtyas
ย 
Automated breast cancer detection system from breast mammogram using deep neu...
Automated breast cancer detection system from breast mammogram using deep neu...Automated breast cancer detection system from breast mammogram using deep neu...
Automated breast cancer detection system from breast mammogram using deep neu...nooriasukmaningtyas
ย 
Max stable set problem to found the initial centroids in clustering problem
Max stable set problem to found the initial centroids in clustering problemMax stable set problem to found the initial centroids in clustering problem
Max stable set problem to found the initial centroids in clustering problemnooriasukmaningtyas
ย 
Intelligent aquaculture system for pisciculture simulation using deep learnin...
Intelligent aquaculture system for pisciculture simulation using deep learnin...Intelligent aquaculture system for pisciculture simulation using deep learnin...
Intelligent aquaculture system for pisciculture simulation using deep learnin...nooriasukmaningtyas
ย 
Effective task scheduling algorithm in cloud computing with quality of servic...
Effective task scheduling algorithm in cloud computing with quality of servic...Effective task scheduling algorithm in cloud computing with quality of servic...
Effective task scheduling algorithm in cloud computing with quality of servic...nooriasukmaningtyas
ย 
Design of an environmental management information system for the Universidad ...
Design of an environmental management information system for the Universidad ...Design of an environmental management information system for the Universidad ...
Design of an environmental management information system for the Universidad ...nooriasukmaningtyas
ย 
K-NN supervised learning algorithm in the predictive analysis of the quality ...
K-NN supervised learning algorithm in the predictive analysis of the quality ...K-NN supervised learning algorithm in the predictive analysis of the quality ...
K-NN supervised learning algorithm in the predictive analysis of the quality ...nooriasukmaningtyas
ย 
Systematic literature review on university website quality
Systematic literature review on university website qualitySystematic literature review on university website quality
Systematic literature review on university website qualitynooriasukmaningtyas
ย 
An intelligent irrigation system based on internet of things (IoT) to minimiz...
An intelligent irrigation system based on internet of things (IoT) to minimiz...An intelligent irrigation system based on internet of things (IoT) to minimiz...
An intelligent irrigation system based on internet of things (IoT) to minimiz...nooriasukmaningtyas
ย 
Enhancement of observability using Kubernetes operator
Enhancement of observability using Kubernetes operatorEnhancement of observability using Kubernetes operator
Enhancement of observability using Kubernetes operatornooriasukmaningtyas
ย 
Customer churn analysis using XGBoosted decision trees
Customer churn analysis using XGBoosted decision treesCustomer churn analysis using XGBoosted decision trees
Customer churn analysis using XGBoosted decision treesnooriasukmaningtyas
ย 
Smart solution for reducing COVID-19 risk using internet of things
Smart solution for reducing COVID-19 risk using internet of thingsSmart solution for reducing COVID-19 risk using internet of things
Smart solution for reducing COVID-19 risk using internet of thingsnooriasukmaningtyas
ย 
Development of computer-based learning system for learning behavior analytics
Development of computer-based learning system for learning behavior analyticsDevelopment of computer-based learning system for learning behavior analytics
Development of computer-based learning system for learning behavior analyticsnooriasukmaningtyas
ย 
Efficiency of hybrid algorithm for COVID-19 online screening test based on it...
Efficiency of hybrid algorithm for COVID-19 online screening test based on it...Efficiency of hybrid algorithm for COVID-19 online screening test based on it...
Efficiency of hybrid algorithm for COVID-19 online screening test based on it...nooriasukmaningtyas
ย 
Comparative study of low power wide area network based on internet of things ...
Comparative study of low power wide area network based on internet of things ...Comparative study of low power wide area network based on internet of things ...
Comparative study of low power wide area network based on internet of things ...nooriasukmaningtyas
ย 
Fog attenuation penalty analysis in terrestrial optical wireless communicatio...
Fog attenuation penalty analysis in terrestrial optical wireless communicatio...Fog attenuation penalty analysis in terrestrial optical wireless communicatio...
Fog attenuation penalty analysis in terrestrial optical wireless communicatio...nooriasukmaningtyas
ย 
An approach for slow distributed denial of service attack detection and allev...
An approach for slow distributed denial of service attack detection and allev...An approach for slow distributed denial of service attack detection and allev...
An approach for slow distributed denial of service attack detection and allev...nooriasukmaningtyas
ย 
Design and simulation double Ku-band Vivaldi antenna
Design and simulation double Ku-band Vivaldi antennaDesign and simulation double Ku-band Vivaldi antenna
Design and simulation double Ku-band Vivaldi antennanooriasukmaningtyas
ย 
Coverage enhancements of vehicles users using mobile stations at 5G cellular ...
Coverage enhancements of vehicles users using mobile stations at 5G cellular ...Coverage enhancements of vehicles users using mobile stations at 5G cellular ...
Coverage enhancements of vehicles users using mobile stations at 5G cellular ...nooriasukmaningtyas
ย 
New method for route efficient energy calculations with mobile-sink for wirel...
New method for route efficient energy calculations with mobile-sink for wirel...New method for route efficient energy calculations with mobile-sink for wirel...
New method for route efficient energy calculations with mobile-sink for wirel...nooriasukmaningtyas
ย 

More from nooriasukmaningtyas (20)

A deep learning approach based on stochastic gradient descent and least absol...
A deep learning approach based on stochastic gradient descent and least absol...A deep learning approach based on stochastic gradient descent and least absol...
A deep learning approach based on stochastic gradient descent and least absol...
ย 
Automated breast cancer detection system from breast mammogram using deep neu...
Automated breast cancer detection system from breast mammogram using deep neu...Automated breast cancer detection system from breast mammogram using deep neu...
Automated breast cancer detection system from breast mammogram using deep neu...
ย 
Max stable set problem to found the initial centroids in clustering problem
Max stable set problem to found the initial centroids in clustering problemMax stable set problem to found the initial centroids in clustering problem
Max stable set problem to found the initial centroids in clustering problem
ย 
Intelligent aquaculture system for pisciculture simulation using deep learnin...
Intelligent aquaculture system for pisciculture simulation using deep learnin...Intelligent aquaculture system for pisciculture simulation using deep learnin...
Intelligent aquaculture system for pisciculture simulation using deep learnin...
ย 
Effective task scheduling algorithm in cloud computing with quality of servic...
Effective task scheduling algorithm in cloud computing with quality of servic...Effective task scheduling algorithm in cloud computing with quality of servic...
Effective task scheduling algorithm in cloud computing with quality of servic...
ย 
Design of an environmental management information system for the Universidad ...
Design of an environmental management information system for the Universidad ...Design of an environmental management information system for the Universidad ...
Design of an environmental management information system for the Universidad ...
ย 
K-NN supervised learning algorithm in the predictive analysis of the quality ...
K-NN supervised learning algorithm in the predictive analysis of the quality ...K-NN supervised learning algorithm in the predictive analysis of the quality ...
K-NN supervised learning algorithm in the predictive analysis of the quality ...
ย 
Systematic literature review on university website quality
Systematic literature review on university website qualitySystematic literature review on university website quality
Systematic literature review on university website quality
ย 
An intelligent irrigation system based on internet of things (IoT) to minimiz...
An intelligent irrigation system based on internet of things (IoT) to minimiz...An intelligent irrigation system based on internet of things (IoT) to minimiz...
An intelligent irrigation system based on internet of things (IoT) to minimiz...
ย 
Enhancement of observability using Kubernetes operator
Enhancement of observability using Kubernetes operatorEnhancement of observability using Kubernetes operator
Enhancement of observability using Kubernetes operator
ย 
Customer churn analysis using XGBoosted decision trees
Customer churn analysis using XGBoosted decision treesCustomer churn analysis using XGBoosted decision trees
Customer churn analysis using XGBoosted decision trees
ย 
Smart solution for reducing COVID-19 risk using internet of things
Smart solution for reducing COVID-19 risk using internet of thingsSmart solution for reducing COVID-19 risk using internet of things
Smart solution for reducing COVID-19 risk using internet of things
ย 
Development of computer-based learning system for learning behavior analytics
Development of computer-based learning system for learning behavior analyticsDevelopment of computer-based learning system for learning behavior analytics
Development of computer-based learning system for learning behavior analytics
ย 
Efficiency of hybrid algorithm for COVID-19 online screening test based on it...
Efficiency of hybrid algorithm for COVID-19 online screening test based on it...Efficiency of hybrid algorithm for COVID-19 online screening test based on it...
Efficiency of hybrid algorithm for COVID-19 online screening test based on it...
ย 
Comparative study of low power wide area network based on internet of things ...
Comparative study of low power wide area network based on internet of things ...Comparative study of low power wide area network based on internet of things ...
Comparative study of low power wide area network based on internet of things ...
ย 
Fog attenuation penalty analysis in terrestrial optical wireless communicatio...
Fog attenuation penalty analysis in terrestrial optical wireless communicatio...Fog attenuation penalty analysis in terrestrial optical wireless communicatio...
Fog attenuation penalty analysis in terrestrial optical wireless communicatio...
ย 
An approach for slow distributed denial of service attack detection and allev...
An approach for slow distributed denial of service attack detection and allev...An approach for slow distributed denial of service attack detection and allev...
An approach for slow distributed denial of service attack detection and allev...
ย 
Design and simulation double Ku-band Vivaldi antenna
Design and simulation double Ku-band Vivaldi antennaDesign and simulation double Ku-band Vivaldi antenna
Design and simulation double Ku-band Vivaldi antenna
ย 
Coverage enhancements of vehicles users using mobile stations at 5G cellular ...
