SlideShare a Scribd company logo
1 of 11
Download to read offline
Quest Journals
Journal of Research in Applied Mathematics
Volume 3 ~ Issue 6 (2017) pp: 17-27
ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735
www.questjournals.org
*Corresponding Author: Montasir Salman Elfadel Tyfor1
17 | Page
Department Of Physic๐‘ 1
Research Paper
Effect of an Inclined Magnetic Field on Peristaltic Flow of
Williamson Fluid in an Inclined Channel
Khalid Al-Qaissy*Ahmed M. Abdulhadi,
Department Of Mathematics, College Of Science, University Of Baghdad, Baghdad, Iraq
*E-mail : alqaissy.khalid@yahoo.com
Received 23Feb, 2017; Accepted 28Mar, 2017 ยฉ The author(s) 2017. Published with open access at
www.questjournals.org
ABSTRACT: This paper deals with the influence ofinclined magnetic field on peristaltic flow of an
incompressible Williamson fluid in an inclined channel with heat and mass transfer. Viscous dissipation and
Joule heating are taken into consideration.Channel walls have compliant properties. Analysis has been carried
out through long wavelength and low Reynolds number approach. Resulting problems are solved for small
Weissenberg number. Impacts of variables reflecting the salient features of wall properties, concentration and
heat transfer coefficient are pointed out. Trapping phenomenon is also analyzed.
Keywords: Williamson fluid,Reynolds number, compliant walls .
I. INTRODUCTION
Peristalsis is an important mechanism generated by the propagation of waves along the walls of a
channel or tube. Itoccurs in the gastrointestinal, urinary, reproductive tracts and many other glandular ducts in a
living body.Most of the studies on the topic have been carried out for the Newtonian fluid for physiological
peristalsis includingthe flow of blood in arterioles. But such a model cannot be suitable for blood flow unless the
non-Newtonian natureof the fluid is included in it. The non-Newtonian peristaltic flow using a constitutive
equation for a second order
fluid has been investigated by Siddiqui et al. [7] for a planar channel and by Siddiqui and Schwarz [9]
for anaxisymmetric tube. They have performed a perturbation analysis with a wave number, including curvature
andinertia effects and have determined range of validity of their perturbation solutions. The effects of third order
fluidon peristaltic transport in a planar channel were studied by Siddiqui et al. [8] and the corresponding
axisymmetrictube results were obtained by Hayat et al. [2]. Haroun [1] studied peristaltic transport of third order
fluid in anasymmetric channel. Subba Reddy et al. [11] have studied the peristaltic flow of a power-law fluid in
an asymmetricchannel. Peristaltic motion of a Williamson fluid in an asymmetric channel was studied by
Nadeem and Akram [6].It is now well known that blood behaves like a magnetohydrodynamic (MHD) fluid
(Stud et al. [10]). Blood is asuspension of cells in plasma. It is a biomagnetic fluid, due to the complex
integration of the intercellular protein,cell membrane and the hemoglobin, a form of iron oxide, which is present
at a uniquely high concentration in themature red cells, while its magnetic property is influenced by factors such
as the state of oxygenation. Theconsideration of blood as a MHD fluid helps in controlling blood pressure and
has potential for therapeutic use ithe diseases of heart and blood vessels (Mekheimer [5]). Peristaltic transport to
a MHD third order fluid in a circularcylindrical tube was investigated by Hayat and Ali [3]. Hayat et al. [4] have
investigated peristaltic transport of athird order fluid under the effect of a magnetic field. Recently, Subba
Reddy et al. [12] have studied the peristaltictransport of Williamson fluid in a channel under the effect of a
magnetic field.In view of these, we modeled the MHD peristaltic flow of a Williamson fluid in an inclined
planar channel, underthe assumptions of long wavelength. The flow is investigated in a wave frame of reference
moving with velocity ofthe wave.
(1) Mathematical formulation
Conseder an incompressible magnetohydrodynamic (MHD) flow of Williamson fluid in a symmetric
channel of width 2d1 . Both the magnetic field and channel are inclined at angle ๐œ‘and ๐›ผ. Here x-axis is taken
along the length of channel and y-axis transvers to it (see Fig 1). The induced magnetic field is neglected by
assuming a very small magnetic Reynolds number .Also the electric field is taken absent .the flow is generate
by sinusoidal waves propagating along the compliant walls of channel:
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
18 | Page
๐‘ฆ = ยฑ๐œ‚ ๐‘ฅ, ๐‘ก = ยฑ[๐‘‘ + ๐‘š ๐‘ฅ + ๐‘Ž ๐‘ ๐‘–๐‘›
2๐œ‹
๐œ†
(๐‘ฅ โˆ’ ๐‘๐‘ก)] (1)
Where ๐‘Ž is the wave amplitude ,๐œ† the wavelength , c the wave
Figure 1 Diagrammatic of the problem
In wave frame, the equations which govern the flow are given by:
๐œ•๐‘ข
๐œ•๐‘ฅ
+
๐œ•๐‘ฃ
๐œ•๐‘ฆ
= 0 (2)
๐œŒ ๐‘ข
๐œ•๐‘ข
๐œ•๐‘ฅ
+ ๐‘ข
๐œ•๐‘ฃ
๐œ•๐‘ฆ
= โˆ’
๐œ•๐‘
๐œ•๐‘ฅ
+
๐œ•
๐œ•๐‘ฅ
2๐œ‡0 1 + ฮ“๐›พ
๐œ•๐‘ข
๐œ•๐‘ฅ
+
๐œ•
๐œ•๐‘ฆ
๐œ‡0 1 + ฮ“๐›พ
๐œ•๐‘ข
๐œ•๐‘ฆ
+
๐œ•๐‘ฃ
๐œ•๐‘ฅ
+ ๐œ๐ต0
2
cos ๐œ‘ ๐‘ข cos ๐œ‘ โˆ’
๐‘ฃsin ๐œ‘+๐œŒ๐‘”๐‘ ๐‘–๐‘›(๐›ผ)โˆ’ ๐œ‡๐‘˜๐‘ข(3)
๐œŒ ๐‘ฃ
๐œ•๐‘ข
๐œ•๐‘ฅ
+ ๐‘ฃ
๐œ•๐‘ฃ
๐œ•๐‘ฆ
= โˆ’
๐œ•๐‘
๐œ•๐‘ฆ
+
๐œ•
๐œ•๐‘ฅ
๐œ‡0 1 + ฮ“๐›พ
๐œ•๐‘ฃ
๐œ•๐‘ฅ
+
๐œ•๐‘ข
๐œ•๐‘ฆ
+
๐œ•
๐œ•๐‘ฆ
2๐œ‡0 1 + ฮ“๐›พ
๐œ•๐‘ฃ
๐œ•๐‘ฆ
+ ๐œ๐ต0
2
sin ๐œ‘ ๐‘ข cos ๐œ‘ โˆ’
๐‘ฃsin ๐œ‘โˆ’ ๐œŒ๐‘”๐‘๐‘œ๐‘ (๐›ผ)โˆ’ ๐œ‡๐‘˜๐‘ฃ(4)
๐œŒ๐‘ ๐‘
๐‘‘๐‘‡
๐‘‘ ๐‘ก
= ๐‘˜
๐œ•2 ๐‘‡
๐œ•๐‘ฅ2 +
๐œ•2 ๐‘‡
๐œ•๐‘ฆ2 + ๐œ‡0 1 + ฮ“๐›พ [(
๐œ•๐‘ฃ
๐œ•๐‘ฅ
+
๐œ•๐‘ข
๐œ•๐‘ฆ
)2
+ 2(
๐œ• ๐‘ข
๐œ• ๐‘ฅ
)2
+ 2
๐œ•๐‘ฃ
๐œ•๐‘ฆ
)2
+ ๐œ๐ต0
2
๐‘ข2
๐‘๐‘œ๐‘ 2
๐œ‘ + ๐‘ฃ2
๐‘ ๐‘–๐‘›2
๐œ‘ โˆ’
2๐‘ข๐‘ฃsin ๐œ‘cosโก(๐œ‘) (5)
where ๏ฒ is the density, 0B is the strength of the magnetic field, p is the pressure , (๐‘ข, ๐‘ฃ) are the components
of the velocity vector๐‘‰ in the๐‘ฅ and ๐‘ฆ directions respectively and ๐œ the electrical conductivity . The
corresponding boundary condition are given by
๐‘ข = ยฑ๐›ฝ
๐œ•๐‘ข
๐œ•๐‘ฆ
๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚(6)
โˆ’๐œ
๐œ•3
๐œ•๐‘ฅ3
+ ๐‘š
๐œ•3
๐œ•๐‘ฅ ๐œ•๐‘ก2
+ ๐‘‘
๐œ•2
๐œ•๐‘ฅ ๐œ•๐‘ก
๐ต
๐œ•5
๐œ•๐‘ฅ5
+ ๐ป
๐œ•
๐œ•๐‘ฅ
๐œ‚
=
๐œ•
๐œ•๐‘ฅ
2๐œ‡0 1 + ฮ“๐›พ
๐œ•๐‘ข
๐œ•๐‘ฅ
+
๐œ•
๐œ•๐‘ฆ
๐œ‡0 1 + ฮ“๐›พ
๐œ•๐‘ฃ
๐œ•๐‘ฅ
+
๐œ•๐‘ข
๐œ•๐‘ฆ
โˆ’ ๐œ๐ต0
2
cos ๐œ‘ ๐‘ข cos ๐œ‘ โˆ’ ๐‘ฃ sin ๐œ‘ + ๐œŒ๐‘”๐‘ ๐‘–๐‘› ๐›ผ โˆ’
๐œŒ
๐‘‘๐‘ข
๐‘‘๐‘ก
๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚(6)
๐‘‡ = ๐‘‡0 ๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚(7)
In above equations ๐œ is elastic tension in the membrane ,๐‘š the mass per unit area , ๐‘‘ the coefficient of viscous
damping and ๐ป the spring stiffness.
(2) Dimensionless analysis
Defining velocity component ๐‘ข and ๐‘ฃin terms of stream function , introduce the dimensionless variables ๐‘ฅ =
๐‘‘
๐œ†
,
๐‘ฆ =
๐‘ฆ
๐‘‘
, ๐œ‚ =
๐œ‚
๐‘‘
, ๐œ– =
๐‘Ž
๐‘‘
,
c
u
u ๏€ฝ ,
๏คc
v
v ๏€ฝ ,
0
Re
๏ญ
๏ฒcd
๏€ฝ ,
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
19 | Page
๐‘ =
๐‘‘2 ๐‘
๐‘๐œ† ๐œ‡0
,
๏ฌ
tc
t ๏€ฝ , ๐‘Š๐‘’ = ฮ“
๐‘
๐‘Ž
,๐›ฝ =
๐›ฝ
๐‘‘
, ๐ธ4 =
๐ต๐‘‘3
๐‘๐œ†3 ๐œ‡0
, ๐‘š =
๐œ†๐‘š
๐‘‘
,
๐ต๐‘Ÿ = Pr ๐ธ๐‘ , ๐‘ƒ๐‘Ÿ =
๐œ‡0 ๐ถ ๐‘ƒ
๐‘˜
, ๐ธ๐‘ =
๐‘2
๐‘‡0 ๐ถ ๐‘ƒ
, ๐ธ5 =
๐ป๐‘‘3
๐‘๐œ† ๐œ‡0
, ๐œƒ =
๐‘‡โˆ’๐‘‡0
๐‘‡0
, (8)
๐ธ1= โˆ’
๐œ๐‘‘3
๐‘3 ๐œ‡0 ๐ถ
,๐ธ2 =
๐‘š๐‘ ๐‘‘3
๐œ†3 ๐œ‡0
, ๐ธ3 =
๐‘‘3 ๐‘‘
๐œ†3 ๐œ‡0
,๐›พ = ๐›พ
๐‘‘
๐‘
,๐‘€ =
๐œ
๐œ‡0
๐›ฝ0 ๐‘‘,
And use long wave length assumption ๐›ฟ โ‰ช 1 the notion equation and temperature equation can be written as
๐œ•2
๐œ•๐‘ฆ2 1 + ๐‘Š๐‘’๐›พ
๐œ•2 ๐œ“
๐œ•๐‘ฆ2 โˆ’ ๐‘€2
๐‘๐‘œ๐‘ 2
(๐œ‘)
๐œ•๐œ“
๐œ•๐‘ฆ
โˆ’
1
๐‘˜
๐œ•๐œ“
๐œ•๐‘ฆ
= 0(9)
๐œ•2 ๐œƒ
๐œ•๐‘ฆ2 + ๐ต๐‘Ÿ 1 + ๐‘Š๐‘’๐›พ (
๐œ•2 ๐œ“
๐œ•๐‘ฆ2 )2
+ ๐ต๐‘Ÿ ๐‘€2
๐‘๐‘œ๐‘ 2
(๐œ‘)(
๐œ•๐œ“
๐œ•๐‘ฆ
)2
= 0(10)
๐œ•๐œ“
๐œ•๐‘ฆ
= ยฑ๐›ฝ
๐œ•2 ๐œ“
๐œ•๐‘ฆ2 ๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚ (11)
๐ธ1
๐œ•3
๐œ•๐‘ฅ3
+ ๐ธ2
๐œ•3
๐œ•๐‘ฅ๐œ•๐‘ก2
+ ๐ธ3
๐œ•2
๐œ•๐‘ฅ๐œ•๐‘ก
+ ๐ธ4
๐œ•5
๐œ•๐‘ฅ5
+ ๐ธ5
๐œ•
๐œ•๐‘ฅ
+ ๐œ‚ =
๐œ•
๐œ•๐‘ฆ
1 + ๐‘Š๐‘’๐›พ
๐œ•2 ๐œ“
๐œ•๐‘ฆ2 โˆ’ ๐‘€2
๐‘๐‘œ๐‘ 2
๐œ‘
๐œ•๐œ“
๐œ•๐‘ฆ
+
๐‘…๐‘’ sin โก(๐›ผ)
๐น๐‘Ÿ
๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(12)
๐œƒ = 0 ๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚ (13)
๐›พ =
๐œ•2 ๐œ“
๐œ•๐‘ฆ2 (14)
Here๐œ‚ = 1 + ๐œ€ sin 2๐œ‹ ๐‘ฅ โˆ’ ๐‘ก
(3)Solution procedure
It seems difficult to solve Eqs. (9) to (13) in closed form . Thus we aim to find series solutions for small
Weissenberg number and write
๐œ“ = ๐œ“0 + ๐‘Š๐‘’ ๐œ“1 (15)
๐œƒ = ๐œƒ0 + ๐‘Š๐‘’ ๐œƒ1(16)
Here we have considered the zeroth and first order systems only due to the fact that the perturbation is taken
