SlideShare a Scribd company logo
1 of 5
RBTP: Low-Power Mobile Discovery Protocol through 
Recursive Binary Time Partitioning 
ABSTRACT: 
With increasing prevalence of mobile wireless devices with WiFi and Bluetooth 
capability, new applications that can make use of limited contact opportunities 
when the devices are physically close are emerging. Proximity-based social 
networking, and location specific dissemination of advertisements and events, are 
some such applications. Discovering such services is a challenging problem due to 
energy budget limitations, user mobility, and non-uniformity and the time-varying 
nature of energy budgets across users. It is important to rapidly discover such 
mobile services to make use of limited contact opportunities. To support such 
applications, we seek to design a localized discovery scheme that can minimize the 
expected contact latency between mobile phones with limited energy budgets. All 
the existing neighbor discovery schemes assume lack of any time synchronization. 
However, in practice sufficiently accurate time synchronization can be achieved 
with existing time synchronization techniques. We propose Recursive Binary Time 
Partitioning (RBTP), a scheme that determines how the devices should wake up 
and sleep to achieve minimal contact latency with other nearby devices. RBTP
achieves provable performance bound and outperforms state-of-the-art 
asynchronous protocols for smartphones. When compared with the optimum 
scheme, the contact latency is shown to be within a factor of 9=8 in the expected 
case and 2 in the worst case. 
EXISTING SYSTEM: 
In an existing works on neighbor discovery of mobile devices assume that the 
clocks of the devices are not synchronized. They adopt a slotted time model in 
which time is divided into equal-sized slots. A device is scheduled to wake up or 
sleep in a slot deterministically or probabilistically. Devices in their mutual contact 
range are assumed to be able to discover each other when two wake-up slots 
overlap. These protocols are mainly designed for sensor networks where time 
synchronization is challenging but the devices can quickly switch the network 
interface to different states. We show that the protocols have poor performance in 
terms of both high contact latency and high missing rate in our simulations. In 
contrast, a smartphone has the luxury of synchronizing its clock through GPS, 
Internet, or cellular protocols.
DISADVANTAGES OF EXISTING SYSTEM: 
 Partial synchronization or synchronization with limited inaccuracy can be 
exploited to design better neighbor discovery protocols 
 Optimizing the contact latency also optimizes the missing rate, which is the 
probability that two devices that are in each other’s contact range fail to 
discover each other during the period in which they were in their mutual 
range. If the contact latency is high, the missing rate is expected to be high 
as well 
PROPOSED SYSTEM: 
The proposed scheme, called Recursive Binary Time Partitioning (RBTP), is a 
synchronized protocol comprised of the number and the patterns of wake ups for 
the phones. Within a time period, the number of wake-up instances depends on the 
phone’s own energy budget. RBTP wakes up the network interface at certain times 
and puts it to sleep until the next wake-up instance. In a typical smartphone, the 
WiFi chipsets already have implemented the functions to quickly switch between 
wake-up and sleep modes.in the 802.11 protocol power saving mode, the mobile 
device can choose its sleep period in multiples of beacon intervals, and can wake 
up at the beginning of a beacon interval for a fixed duration of time, which is
called the Announcement Traffic Indication Messages (ATIM) window. The 
ATIM window is smaller than a beacon interval Gast. Because a typical beacon 
interval is 100 milliseconds, the WiFi module should be able to switch between 
wake-up and sleep modes in 100 milliseconds. However, these functions are 
provided by proprietary binary drivers or firmwares and are unavailable for user-space 
applications. 
ADVANTAGES OF PROPOSED SYSTEM: 
 In our experiments, a smartphone only needs to connect to a public NTP 
server every 6 hours to calibrate its clock and keep the clock error within 
100 milliseconds. The energy overhead for this operation is negligible. 
 Our design allows the devices to adapt their number of wake-up instances 
independently based on their respective energy limitations. 
SYSTEM REQUIREMENTS: 
HARDWARE REQUIREMENTS: 
 System : Pentium IV 2.4 GHz.
 Hard Disk : 40 GB. 
 Floppy Drive : 1.44 Mb. 
 Monitor : 15 VGA Colour. 
 Mouse : Logitech. 
 Ram : 512 Mb. 
SOFTWARE REQUIREMENTS: 
 Operating system : Windows XP/7/LINUX. 
 Implementation : NS2 
 NS2 Version : NS2.2.28 
 Front End : OTCL (Object Oriented Tool Command 
Language) 
 Tool : Cygwin (To simulate in Windows OS) 
REFERENCE: 
Dong Li, Student Member, IEEE, and Prasun Sinha, Senior Member, IEEE, 
“RBTP: Low-Power Mobile Discovery Protocol through Recursive Binary 
Time Partitioning”, IEEE/ACM TRANSACTIONS ON MOBILE 
COMPUTING, VOL. 13, NO. 2, FEBRUARY 2014.