Coverage enhancements of vehicles users using mobile stations at 5G cellular ...Coverage enhancements of vehicles users using mobile stations at 5G cellular ...
Coverage enhancements of vehicles users using mobile stations at 5G cellular ...
ย 
New method for route efficient energy calculations with mobile-sink for wirel...
New method for route efficient energy calculations with mobile-sink for wirel...New method for route efficient energy calculations with mobile-sink for wirel...
New method for route efficient energy calculations with mobile-sink for wirel...
ย 

Recently uploaded

Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdfssuser54595a
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
ย 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
ย 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
ย 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
ย 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
ย 
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
ย 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
ย 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
ย 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
ย 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
ย 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
ย 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
ย 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
ย 

Recently uploaded (20)

Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
ย 
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAะกY_INDEX-DM_23-1-final-eng.pdf
ย 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
ย 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
ย 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
ย 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
ย 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
ย 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
ย 
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
ย 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ย 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
ย 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
ย 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
ย 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
ย 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
ย 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
ย 

Fixed point theorem between cone metric space and quasi-cone metric space

  • 1. Indonesian Journal of Electrical Engineering and Computer Science Vol. 25, No. 1, January 2022, pp. 540~549 ISSN: 2502-4752, DOI: 10.11591/ijeecs.v25.i1.pp540-549 ๏ฒ 540 Journal homepage: http://ijeecs.iaescore.com Fixed point theorem between cone metric space and quasi-cone metric space Abdullah Al-Yaari1,2 , Hamzah Sakidin1 , Yousif Alyousifi3 , Qasem Al-Tashi4,5 1 Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia 2 Department of Mathematics, Faculty of Education, Thamar University, Dhamar, Yemen 3 Department of Mathematics, Faculty of Applied Science, Thamar University, Dhamar, Yemen 4 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia 5 Faculty of Administrative and Computer Sciences, University of Albaydha, Albaydha, Yemen Article Info ABSTRACT Article history: Received Jul 28 2021 Revised Nov 1, 2021 Accepted Nov 26, 2021 This study involves new notions of continuity of mapping between quasi-cone metrics spaces (QCMSs), cone metric spaces (CMSs), and vice versa. The relation between all notions of continuity were thoroughly studied and supported with the help of examples. In addition, these new continuities were compared with various types of continuities of mapping between two QCMSs. The continuity types are ๐’‡๐’‡-continuous, ๐’ƒ๐’ƒ-continuous, ๐’‡๐’ƒ-continuous, and ๐’ƒ๐’‡-continuous. The results demonstrated that the new notions of continuity could be generalized to the continuity of mapping between two QCMSs. It also showed a fixed point for this continuity map between a complete Hausdorff CMS and QCMS. Overall, this study supports recent research results. Keywords: Cone metric spaces second Fixed point theorem Quasi-cone metric spaces This is an open access article under the CC BY-SA license. Corresponding Author: Abdullah Al-Yaari Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS 32610 Seri Iskandar, Malaysia E-mail: abdullah_20001447@utp.edu.my 1. INTRODUCTION More than two decades ago, Huang and Zhang had proposed the notion of a cone metric space [1]. The Cauchy and convergent sequences and a few fixed-point theorems were used for the contractive form of mappings in cone metric spaces (CMSs). This notion is exciting because of the usual metric space where an ordered Banach space switches to the real numbers. Abbas and Jungck [2] have shown some noncommuting mapping causes CMSs. Furthermore, several researchers have proved different contractive-type maps in CMS and fixed points [3]-[8]. The function of a quasi-metric is to verify the triangle disparity. However, quasi-metric is considered an asymmetric metric. As compared to metric space, quasi-metric space (QMS) is more inclusive. It is also a topic of exhaustive research in computer science and the framework for topology. For instance, a quasi-cone metric space (QCMS) definition expands to the QMS given by Turkoglu and Abuloha [3]. Morales and Rojas have introduced the continuity of mapping between CMS (๐‘‹, ๐ถ), ๐‘ƒ a cone along with constant ๐พ and ๐‘‡: ๐‘‹ โŸถ ๐‘‹ and it self [4]. Yaying et al. introduced the continuity of mapping between QCMS (๐‘‹, ๐‘ž) and itself [5]. In addition, although the concept of normality in CMSs is monumental in developing fixed point theory in CMSs, Rezapour and Hamlbarani [6] have rejected it. Several researchers have simplified fixed points in CMSs in many directions. For instance, Jankovic et al. [7] surveyed the latest outcomes in CMSs. Abdeljawad and Karapinar [8] have verified fixed point theorems in QCMSs. They introduced many Cauchy sequences in QCMSs, which are studied as an extension of the Banach contraction
  • 2. Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari) 541 mapping and other areas. Yaying et al. [9] have defined arithmetic ๐‘“๐‘- continuity and arithmetic ๐‘“๐‘“- continuity based on the notions of forward and backward arithmetic convergence in asymmetric metric spaces. Also, they have proven some interesting results. For functions between (MSs), (CMSs) and (QCMSs) and themselves, many continuity ideas have been established [4], [5]. The continuity function between (QCMSs) and (CMSs) and vice versa, however, has yet to be implemented. As a result, we have introduced these definitions and looked at how they relate to one another. Our ideas are based on the continuation of a function mapping between two (MSs), a function mapping between two (CMSs), and a function mapping between two (QCMSs). There have been numerous fixed-point theorems presented between (MSs) and themselves, (CMSs) and themselves, and (QCMSs) and themselves [1], [8]. We looked at prior results of a fixed-point to introduce a fixed point in a function mapping between (CMSs) and (QCMSs). This paper introduces new notions of continuity of mapping, some theorems, and propositions. It compares the new notions to each other through specific examples. Additionally, the paper introduces the fixed-point theorem of the newly introduced notion. The paper also supports the results of other recent research with the help of examples. Finally, some general concepts, definitions, and outcomes are recalled and applied in this paper. This study will make a significant contribution to the field of mapping continuity and fixed-point theorems. Fixed point theorems are used to solve problems in estimate theory, game theory, and mathematical economics in a variety of disciplines including mathematics, statistics, computer science, engineering, and economics. The following is how the rest of the paper is structured: The study's preliminary findings are presented in section 2, the results are clarified in section 3, and the paper is completed in section 4. 2. PRELIMINARIES In this part, the elementary facts about the CMSs and QCMSs and their continuity, which can be observed in [1], [10]-[26], are given in a shortened form. - Definition 2. 1 (see [17]). The cone is considered to be regular if each expanding sequence in ๐‘ƒ that is bounded from is convergent in ๐ธ. If {๐‘ข๐‘›}๐‘›โˆˆโ„• is a sequence such that, ๐‘ข1 โ‰ค ๐‘ข2 โ‰ค ยท ยท ยท โ‰ค ๐‘ข๐‘› โ‰ค ยท ยท ยท โ‰ค ๐‘ฃ (1) for a few ๐‘ฃ โˆˆ ๐ธ, there is also some ๐‘ข โˆˆ ๐ธ that satisfies โ€– ๐‘ข๐‘› โˆ’ ๐‘ขโ€– โŸถ 0๐ธ. As (๐‘› โ†’ โˆž). In the following, we continually assume ๐ธ is a space of Banach, ๐‘ƒ is a cone. - Definition 2. 2 (see [18]). Assume ๐‘‹ is a nonempty set. Presume the mapping ๐ถ โˆถ ๐‘‹ ร— ๐‘‹ โŸถ ๐ธ assures, (C1) ๐ถ(๐‘ข, ๐‘ฃ) โ‰ฅ 0๐ธ for all ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹ and ๐ถ(๐‘ข, ๐‘ฃ) = 0๐ธ if and only if ๐‘ข = ๐‘ฃ (C2) ๐ถ(๐‘ข, ๐‘ฃ) = ๐ถ(๐‘ฃ, ๐‘ข) for all ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹ (C3) ๐ถ(๐‘ข, ๐‘ฃ) โ‰ค ๐ถ(๐‘ข, ๐‘ค) + ๐ถ(๐‘ฃ, ๐‘ค) for all ๐‘ข, ๐‘ฃ, ๐‘ค โˆˆ ๐‘‹ then, ๐ถ is a cone metric on ๐‘‹, and (๐‘‹, ๐ถ) is a CMS. - Proposition 2. 3 (see [4]). Assume (๐‘‹, ๐ถ1) and (๐‘Œ, ๐ถ2) are a CMS, ๐‘ƒ a cone with constant ๐พ and ๐‘‡: ๐‘‹ โŸถ ๐‘Œ. The following are equivalent, the map ๐‘‡ is continuous. If lim ๐‘›โ†’โˆž ๐‘ข๐‘› = ๐‘ข, implies that lim ๐‘›โ†’โˆž ๐‘‡๐‘ข๐‘› = ๐‘‡๐‘ข for every {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹. - Definition 2. 4 (see [24]). Assume ๐‘‹ is a set. Presume that the mapping ๐‘ž: ๐‘‹ ร— ๐‘‹ โ†’ ๐ธ satisfies the subsequent, (Q1) 0๐ธ โ‰ค ๐‘ž(๐‘ข, ๐‘ฃ) for all ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹, (Q2) ๐‘ž(๐‘ข, ๐‘ฃ) = 0๐ธ if and only if ๐‘ข = ๐‘ฃ, (Q3) ๐‘ž(๐‘ข, ๐‘ฃ) โ‰ค ๐‘ž(๐‘ข, ๐‘ค) + ๐‘ž(๐‘ค, ๐‘ฃ), for all ๐‘ข, ๐‘ฃ, ๐‘ค โˆˆ ๐‘‹. Then, ๐‘ž is known as a QCM on ๐‘‹, and the pair (๐‘‹, ๐‘ž) is called a QCMS. - Example 2. 5 (see [25]). Assume ๐‘‹ = โ„, ๐ธ = โ„2 , ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: โ„ ร— โ„ โŸถ โ„2 is defined by (2), ๐‘ž(๐‘ข, ๐‘ฃ) = { (0,0) if ๐‘ข = ๐‘ฃ, (1,0) if ๐‘ข > ๐‘ฃ, (0,1) if ๐‘ข < ๐‘ฃ. (2) Then, (๐‘ž, โ„) is a QCMS because it satisfies all conditions of QCMS, for all ๐‘ข, ๐‘ฃ, ๐‘ค โˆˆ โ„.