small (๐‘Š๐‘’ โ‰ช 1) so that contrubation of higher order terms are negligible due to order analysis .
Zeroth-order system with its boundary conditions
Substitute (15) and (16) in to equations (9) to (14) and equating the coefficients of equal power of
Weissenberg number we get zero and first order system and they are as :
๐œ•4 ๐œ“0
๐œ•๐‘ฆ4 โˆ’ ๐ด2 ๐œ•2 ๐œ“0
๐œ• ๐‘ฆ2 = 0 (17)
๐ธ1
๐œ•3
๐œ•๐‘ฅ3
+ ๐ธ2
๐œ•3
๐œ•๐‘ฅ๐œ•๐‘ก2
+ ๐ธ3
๐œ•2
๐œ•๐‘ฅ๐œ•๐‘ก
+ ๐ธ4
๐œ•5
๐œ•๐‘ฅ5
+ ๐ธ5
๐œ•
๐œ•๐‘ฅ
+ ๐œ‚ =
๐œ•
๐œ•๐‘ฆ
๐œ•2 ๐œ“0
๐œ•๐‘ฆ2 โˆ’ ๐‘€2
๐‘๐‘œ๐‘ 2
๐œ‘
๐œ•๐œ“0
๐œ•๐‘ฆ
+
๐‘…๐‘’ ๐‘ ๐‘–๐‘› ๐›ผ
๐น๐‘Ÿ
๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(18)
๐œ•๐œ“0
๐œ•๐‘ฆ
= ยฑ๐›ฝ
๐œ•2 ๐œ“0
๐œ•๐‘ฆ2 ๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(19)
๐œ•2 ๐œƒ0
๐œ•๐‘ฆ2 + ๐ต๐‘Ÿ(
๐œ•2 ๐œ“0
๐œ•๐‘ฆ2 )2
+ ๐ต๐‘Ÿ ๐‘€2
๐‘๐‘œ๐‘ 2
(๐œ‘)(
๐œ•๐œ“0
๐œ•๐‘ฆ
)2
= 0(20)๐œƒ0 = 0๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚
๐ป๐‘’๐‘Ÿ๐‘’ ๐ด2
= ๐‘€2
๐‘๐‘œ๐‘ 2
๐œ‘ +
1
๐‘˜
and๐œ‚ = 1 + ๐œ€ sin 2๐œ‹ ๐‘ฅ โˆ’ ๐‘ก .
The first-order system with its boundary conditions
๐œ•4 ๐œ“1
๐œ•๐‘ฆ4 โˆ’ ๐ด2 ๐œ•2 ๐œ“1
๐œ• ๐‘ฆ2 + 2(
๐œ•3 ๐œ“0
๐œ• ๐‘ฆ3 )2
+ 2
๐œ•2 ๐œ“0
๐œ•๐‘ฆ2
๐œ•4 ๐œ“0
๐œ•๐‘ฆ4 = 0 (21)
๐œ•๐œ“1
๐œ•๐‘ฆ
= ยฑ๐›ฝ
๐œ•2 ๐œ“1
๐œ•๐‘ฆ2 ๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(22)
0 = [
๐œ•3 ๐œ“1
๐œ•๐‘ฆ3 โˆ’ ๐‘€2
๐‘๐‘œ๐‘ 2
๐œ‘
๐œ• ๐œ“1
๐œ•๐‘ฆ
+ 2
๐œ•2 ๐œ“0
๐œ•๐‘ฆ2
๐œ•3 ๐œ“0
๐œ•๐‘ฆ3 ]๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(23)
๐œ•2
๐œƒ1
๐œ•๐‘ฆ2
+ ๐ต๐‘Ÿ
๐œ•2
๐œ“0
๐œ•๐‘ฆ2
(2
๐œ•2
๐œ“1
๐œ•๐‘ฆ2
+
๐œ•2
๐œ“0
๐œ•๐‘ฆ2
2
) + 2๐ต๐‘Ÿ ๐‘€2
๐‘๐‘œ๐‘ 2
(๐œ‘)(
๐œ•๐œ“0
๐œ•๐‘ฆ
)(
๐œ•๐œ“1
๐œ•๐‘ฆ
) = 0
๐œƒ1 = 0 ๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚(24)
๐ป๐‘’๐‘Ÿ๐‘’ ๐ด2
= ๐‘€2
๐‘๐‘œ๐‘ 2
๐œ‘ +
1
๐‘˜
and๐œ‚ = 1 + ๐œ€ sin 2๐œ‹ ๐‘ฅ โˆ’ ๐‘ก .
Solve the zero and first order systems it is found them the stream function and temperature are given by
๐ =
โ…‡ ๐‘จ๐’š
๐‘ช ๐Ÿ + โ…‡โˆ’๐‘จ๐’š
๐‘ช ๐Ÿ
๐‘จ ๐Ÿ
+ ๐‘ช ๐Ÿ‘ + ๐’š๐‘ช ๐Ÿ’ +
๐‘พ๐’†(๐‘ช ๐Ÿ• โˆ’
โ…‡โˆ’๐Ÿ๐‘จ๐’š
(๐‘ช ๐Ÿ
๐Ÿ
+ ๐‘ช ๐Ÿ
๐Ÿ
โ…‡ ๐Ÿ’๐‘จ๐’š
โˆ’ ๐Ÿ‘โ…‡ ๐‘จ๐’š
(โ…‡ ๐Ÿ๐‘จ๐’š
๐‘ช ๐Ÿ“ + ๐‘ช ๐Ÿ”))
๐Ÿ‘๐‘จ ๐Ÿ
+ ๐’š๐‘ช ๐Ÿ–)(๐Ÿ๐Ÿ“)
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
20 | Page
๐œฝ = ๐’ƒ ๐Ÿ + ๐’š๐’ƒ ๐Ÿ โˆ’
๐Ÿ
๐Ÿ–๐‘จ ๐Ÿ’
๐๐ซโ…‡โˆ’๐Ÿ๐‘จ๐’š
๐Ÿ–๐‘จ๐‘ช ๐Ÿ’โ…‡ ๐‘จ๐’š
โˆ’๐‘ช ๐Ÿ + ๐‘ช ๐Ÿโ…‡ ๐Ÿ๐‘จ๐’š
๐‘ด ๐Ÿ
+ ๐‘ช ๐Ÿ
๐Ÿ
+ ๐‘ช ๐Ÿ
๐Ÿ
โ…‡ ๐Ÿ’๐‘จ๐’š
๐‘ด ๐Ÿ
+ ๐Ÿ๐‘จ ๐Ÿ’
โ…‡ ๐Ÿ๐‘จ๐’š
๐Ÿ’๐‘ช ๐Ÿ ๐‘ช ๐Ÿ + ๐‘ช ๐Ÿ’
๐Ÿ
๐‘ด ๐Ÿ
๐’š ๐Ÿ
+ ๐Ÿ๐‘จ ๐Ÿ
๐‘ช ๐Ÿ
๐Ÿ
+ ๐‘ช ๐Ÿ
๐Ÿ
โ…‡ ๐Ÿ’๐‘จ๐’š
โˆ’ ๐Ÿ๐‘ช ๐Ÿ ๐‘ช ๐Ÿโ…‡ ๐Ÿ๐‘จ๐’š
๐‘ด ๐Ÿ
๐’š ๐Ÿ
+ ๐‘ด ๐Ÿ
๐‘ช ๐Ÿ
๐Ÿ
+ โ…‡ ๐Ÿ๐‘จ๐’š
๐Ÿ–๐‘จ๐‘ช ๐Ÿ ๐‘ช ๐Ÿ’โ…‡ ๐‘จ๐’š
+ ๐‘ช ๐Ÿ
๐Ÿ
โ…‡ ๐Ÿ๐‘จ๐’š
+ ๐Ÿ๐‘จ ๐Ÿ’
๐‘ช ๐Ÿ’
๐Ÿ
๐’š ๐Ÿ
โˆ’ ๐Ÿ’๐‘จ๐‘ช ๐Ÿโ…‡ ๐‘จ๐’š
๐Ÿ๐‘ช ๐Ÿ’ + ๐‘จ๐‘ช ๐Ÿโ…‡ ๐‘จ๐’š
๐’š ๐Ÿ
๐‚๐จ๐ฌ ๐Ÿ๐‹
+ ๐‘พ๐’†
๐๐ซโ…‡โˆ’๐Ÿ‘๐‘จ๐’š
(๐Ÿ๐ŸŽ๐‘ช ๐Ÿ
๐Ÿ‘
โˆ’ ๐Ÿ๐Ÿ–๐‘ช ๐Ÿ ๐‘ช ๐Ÿ
๐Ÿ
โ…‡ ๐Ÿ๐‘จ๐’š
+๐‘ช ๐Ÿโ…‡ ๐Ÿ“๐‘จ๐’š
โˆ’๐Ÿ๐Ÿ•๐‘ช ๐Ÿ“ + ๐Ÿ๐ŸŽ๐‘ช ๐Ÿ
๐Ÿ
โ…‡ ๐‘จ๐’š
โˆ’๐Ÿ—๐‘ช ๐Ÿโ…‡ ๐‘จ๐’š
(๐Ÿ‘๐‘ช ๐Ÿ” + ๐Ÿ๐‘ช ๐Ÿ
๐Ÿ
โ…‡ ๐Ÿ‘๐‘จ๐’š
))
๐Ÿ“๐Ÿ’๐‘จ ๐Ÿ
โˆ’
๐‘ฉ๐’“ ๐‘ช ๐Ÿ ๐‘ช ๐Ÿ“ + ๐‘ช ๐Ÿ ๐‘ช ๐Ÿ” ๐’š ๐Ÿ
+ ๐’ƒ ๐Ÿ‘ + ๐’š๐’ƒ ๐Ÿ’
(๐Ÿ๐Ÿ”)
Here the constants๐‘ช ๐Ÿ, ๐‘ช ๐Ÿ, ๐‘ช ๐Ÿ‘, ๐‘ช ๐Ÿ’, ๐‘ช ๐Ÿ’, ๐‘ช ๐Ÿ”, ๐‘ช ๐Ÿ•, ๐‘ช ๐Ÿ–, ๐’ƒ ๐Ÿ, ๐’ƒ ๐Ÿ, ๐’ƒ ๐Ÿ‘ ๐’‚๐’๐’… ๐’ƒ ๐Ÿ’can be evaluated using MATHEMATICA .
๐’‚ (๐’ƒ)(๐’„)
Figure 2- Stream line for different values of ๐ธ1 ๐‘Ž ๐ธ1 = 0.5 , ๐‘ ๐ธ1 = 0.7 , ๐‘ ๐ธ1 = 0.8 and the other
parameters ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 ,
๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
๐‘Ž ๐‘ (๐‘)
Figure 3- Stream line for different values of ๐ธ2 ๐‘Ž ๐ธ2 = 0.2 , ๐‘ ๐ธ2 = 0.4 , ๐‘ ๐ธ2 = 0.6 and the other
parameters ๐ธ1 = 0.5 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š =
0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
21 | Page
Figure 4- Stream line for different values of ๐ธ3 ๐‘Ž ๐ธ3 = 0.1 , ๐‘ ๐ธ3 = 0.2 , ๐‘ ๐ธ3 = 0.3 and the other
parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š =
0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
๐‘Ž ๐‘ (๐‘)
Figure 5- Stream line for different values of ๐ธ4 ๐‘Ž ๐ธ4 = 0.05 , ๐‘ ๐ธ4 = 0.10 , ๐‘ ๐ธ4 = 0.15 and the other
parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 ,
๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
๐‘Ž ๐‘ (๐‘)
Figure 6- Stream line for different values of ๐ธ5 ๐‘Ž ๐ธ5 = 0.3 , ๐‘ ๐ธ5 = 0.6 , ๐‘ ๐ธ5 = 0.9 and the other
parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š =
0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
22 | Page
Figure 7- Stream line for different values of ๐‘Š๐‘’ ๐‘Ž ๐‘Š๐‘’ = 0.03 , ๐‘ ๐‘Š๐‘’ = 0.09 , ๐‘ ๐‘Š๐‘’ = 0.18 and the other
parameters๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 ,
๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
Figure 8- Stream line for different values of ๐œ€ ๐‘Ž ๐œ€ = 0.2 , ๐‘ ๐œ€ = 0.4 , ๐‘ ๐œ€ = 0.8 and the other parameters
๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ =
0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
Figure 9- Stream line for different values of ๐‘ก ๐‘Ž ๐‘ก = 0.02 , ๐‘ ๐‘ก = 0.04 , ๐‘ ๐‘ก = 0.06 and the other
parameters๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.02 , ๐‘€ = 1 , ๐‘š =
0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
๐‘Ž ๐‘ (๐‘)
Figure 10- Stream line for different values of ๐‘€ ๐‘Ž ๐‘€ = 1 , ๐‘ ๐‘€ = 2 , ๐‘ ๐‘€ = 3 and the other parameters
๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘š = 0.01 , ๐›ฝ =
0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
.
๐‘Ž ๐‘ (๐‘)
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
23 | Page
Figure 11- Stream line for different values of ๐‘š ๐‘Ž ๐‘š = 0.01 , ๐‘ ๐‘š = 002 , ๐‘ ๐‘š = 0.03 and the other
parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ =
1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐›ฝ = 0.01 .
๐‘ (๐‘)๐‘Ž
Figure 12- Stream line for different values of ๐›ฝ ๐‘Ž ๐›ฝ = 0.01 , ๐‘ ๐›ฝ = 002 , ๐‘ ๐›ฝ = 0.03 and the other
parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ =
1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.01 .
๐‘ (๐‘)๐‘Ž
Figure 13- Stream line for different values of ๐น๐‘Ÿ ๐‘Ž ๐น๐‘Ÿ = 0.5 , ๐‘ ๐น๐‘Ÿ = 1 , ๐‘ ๐น๐‘Ÿ = 1.5 and the other
parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ =
1 , ๐‘š = 0.01 , ๐›ฝ = 0.1 , ๐œ‘ =
๐œ‹
3
, ๐‘…๐‘’ = 0.5 .
๐‘ ๐‘๐‘Ž
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
24 | Page
Figure 14- Stream line for different values of ๐‘…๐‘’ ๐‘Ž ๐‘…๐‘’ = 0.5 , ๐‘ ๐‘…๐‘’ = 1 , ๐‘ ๐‘…๐‘’ = 1.5 and the other
parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ =
1 , ๐‘š = 0.01 , ๐›ฝ = 0.1 , ๐œ‘ =
๐œ‹
3
, ๐น๐‘Ÿ = 0.5 .
๐‘ (๐‘)๐‘Ž
Figure 15- Stream line for different values of ๐œ‘ ๐‘Ž ๐œ‘ =
๐œ‹
4
, ๐‘ ๐œ‘ =
๐œ‹
3
, ๐‘ ๐œ‘ =
๐œ‹
2
and the other parameters
๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01
, ๐›ฝ = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 .
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
25 | Page
Figure 16-(a) Variation of ๐‘ข with y for different values of ๐ธ1at ๐ธ2 = 0.3 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 ,
We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8.
(b)- Variation of ๐‘ข with y for different values of ๐ธ2at ๐ธ1 = 1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 ,
๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (c)-
Variation of ๐‘ข with y for different values of ๐ธ2at ๐ธ1 = 1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– =
0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (d)- Variation of
๐‘ข with y for different values of ๐ธ4at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก =
0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (e)- Variation of ๐‘ข with y
for different values of ๐ธ5at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ =
1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (f)- Variation of ๐‘ข with y for different
values of Weat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 ๐ธ5 = 0.01 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 ,
๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (g)- Variation of ๐‘ข with y for different values of ๐‘กat
๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐‘š = 0.1, ๐›ฝ =
0.1 , ๐‘ฅ = 0.8. (h)- Variation of ๐‘ข with y for different values of ๐‘€ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 =
0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1, ๐›ฝ =
0.1 , ๐‘ฅ = 0.8. (i)- Variation of ๐‘ข with y for different values of ๐œ–at
๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐‘€ = 1 , ๐‘ก = 0.02 , ๐‘˜ = 1 , ๐น๐‘Ÿ =