More Related Content

What's hot

Wireless sensor networks localization algorithms a comprehensive survey
Wireless sensor networks localization algorithms a comprehensive surveyWireless sensor networks localization algorithms a comprehensive survey
Wireless sensor networks localization algorithms a comprehensive surveyIJCNCJournal
 
Complete report on DATA ACQUISITION SCHEME IN WIRELESS SENSOR NETWORK
Complete report on DATA ACQUISITION SCHEME IN WIRELESS SENSOR NETWORKComplete report on DATA ACQUISITION SCHEME IN WIRELESS SENSOR NETWORK
Complete report on DATA ACQUISITION SCHEME IN WIRELESS SENSOR NETWORKRutvik Pensionwar
 
Indoor geolocation
Indoor geolocationIndoor geolocation
Indoor geolocationharisri269
 
Enhancing indoor localization using IoT techniques
Enhancing indoor localization using IoT techniquesEnhancing indoor localization using IoT techniques
Enhancing indoor localization using IoT techniquesMohamed Nabil, MSc.
 
Multi-Robot Sensor Relocation to Enhance Connectivity in a WSN
Multi-Robot Sensor Relocation to Enhance Connectivity in a WSNMulti-Robot Sensor Relocation to Enhance Connectivity in a WSN
Multi-Robot Sensor Relocation to Enhance Connectivity in a WSNijasuc
 
Precision (Indoor) Real Time Location Systems
Precision (Indoor) Real Time Location SystemsPrecision (Indoor) Real Time Location Systems
Precision (Indoor) Real Time Location SystemsPeter Batty
 
Ant Colony Optimization for Wireless Sensor Network: A Review
Ant Colony Optimization for Wireless Sensor Network: A ReviewAnt Colony Optimization for Wireless Sensor Network: A Review
Ant Colony Optimization for Wireless Sensor Network: A Reviewiosrjce
 
CONTRADICTION COMMUNICATION RANGE OF SENSOR NETWORKS
CONTRADICTION COMMUNICATION RANGE OF SENSOR NETWORKSCONTRADICTION COMMUNICATION RANGE OF SENSOR NETWORKS
CONTRADICTION COMMUNICATION RANGE OF SENSOR NETWORKSpharmaindexing
 
Localization in WSN
Localization in WSNLocalization in WSN
Localization in WSNYara Ali
 
Sensor Localization presentation1&2
Sensor Localization  presentation1&2Sensor Localization  presentation1&2
Sensor Localization presentation1&2gamalsallam1989
 
Indoor localization using wifi fingerprinting
Indoor localization using wifi fingerprintingIndoor localization using wifi fingerprinting
Indoor localization using wifi fingerprintingChaitali Bose Roy
 
The proposed System for Indoor Location Tracking
The proposed System for Indoor Location TrackingThe proposed System for Indoor Location Tracking
The proposed System for Indoor Location TrackingEditor IJCATR
 
Wi-Fi based indoor positioning
Wi-Fi based indoor positioningWi-Fi based indoor positioning
Wi-Fi based indoor positioningSherwin Rodrigues
 
An optimal algorithm for coverage hole healing
An optimal algorithm for coverage hole healingAn optimal algorithm for coverage hole healing
An optimal algorithm for coverage hole healingmarwaeng
 
An algorithm for fault node recovery of wireless sensor network
An algorithm for fault node recovery of wireless sensor networkAn algorithm for fault node recovery of wireless sensor network
An algorithm for fault node recovery of wireless sensor networkeSAT Publishing House
 
3D Localization Algorithms for Wireless Sensor Networks
3D Localization Algorithms for Wireless Sensor Networks3D Localization Algorithms for Wireless Sensor Networks
3D Localization Algorithms for Wireless Sensor NetworksIOSR Journals
 

What's hot (19)

Wireless sensor networks localization algorithms a comprehensive survey
Wireless sensor networks localization algorithms a comprehensive surveyWireless sensor networks localization algorithms a comprehensive survey
Wireless sensor networks localization algorithms a comprehensive survey
 
Complete report on DATA ACQUISITION SCHEME IN WIRELESS SENSOR NETWORK
Complete report on DATA ACQUISITION SCHEME IN WIRELESS SENSOR NETWORKComplete report on DATA ACQUISITION SCHEME IN WIRELESS SENSOR NETWORK
Complete report on DATA ACQUISITION SCHEME IN WIRELESS SENSOR NETWORK
 
Indoor geolocation
Indoor geolocationIndoor geolocation
Indoor geolocation
 
Enhancing indoor localization using IoT techniques
Enhancing indoor localization using IoT techniquesEnhancing indoor localization using IoT techniques
Enhancing indoor localization using IoT techniques
 