  • 3. ๏ฒ ISSN: 2502-4752 Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 540-549 542 - Definition 2. 6 (see [27]). A sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• forward converges to ๐‘ข0 โˆˆ ๐‘‹ if for each ๐‘ โˆˆ ๐ธ along with 0๐ธ โ‰ช ๐‘ (i.e., ๐‘ โˆˆ int ๐‘ƒ) there exists a number ๐‘›0 that satisfies ๐‘ž(๐‘ข0, ๐‘ข๐‘›) โ‰ช ๐‘ for all ๐‘› โ‰ฅ ๐‘›0. We indicate it through ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข0. - Definition 2. 7 (see [3]). A sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• backward joins to ๐‘ข0 โˆˆ ๐‘‹ if for each ๐‘ โˆˆ ๐ธ along with 0๐ธ โ‰ช ๐‘ (i.e., ๐‘ โˆˆ int ๐‘ƒ) there is a number ๐‘›0 that satisfies ๐‘ž(๐‘ข๐‘›, ๐‘ข0) โ‰ช ๐‘ for all ๐‘› โ‰ฅ ๐‘›0. We show it by ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข0. - Definition 2. 8 (see [5]). Assume (๐‘‹, ๐‘ž๐‘‹) and (๐‘Œ, ๐‘ž๐‘Œ) are two QCMSs. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“๐‘“-continuous at ๐‘ข โˆˆ ๐‘‹ if whenever ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข in (๐‘‹, ๐‘ž๐‘‹) we have ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž๐‘Œ). - Definition 2. 9 (see [5]). Assume (๐‘‹, ๐‘ž๐‘‹) and (๐‘Œ, ๐‘ž๐‘Œ) are two QCMSs. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“๐‘-continuous at ๐‘ข โˆˆ ๐‘‹ if whenever ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข in (๐‘‹, ๐‘ž๐‘‹) we have ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž๐‘Œ). - Definition 2. 10 (see [5]). Assume (๐‘‹, ๐‘ž๐‘‹) and (๐‘Œ, ๐‘ž๐‘Œ) are two QCMSs. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘๐‘“- continuous at ๐‘ข โˆˆ ๐‘‹ if whenever ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข in (๐‘‹, ๐‘ž๐‘‹) we have ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž๐‘Œ). - Definition 2. 11 (see [5]). Assume (๐‘‹, ๐‘ž๐‘‹) and (๐‘Œ, ๐‘ž๐‘Œ) are two QCMSs. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘๐‘- continuous at ๐‘ข โˆˆ ๐‘‹ if whenever ๐‘ข๐‘› ๐‘ โ†’ ๐‘ฅ in (๐‘‹, ๐‘ž๐‘‹) we have ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž๐‘Œ). - Definition 2. 12 (see [5]). A set ๐‘‹ is compact in the forward sequence if every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ possesses a forward convergent subsequence {๐‘ข๐‘›๐‘˜ }๐‘›๐‘˜โˆˆโ„• to ๐‘ข0 โˆˆ ๐‘‹ if for all ๐‘ โˆˆ ๐ธ along with 0๐ธ โ‰ช ๐‘ (i.e., ๐‘ โˆˆ int ๐‘ƒ) there is number ๐‘›0 as a result ๐‘ž(๐‘ข0, ๐‘ข๐‘›๐‘˜ ) โ‰ช ๐‘ for all ๐‘›๐‘˜ โ‰ฅ ๐‘›0. - Definition 2. 13 (see [5]). A set ๐‘‹ is compact in the backward sequence if every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ possesses a backward convergent subsequence {๐‘ข๐‘›๐‘˜ }๐‘›๐‘˜โˆˆโ„• to ๐‘ข0 โˆˆ ๐‘‹ if for all ๐‘ โˆˆ ๐ธ along with 0๐ธ โ‰ช ๐‘ (i.e., ๐‘ โˆˆ int ๐‘ƒ) there exists a number ๐‘›0 as a result ๐‘ž(๐‘ข๐‘›๐‘˜ , ๐‘ข0) โ‰ช ๐‘) for all ๐‘›๐‘˜ โ‰ฅ ๐‘›0. - Lemma 2. 14 (see [5]). Assume (๐‘‹, ๐‘ž) is a QCMS. Then ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข if and only if each subsequence of it is backward convergent to ๐‘ข. Proof. Suppose ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข. Then for ๐‘ โˆˆ ๐ธ along with 0๐ธ โ‰ช ๐‘ there exists an ๐‘›0 โˆˆ โ„• such that ๐‘ž(๐‘ข๐‘›, ๐‘ข) โ‰ช ๐‘, which means ๐‘ โˆ’ ๐‘ž(๐‘ข๐‘›, ๐‘ข) โˆˆ int ๐‘ƒ for all ๐‘› โ‰ฅ ๐‘›0. Suppose {๐‘ข๐‘›๐‘˜ } ๐‘˜โˆˆโ„• is a random subsequence of {๐‘ข๐‘›}๐‘›โˆˆโ„•. If ๐‘›๐‘˜ โ‰ฅ ๐‘›0, we got ๐‘ โˆ’ ๐‘ž(๐‘ข๐‘›๐‘˜ , ๐‘ข) โˆˆ int ๐‘ƒ, i.e., ๐‘ž(๐‘ข๐‘›๐‘˜ , ๐‘ข) โ‰ช ๐‘. So ๐‘ข๐‘›๐‘˜ ๐‘ โ†’ ๐‘ข. - Lemma 2. 15 (see [5]). Assume (๐‘‹, ๐‘ž) is a QCMS. Then ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข if and only if each subsequence of it is forward convergent to ๐‘ข. Proof. Suppose ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข. Then, for ๐‘ โˆˆ ๐ธ along sequence with 0๐ธ โ‰ช ๐‘ there exists an ๐‘›0 โˆˆ โ„• that satisfies ๐‘ž(๐‘ข, ๐‘ข๐‘›) โ‰ช ๐‘, which means ๐‘ โˆ’ ๐‘ž(๐‘ข, ๐‘ข๐‘›) โˆˆ int ๐‘ƒ for all ๐‘› โ‰ฅ ๐‘›0. Suppose {๐‘ข๐‘›๐‘˜ } ๐‘˜โˆˆโ„• is a random subsequence of {๐‘ข๐‘›}๐‘›โˆˆโ„•. If ๐‘›๐‘˜ โ‰ฅ ๐‘›0, we got ๐‘ โˆ’ ๐‘ž(๐‘ข, ๐‘ข๐‘›๐‘˜ ) โˆˆ int ๐‘ƒ, i.e., ๐‘ž(๐‘ข, ๐‘ข๐‘›๐‘˜ ) โ‰ช ๐‘. So ๐‘ข๐‘›๐‘˜ ๐‘“ โ†’ ๐‘ข. The converseโ€™ proof is evident. Thus, it is removed. As a result, the proof is complete. - Lemma 2. 16 (see [5]). If {๐‘ข๐‘›}๐‘›โˆˆโ„• forward converges to ๐‘ข โˆˆ ๐‘‹ and backward converges to ๐‘ฃ โˆˆ ๐‘‹, it means ๐‘ข = ๐‘ฃ. - Theorem 2. 17 (see [5]). Assume ๐‘ž โˆถ ๐‘‹ ร— ๐‘‹ โ†’ ๐ธ is a QCMS. If (๐‘‹, ๐‘ž) is a forward sequentially compact and ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข. It means ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข. 3. MAIN RESULTS Because of the established concepts in CMSs and QCMSs [5] and [26], we introduce new notions of continuity of mapping between QCMS and CMS and vice versa. The relation between all notions of continuity is thoroughly studied and support with the help of examples. We also find a fixed point for this continuity map between a complete Hausdorff CMS and QCMS. - Definition 3.1. Suppose (๐‘‹, ๐‘ž) is a QCMS and (๐‘Œ, ๐ถ) a CMS. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘-continuous at ๐‘ข if for any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ backward converges to an element ๐‘ข in ๐‘‹ (๐‘ข๐‘› ๐‘ โ†’ ๐‘ข as ๐‘› โ†’ โˆž), then the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• converges to ๐‘‡(๐‘ข) in ๐‘Œ, (๐ถ(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) โ†’ 0๐ธ as ๐‘› โ†’ โˆž). ๐‘‡ is considered ๐‘- continuous if it is ๐‘-continuous at each ๐‘ข โˆˆ ๐‘‹. - Example 3.2. Suppose (๐‘‹, ๐‘ž) is a QCMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2 : ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by (3), ๐‘ž(๐‘ข, ๐‘ฃ) = { (๐‘ข โˆ’ ๐‘ฃ, ๐›ผ(๐‘ข โˆ’ ๐‘ฃ)), if ๐‘ข โ‰ฅ ๐‘ฃ, (๐›ผ, 1), if ๐‘ข < ๐‘ฃ. (3)