0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (j)- Variation of ๐‘ข with y for different values of ๐‘˜at
๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.1 ,
๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (k)- Variation of ๐‘ข with y for different values of ๐‘šat ๐ธ1 = 1 ,
๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ =
0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (l)- Variation of ๐‘ข with y for different values of ๐›ฝat ๐ธ1 = 1 , ๐ธ2 =
0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ =
0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1 , ๐‘ฅ = 0.8. (m)- Variation of ๐‘ข with y for different values of ๐‘ฅat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 =
0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œƒ =
๐œ‹
3
,
๐‘š = 0.1 , ๐›ฝ = 0.1. ๐‘› โˆ’Variation of ๐‘ข with y for different values of ๐น๐‘Ÿ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 =
0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐›ฝ = 0.1 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1 ,
๐‘ฅ = 0.8.(o)- Variation of ๐‘ข with y for different values of ๐‘…๐‘’ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 =
0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐›ฝ = 0.1 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1 , ๐‘ฅ = 0.8.(p)-
Variation of ๐‘ข with y for different values of ๐œ‘ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We =
0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐›ฝ = 0.1, ๐‘š = 0.1 , ๐‘ฅ = 0.8
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
26 | Page
Figure 17-(a) Variation of ๐œƒwith y for different values of ๐ธ1at ๐ธ2 = 0.3 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 ,
We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (b)-
Variation of ๐œƒwith y for different valuesof๐ธ2at๐ธ1 = 1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– =
0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (c)- Variation of ๐œƒwith y
for different values of ๐ธ2at ๐ธ1 = 1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ =
1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (d)- Variation of ๐œƒwith y for different values of
๐ธ4at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š =
0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (e)- Variation of ๐œƒwith y for different values of ๐‘Š๐‘’at ๐ธ1 = 1 , ๐ธ2 =
0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ =
0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (f)- Variation of ๐œƒwith y for different values of๐ธ5at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 =
0.01 ๐‘ค๐‘’ = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8.
(g)- Variation of ๐œƒwith y for different values of๐œ–at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We =
0.03 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (h)- Variation of๐œƒwith y
for different values of ๐‘€at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก =
0.02 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (i)- Variation of๐œƒwith y for different values
of ๐‘กat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š =
0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (j)- Variation of ๐œƒwith y for different values of ๐ต๐‘Ÿ at๐ธ1 = 1 , ๐ธ2 =
0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.1๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ =
0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ = 0.8. (k)- Variation of ๐œƒwith y for different values of ๐‘šat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 =
0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ฅ =
0.8.(l)- Variation of ๐œƒwith y for different values of ๐‘ฅ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 ,
We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘š = 0.1 . ๐‘š โˆ’Variation of
๐œƒwith y for different values of ๐‘…๐‘’ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– =
0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘˜ = 1๐น๐‘Ÿ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐›ฝ = 0.1 , ๐œƒ =
๐œ‹
3
, ๐‘š = 0.1 , ๐‘ฅ = 0.8.(n)-
Variation of ๐œƒwith y for different values of ๐น๐‘Ÿ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We =
0.03 , ๐ต๐‘Ÿ = 2 , ๐œ– = 0.2 , , ๐‘…๐‘’ = 0.5 , ๐œ‘ =
๐œ‹
3
, ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐›ฝ = 0.1 , ๐‘š = 0.1 , ๐‘ฅ = 0.8.(o)-
Variation of ๐œƒwith y for different values of ๐œ‘ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , ๐ต๐‘Ÿ = 2 ,
We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐›ฝ = 0.1, ๐‘š = 0.1 . ๐‘ฅ = 0.8.
(4)Graphical results and discussion
Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ
*Corresponding Author: Montasir Salman Elfadel Tyfor1
27 | Page
In this chapter , we have presented a set of figures to observe the behavior of sundry parameters
involved in the expressions of longitudinal velocity (๐‘ข = ๐œ“0๐‘ฆ + ๐‘Š๐‘’ ๐œ“1๐‘ฆ ) , temperature ๐œƒand stream function๐œ“.
Figs 16(a) to 16(m)display the effects of various physical parameters on the velocity profile ๐‘ฆ . Figs 16(a) and
16(b) depicts that the velocity increases when ๐ธ1 ๐‘Ž๐‘›๐‘‘ ๐ธ2 enhanced . It due to the fact that less resistance is
offered to the flow because of the wall elastance and thus velocity increases . However reverse effect is
observed for ๐ธ3, ๐ธ4and ๐ธ5 . As ๐ธ3represent the damping which is resistive force so velocity decreases when ๐ธ3
is increased . Similar behavior is observed for the velocity in case of rigidity and stiffness due to presence of
damping force . Fig 16(h)shows that the velocity decreases by increasing Hartman number . It is due to the fact
that magnetic field applied in the trasverse direction shows damping effect on the flow . Fig 16(f) illustrates that
velocity profile decreases for ๐‘Š๐‘’ in the region [-1,0] whereas it has opposite behavior in the region [0,1] . Figs
16(j),16(k) and 16(l)depicts that the velocity increases when ๐‘š , ๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐›ฝ enhanced.Effects of pertinent
parameters on temperature profile can be visualized throughFigs 17(a) to 17(l). The variation of compliant wall
parameters is studied in Figs 16(a) to 17(e). As temperature is the average kinetic energy of the particales and
kinetic energy depends upon the velocity .Therefore increase in velocity by ๐ธ1 ๐‘Ž๐‘›๐‘‘ ๐ธ2 leads to temperature
enhancement .Similarly decrease in velocity by ๐ธ3 , ๐ธ4 and ๐ธ5 shows decay in temperature . Fig17(h)reveals that
the temperature profile ๐œƒdecreases when Hartman number ๐‘€ is increased .Effect of ๐ต๐‘Ÿ on temperature can be
observed through Fig17(j) . The Brinkman number ๐ต๐‘Ÿ is the product of the Prandtl number ๐‘ƒ๐‘Ÿ and the Eckert
number ๐ธ๐‘. Here Eckert number occurs due to the viscous dissipation effects and the
temperatureenhances.Fig17(k)depictthattheTemperatureincreaseswhen ๐‘š enhanced.Thefunctionof an internaly
circulating bolus of fluid by closed stream lines is shown in Figs 12 . Fig 10 depict that the size of trapped bolus
increases when there is an increase in the Hartman number . We have analyzed from Figs2 and 3 that the size of
trapped bolus increases when ๐ธ 1 ๐‘Ž๐‘›๐‘‘ ๐ธ 2 are enhanced . However it decreases when ๐ธ 3 is increased . Also
when we decrease the values of ๐ธ 4 ๐‘Ž๐‘›๐‘‘ ๐ธ 5 the trapped bolus size increases . Fig 7 depict the stream lines
pattern for different values of Weissenberg number .
References
[1]. Haroun, M.A. Comm. Non linear sic. Number.Simul., 12 (2007), 1464 -1480.
[2]. Hayat, T., Wang, Y., Siddiqui, A.M., Hutter, K. and Asghar, S. Math. Models & Methods in Appl. Sci., 12(2002),1691-1706.
[3]. Hayat, T and Ali, N. Physica A: Statistical Mechanics and its Applications, 370(2006), 225-239.
[4]. Hayat, T., Afsar, A., Khan, M. and Asghar, S. Computers and Mathematics with Applications, 53(2007), 1074-1087.
[5]. Mekheimer, KH.S. Appl. Math. Comput, 153 (2004), 763-777.
[6]. Nadeem, S. and Akram, S. Comm. Non linear sic. Numer.Simul., 15 (2010), 1705โ€“1716
[7]. Siddiqui, A.M., Provost, A. and Schwarz, W.H. Rheol.Acta, 30(1991), 249-262.
[8]. Siddiqui, A.M., Provost, A. and Schwarz, W.H., Rheol.Acta, 32(1993), 47-56
[9]. Siddiqui, A.M. and Schwarz, W.H. J. Non-Newtonian Fluid Mech., 53(1994), 257-284.
[10]. Stud, V.K., Sekhon, G.S. and Mishra, R.K. Bull. Math. Biol. 39(1977), 385-390.
[11]. Subba Reddy, M.V., RamachandraRao, A. and Sreenadh, S. Int. J. Non-Linear Mech., 42 (2007), 1153-1161.
[12]. Subba Reddy, M. V., Jayarami Reddy, B. and Prasanth Reddy, D.

More Related Content

What's hot

A numerical analysis of three dimensional darcy model in an inclined rect
A numerical analysis of three dimensional darcy model in an inclined rectA numerical analysis of three dimensional darcy model in an inclined rect
A numerical analysis of three dimensional darcy model in an inclined rect
IAEME Publication
ย 
poster
posterposter
poster
Ryan Grove
ย 
O0703093097
O0703093097O0703093097
O0703093097
IJERD Editor
ย 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprt
foxtrot jp R
ย 

What's hot (20)

A numerical analysis of three dimensional darcy model in an inclined rect
A numerical analysis of three dimensional darcy model in an inclined rectA numerical analysis of three dimensional darcy model in an inclined rect
A numerical analysis of three dimensional darcy model in an inclined rect
ย 
poster
posterposter
poster
ย 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
ย 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
ย 
H0743842
H0743842H0743842
H0743842
ย 
Fluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and SimilitudeFluid Mechanics Chapter 5. Dimensional Analysis and Similitude
Fluid Mechanics Chapter 5. Dimensional Analysis and Similitude
ย 
Strong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's methodStrong convexity on gradient descent and newton's method
Strong convexity on gradient descent and newton's method
ย 
Buckling of a carbon nanotube embedded in elastic medium via nonlocal elastic...
Buckling of a carbon nanotube embedded in elastic medium via nonlocal elastic...Buckling of a carbon nanotube embedded in elastic medium via nonlocal elastic...
Buckling of a carbon nanotube embedded in elastic medium via nonlocal elastic...
ย 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
ย 
O0703093097
O0703093097O0703093097
O0703093097
ย 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
ย 
E04943237
E04943237E04943237
E04943237
ย 
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
ย 
Pressure Gradient Influence on MHD Flow for Generalized Burgersโ€™ Fluid with S...
Pressure Gradient Influence on MHD Flow for Generalized Burgersโ€™ Fluid with S...Pressure Gradient Influence on MHD Flow for Generalized Burgersโ€™ Fluid with S...
Pressure Gradient Influence on MHD Flow for Generalized Burgersโ€™ Fluid with S...
ย 
A Characterization of the Zero-Inflated Logarithmic Series Distribution
A Characterization of the Zero-Inflated Logarithmic Series DistributionA Characterization of the Zero-Inflated Logarithmic Series Distribution
A Characterization of the Zero-Inflated Logarithmic Series Distribution
ย 
The effect of magnetic field on the boundary layer flow over a stretching she...
The effect of magnetic field on the boundary layer flow over a stretching she...The effect of magnetic field on the boundary layer flow over a stretching she...
The effect of magnetic field on the boundary layer flow over a stretching she...
ย 
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDSABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ABOUT MODELLING OF THE GRAVITATIONAL FIELDS
ย 
Numerical simulation on laminar free convection flow and heat transfer over a...
Numerical simulation on laminar free convection flow and heat transfer over a...Numerical simulation on laminar free convection flow and heat transfer over a...
Numerical simulation on laminar free convection flow and heat transfer over a...
ย 
The wkb approximation..
The wkb approximation..The wkb approximation..
The wkb approximation..
ย 
The klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprtThe klein gordon field in two-dimensional rindler space-time - smcprt
The klein gordon field in two-dimensional rindler space-time - smcprt
ย 

Similar to Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid in an Inclined Channel

Effect of viscous dissipation on mhd flow of a free convection power law flui...
Effect of viscous dissipation on mhd flow of a free convection power law flui...Effect of viscous dissipation on mhd flow of a free convection power law flui...
Effect of viscous dissipation on mhd flow of a free convection power law flui...
IAEME Publication
ย 

Similar to Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid in an Inclined Channel (20)

Peristaltic flow of blood through coaxial vertical channel with effect of mag...
Peristaltic flow of blood through coaxial vertical channel with effect of mag...Peristaltic flow of blood through coaxial vertical channel with effect of mag...
Peristaltic flow of blood through coaxial vertical channel with effect of mag...
ย 
Non- Newtonian behavior of blood in very narrow vessels
Non- Newtonian behavior of blood in very narrow vesselsNon- Newtonian behavior of blood in very narrow vessels
Non- Newtonian behavior of blood in very narrow vessels
ย 
Effect of viscous dissipation on mhd flow of a free convection power law flui...
Effect of viscous dissipation on mhd flow of a free convection power law flui...Effect of viscous dissipation on mhd flow of a free convection power law flui...
Effect of viscous dissipation on mhd flow of a free convection power law flui...
ย 
Non-Darcy Convective Heat and Mass Transfer Flow in a Vertical Channel with C...
Non-Darcy Convective Heat and Mass Transfer Flow in a Vertical Channel with C...Non-Darcy Convective Heat and Mass Transfer Flow in a Vertical Channel with C...
Non-Darcy Convective Heat and Mass Transfer Flow in a Vertical Channel with C...
ย 
MHD Flow of a Rivlin - Ericksen Fluid through a Porous Medium in a Parallel P...
MHD Flow of a Rivlin - Ericksen Fluid through a Porous Medium in a Parallel P...MHD Flow of a Rivlin - Ericksen Fluid through a Porous Medium in a Parallel P...
MHD Flow of a Rivlin - Ericksen Fluid through a Porous Medium in a Parallel P...
ย 
Fluid Flow on Vertical Surface
Fluid Flow on Vertical SurfaceFluid Flow on Vertical Surface
Fluid Flow on Vertical Surface
ย 
Propagation of Love Waves Through an Irregular Surface Layer in the Presence ...
Propagation of Love Waves Through an Irregular Surface Layer in the Presence ...Propagation of Love Waves Through an Irregular Surface Layer in the Presence ...
Propagation of Love Waves Through an Irregular Surface Layer in the Presence ...
ย 
Oscillatory flow and particle suspension in a fluid through an elastic tube
Oscillatory flow and particle suspension in a fluid through an elastic tubeOscillatory flow and particle suspension in a fluid through an elastic tube
Oscillatory flow and particle suspension in a fluid through an elastic tube
ย 
Oscillatory flow and particle suspension in a fluid through an elastic tube
Oscillatory flow and particle suspension in a fluid through an elastic tubeOscillatory flow and particle suspension in a fluid through an elastic tube
Oscillatory flow and particle suspension in a fluid through an elastic tube
ย 
Navier stokes equation in coordinates binormal, tangent and normal
Navier stokes equation in coordinates binormal, tangent and normalNavier stokes equation in coordinates binormal, tangent and normal
Navier stokes equation in coordinates binormal, tangent and normal
ย 
H026066073
H026066073H026066073
H026066073
ย 
NS Equation .pdf
NS Equation .pdfNS Equation .pdf
NS Equation .pdf
ย 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
ย 
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
ย 
A012620107
A012620107A012620107
A012620107
ย 
A012620107
A012620107A012620107
A012620107
ย 
The Interaction Forces between Two Identical Cylinders Spinning around their ...
The Interaction Forces between Two Identical Cylinders Spinning around their ...The Interaction Forces between Two Identical Cylinders Spinning around their ...
The Interaction Forces between Two Identical Cylinders Spinning around their ...
ย 
About Modelling of the Gravitational Fields
About Modelling of the Gravitational FieldsAbout Modelling of the Gravitational Fields
About Modelling of the Gravitational Fields
ย 
Effects of some thermo physical properties on force
Effects of some thermo physical properties on forceEffects of some thermo physical properties on force
Effects of some thermo physical properties on force
ย 
K0736871
K0736871K0736871
K0736871
ย 