  • 4. Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari) 543 assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0,1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2 : ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). A map ๐‘‡: [0, 1] โŸถ [0, 1] defined by ๐‘‡(๐‘ข) = ๐‘ข 2 is ๐‘-continuous at {0}. - Proposition 3.3. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘-continuous at ๐‘ข. Then, a map ๐‘‡ is ๐‘๐‘-continuous at ๐‘ข and ๐‘๐‘“-continuous at ๐‘ข. Proof. Since a map ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘-continuous at ๐‘ข, then for every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘‹, ๐‘ž) that backward converges to an element ๐‘ข in (๐‘‹, ๐‘ž), i.e., ๐‘ž(๐‘ข๐‘›, ๐‘ข) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, we have a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• that converges to ๐‘‡(๐‘ข) in (๐‘Œ, ๐ถ), i.e., ๐ถ(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, where every CMS is QCMS and ๐ถ(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) = ๐ถ(๐‘‡(๐‘ข), ๐‘‡(๐‘ข๐‘›)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, thus, a map ๐‘‡ is ๐‘๐‘-continuous at ๐‘ข and ๐‘๐‘“-continuous at ๐‘ข. - Remark 3.4. Every ๐‘๐‘-continuous (or ๐‘๐‘“-continuous) is not always the case ๐‘-continuous as every QCMS is not always CMS. - Definition 3.5. Assume (๐‘‹, ๐‘ž) is a QCMS and (๐‘Œ, ๐ถ) a CMS. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“-continuous at ๐‘ข if for any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ forward converges to an element ๐‘ข in (๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข as ๐‘› โ†’ โˆž). Then, the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• approaches to ๐‘‡(๐‘ข) in (๐ถ(๐‘‡(๐‘ข๐‘›),๐‘‡(๐‘ข)) โ†’ 0๐ธ as ๐‘› โ†’ โˆž). ๐‘‡ is considered ๐‘“- continuous if it is ๐‘“-continuous at all ๐‘ข โˆˆ ๐‘‹. - Example 3.6. Assume (๐‘‹, ๐‘ž) is a QCMS, where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2 : ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by (4), ๐‘ž(๐‘ข, ๐‘ฃ) = { (๐‘ฃ โˆ’ ๐‘ข, ๐›ผ(๐‘ฃ โˆ’ ๐‘ข)), if ๐‘ฃ โ‰ฅ ๐‘ข, (๐›ผ, 1), if ๐‘ฃ < ๐‘ข. (4) suppose (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0,1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2 : ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). A map ๐‘‡: [0, 1] โŸถ [0, 1] defined by ๐‘‡(๐‘ข) = ๐‘ข 3 is ๐‘“-continuous at {0}. - Proposition 3.7. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘“-continuous at ๐‘ฅ. Then, a map ๐‘‡ is ๐‘“๐‘“-continuous at ๐‘ฅ and ๐‘“๐‘-continuous at ๐‘ฅ. Proof. Since a map ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘“-continuous at ๐‘ข, then for all sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘‹, ๐‘ž) forward approaches to an element ๐‘ข in (๐‘‹, ๐‘ž), i.e., ๐‘ž(๐‘ข, ๐‘ข๐‘›) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, we have a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• that converges to ๐‘‡(๐‘ข) in (๐‘Œ, ๐ถ), i.e., ๐ถ(๐‘‡(๐‘ข๐‘›),๐‘‡(๐‘ข)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, where every CMS is QCMS and ๐ถ(๐‘‡(๐‘ข๐‘›),๐‘‡(๐‘ข)) = ๐ถ(๐‘‡(๐‘ข), ๐‘‡(๐‘ข๐‘›)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, thus, a map ๐‘‡ is ๐‘“๐‘“- continuous at ๐‘ข and ๐‘“๐‘-continuous at ๐‘ข. - Remark 3.8. Every ๐‘“๐‘“-continuous (or ๐‘“๐‘-continuous) is not always the case ๐‘“-continuous as every QCMS is not CMS. - Theorem 3.9. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘-continuous at ๐‘ข. If (๐‘‹, ๐‘ž) is forward sequentially compact, then, ๐‘‡ is ๐‘“-continuous at ๐‘ข. Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘-continuous at ๐‘ข, any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ backward converges to ๐‘ข โˆˆ ๐‘‹. Then, the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• approaches to ๐‘‡(๐‘ข) โˆˆ ๐‘Œ. In other words, ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข โŸน ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž, where (๐‘‹, ๐‘ž) is forward sequentially compact, the sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• possesses a forward convergent subsequence in ๐‘‹ say ๐‘ข๐‘›๐‘˜ ๐‘“ โ†’ ๐‘ฃ by Lemma 2.15, so ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ฃ โˆˆ ๐‘‹. Since ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข โˆˆ ๐‘‹ and ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ฃ โˆˆ ๐‘‹ by Lemma 2.16, subsequently ๐‘ข = ๐‘ฃ. Thus, ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข. Since ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข as ๐‘› โ†’ โˆž, so ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข as ๐‘› โ†’ โˆž. Then, ๐‘‡ is ๐‘“- continuous at ๐‘ข. - Example 3.10. Assume (๐‘‹, ๐‘ž) is a QCMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: [0,1] ร— [0,1] โŸถ โ„2 is defined by (5), ๐‘ž(๐‘ข, ๐‘ฃ) = { (0,0) if ๐‘ฃ โ‰ฅ ๐‘ข, (๐‘ข, ๐›ผ๐‘ข) if ๐‘ฃ < ๐‘ข. (5) Assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0,1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). A map ๐‘‡: [0, 1] โŸถ [0, 1] defined by ๐‘‡(๐‘ข) = ๐‘ข 4 is ๐‘-continuous at {0}. - Lemma 3.11. Assume ๐‘ž: ๐‘‹ ร— ๐‘‹ โ†’ ๐ธ is a QCM. If (๐‘‹, ๐‘ž) is backward sequentially compact and ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข. Then ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข.
  • 5. ๏ฒ ISSN: 2502-4752 Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 540-549 544 Proof. Assume {๐‘ข๐‘›}๐‘›โˆˆโ„• is a sequence so ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข for a few ๐‘ข โˆˆ ๐‘‹. Via the backward sequentially compactness, the sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• has a backward convergent subsequence, as ๐‘ข๐‘›๐‘˜ ๐‘ โ†’ ๐‘ฃ by lemma 2.14, so, ๐‘ข๐‘› ๐‘ โ†’ ๐‘ฃ. Since ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข โˆˆ ๐‘‹ and ๐‘ข๐‘› ๐‘ โ†’ ๐‘ฃ โˆˆ ๐‘‹, by Lemma 2.16, subsequently ๐‘ข = ๐‘ฃ. Thus, ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข. - Theorem 3.12. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘“-continuous at ๐‘ฅ. If (๐‘‹, ๐‘ž) is backward sequentially compact. Then, ๐‘‡ is ๐‘-continuous at ๐‘ฅ. Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“-continuous at ๐‘ข that means any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘‹ forward converges to ๐‘ข โˆˆ ๐‘‹. Then, a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• approaches to ๐‘‡(๐‘ข) โˆˆ ๐‘Œ. In other words, ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข โŸน ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž, by Lemma 3.11, so ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข. Since ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› ๐‘“ โ†’ ๐‘ข as ๐‘› โ†’ โˆž, so ๐‘‡(๐‘ข๐‘›) โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› ๐‘ โ†’ ๐‘ข as ๐‘› โ†’ โˆž. Then, ๐‘‡ is ๐‘-continuous at ๐‘ข. - Example 3.13. Assume (๐‘‹, ๐‘ž) is a QCMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by (6), ๐‘ž(๐‘ข, ๐‘ฃ) = { (0,0) if ๐‘ข โ‰ฅ ๐‘ฃ, (๐‘ฃ, ๐›ผ๐‘ฃ) if ๐‘ข < ๐‘ฃ. (6) assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0,1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ ๐ธ: ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). A map ๐‘‡: [0, 1] โŸถ [0,1] defined by ๐‘‡(๐‘ข) = ๐‘ข 3 is ๐‘“-continuous at {0}. - Remarks 3.14. Assume (๐‘‹, ๐‘ž) is a QCMS and {๐‘ข๐‘›}๐‘›โˆˆโ„• a backward convergent sequence in ๐‘‹, the sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• is not always the case a forward convergent sequence in ๐‘‹. Assume (๐‘‹, ๐‘ž) is a QCMS and {๐‘ข๐‘›}๐‘›โˆˆโ„• a forward convergent sequence in ๐‘‹, the sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• is not always the case a backward convergent sequence in ๐‘‹. - Corollary 3.15. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘-continuous at ๐‘ฅ. If (๐‘‹, ๐‘ž) is forward sequentially compact, then ๐‘‡ is ๐‘๐‘-continuous, ๐‘๐‘“-continuous, ๐‘“๐‘-continuous and ๐‘“๐‘“-continuous at ๐‘ข. Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘-continuous at ๐‘ข and (๐‘‹, ๐‘ž) is forward sequentially compact by โ€“ Proposition 3.3, a map ๐‘‡ is ๐‘๐‘-continuous and ๐‘๐‘“-continuous at ๐‘ข, and by Theorem 3.9, a map ๐‘‡ is ๐‘“- continuous then, by Proposition 3.7, a map ๐‘‡ is ๐‘“๐‘“-continuous and ๐‘“๐‘-continuous at ๐‘ข. - Corollary 3.16. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐ถ) is ๐‘“-continuous at ๐‘ข. If (๐‘‹, ๐‘ž) is backward sequentially compact, then ๐‘‡ is ๐‘๐‘-continuous, ๐‘๐‘“-continuous, ๐‘“๐‘-continuous and ๐‘“๐‘“-continuous at ๐‘ข. Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘-continuous at ๐‘ข and (๐‘‹, ๐‘ž) is backward sequentially compact by Proposition 3.7, a map ๐‘‡ is ๐‘“๐‘“-continuous and ๐‘“๐‘-continuous at ๐‘ข, and by Theorem 3.12, a map ๐‘‡ is ๐‘-continuous then, by Proposition 3.3, a map ๐‘‡ is ๐‘๐‘-continuous and ๐‘๐‘“-continuous at ๐‘ข. - Definition 3.17. Assume (๐‘‹, ๐ถ) is a CMS and (๐‘Œ, ๐‘ž) a QCMS. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘โˆ— -continuous at ๐‘ข if for any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘‹, ๐ถ) converges to an element ๐‘ข in (๐‘‹, ๐ถ), (๐ถ(๐‘ข๐‘›, ๐‘ฅ) โ†’ 0๐ธ as ๐‘› โ†’ โˆž). Then, a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• in (๐‘Œ, ๐‘ž) backward converges to ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž) (๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž). Provided ๐‘‡ is ๐‘โˆ— -continuous at each ๐‘ข โˆˆ ๐‘‹, then it is called ๐‘โˆ— -continuous. - Example 3.18. Assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2 : ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). Suppose(๐‘‹, ๐‘ž) is a QCMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0, 1), = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2 : ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by (7), ๐‘ž(๐‘ข, ๐‘ฃ) = { (๐‘ข โˆ’ ๐‘ฃ, ๐›ผ(๐‘ข โˆ’ ๐‘ฃ)), if ๐‘ข โ‰ฅ ๐‘ฃ, (๐›ผ, 1), if ๐‘ข < ๐‘ฃ. (7) a map ๐‘‡: [0, 1] โŸถ [0, 1] defined by ๐‘‡(๐‘ข) = ๐‘ข 2 is ๐‘โˆ— -continuous at {0}. - Definition 3.19. Assume (๐‘‹, ๐ถ) is a CMS and (๐‘Œ, ๐‘ž) a QCMS. A map ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“โˆ— -continuous at ๐‘ข if for any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘‹, ๐ถ) converges to an element ๐‘ข in (๐‘‹, ๐ถ) (๐ถ(๐‘ข๐‘›, ๐‘ข) โ†’ 0๐ธ as ๐‘› โ†’ โˆž). Then, a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• in (๐‘Œ, ๐‘ž) forward converges to ๐‘‡(๐‘ข) in (๐‘Œ, ๐‘ž) (๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž). Provided ๐‘‡ is ๐‘“โˆ— -continuous at each ๐‘ข โˆˆ ๐‘‹, then it is called ๐‘“โˆ— -continuous. - Example 3.20. Assume (๐‘‹, ๐ถ) is a CMS where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0, 1), ๐‘ƒ = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2 : ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐ถ: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by ๐ถ(๐‘ข, ๐‘ฃ) = (|๐‘ข โˆ’ ๐‘ฃ|, ๐›ผ|๐‘ข โˆ’ ๐‘ฃ|). Assume (๐‘‹, ๐‘ž) is a QCMS
  • 6. Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari) 545 where ๐‘‹ = [0,1], ๐ธ = โ„2 , ๐›ผ โˆˆ [0, 1), = {(๐‘ข, ๐‘ฃ) โˆˆ โ„2 : ๐‘ข, ๐‘ฃ โ‰ฅ 0} and ๐‘ž: [0, 1] ร— [0, 1] โŸถ โ„2 is defined by (8), ๐‘ž(๐‘ข, ๐‘ฃ) = { (๐‘ฃ โˆ’ ๐‘ข, ๐›ผ(๐‘ฃ โˆ’ ๐‘ข)), if ๐‘ฃ โ‰ฅ ๐‘ข, (๐›ผ, 1), if ๐‘ฃ < ๐‘ข. (8) a map ๐‘‡: [0, 1] โŸถ [0, 1] defined by ๐‘‡(๐‘ข) = ๐‘ข 3 is ๐‘“โˆ— -continuous at {0}. - Proposition 3.21. Assume ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘โˆ— -continuous at ๐‘ข. Then, a map ๐‘‡ is ๐‘๐‘-continuous at ๐‘ข and ๐‘“๐‘-continuous at ๐‘ข. Proof. Since a map ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘โˆ— -continuous at ๐‘ข, then for every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘Œ, ๐ถ) approaches to an element ๐‘ข in (๐‘Œ, ๐ถ), i.e., ๐ถ(๐‘ข๐‘›, ๐‘ข) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, we have a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• that backward approaches to ๐‘‡(๐‘ข) in (๐‘‹, ๐‘ž), i.e., ๐‘ž(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, where every CMS is QCMS and ๐ถ(๐‘ข๐‘›,๐‘ข) = ๐ถ(๐‘ข, ๐‘ข๐‘›) โŸถ 0๐ธ as ๐‘› โ†’ โˆž . Thus, a map ๐‘‡ is ๐‘๐‘-continuous at ๐‘ข and ๐‘“๐‘- continuous at ๐‘ข. - Remark 3.22. Assume ๐‘‡: (๐‘‹, ๐‘ž) โŸถ (๐‘Œ, ๐‘ž) is ๐‘๐‘-continuous at ๐‘ข, or ๐‘“๐‘-continuous at ๐‘ข; then, a map ๐‘‡ is not ๐‘โˆ— -continuous at ๐‘ข because not every QCMS is necessarily CMS. - Proposition 3.23. Assume ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘“โˆ— -continuous at ๐‘ข. Then a map ๐‘‡ is ๐‘“๐‘“-continuous at ๐‘ข and ๐‘๐‘“-continuous at ๐‘ข. Proof. Since a map ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘“โˆ— -continuous at ๐‘ข, then for any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in (๐‘Œ, ๐ถ) approaches to an element ๐‘ข in (๐‘Œ, ๐ถ), i.e., ๐ถ(๐‘ข๐‘›, ๐‘ข) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, we have a sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• that forward approaches to ๐‘‡(๐‘ข) in (๐‘‹, ๐‘ž), i.e., ๐‘ž(๐‘‡(๐‘ข๐‘›), ๐‘‡(๐‘ข)) โŸถ 0๐ธ as ๐‘› โ†’ โˆž, where every CMS is a QCMS and ๐ถ(๐‘ข๐‘›,๐‘ข) = ๐ถ(๐‘ข, ๐‘ข๐‘›) โŸถ 0๐ธ as ๐‘› โ†’ โˆž . Thus, a map ๐‘‡ is ๐‘“๐‘“-continuous at ๐‘ข and ๐‘๐‘“- continuous at ๐‘ข. - Theorem 3.24. Assume ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘โˆ— -continuous at ๐‘ข. If (๐‘‹, ๐‘ž) is forward sequentially compact, then ๐‘‡ is ๐‘“โˆ— -continuous at ๐‘ข. Proof. Since ๐‘‡: ๐‘Œ โŸถ ๐‘‹ is ๐‘โˆ— -continuous at ๐‘ข, every sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘Œ converges to ๐‘ข โˆˆ ๐‘Œ, then the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• backward approaches to ๐‘‡(๐‘ข) โˆˆ ๐‘‹.In other words, ๐‘ข๐‘› โ†’ ๐‘ข โŸน ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž, where (๐‘‹, ๐‘ž) is forward sequentially compact, the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• has a forward convergent subsequence in ๐‘‹ say ๐‘‡(๐‘ข๐‘›๐‘˜ ) ๐‘“ โ†’ ๐‘‡(๐‘ฃ) by Lemma 2.15, so ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ฃ) โˆˆ ๐‘‹. Since ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข) โˆˆ ๐‘‹ and ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ฃ) โˆˆ ๐‘‹ by Lemma 2.16, subsequently ๐‘‡(๐‘ข) = ๐‘‡(๐‘ฃ). Thus, ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ข). Since ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› โ†’ ๐‘ข as ๐‘› โ†’ โˆž, ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› โ†’ ๐‘ข as ๐‘› โ†’ โˆž. Then, ๐‘‡ is ๐‘“โˆ— -continuous at ๐‘ข. - Theorem 3.25. Assume ๐‘‡: (๐‘Œ, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is ๐‘“โˆ— -continuous at ๐‘ข. If (๐‘‹, ๐‘ž) is backward sequentially compact, then ๐‘‡ is ๐‘โˆ— -continuous at ๐‘ข. Proof. Since ๐‘‡: ๐‘Œ โŸถ ๐‘‹ is ๐‘“โˆ— -continuous at ๐‘ข, then any sequence {๐‘ข๐‘›}๐‘›โˆˆโ„• in ๐‘Œ converges to ๐‘ข โˆˆ ๐‘Œ, then the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• forward approaches to ๐‘‡(๐‘ข) โˆˆ ๐‘‹. In other words, ๐‘ข๐‘› โ†’ ๐‘ข โŸน ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ข) as ๐‘› โ†’ โˆž, where (๐‘‹, ๐‘ž) is backward sequentially compact, the sequence {๐‘‡(๐‘ข๐‘›)}๐‘›โˆˆโ„• has a backward convergent subsequence in ๐‘‹ say ๐‘‡(๐‘ข๐‘›๐‘˜ ) ๐‘ โ†’ ๐‘‡(๐‘ฃ) by Lemma 2.14, so ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ฃ) โˆˆ ๐‘‹. Since ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข) โˆˆ ๐‘‹ and ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ฃ) โˆˆ ๐‘‹ by Lemma 2.16, subsequently ๐‘‡(๐‘ข) = ๐‘‡(๐‘ฃ). Thus, ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข). Since ๐‘‡(๐‘ข๐‘›) ๐‘“ โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› โ†’ ๐‘ข as ๐‘› โ†’ โˆž, so ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ข) whenever ๐‘ข๐‘› โ†’ ๐‘ข as ๐‘› โ†’ โˆž. Then ๐‘‡ is ๐‘โˆ— -continuous at ๐‘ข. Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘“โˆ— -continuous at ๐‘ข and (๐‘‹, ๐‘ž) is backward sequentially compact by Proposition 3.23, a map ๐‘‡ is ๐‘“-continuous and ๐‘๐‘“- continuous at ๐‘ข, and by Theorem 3.25, a map ๐‘‡ is ๐‘โˆ— -continuous then, by Proposition 3.21, a map ๐‘‡ is ๐‘๐‘-continuous and ๐‘“๐‘-continuous at ๐‘ข. - Corollary 3.26. Assume ๐‘‡: (๐‘‹, ๐ถ) โŸถ (๐‘Œ, ๐‘ž) is ๐‘โˆ— -continuous at ๐‘ข, if (๐‘Œ, ๐‘ž) is forward sequentially compact. Then a map ๐‘‡ is ๐‘๐‘“-continuous, ๐‘“๐‘“-continuous, ๐‘๐‘-continuous and ๐‘“๐‘-continuous at ๐‘ข. Proof. Since ๐‘‡: ๐‘‹ โŸถ ๐‘Œ is ๐‘โˆ— -continuous at ๐‘ข and (๐‘‹, ๐‘ž) is forward sequentially compact by Proposition 3.21, a map ๐‘‡ is ๐‘๐‘-continuous and ๐‘“๐‘-continuous at ๐‘ข, and by Theorem 3.24, a map ๐‘‡ is ๐‘“โˆ— -continuous then, by Proposition 3.23, a map ๐‘‡ is ๐‘“๐‘“-continuous and ๐‘๐‘“-continuous at ๐‘ข. - Corollary 3.27. Assume ๐‘‡: (๐‘‹, ๐ถ) โŸถ (๐‘Œ, ๐‘ž) is ๐‘“โˆ— -continuous at ๐‘ข, if (๐‘Œ, ๐‘ž) is backward sequentially compact, then a map ๐‘‡ is ๐‘๐‘“-continuous, ๐‘“๐‘“-continuous, ๐‘๐‘-continuous and ๐‘“๐‘-continuous at ๐‘ข. - Lemma 3.28. Assume (๐‘‹, ๐ถ) is a CMS and {๐‘ข๐‘›}๐‘›โ‰ฅ1 a sequence in ๐‘‹. Assume there is an order of non- negative natural numbers {๐œ†๐‘›}๐‘›โ‰ฅ1 such that โˆ‘ ๐›พ๐‘› < โˆž โˆž ๐‘›=1 , in which ๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1) โ‰ค ๐›พ๐‘›๐‘€, for some ๐‘€ โˆˆ ๐‘ƒ, and for all ๐‘› โˆˆ โ„•. Then, the sequence {๐‘ข๐‘›}๐‘›โ‰ฅ1 is Cauchy order in (๐‘‹, ๐ถ). Proof. For ๐‘› > ๐‘š, we get,
  • 7. ๏ฒ ISSN: 2502-4752 Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 540-549 546 ๐ถ(๐‘ข๐‘š,๐‘ข๐‘›) โ‰ค ๐ถ(๐‘ข๐‘š, ๐‘ข๐‘š+1) + ๐ถ(๐‘ข๐‘š+1, ๐‘ข๐‘š+2) + โ‹ฏ + ๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) โ‰ค ๐‘€ โˆ‘ ๐›พ๐‘– โˆž ๐‘š=1 suppose ๐‘ โˆˆ int ๐‘ƒ and choose ๐›ฟ > 0 such that ๐‘ + ๐‘๐›ฟ(0) โŠ‚ ๐‘ƒ where, ๐‘๐›ฟ(0) = {๐‘ฃ โˆˆ ๐ธ โˆถ โ€–๐‘ฃโ€– < ๐›ฟ} since โˆ‘ ๐›พ๐‘› < โˆž โˆž ๐‘›=1 , there exists an actual number ๐‘›0 to the extent that for all ๐‘š โ‰ฅ ๐‘›0 ๐‘€ โˆ‘ ๐›พ๐‘– โˆž ๐‘š=1 โˆˆ ๐‘๐›ฟ(0), also โˆ’๐‘€ โˆ‘ ๐›พ๐‘– โˆž ๐‘š=๐‘– โˆˆ ๐‘๐›ฟ(0) since ๐‘ + ๐‘๐›ฟ(0) is open. Thus, ๐‘ + ๐‘๐›ฟ(0) โˆˆ int ๐‘ƒ; that is ๐‘ โˆ’ ๐‘€ โˆ‘ ๐›พ๐‘– โˆž ๐‘š=๐‘– โˆˆ int ๐‘ƒ. Thus, ๐‘€ โˆ‘ ๐›พ๐‘– โˆž ๐‘š=๐‘– โ‰ช ๐‘ for ๐‘š โ‰ฅ ๐‘›0 and so, ๐ถ(๐‘ข๐‘š, ๐‘ข๐‘›) โ‰ช c for ๐‘› > ๐‘š โ‰ฅ ๐‘›0. Thus, {๐‘ข๐‘›}๐‘›โ‰ฅ1 is a Cauchy order. - Theorem 3.29. Assume (๐‘‹, ๐ถ) is a complete Hausdorff CMS, (๐‘‹, ๐‘ž) a QCMS and suppose ๐‘‡: (๐‘‹, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is a ๐‘โˆ— -continuous mapping. Suppose that there are functions ๐œ‚, ๐œ†, ๐œ, ๐œ‡, ๐œ‰: ๐‘‹ โŸถ [0, 1) which satisfy the following for ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹, (1) ๐œ‚(๐‘‡(๐‘ข)) โ‰ค ๐œ‚(๐‘ข), ๐œ†(๐‘‡(๐‘ข)) โ‰ค ๐œ†(๐‘ข), ๐œ(๐‘‡(๐‘ข)) โ‰ค ๐œ(๐‘ข), ๐œ‡(๐‘‡(๐‘ข)) โ‰ค ๐œ‡(๐‘ข) and ๐œ‰(๐‘‡(๐‘ข)) โ‰ค ๐œ‰(๐‘ข) (2) ๐œ‚(๐‘ข) + ๐œ†(๐‘ข) + ๐œ(๐‘ข) + ๐œ‡(๐‘ข) + ๐œ‰(๐‘ข) < 1 (3) ๐‘ž(๐‘‡(๐‘ข), ๐‘‡(๐‘ฃ)) โ‰ค ๐œ‚(๐‘ข)๐‘ž(๐‘ข, ๐‘ฃ) + ๐œ†(๐‘ข)๐‘ž(๐‘ข, ๐‘‡(๐‘ข)) + ๐œ(๐‘ข)๐‘ž(๐‘ฃ, ๐‘‡(๐‘ฃ)) + ๐œ‡(๐‘ข)๐‘ž(๐‘‡(๐‘ข), ๐‘ฃ) + ๐œ‰(๐‘ข)๐‘ž(๐‘ฃ, ๐‘‡(๐‘ฃ)) (4) ๐ถ(๐‘‡(๐‘ข), ๐‘‡(๐‘ฃ)) โ‰ค ๐œ‚(๐‘ข)๐ถ(๐‘ข, ๐‘ฃ) + ๐œ†(๐‘ข)๐ถ(๐‘ข, ๐‘‡(๐‘ข)) + ๐œ(๐‘ข)๐ถ(๐‘ฃ, ๐‘‡(๐‘ฃ)) + ๐œ‡(๐‘ข)๐ถ(๐‘‡(๐‘ข), ๐‘ฃ) + ๐œ‰(๐‘ข)๐ถ(๐‘ข, ๐‘‡(๐‘ฃ)) ๐‘‡ then has a distinctive fixed point. Proof. Let ๐‘ข0 โˆˆ ๐‘‹ be arbitrary and fixed, and we consider the sequence of orbit of ๐‘ข0, ๐‘ข๐‘› = ๐‘‡(๐‘ข๐‘›โˆ’1) for all ๐‘› โˆˆ โ„•. If we take ๐‘ข = ๐‘ข๐‘›โˆ’1 and ๐‘ฃ = ๐‘ข๐‘› in (4) we have, ๐ถ(๐‘ข๐‘›,๐‘ข๐‘›+1) = ๐ถ(๐‘‡(๐‘ข๐‘›โˆ’1), ๐‘‡(๐‘ข๐‘›)) โ‰ค ๐œ‚(๐‘ข๐‘›โˆ’1)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘ข๐‘›โˆ’1)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘‡(๐‘ข๐‘›โˆ’1)) + ๐œ(๐‘ข๐‘›โˆ’1)๐ถ(๐‘ข๐‘›, ๐‘‡(๐‘ข๐‘›)) + ๐œ‡(๐‘ข๐‘›โˆ’1)๐ถ(๐‘‡(๐‘ข๐‘›โˆ’1), ๐‘ข๐‘›) + ๐œ‰(๐‘ข๐‘›โˆ’1)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘‡(๐‘ข๐‘›)) = ๐œ‚(๐‘‡(๐‘ข๐‘›โˆ’2))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘‡(๐‘ข๐‘›โˆ’2))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘‡(๐‘ข๐‘›โˆ’2))๐ถ(๐‘ข๐‘› ,๐‘ข๐‘›+1) + ๐œ‡(๐‘‡(๐‘ข๐‘›โˆ’2))๐‘‡(๐‘ข๐‘›, ๐‘ข๐‘›) + ๐œ‰(๐‘‡(๐‘ข๐‘›โˆ’2))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›+1)) โ‰ค ๐œ‚(๐‘ข๐‘›โˆ’2)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘ข๐‘›โˆ’2)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘ข๐‘›โˆ’2)๐ถ(๐‘ข๐‘› , ๐‘ข๐‘›+1) + ๐œ‰(๐‘ข๐‘›โˆ’2)(๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1)) โ‹ฎ โ‰ค ๐œ‚(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘ข0)๐ถ(๐‘ข๐‘› , ๐‘ข๐‘›+1) + ๐œ‰(๐‘ข0)(๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1)) = ๐œ‚(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ†(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘ข0)๐ถ(๐‘ข๐‘› , ๐‘ข๐‘›+1) + ๐œ‰(๐‘ข0)๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ‰(๐‘ข0)๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1) = (๐œ‚(๐‘ข0) + ๐œ†(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + ๐œ(๐‘ข0)๐ถ(๐‘ข๐‘› , ๐‘ข๐‘›+1) + ๐œ‰(๐‘ข0)๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1) = (๐œ‚(๐‘ข0) + ๐œ†(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) + (๐œ(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1). so, ๐ถ(๐‘ข๐‘›,๐‘ข๐‘›+1) โˆ’ (๐œ(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1) โ‰ค (๐œ‚(๐‘ข0) + ๐œ†(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) so, ๐ถ(๐‘ข๐‘›, ๐‘ข๐‘›+1)(1 โˆ’ (๐œ(๐‘ข0) + ๐œ‰(๐‘ข0))) โ‰ค (๐œ‚(๐‘ข0) + ๐œ†(๐‘ข0) + ๐œ‰(๐‘ข0))๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›)
  • 8. Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari) 547 so, ๐ถ(๐‘ข๐‘›,๐‘ข๐‘›+1) โ‰ค ( ๐œ‚(๐‘ข0)+๐œ†(๐‘ข0)+ ๐œ‰(๐‘ข0) 1โˆ’ ๐œ(๐‘ข0)โˆ’ ๐œ‰(๐‘ข0) ) ๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) = โ„Ž ๐ถ(๐‘ข๐‘›โˆ’1, ๐‘ข๐‘›) โ‰ค โ„Ž2 ๐ถ(๐‘ข๐‘›โˆ’2, ๐‘ข๐‘›โˆ’1) โ‹ฎ โ‰ค โ„Ž๐‘› ๐ถ(๐‘ข0, ๐‘ข1) thus, by Lemma 3.28, {๐‘ข๐‘›}๐‘›โ‰ฅ1 is Cauchy in ๐‘‹. Because of completeness of ๐‘‹ and ๐‘‡ is a ๐‘โˆ— -continuous mapping, there exists ๐‘ค โˆˆ ๐‘‹ such that ๐‘ข๐‘› โ†’ ๐‘ค and ๐‘ข๐‘›+1 = ๐‘‡(๐‘ข๐‘›) ๐‘ โ†’ ๐‘‡(๐‘ค). For uniqueness, let ๐‘ค1 be another fixed point of ๐‘‡, then, ๐‘ž(๐‘ค, ๐‘ค1) = ๐‘ž(๐‘‡(๐‘ค), ๐‘‡(๐‘ค1)) โ‰ค ๐œ‚(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ†(๐‘ค)๐‘ž(๐‘ค, ๐‘‡(๐‘ค)) + ๐œ(๐‘ค)๐‘ž(๐‘ค1, ๐‘‡(๐‘ค1)) + ๐œ‡(๐‘ค)๐‘ž(๐‘‡(๐‘ค), ๐‘ค1) + ๐œ‰(๐‘ค)๐‘ž(๐‘ค, ๐‘‡(๐‘ค1)) = ๐œ‚(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ†(๐‘ค)๐‘ž(๐‘ค, ๐‘ค) + ๐œ(๐‘ค)๐‘ž(๐‘ค1, ๐‘ค1) + ๐œ‡(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ‰(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) = ๐œ‚(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ‡(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) + ๐œ‰(๐‘ค)๐‘ž(๐‘ค, ๐‘ค1) = (๐œ‚(๐‘ค) + ๐œ‡(๐‘ค) + ๐œ‰(๐‘ค))๐‘ž(๐‘ค, ๐‘ค1) Therefore; ๐œ‚(๐‘ค) + ๐œ‡(๐‘ค) + ๐œ‰(๐‘ค) โ‰ฅ 1, contradicts to (2). Thus, ๐‘ž(๐‘ค, ๐‘ค1) = 0 โŸน ๐‘ค = ๐‘ค1. - Corollary 3.30. Assume (๐‘‹, ๐ถ) is a complete Hausdorff CMS, (๐‘‹, ๐‘ž) a QCMS and suppose ๐‘‡: (๐‘‹, ๐ถ) โŸถ (๐‘‹, ๐‘ž) is a ๐‘โˆ— -continuous mapping. Suppose that there are functions ๐œ‚, ๐œ†, ๐œ‡: ๐‘‹ โ†’ [0, 1), which gratify the following for ๐‘ข, ๐‘ฃ โˆˆ ๐‘‹, ๐œ‚(๐‘‡(๐‘ข)) โ‰ค ๐œ‚(๐‘ข), ๐œ†(๐‘‡(๐‘ข)) โ‰ค ๐œ†(๐‘ข) and ๐œ‡(๐‘‡(๐‘ข)) โ‰ค ๐œ‡(๐‘ข), (1) ๐œ‚(๐‘ข) + 2๐œ†(๐‘ข) + 2๐œ‡(๐‘ข) < 1 (2) ๐‘ž(๐‘‡(๐‘ข), ๐‘‡(๐‘ฃ)) โ‰ค ๐œ‚(๐‘ข)๐‘ž(๐‘ข, ๐‘ฃ) + ๐œ†(๐‘ข)(๐‘ž(๐‘ข, ๐‘‡(๐‘ฃ)) + ๐‘ž(๐‘ฃ, ๐‘‡(๐‘ฃ))) + ๐œ‡(๐‘ข)(๐‘ž(๐‘‡(๐‘ข), ๐‘ฃ) + ๐‘ž(๐‘ข, ๐‘‡(๐‘ฃ))) (3) ๐ถ(๐‘‡(๐‘ข), ๐‘‡(๐‘ฃ)) โ‰ค ๐œ‚(๐‘ข)๐ถ(๐‘ข, ๐‘ฃ) + ๐œ†(๐‘ข)(๐ถ(๐‘ข, ๐‘‡(๐‘ข)) + ๐ถ(๐‘ฃ, ๐‘‡(๐‘ฃ))) + ๐œ‡(๐‘ข)(๐ถ(๐‘‡(๐‘ข), ๐‘ฃ) + ๐ถ(๐‘ข, ๐‘‡(๐‘ฃ))) then, ๐‘‡ has a unique fixed point. 4. CONCLUSION This study was mainly concerned with introducing four new notions of continuity of mapping, some theorems and propositions comparing these new notions to each other, illustrating them with some examples. Furthermore, in this paper, the fixed-point theorem of this newly introduced notion has been introduced. Future research can investigate a unique fixed point between CMS and QCMS to prove a fixed point between QCMS and CMS. ACKNOWLEDGEMENTS Authors would like to thank Department of fundamental and applied science, Universiti Teknologi PETRONAS UTP for their support. The funder of this work is Yayasan YUTP under grant cost center 015LC0-272. REFERENCES [1] L. G. Huang and X. Zhang, โ€œCone metric spaces and fixed point theorems of contractive mappings,โ€ J. Math. Anal. Appl., vol. 332, no. 2, pp. 1468-1476, 2007, doi: 10.1016/j.jmaa.2005.03.087. [2] M. Abbas and G. Jungck, โ€œCommon fixed point results for noncommuting mappings without continuity in cone metric spaces,โ€ J. Math. Anal. Appl., vol. 341, no. 1, pp. 416-420, 2008, doi: 10.1016/j.jmaa.2007.09.070. [3] D. Turkoglu and M. Abuloha, โ€œCone metric spaces and fixed point theorems in diametrically contractive mappings,โ€ Acta Math. Sin. Engl. Ser., vol. 26, no. 3, pp. 489-496, 2010, doi: 10.1007/s10114-010-8019-5.