More from QUESTJOURNAL

The Sovโ€™reign Shrine of Veiled Melancholy- The Shadow of Consumption on La Be...
The Sovโ€™reign Shrine of Veiled Melancholy- The Shadow of Consumption on La Be...The Sovโ€™reign Shrine of Veiled Melancholy- The Shadow of Consumption on La Be...
The Sovโ€™reign Shrine of Veiled Melancholy- The Shadow of Consumption on La Be...
QUESTJOURNAL
ย 
Recruitment Practices And Staff Performance In Public Universities: A Case St...
Recruitment Practices And Staff Performance In Public Universities: A Case St...Recruitment Practices And Staff Performance In Public Universities: A Case St...
Recruitment Practices And Staff Performance In Public Universities: A Case St...
QUESTJOURNAL
ย 
Exploring the Effectiveness of the Arabic LanguageTeaching Methods in Indones...
Exploring the Effectiveness of the Arabic LanguageTeaching Methods in Indones...Exploring the Effectiveness of the Arabic LanguageTeaching Methods in Indones...
Exploring the Effectiveness of the Arabic LanguageTeaching Methods in Indones...
QUESTJOURNAL
ย 
Down the Purgatory of Memories:The Pain of Remembering in M alayalam Naxal Ci...
Down the Purgatory of Memories:The Pain of Remembering in M alayalam Naxal Ci...Down the Purgatory of Memories:The Pain of Remembering in M alayalam Naxal Ci...
Down the Purgatory of Memories:The Pain of Remembering in M alayalam Naxal Ci...
QUESTJOURNAL
ย 
Professional Competences: An Integrative Approach for Defining The Training C...
Professional Competences: An Integrative Approach for Defining The Training C...Professional Competences: An Integrative Approach for Defining The Training C...
Professional Competences: An Integrative Approach for Defining The Training C...
QUESTJOURNAL
ย 
โ€œTo the Truthful Death, From the Shining Lifeโ€ By Joe Varghese
โ€œTo the Truthful Death, From the Shining Lifeโ€ By Joe Vargheseโ€œTo the Truthful Death, From the Shining Lifeโ€ By Joe Varghese
โ€œTo the Truthful Death, From the Shining Lifeโ€ By Joe Varghese
QUESTJOURNAL
ย 
Challenges to Traditional Gender Norms in Mary Wollstonecraftโ€™s A Vindication...
Challenges to Traditional Gender Norms in Mary Wollstonecraftโ€™s A Vindication...Challenges to Traditional Gender Norms in Mary Wollstonecraftโ€™s A Vindication...
Challenges to Traditional Gender Norms in Mary Wollstonecraftโ€™s A Vindication...
QUESTJOURNAL
ย 

More from QUESTJOURNAL (20)

On the Use of the Causal Analysis in Small Type Fit Indices of Adult Mathemat...
On the Use of the Causal Analysis in Small Type Fit Indices of Adult Mathemat...On the Use of the Causal Analysis in Small Type Fit Indices of Adult Mathemat...
On the Use of the Causal Analysis in Small Type Fit Indices of Adult Mathemat...
ย 
The Sovโ€™reign Shrine of Veiled Melancholy- The Shadow of Consumption on La Be...
The Sovโ€™reign Shrine of Veiled Melancholy- The Shadow of Consumption on La Be...The Sovโ€™reign Shrine of Veiled Melancholy- The Shadow of Consumption on La Be...
The Sovโ€™reign Shrine of Veiled Melancholy- The Shadow of Consumption on La Be...
ย 
Recruitment Practices And Staff Performance In Public Universities: A Case St...
Recruitment Practices And Staff Performance In Public Universities: A Case St...Recruitment Practices And Staff Performance In Public Universities: A Case St...
Recruitment Practices And Staff Performance In Public Universities: A Case St...
ย 
Pesse Na Siriโ€™ Budgetary System: A Historiography Study of Luwu Kingdom in Is...
Pesse Na Siriโ€™ Budgetary System: A Historiography Study of Luwu Kingdom in Is...Pesse Na Siriโ€™ Budgetary System: A Historiography Study of Luwu Kingdom in Is...
Pesse Na Siriโ€™ Budgetary System: A Historiography Study of Luwu Kingdom in Is...
ย 
Fabrication of Complete Dentures for A Patient with Resorbed Mandibular Anter...
Fabrication of Complete Dentures for A Patient with Resorbed Mandibular Anter...Fabrication of Complete Dentures for A Patient with Resorbed Mandibular Anter...
Fabrication of Complete Dentures for A Patient with Resorbed Mandibular Anter...
ย 
Steganographic Technique Using Instant Messaging Conversation Dynamics
Steganographic Technique Using Instant Messaging Conversation DynamicsSteganographic Technique Using Instant Messaging Conversation Dynamics
Steganographic Technique Using Instant Messaging Conversation Dynamics
ย 
Simple Obfuscation Tool for Software Protection
Simple Obfuscation Tool for Software ProtectionSimple Obfuscation Tool for Software Protection
Simple Obfuscation Tool for Software Protection
ย 
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...Block Hybrid Method for the Solution of General Second Order Ordinary Differe...
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...
ย 
Modeling โ€“ Based Instructional Strategy for Enhancing Problem Solving Ability...
Modeling โ€“ Based Instructional Strategy for Enhancing Problem Solving Ability...Modeling โ€“ Based Instructional Strategy for Enhancing Problem Solving Ability...
Modeling โ€“ Based Instructional Strategy for Enhancing Problem Solving Ability...
ย 
Exploring the Effectiveness of the Arabic LanguageTeaching Methods in Indones...
Exploring the Effectiveness of the Arabic LanguageTeaching Methods in Indones...Exploring the Effectiveness of the Arabic LanguageTeaching Methods in Indones...
Exploring the Effectiveness of the Arabic LanguageTeaching Methods in Indones...
ย 
The Teller & The Tales: A Study of The Novels of Amitav Ghosh
The Teller & The Tales: A Study of The Novels of Amitav GhoshThe Teller & The Tales: A Study of The Novels of Amitav Ghosh
The Teller & The Tales: A Study of The Novels of Amitav Ghosh
ย 
Harmony in Philip Larkinโ€™s Poems
Harmony in Philip Larkinโ€™s PoemsHarmony in Philip Larkinโ€™s Poems
Harmony in Philip Larkinโ€™s Poems
ย 
The Influence of Religiosity on Marital Satisfaction and Stability AmongChris...
The Influence of Religiosity on Marital Satisfaction and Stability AmongChris...The Influence of Religiosity on Marital Satisfaction and Stability AmongChris...
The Influence of Religiosity on Marital Satisfaction and Stability AmongChris...
ย 
The SA0 Group Reservoir โ€™S Compositive Evaluation In The Central Developing P...
The SA0 Group Reservoir โ€™S Compositive Evaluation In The Central Developing P...The SA0 Group Reservoir โ€™S Compositive Evaluation In The Central Developing P...
The SA0 Group Reservoir โ€™S Compositive Evaluation In The Central Developing P...
ย 
Down the Purgatory of Memories:The Pain of Remembering in M alayalam Naxal Ci...
Down the Purgatory of Memories:The Pain of Remembering in M alayalam Naxal Ci...Down the Purgatory of Memories:The Pain of Remembering in M alayalam Naxal Ci...
Down the Purgatory of Memories:The Pain of Remembering in M alayalam Naxal Ci...
ย 
Professional Competences: An Integrative Approach for Defining The Training C...
Professional Competences: An Integrative Approach for Defining The Training C...Professional Competences: An Integrative Approach for Defining The Training C...
Professional Competences: An Integrative Approach for Defining The Training C...
ย 
Resisting Total Marginality: Understanding African-American College Studentsโ€™...
Resisting Total Marginality: Understanding African-American College Studentsโ€™...Resisting Total Marginality: Understanding African-American College Studentsโ€™...
Resisting Total Marginality: Understanding African-American College Studentsโ€™...
ย 
โ€œTo the Truthful Death, From the Shining Lifeโ€ By Joe Varghese
โ€œTo the Truthful Death, From the Shining Lifeโ€ By Joe Vargheseโ€œTo the Truthful Death, From the Shining Lifeโ€ By Joe Varghese
โ€œTo the Truthful Death, From the Shining Lifeโ€ By Joe Varghese
ย 
Alternative dispute resolution and civil litigation barriers to access to jus...
Alternative dispute resolution and civil litigation barriers to access to jus...Alternative dispute resolution and civil litigation barriers to access to jus...
Alternative dispute resolution and civil litigation barriers to access to jus...
ย 
Challenges to Traditional Gender Norms in Mary Wollstonecraftโ€™s A Vindication...
Challenges to Traditional Gender Norms in Mary Wollstonecraftโ€™s A Vindication...Challenges to Traditional Gender Norms in Mary Wollstonecraftโ€™s A Vindication...
Challenges to Traditional Gender Norms in Mary Wollstonecraftโ€™s A Vindication...
ย 

Recently uploaded

Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
ย 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
jaanualu31
ย 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
ย 

Recently uploaded (20)

Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
ย 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
ย 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
ย 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
ย 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
ย 
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
ย 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
ย 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
ย 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
ย 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
ย 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
ย 
Max. shear stress theory-Maximum Shear Stress Theory โ€‹ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory โ€‹  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory โ€‹  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory โ€‹ Maximum Distortional ...
ย 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
ย 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
ย 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
ย 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
ย 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
ย 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
ย 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
ย 

Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid in an Inclined Channel

  • 1. Quest Journals Journal of Research in Applied Mathematics Volume 3 ~ Issue 6 (2017) pp: 17-27 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org *Corresponding Author: Montasir Salman Elfadel Tyfor1 17 | Page Department Of Physic๐‘ 1 Research Paper Effect of an Inclined Magnetic Field on Peristaltic Flow of Williamson Fluid in an Inclined Channel Khalid Al-Qaissy*Ahmed M. Abdulhadi, Department Of Mathematics, College Of Science, University Of Baghdad, Baghdad, Iraq *E-mail : alqaissy.khalid@yahoo.com Received 23Feb, 2017; Accepted 28Mar, 2017 ยฉ The author(s) 2017. Published with open access at www.questjournals.org ABSTRACT: This paper deals with the influence ofinclined magnetic field on peristaltic flow of an incompressible Williamson fluid in an inclined channel with heat and mass transfer. Viscous dissipation and Joule heating are taken into consideration.Channel walls have compliant properties. Analysis has been carried out through long wavelength and low Reynolds number approach. Resulting problems are solved for small Weissenberg number. Impacts of variables reflecting the salient features of wall properties, concentration and heat transfer coefficient are pointed out. Trapping phenomenon is also analyzed. Keywords: Williamson fluid,Reynolds number, compliant walls . I. INTRODUCTION Peristalsis is an important mechanism generated by the propagation of waves along the walls of a channel or tube. Itoccurs in the gastrointestinal, urinary, reproductive tracts and many other glandular ducts in a living body.Most of the studies on the topic have been carried out for the Newtonian fluid for physiological peristalsis includingthe flow of blood in arterioles. But such a model cannot be suitable for blood flow unless the non-Newtonian natureof the fluid is included in it. The non-Newtonian peristaltic flow using a constitutive equation for a second order fluid has been investigated by Siddiqui et al. [7] for a planar channel and by Siddiqui and Schwarz [9] for anaxisymmetric tube. They have performed a perturbation analysis with a wave number, including curvature andinertia effects and have determined range of validity of their perturbation solutions. The effects of third order fluidon peristaltic transport in a planar channel were studied by Siddiqui et al. [8] and the corresponding axisymmetrictube results were obtained by Hayat et al. [2]. Haroun [1] studied peristaltic transport of third order fluid in anasymmetric channel. Subba Reddy et al. [11] have studied the peristaltic flow of a power-law fluid in an asymmetricchannel. Peristaltic motion of a Williamson fluid in an asymmetric channel was studied by Nadeem and Akram [6].It is now well known that blood behaves like a magnetohydrodynamic (MHD) fluid (Stud et al. [10]). Blood is asuspension of cells in plasma. It is a biomagnetic fluid, due to the complex integration of the intercellular protein,cell membrane and the hemoglobin, a form of iron oxide, which is present at a uniquely high concentration in themature red cells, while its magnetic property is influenced by factors such as the state of oxygenation. Theconsideration of blood as a MHD fluid helps in controlling blood pressure and has potential for therapeutic use ithe diseases of heart and blood vessels (Mekheimer [5]). Peristaltic transport to a MHD third order fluid in a circularcylindrical tube was investigated by Hayat and Ali [3]. Hayat et al. [4] have investigated peristaltic transport of athird order fluid under the effect of a magnetic field. Recently, Subba Reddy et al. [12] have studied the peristaltictransport of Williamson fluid in a channel under the effect of a magnetic field.In view of these, we modeled the MHD peristaltic flow of a Williamson fluid in an inclined planar channel, underthe assumptions of long wavelength. The flow is investigated in a wave frame of reference moving with velocity ofthe wave. (1) Mathematical formulation Conseder an incompressible magnetohydrodynamic (MHD) flow of Williamson fluid in a symmetric channel of width 2d1 . Both the magnetic field and channel are inclined at angle ๐œ‘and ๐›ผ. Here x-axis is taken along the length of channel and y-axis transvers to it (see Fig 1). The induced magnetic field is neglected by assuming a very small magnetic Reynolds number .Also the electric field is taken absent .the flow is generate by sinusoidal waves propagating along the compliant walls of channel:
  • 2. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 18 | Page ๐‘ฆ = ยฑ๐œ‚ ๐‘ฅ, ๐‘ก = ยฑ[๐‘‘ + ๐‘š ๐‘ฅ + ๐‘Ž ๐‘ ๐‘–๐‘› 2๐œ‹ ๐œ† (๐‘ฅ โˆ’ ๐‘๐‘ก)] (1) Where ๐‘Ž is the wave amplitude ,๐œ† the wavelength , c the wave Figure 1 Diagrammatic of the problem In wave frame, the equations which govern the flow are given by: ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐œ•๐‘ฃ ๐œ•๐‘ฆ = 0 (2) ๐œŒ ๐‘ข ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐‘ข ๐œ•๐‘ฃ ๐œ•๐‘ฆ = โˆ’ ๐œ•๐‘ ๐œ•๐‘ฅ + ๐œ• ๐œ•๐‘ฅ 2๐œ‡0 1 + ฮ“๐›พ ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐œ• ๐œ•๐‘ฆ ๐œ‡0 1 + ฮ“๐›พ ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐œ•๐‘ฃ ๐œ•๐‘ฅ + ๐œ๐ต0 2 cos ๐œ‘ ๐‘ข cos ๐œ‘ โˆ’ ๐‘ฃsin ๐œ‘+๐œŒ๐‘”๐‘ ๐‘–๐‘›(๐›ผ)โˆ’ ๐œ‡๐‘˜๐‘ข(3) ๐œŒ ๐‘ฃ ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐‘ฃ ๐œ•๐‘ฃ ๐œ•๐‘ฆ = โˆ’ ๐œ•๐‘ ๐œ•๐‘ฆ + ๐œ• ๐œ•๐‘ฅ ๐œ‡0 1 + ฮ“๐›พ ๐œ•๐‘ฃ ๐œ•๐‘ฅ + ๐œ•๐‘ข ๐œ•๐‘ฆ + ๐œ• ๐œ•๐‘ฆ 2๐œ‡0 1 + ฮ“๐›พ ๐œ•๐‘ฃ ๐œ•๐‘ฆ + ๐œ๐ต0 2 sin ๐œ‘ ๐‘ข cos ๐œ‘ โˆ’ ๐‘ฃsin ๐œ‘โˆ’ ๐œŒ๐‘”๐‘๐‘œ๐‘ (๐›ผ)โˆ’ ๐œ‡๐‘˜๐‘ฃ(4) ๐œŒ๐‘ ๐‘ ๐‘‘๐‘‡ ๐‘‘ ๐‘ก = ๐‘˜ ๐œ•2 ๐‘‡ ๐œ•๐‘ฅ2 + ๐œ•2 ๐‘‡ ๐œ•๐‘ฆ2 + ๐œ‡0 1 + ฮ“๐›พ [( ๐œ•๐‘ฃ ๐œ•๐‘ฅ + ๐œ•๐‘ข ๐œ•๐‘ฆ )2 + 2( ๐œ• ๐‘ข ๐œ• ๐‘ฅ )2 + 2 ๐œ•๐‘ฃ ๐œ•๐‘ฆ )2 + ๐œ๐ต0 2 ๐‘ข2 ๐‘๐‘œ๐‘ 2 ๐œ‘ + ๐‘ฃ2 ๐‘ ๐‘–๐‘›2 ๐œ‘ โˆ’ 2๐‘ข๐‘ฃsin ๐œ‘cosโก(๐œ‘) (5) where ๏ฒ is the density, 0B is the strength of the magnetic field, p is the pressure , (๐‘ข, ๐‘ฃ) are the components of the velocity vector๐‘‰ in the๐‘ฅ and ๐‘ฆ directions respectively and ๐œ the electrical conductivity . The corresponding boundary condition are given by ๐‘ข = ยฑ๐›ฝ ๐œ•๐‘ข ๐œ•๐‘ฆ ๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚(6) โˆ’๐œ ๐œ•3 ๐œ•๐‘ฅ3 + ๐‘š ๐œ•3 ๐œ•๐‘ฅ ๐œ•๐‘ก2 + ๐‘‘ ๐œ•2 ๐œ•๐‘ฅ ๐œ•๐‘ก ๐ต ๐œ•5 ๐œ•๐‘ฅ5 + ๐ป ๐œ• ๐œ•๐‘ฅ ๐œ‚ = ๐œ• ๐œ•๐‘ฅ 2๐œ‡0 1 + ฮ“๐›พ ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐œ• ๐œ•๐‘ฆ ๐œ‡0 1 + ฮ“๐›พ ๐œ•๐‘ฃ ๐œ•๐‘ฅ + ๐œ•๐‘ข ๐œ•๐‘ฆ โˆ’ ๐œ๐ต0 2 cos ๐œ‘ ๐‘ข cos ๐œ‘ โˆ’ ๐‘ฃ sin ๐œ‘ + ๐œŒ๐‘”๐‘ ๐‘–๐‘› ๐›ผ โˆ’ ๐œŒ ๐‘‘๐‘ข ๐‘‘๐‘ก ๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚(6) ๐‘‡ = ๐‘‡0 ๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚(7) In above equations ๐œ is elastic tension in the membrane ,๐‘š the mass per unit area , ๐‘‘ the coefficient of viscous damping and ๐ป the spring stiffness. (2) Dimensionless analysis Defining velocity component ๐‘ข and ๐‘ฃin terms of stream function , introduce the dimensionless variables ๐‘ฅ = ๐‘‘ ๐œ† , ๐‘ฆ = ๐‘ฆ ๐‘‘ , ๐œ‚ = ๐œ‚ ๐‘‘ , ๐œ– = ๐‘Ž ๐‘‘ , c u u ๏€ฝ , ๏คc v v ๏€ฝ , 0 Re ๏ญ ๏ฒcd ๏€ฝ ,
  • 3. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 19 | Page ๐‘ = ๐‘‘2 ๐‘ ๐‘๐œ† ๐œ‡0 , ๏ฌ tc t ๏€ฝ , ๐‘Š๐‘’ = ฮ“ ๐‘ ๐‘Ž ,๐›ฝ = ๐›ฝ ๐‘‘ , ๐ธ4 = ๐ต๐‘‘3 ๐‘๐œ†3 ๐œ‡0 , ๐‘š = ๐œ†๐‘š ๐‘‘ , ๐ต๐‘Ÿ = Pr ๐ธ๐‘ , ๐‘ƒ๐‘Ÿ = ๐œ‡0 ๐ถ ๐‘ƒ ๐‘˜ , ๐ธ๐‘ = ๐‘2 ๐‘‡0 ๐ถ ๐‘ƒ , ๐ธ5 = ๐ป๐‘‘3 ๐‘๐œ† ๐œ‡0 , ๐œƒ = ๐‘‡โˆ’๐‘‡0 ๐‘‡0 , (8) ๐ธ1= โˆ’ ๐œ๐‘‘3 ๐‘3 ๐œ‡0 ๐ถ ,๐ธ2 = ๐‘š๐‘ ๐‘‘3 ๐œ†3 ๐œ‡0 , ๐ธ3 = ๐‘‘3 ๐‘‘ ๐œ†3 ๐œ‡0 ,๐›พ = ๐›พ ๐‘‘ ๐‘ ,๐‘€ = ๐œ ๐œ‡0 ๐›ฝ0 ๐‘‘, And use long wave length assumption ๐›ฟ โ‰ช 1 the notion equation and temperature equation can be written as ๐œ•2 ๐œ•๐‘ฆ2 1 + ๐‘Š๐‘’๐›พ ๐œ•2 ๐œ“ ๐œ•๐‘ฆ2 โˆ’ ๐‘€2 ๐‘๐‘œ๐‘ 2 (๐œ‘) ๐œ•๐œ“ ๐œ•๐‘ฆ โˆ’ 1 ๐‘˜ ๐œ•๐œ“ ๐œ•๐‘ฆ = 0(9) ๐œ•2 ๐œƒ ๐œ•๐‘ฆ2 + ๐ต๐‘Ÿ 1 + ๐‘Š๐‘’๐›พ ( ๐œ•2 ๐œ“ ๐œ•๐‘ฆ2 )2 + ๐ต๐‘Ÿ ๐‘€2 ๐‘๐‘œ๐‘ 2 (๐œ‘)( ๐œ•๐œ“ ๐œ•๐‘ฆ )2 = 0(10) ๐œ•๐œ“ ๐œ•๐‘ฆ = ยฑ๐›ฝ ๐œ•2 ๐œ“ ๐œ•๐‘ฆ2 ๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚ (11) ๐ธ1 ๐œ•3 ๐œ•๐‘ฅ3 + ๐ธ2 ๐œ•3 ๐œ•๐‘ฅ๐œ•๐‘ก2 + ๐ธ3 ๐œ•2 ๐œ•๐‘ฅ๐œ•๐‘ก + ๐ธ4 ๐œ•5 ๐œ•๐‘ฅ5 + ๐ธ5 ๐œ• ๐œ•๐‘ฅ + ๐œ‚ = ๐œ• ๐œ•๐‘ฆ 1 + ๐‘Š๐‘’๐›พ ๐œ•2 ๐œ“ ๐œ•๐‘ฆ2 โˆ’ ๐‘€2 ๐‘๐‘œ๐‘ 2 ๐œ‘ ๐œ•๐œ“ ๐œ•๐‘ฆ + ๐‘…๐‘’ sin โก(๐›ผ) ๐น๐‘Ÿ ๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(12) ๐œƒ = 0 ๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚ (13) ๐›พ = ๐œ•2 ๐œ“ ๐œ•๐‘ฆ2 (14) Here๐œ‚ = 1 + ๐œ€ sin 2๐œ‹ ๐‘ฅ โˆ’ ๐‘ก (3)Solution procedure It seems difficult to solve Eqs. (9) to (13) in closed form . Thus we aim to find series solutions for small Weissenberg number and write ๐œ“ = ๐œ“0 + ๐‘Š๐‘’ ๐œ“1 (15) ๐œƒ = ๐œƒ0 + ๐‘Š๐‘’ ๐œƒ1(16) Here we have considered the zeroth and first order systems only due to the fact that the perturbation is taken small (๐‘Š๐‘’ โ‰ช 1) so that contrubation of higher order terms are negligible due to order analysis . Zeroth-order system with its boundary conditions Substitute (15) and (16) in to equations (9) to (14) and equating the coefficients of equal power of Weissenberg number we get zero and first order system and they are as : ๐œ•4 ๐œ“0 ๐œ•๐‘ฆ4 โˆ’ ๐ด2 ๐œ•2 ๐œ“0 ๐œ• ๐‘ฆ2 = 0 (17) ๐ธ1 ๐œ•3 ๐œ•๐‘ฅ3 + ๐ธ2 ๐œ•3 ๐œ•๐‘ฅ๐œ•๐‘ก2 + ๐ธ3 ๐œ•2 ๐œ•๐‘ฅ๐œ•๐‘ก + ๐ธ4 ๐œ•5 ๐œ•๐‘ฅ5 + ๐ธ5 ๐œ• ๐œ•๐‘ฅ + ๐œ‚ = ๐œ• ๐œ•๐‘ฆ ๐œ•2 ๐œ“0 ๐œ•๐‘ฆ2 โˆ’ ๐‘€2 ๐‘๐‘œ๐‘ 2 ๐œ‘ ๐œ•๐œ“0 ๐œ•๐‘ฆ + ๐‘…๐‘’ ๐‘ ๐‘–๐‘› ๐›ผ ๐น๐‘Ÿ ๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(18) ๐œ•๐œ“0 ๐œ•๐‘ฆ = ยฑ๐›ฝ ๐œ•2 ๐œ“0 ๐œ•๐‘ฆ2 ๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(19) ๐œ•2 ๐œƒ0 ๐œ•๐‘ฆ2 + ๐ต๐‘Ÿ( ๐œ•2 ๐œ“0 ๐œ•๐‘ฆ2 )2 + ๐ต๐‘Ÿ ๐‘€2 ๐‘๐‘œ๐‘ 2 (๐œ‘)( ๐œ•๐œ“0 ๐œ•๐‘ฆ )2 = 0(20)๐œƒ0 = 0๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚ ๐ป๐‘’๐‘Ÿ๐‘’ ๐ด2 = ๐‘€2 ๐‘๐‘œ๐‘ 2 ๐œ‘ + 1 ๐‘˜ and๐œ‚ = 1 + ๐œ€ sin 2๐œ‹ ๐‘ฅ โˆ’ ๐‘ก . The first-order system with its boundary conditions ๐œ•4 ๐œ“1 ๐œ•๐‘ฆ4 โˆ’ ๐ด2 ๐œ•2 ๐œ“1 ๐œ• ๐‘ฆ2 + 2( ๐œ•3 ๐œ“0 ๐œ• ๐‘ฆ3 )2 + 2 ๐œ•2 ๐œ“0 ๐œ•๐‘ฆ2 ๐œ•4 ๐œ“0 ๐œ•๐‘ฆ4 = 0 (21) ๐œ•๐œ“1 ๐œ•๐‘ฆ = ยฑ๐›ฝ ๐œ•2 ๐œ“1 ๐œ•๐‘ฆ2 ๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(22) 0 = [ ๐œ•3 ๐œ“1 ๐œ•๐‘ฆ3 โˆ’ ๐‘€2 ๐‘๐‘œ๐‘ 2 ๐œ‘ ๐œ• ๐œ“1 ๐œ•๐‘ฆ + 2 ๐œ•2 ๐œ“0 ๐œ•๐‘ฆ2 ๐œ•3 ๐œ“0 ๐œ•๐‘ฆ3 ]๐‘Ž๐‘ก ๐‘ฆ = ยฑ๐œ‚(23) ๐œ•2 ๐œƒ1 ๐œ•๐‘ฆ2 + ๐ต๐‘Ÿ ๐œ•2 ๐œ“0 ๐œ•๐‘ฆ2 (2 ๐œ•2 ๐œ“1 ๐œ•๐‘ฆ2 + ๐œ•2 ๐œ“0 ๐œ•๐‘ฆ2 2 ) + 2๐ต๐‘Ÿ ๐‘€2 ๐‘๐‘œ๐‘ 2 (๐œ‘)( ๐œ•๐œ“0 ๐œ•๐‘ฆ )( ๐œ•๐œ“1 ๐œ•๐‘ฆ ) = 0 ๐œƒ1 = 0 ๐‘Ž๐‘ก๐‘ฆ = ยฑ๐œ‚(24) ๐ป๐‘’๐‘Ÿ๐‘’ ๐ด2 = ๐‘€2 ๐‘๐‘œ๐‘ 2 ๐œ‘ + 1 ๐‘˜ and๐œ‚ = 1 + ๐œ€ sin 2๐œ‹ ๐‘ฅ โˆ’ ๐‘ก . Solve the zero and first order systems it is found them the stream function and temperature are given by ๐ = โ…‡ ๐‘จ๐’š ๐‘ช ๐Ÿ + โ…‡โˆ’๐‘จ๐’š ๐‘ช ๐Ÿ ๐‘จ ๐Ÿ + ๐‘ช ๐Ÿ‘ + ๐’š๐‘ช ๐Ÿ’ + ๐‘พ๐’†(๐‘ช ๐Ÿ• โˆ’ โ…‡โˆ’๐Ÿ๐‘จ๐’š (๐‘ช ๐Ÿ ๐Ÿ + ๐‘ช ๐Ÿ ๐Ÿ โ…‡ ๐Ÿ’๐‘จ๐’š โˆ’ ๐Ÿ‘โ…‡ ๐‘จ๐’š (โ…‡ ๐Ÿ๐‘จ๐’š ๐‘ช ๐Ÿ“ + ๐‘ช ๐Ÿ”)) ๐Ÿ‘๐‘จ ๐Ÿ + ๐’š๐‘ช ๐Ÿ–)(๐Ÿ๐Ÿ“)
  • 4. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 20 | Page ๐œฝ = ๐’ƒ ๐Ÿ + ๐’š๐’ƒ ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ–๐‘จ ๐Ÿ’ ๐๐ซโ…‡โˆ’๐Ÿ๐‘จ๐’š ๐Ÿ–๐‘จ๐‘ช ๐Ÿ’โ…‡ ๐‘จ๐’š โˆ’๐‘ช ๐Ÿ + ๐‘ช ๐Ÿโ…‡ ๐Ÿ๐‘จ๐’š ๐‘ด ๐Ÿ + ๐‘ช ๐Ÿ ๐Ÿ + ๐‘ช ๐Ÿ ๐Ÿ โ…‡ ๐Ÿ’๐‘จ๐’š ๐‘ด ๐Ÿ + ๐Ÿ๐‘จ ๐Ÿ’ โ…‡ ๐Ÿ๐‘จ๐’š ๐Ÿ’๐‘ช ๐Ÿ ๐‘ช ๐Ÿ + ๐‘ช ๐Ÿ’ ๐Ÿ ๐‘ด ๐Ÿ ๐’š ๐Ÿ + ๐Ÿ๐‘จ ๐Ÿ ๐‘ช ๐Ÿ ๐Ÿ + ๐‘ช ๐Ÿ ๐Ÿ โ…‡ ๐Ÿ’๐‘จ๐’š โˆ’ ๐Ÿ๐‘ช ๐Ÿ ๐‘ช ๐Ÿโ…‡ ๐Ÿ๐‘จ๐’š ๐‘ด ๐Ÿ ๐’š ๐Ÿ + ๐‘ด ๐Ÿ ๐‘ช ๐Ÿ ๐Ÿ + โ…‡ ๐Ÿ๐‘จ๐’š ๐Ÿ–๐‘จ๐‘ช ๐Ÿ ๐‘ช ๐Ÿ’โ…‡ ๐‘จ๐’š + ๐‘ช ๐Ÿ ๐Ÿ โ…‡ ๐Ÿ๐‘จ๐’š + ๐Ÿ๐‘จ ๐Ÿ’ ๐‘ช ๐Ÿ’ ๐Ÿ ๐’š ๐Ÿ โˆ’ ๐Ÿ’๐‘จ๐‘ช ๐Ÿโ…‡ ๐‘จ๐’š ๐Ÿ๐‘ช ๐Ÿ’ + ๐‘จ๐‘ช ๐Ÿโ…‡ ๐‘จ๐’š ๐’š ๐Ÿ ๐‚๐จ๐ฌ ๐Ÿ๐‹ + ๐‘พ๐’† ๐๐ซโ…‡โˆ’๐Ÿ‘๐‘จ๐’š (๐Ÿ๐ŸŽ๐‘ช ๐Ÿ ๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ–๐‘ช ๐Ÿ ๐‘ช ๐Ÿ ๐Ÿ โ…‡ ๐Ÿ๐‘จ๐’š +๐‘ช ๐Ÿโ…‡ ๐Ÿ“๐‘จ๐’š โˆ’๐Ÿ๐Ÿ•๐‘ช ๐Ÿ“ + ๐Ÿ๐ŸŽ๐‘ช ๐Ÿ ๐Ÿ โ…‡ ๐‘จ๐’š โˆ’๐Ÿ—๐‘ช ๐Ÿโ…‡ ๐‘จ๐’š (๐Ÿ‘๐‘ช ๐Ÿ” + ๐Ÿ๐‘ช ๐Ÿ ๐Ÿ โ…‡ ๐Ÿ‘๐‘จ๐’š )) ๐Ÿ“๐Ÿ’๐‘จ ๐Ÿ โˆ’ ๐‘ฉ๐’“ ๐‘ช ๐Ÿ ๐‘ช ๐Ÿ“ + ๐‘ช ๐Ÿ ๐‘ช ๐Ÿ” ๐’š ๐Ÿ + ๐’ƒ ๐Ÿ‘ + ๐’š๐’ƒ ๐Ÿ’ (๐Ÿ๐Ÿ”) Here the constants๐‘ช ๐Ÿ, ๐‘ช ๐Ÿ, ๐‘ช ๐Ÿ‘, ๐‘ช ๐Ÿ’, ๐‘ช ๐Ÿ’, ๐‘ช ๐Ÿ”, ๐‘ช ๐Ÿ•, ๐‘ช ๐Ÿ–, ๐’ƒ ๐Ÿ, ๐’ƒ ๐Ÿ, ๐’ƒ ๐Ÿ‘ ๐’‚๐’๐’… ๐’ƒ ๐Ÿ’can be evaluated using MATHEMATICA . ๐’‚ (๐’ƒ)(๐’„) Figure 2- Stream line for different values of ๐ธ1 ๐‘Ž ๐ธ1 = 0.5 , ๐‘ ๐ธ1 = 0.7 , ๐‘ ๐ธ1 = 0.8 and the other parameters ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 . ๐‘Ž ๐‘ (๐‘) Figure 3- Stream line for different values of ๐ธ2 ๐‘Ž ๐ธ2 = 0.2 , ๐‘ ๐ธ2 = 0.4 , ๐‘ ๐ธ2 = 0.6 and the other parameters ๐ธ1 = 0.5 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 .
  • 5. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 21 | Page Figure 4- Stream line for different values of ๐ธ3 ๐‘Ž ๐ธ3 = 0.1 , ๐‘ ๐ธ3 = 0.2 , ๐‘ ๐ธ3 = 0.3 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 . ๐‘Ž ๐‘ (๐‘) Figure 5- Stream line for different values of ๐ธ4 ๐‘Ž ๐ธ4 = 0.05 , ๐‘ ๐ธ4 = 0.10 , ๐‘ ๐ธ4 = 0.15 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 . ๐‘Ž ๐‘ (๐‘) Figure 6- Stream line for different values of ๐ธ5 ๐‘Ž ๐ธ5 = 0.3 , ๐‘ ๐ธ5 = 0.6 , ๐‘ ๐ธ5 = 0.9 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 .
  • 6. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 22 | Page Figure 7- Stream line for different values of ๐‘Š๐‘’ ๐‘Ž ๐‘Š๐‘’ = 0.03 , ๐‘ ๐‘Š๐‘’ = 0.09 , ๐‘ ๐‘Š๐‘’ = 0.18 and the other parameters๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 . Figure 8- Stream line for different values of ๐œ€ ๐‘Ž ๐œ€ = 0.2 , ๐‘ ๐œ€ = 0.4 , ๐‘ ๐œ€ = 0.8 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 . Figure 9- Stream line for different values of ๐‘ก ๐‘Ž ๐‘ก = 0.02 , ๐‘ ๐‘ก = 0.04 , ๐‘ ๐‘ก = 0.06 and the other parameters๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 . ๐‘Ž ๐‘ (๐‘) Figure 10- Stream line for different values of ๐‘€ ๐‘Ž ๐‘€ = 1 , ๐‘ ๐‘€ = 2 , ๐‘ ๐‘€ = 3 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘š = 0.01 , ๐›ฝ = 0.01 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 . ๐‘Ž ๐‘ (๐‘)
  • 7. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 23 | Page Figure 11- Stream line for different values of ๐‘š ๐‘Ž ๐‘š = 0.01 , ๐‘ ๐‘š = 002 , ๐‘ ๐‘š = 0.03 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐›ฝ = 0.01 . ๐‘ (๐‘)๐‘Ž Figure 12- Stream line for different values of ๐›ฝ ๐‘Ž ๐›ฝ = 0.01 , ๐‘ ๐›ฝ = 002 , ๐‘ ๐›ฝ = 0.03 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.01 . ๐‘ (๐‘)๐‘Ž Figure 13- Stream line for different values of ๐น๐‘Ÿ ๐‘Ž ๐น๐‘Ÿ = 0.5 , ๐‘ ๐น๐‘Ÿ = 1 , ๐‘ ๐น๐‘Ÿ = 1.5 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.1 , ๐œ‘ = ๐œ‹ 3 , ๐‘…๐‘’ = 0.5 . ๐‘ ๐‘๐‘Ž
  • 8. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 24 | Page Figure 14- Stream line for different values of ๐‘…๐‘’ ๐‘Ž ๐‘…๐‘’ = 0.5 , ๐‘ ๐‘…๐‘’ = 1 , ๐‘ ๐‘…๐‘’ = 1.5 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.1 , ๐œ‘ = ๐œ‹ 3 , ๐น๐‘Ÿ = 0.5 . ๐‘ (๐‘)๐‘Ž Figure 15- Stream line for different values of ๐œ‘ ๐‘Ž ๐œ‘ = ๐œ‹ 4 , ๐‘ ๐œ‘ = ๐œ‹ 3 , ๐‘ ๐œ‘ = ๐œ‹ 2 and the other parameters ๐ธ1 = 0.5 , ๐ธ2 = 0.2 , ๐ธ3 = 0.1 , ๐ธ4 = 0.05 , ๐ธ5 = 0.3 , ๐‘Š๐‘’ = 0.03 , ๐œ€ = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.01 , ๐›ฝ = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 .