  • 9. ๏ฒ ISSN: 2502-4752 Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 1, January 2022: 540-549 548 [4] Z. E. D. D. Olia, M. E. Gordji, and D. E. Bagha, โ€œBanach Fixed Point Theorem on Orthogonal Cone Metric Spaces,โ€ Facta Univ. Ser. Math. Informatics, vol. 35, p. 1239, 2021, doi: 10.22190/fumi2005239e. [5] T. Yaying, B. Hazarika, and H. Cakalli, โ€œNew results in quasi cone metric spaces,โ€ J. Math. Comput. Sci., vol. 16, no. 03, pp. 435- 444, 2017, doi: 10.22436/jmcs.016.03.13. [6] S. Rezapour and R. Hamlbarani, โ€œSome notes on the paper โ€˜Cone metric spaces and fixed point theorems of contractive mappings,โ€ J. Math. Anal. Appl., vol. 345, no. 2, pp. 719-724, 2008, doi:10.1016/j.jmaa.2008.04.049. [7] S. Jankoviฤ‡, Z. Kadelburg, and S. Radenoviฤ‡, โ€œOn cone metric spaces: a survey,โ€ Nonlinear Anal. Theory, Methods & Appl., vol. 74, no. 7, pp. 2591-2601, 2011, doi:10.1016/j.na.2010.12.014. [8] T. Abdeljawad and E. Karapinar, โ€œQuasicone metric spaces and generalizations of caristi kirkโ€™s theorem,โ€ Fixed Point Theory Appl., vol. 2009, no. 1, pp. 9-18, 2009, doi:10.1155/2009/574387. [9] T. Yaying, B. Hazarika, and S. A. Mohiuddine, โ€œSome New Types of Continuity in Asymmetric Metric Spaces,โ€ Facta Univ. Ser. Math. Informatics, p. 485, 2020, doi: 10.22190/FUMI2002485Y. [10] M. Abbas, B. E. Rhoades, and T. Nazir, โ€œCommon fixed points for four maps in cone metric spaces,โ€ Appl. Math. Comput., vol. 216, no. 1, pp. 80-86, 2010, doi: 10.1016/j.amc.2010.01.003. [11] Q. Yan, J. Yin, and T. Wang, โ€œFixed point and common fixed point theorems on ordered cone metric spaces over Banach algebras,โ€ J. Nonlinear Sci. Appl., vol. 9, no. 4, pp. 1581-1589, 2016, doi: 10.22436/jnsa.009.04.15. [12] Altun and G. Durmaz, โ€œSome fixed point theorems on ordered cone metric spaces,โ€ Rend. del Circ. Mat. di Palermo, vol. 58, no. 2, pp. 319-325, 2009, doi: 10.1007/s12215-009-0026-y. [13] D. Ilic and V. Rakocevic, โ€œCommon fixed points for maps on cone metric space,โ€ J. Math. Anal. Appl., vol. 341, no. 2, pp. 876- 882, 2008, doi:10.1016/j.jmaa.2007.10.065. [14] D. Iliฤ‡ and V. Rakoฤeviฤ‡, โ€œQuasi-contraction on a cone metric space,โ€ Appl. Math. Lett., vol. 22, no. 5, pp. 728-731, 2009, doi: 10.1016/j.aml.2008.08.011. [15] S. Radenoviฤ‡ and B. E. Rhoades, โ€œFixed point theorem for two non-self mappings in cone metric spaces,โ€ Comput. Math. with Appl., vol. 57, no. 10, pp. 1701-1707, 2009, doi: 10.1016/j.camwa.2009.03.058. [16] N. Sadigh and S. Ghods, โ€œCoupled coincidence point in ordered cone metric spaces with examples in game theory,โ€ Int. J. Nonlinear Anal. Appl., vol. 7, no. 1, pp. 183-194, 2016, doi: 10.22075/IJNAA.2015.305. [17] X. Ge and S. Yang, โ€œSome fixed point results on generalized metric spaces [J],โ€ AIMS Math., vol. 6, no. 2, pp. 1769-1780, 2021, doi: 10.3934/Math.2021106. [18] R. Mustafa, S. Omran, and Q. N. Nguyen, โ€œFixed Point Theory Using $ฯˆ$ Contractive Mapping in Cโˆ—-Algebra Valued B-Metric Space,โ€ Mathematics, vol. 9, no. 1, p. 92, 2021, doi: 10.3390/math9010092. [19] J. Fernandez, N. Malviya, Z. D. Mitroviฤ‡, A. Hussain, and V. Parvaneh, โ€œSome fixed point results on Nb -cone metric spaces over Banach algebra,โ€ Adv. Differ. Equations, vol. 2020, no. 1, pp. 1-15, 2020, doi: 10.1186/s13662-020-02991-5. [20] N. Sadigh and S. Ghods, โ€œCoupled coincidence point in ordered cone metric spaces with examples in game theory,โ€ Int. J. Nonlinear Anal. Appl., vol. 7, no. 1, pp. 183-194, 2016, doi: 10.22075/ijnaa.2015.305. [21] L.-G. Huang and X. Zhang, โ€œCone metric spaces and fixed point theorems of contractive mappings,โ€ J. Math. Anal. Appl., vol. 332, no. 2, pp. 1468-1476, 2007, doi: 10.1016/j.jmaa.2006.03.087. [22] Z. M. Fadail and S. M. Abusalim, โ€œT-Reich contraction and fixed point results in cone metric spaces with c-distance,โ€ Int. J. Math. Anal., vol. 11, no. 8, pp. 397-405, 2017, doi: 10.12988/ijma.2017.7338. [23] S. U. Rehman and H.-X. Li, โ€œFixed point theorems in fuzzy cone metric spaces,โ€ J. Nonlinear Sci. Appl. JNSA, vol. 10, no. 11, pp. 5763-5769, 2017, doi:10.22436/jnsa.010.11.14. [24] M. Abbas, A. R. Khan, and T. Nazir, โ€œCommon fixed point of multivalued mappings in ordered generalized metric spaces,โ€ Filomat, vol. 26, no. 5, pp. 1045-1053, 2012, doi: 10.2298/FIL1205045A. [25] R. George, H. A. Nabwey, J. Vujakoviฤ‡, R. Rajagopalan, and S. Vinayagam, โ€œDislocated quasi cone b-metric space over Banach algebra and contraction principles with application to functional equations,โ€ Open Math., vol. 17, no. 1, pp. 1065-1081, 2019, doi: 10.1515/math-2019-0086. [26] T. Abdeljawad and E. Karapinar, โ€œQuasicone metric spaces and generalizations of Caristi Kirkโ€™s theorem,โ€ Fixed Point Theory Appl., vol. 2009, pp. 1-9, 2009, doi: 10.1155/2009/574387. [27] K. Abodayeh, T. Qawasmeh, W. Shatanawi, and A. Tallafha, โ€œฮ•ฯ•-Contraction and Some Fixed Point Results Via Modified ฮฉ- Distance Mappings in the Frame of Complete Quasi Metric Spaces and Applications,โ€ International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 4, pp. 3839-3853, 2020, doi: 10.11591/ijece.v10i4.pp3839-3853. BIOGRAPHIES OF AUTHORS Abdullah Al-Yaari received a B.Sc. degree in Mathematics (Honors) from Thamar University, in 2007, as well as M.Sc. in Mathmatics from University Kebangsaan Malaysia. He is currently a doctoral stusent at Universiti Teknologi PETRONAS (UTP) and an Academic Staff at Thamar University, Yemen. His research interests lie in fixed point theorem and nanofluid flow in porous media. He can be contacted Phone: +60-1- 8310-3931, Fax: +60-3-8925-4519 and at email: abdullah_20001447@utp.edu.my.
  • 10. Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 ๏ฒ Fixed point theorem between cone metric space and quasi-cone metric space (Abdullah Al-Yaari) 549 Hamzah Bin Sakidin is a Senior Lecturer at Universiti Teknologi PETRONAS (UTP) Seri Iskandar Perak since September 2013. His research interest is in the field of Applied Mathematics and mathematical modelling. He has received several research grants, acting as the head researcher or co-researcher for some research grants. He is also the author of several mathematics book for tertiary level of education. The author also has more than 20 years of experience teaching in secondary and tertiary level of education. He can be contacted at email: hamzah.sakidin@utp.edu.my. Yousif Alyousifi received a B.Sc. degree in Mathematics (Honors) from Thamar University, in 2007, as well as M.Sc. and PhD degrees in Statistics from University Kebangsaan Malaysia. He is currently an Academic Staff at Thamar University, Yemen. His research interests lie in statistical modeling and advanced time series analysis and stochastic process under classic and Bayesian approaches. He can be contacted at email: yalyousify@tu.edu.ye. Qasem Al-Tashi is currently a Postdoctoral Fellow at The University of Texas MD Anderson Cancer Center, Houston, Texas, United States. He was a Research Scientist at Universiti Teknologi PETRONAS. He received the B.Sc. degree in software engineering from Universiti Teknologi Malaysia, in 2012, and the M.Sc. degree in software engineering from Universiti Kebangsaan Malaysia, in 2017. He obtained his PhD in Information in early 2021 from Universiti Teknologi PETRONAS. He is also an Academic Staff with Albaydha University, Yemen. His research interests include artificial neural networks, multi-objective optimization, feature selection, swarm intelligence evolutionary algorithms, classification and data analytics. He is a section editor for the Journal of Applied Artificial Intelligence (JAAI) and Journal of Information Technology and Computing (JITC) and a reviewer for several high impact factor journals such as Artificial Intelligence Review, the IEEE ACCESS, Knowledge-Based Systems, Soft Computing, Journal of Ambient Intelligence and Humanized Computing, Applied Soft Computing, Neurocomputing, Applied Artificial Intelligence, and Plos One. He can be contacted at email: qaal@mdanderson.org, qasemacc22@gmail.com.