  • 9. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 25 | Page Figure 16-(a) Variation of ๐‘ข with y for different values of ๐ธ1at ๐ธ2 = 0.3 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (b)- Variation of ๐‘ข with y for different values of ๐ธ2at ๐ธ1 = 1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (c)- Variation of ๐‘ข with y for different values of ๐ธ2at ๐ธ1 = 1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (d)- Variation of ๐‘ข with y for different values of ๐ธ4at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (e)- Variation of ๐‘ข with y for different values of ๐ธ5at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (f)- Variation of ๐‘ข with y for different values of Weat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 ๐ธ5 = 0.01 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (g)- Variation of ๐‘ข with y for different values of ๐‘กat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (h)- Variation of ๐‘ข with y for different values of ๐‘€ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (i)- Variation of ๐‘ข with y for different values of ๐œ–at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐‘€ = 1 , ๐‘ก = 0.02 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1, ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (j)- Variation of ๐‘ข with y for different values of ๐‘˜at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (k)- Variation of ๐‘ข with y for different values of ๐‘šat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐›ฝ = 0.1 , ๐‘ฅ = 0.8. (l)- Variation of ๐‘ข with y for different values of ๐›ฝat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1 , ๐‘ฅ = 0.8. (m)- Variation of ๐‘ข with y for different values of ๐‘ฅat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œƒ = ๐œ‹ 3 , ๐‘š = 0.1 , ๐›ฝ = 0.1. ๐‘› โˆ’Variation of ๐‘ข with y for different values of ๐น๐‘Ÿ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐›ฝ = 0.1 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1 , ๐‘ฅ = 0.8.(o)- Variation of ๐‘ข with y for different values of ๐‘…๐‘’ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐›ฝ = 0.1 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1 , ๐‘ฅ = 0.8.(p)- Variation of ๐‘ข with y for different values of ๐œ‘ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐›ฝ = 0.1, ๐‘š = 0.1 , ๐‘ฅ = 0.8
  • 10. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 26 | Page Figure 17-(a) Variation of ๐œƒwith y for different values of ๐ธ1at ๐ธ2 = 0.3 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (b)- Variation of ๐œƒwith y for different valuesof๐ธ2at๐ธ1 = 1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (c)- Variation of ๐œƒwith y for different values of ๐ธ2at ๐ธ1 = 1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (d)- Variation of ๐œƒwith y for different values of ๐ธ4at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (e)- Variation of ๐œƒwith y for different values of ๐‘Š๐‘’at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (f)- Variation of ๐œƒwith y for different values of๐ธ5at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 ๐‘ค๐‘’ = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (g)- Variation of ๐œƒwith y for different values of๐œ–at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (h)- Variation of๐œƒwith y for different values of ๐‘€at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (i)- Variation of๐œƒwith y for different values of ๐‘กat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘š = 0.1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (j)- Variation of ๐œƒwith y for different values of ๐ต๐‘Ÿ at๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘š = 0.1๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8. (k)- Variation of ๐œƒwith y for different values of ๐‘šat ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ฅ = 0.8.(l)- Variation of ๐œƒwith y for different values of ๐‘ฅ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘š = 0.1 . ๐‘š โˆ’Variation of ๐œƒwith y for different values of ๐‘…๐‘’ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐ต๐‘Ÿ = 2 , ๐‘˜ = 1๐น๐‘Ÿ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐›ฝ = 0.1 , ๐œƒ = ๐œ‹ 3 , ๐‘š = 0.1 , ๐‘ฅ = 0.8.(n)- Variation of ๐œƒwith y for different values of ๐น๐‘Ÿ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , We = 0.03 , ๐ต๐‘Ÿ = 2 , ๐œ– = 0.2 , , ๐‘…๐‘’ = 0.5 , ๐œ‘ = ๐œ‹ 3 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐›ฝ = 0.1 , ๐‘š = 0.1 , ๐‘ฅ = 0.8.(o)- Variation of ๐œƒwith y for different values of ๐œ‘ at ๐ธ1 = 1 , ๐ธ2 = 0.1 , ๐ธ3 = 0.3 , ๐ธ4 = 0.01 , ๐ธ5 = 0.01 , ๐ต๐‘Ÿ = 2 , We = 0.03 , ๐œ– = 0.2 , ๐‘ก = 0.02 , ๐‘€ = 1 , ๐‘˜ = 1 , ๐น๐‘Ÿ = 0.5 , ๐‘…๐‘’ = 0.5 , ๐›ฝ = 0.1, ๐‘š = 0.1 . ๐‘ฅ = 0.8. (4)Graphical results and discussion
  • 11. Effect Of An Inclined Magnetic Field On Peristaltic Flow Of Williamsonโ€ฆ *Corresponding Author: Montasir Salman Elfadel Tyfor1 27 | Page In this chapter , we have presented a set of figures to observe the behavior of sundry parameters involved in the expressions of longitudinal velocity (๐‘ข = ๐œ“0๐‘ฆ + ๐‘Š๐‘’ ๐œ“1๐‘ฆ ) , temperature ๐œƒand stream function๐œ“. Figs 16(a) to 16(m)display the effects of various physical parameters on the velocity profile ๐‘ฆ . Figs 16(a) and 16(b) depicts that the velocity increases when ๐ธ1 ๐‘Ž๐‘›๐‘‘ ๐ธ2 enhanced . It due to the fact that less resistance is offered to the flow because of the wall elastance and thus velocity increases . However reverse effect is observed for ๐ธ3, ๐ธ4and ๐ธ5 . As ๐ธ3represent the damping which is resistive force so velocity decreases when ๐ธ3 is increased . Similar behavior is observed for the velocity in case of rigidity and stiffness due to presence of damping force . Fig 16(h)shows that the velocity decreases by increasing Hartman number . It is due to the fact that magnetic field applied in the trasverse direction shows damping effect on the flow . Fig 16(f) illustrates that velocity profile decreases for ๐‘Š๐‘’ in the region [-1,0] whereas it has opposite behavior in the region [0,1] . Figs 16(j),16(k) and 16(l)depicts that the velocity increases when ๐‘š , ๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐›ฝ enhanced.Effects of pertinent parameters on temperature profile can be visualized throughFigs 17(a) to 17(l). The variation of compliant wall parameters is studied in Figs 16(a) to 17(e). As temperature is the average kinetic energy of the particales and kinetic energy depends upon the velocity .Therefore increase in velocity by ๐ธ1 ๐‘Ž๐‘›๐‘‘ ๐ธ2 leads to temperature enhancement .Similarly decrease in velocity by ๐ธ3 , ๐ธ4 and ๐ธ5 shows decay in temperature . Fig17(h)reveals that the temperature profile ๐œƒdecreases when Hartman number ๐‘€ is increased .Effect of ๐ต๐‘Ÿ on temperature can be observed through Fig17(j) . The Brinkman number ๐ต๐‘Ÿ is the product of the Prandtl number ๐‘ƒ๐‘Ÿ and the Eckert number ๐ธ๐‘. Here Eckert number occurs due to the viscous dissipation effects and the temperatureenhances.Fig17(k)depictthattheTemperatureincreaseswhen ๐‘š enhanced.Thefunctionof an internaly circulating bolus of fluid by closed stream lines is shown in Figs 12 . Fig 10 depict that the size of trapped bolus increases when there is an increase in the Hartman number . We have analyzed from Figs2 and 3 that the size of trapped bolus increases when ๐ธ 1 ๐‘Ž๐‘›๐‘‘ ๐ธ 2 are enhanced . However it decreases when ๐ธ 3 is increased . Also when we decrease the values of ๐ธ 4 ๐‘Ž๐‘›๐‘‘ ๐ธ 5 the trapped bolus size increases . Fig 7 depict the stream lines pattern for different values of Weissenberg number . References [1]. Haroun, M.A. Comm. Non linear sic. Number.Simul., 12 (2007), 1464 -1480. [2]. Hayat, T., Wang, Y., Siddiqui, A.M., Hutter, K. and Asghar, S. Math. Models & Methods in Appl. Sci., 12(2002),1691-1706. [3]. Hayat, T and Ali, N. Physica A: Statistical Mechanics and its Applications, 370(2006), 225-239. [4]. Hayat, T., Afsar, A., Khan, M. and Asghar, S. Computers and Mathematics with Applications, 53(2007), 1074-1087. [5]. Mekheimer, KH.S. Appl. Math. Comput, 153 (2004), 763-777. [6]. Nadeem, S. and Akram, S. Comm. Non linear sic. Numer.Simul., 15 (2010), 1705โ€“1716 [7]. Siddiqui, A.M., Provost, A. and Schwarz, W.H. Rheol.Acta, 30(1991), 249-262. [8]. Siddiqui, A.M., Provost, A. and Schwarz, W.H., Rheol.Acta, 32(1993), 47-56 [9]. Siddiqui, A.M. and Schwarz, W.H. J. Non-Newtonian Fluid Mech., 53(1994), 257-284. [10]. Stud, V.K., Sekhon, G.S. and Mishra, R.K. Bull. Math. Biol. 39(1977), 385-390. [11]. Subba Reddy, M.V., RamachandraRao, A. and Sreenadh, S. Int. J. Non-Linear Mech., 42 (2007), 1153-1161. [12]. Subba Reddy, M. V., Jayarami Reddy, B. and Prasanth Reddy, D.