Multi-Robot Sensor Relocation to Enhance Connectivity in a WSN
Multi-Robot Sensor Relocation to Enhance Connectivity in a WSNMulti-Robot Sensor Relocation to Enhance Connectivity in a WSN
Multi-Robot Sensor Relocation to Enhance Connectivity in a WSN
 
Precision (Indoor) Real Time Location Systems
Precision (Indoor) Real Time Location SystemsPrecision (Indoor) Real Time Location Systems
Precision (Indoor) Real Time Location Systems
 
Ant Colony Optimization for Wireless Sensor Network: A Review
Ant Colony Optimization for Wireless Sensor Network: A ReviewAnt Colony Optimization for Wireless Sensor Network: A Review
Ant Colony Optimization for Wireless Sensor Network: A Review
 
CONTRADICTION COMMUNICATION RANGE OF SENSOR NETWORKS
CONTRADICTION COMMUNICATION RANGE OF SENSOR NETWORKSCONTRADICTION COMMUNICATION RANGE OF SENSOR NETWORKS
CONTRADICTION COMMUNICATION RANGE OF SENSOR NETWORKS
 
Localization in WSN
Localization in WSNLocalization in WSN
Localization in WSN
 
Indoor navigation system
Indoor navigation systemIndoor navigation system
Indoor navigation system
 
Sensor Localization presentation1&2
Sensor Localization  presentation1&2Sensor Localization  presentation1&2
Sensor Localization presentation1&2
 
Indoor localization using wifi fingerprinting
Indoor localization using wifi fingerprintingIndoor localization using wifi fingerprinting
Indoor localization using wifi fingerprinting
 
The proposed System for Indoor Location Tracking
The proposed System for Indoor Location TrackingThe proposed System for Indoor Location Tracking
The proposed System for Indoor Location Tracking
 
Wsn protocols
Wsn protocolsWsn protocols
Wsn protocols
 
Wi-Fi based indoor positioning
Wi-Fi based indoor positioningWi-Fi based indoor positioning
Wi-Fi based indoor positioning
 
An optimal algorithm for coverage hole healing
An optimal algorithm for coverage hole healingAn optimal algorithm for coverage hole healing
An optimal algorithm for coverage hole healing
 
presentation
presentationpresentation
presentation
 
An algorithm for fault node recovery of wireless sensor network
An algorithm for fault node recovery of wireless sensor networkAn algorithm for fault node recovery of wireless sensor network
An algorithm for fault node recovery of wireless sensor network
 
3D Localization Algorithms for Wireless Sensor Networks
3D Localization Algorithms for Wireless Sensor Networks3D Localization Algorithms for Wireless Sensor Networks
3D Localization Algorithms for Wireless Sensor Networks
 

Similar to JPN1405 RBTP: Low-Power Mobile Discovery Protocol through Recursive Binary Time Partitioning

Efficient and privacy aware data aggregation in mobile sensing
Efficient and privacy aware data aggregation in mobile sensingEfficient and privacy aware data aggregation in mobile sensing
Efficient and privacy aware data aggregation in mobile sensingPapitha Velumani
 
Iaetsd flexible and reconfigurable soc for sensor network under zynq processor
Iaetsd flexible and reconfigurable soc for sensor network under zynq processorIaetsd flexible and reconfigurable soc for sensor network under zynq processor
Iaetsd flexible and reconfigurable soc for sensor network under zynq processorIaetsd Iaetsd
 
WIRELESS SENSOR NETWORKS
WIRELESS SENSOR NETWORKSWIRELESS SENSOR NETWORKS
WIRELESS SENSOR NETWORKSnanocdac
 
JPJ1429 Efficient and Privacy-Aware Data Aggregation in Mobile Sensing
JPJ1429 Efficient and Privacy-Aware Data Aggregation in Mobile SensingJPJ1429 Efficient and Privacy-Aware Data Aggregation in Mobile Sensing
JPJ1429 Efficient and Privacy-Aware Data Aggregation in Mobile Sensingchennaijp
 
Air Programming on Sunspot with use of Wireless Networks
Air Programming on Sunspot with use of Wireless NetworksAir Programming on Sunspot with use of Wireless Networks
Air Programming on Sunspot with use of Wireless Networksijsrd.com
 
Auto default gateway settings for virtual
Auto default gateway settings for virtualAuto default gateway settings for virtual
Auto default gateway settings for virtualijwmn
 
2013 2014 ieee projects titles with abstract
2013 2014 ieee projects titles with abstract2013 2014 ieee projects titles with abstract
2013 2014 ieee projects titles with abstractMukundhan Elumalai
 
Wireless zigbee communicationtechnology
Wireless zigbee communicationtechnologyWireless zigbee communicationtechnology
Wireless zigbee communicationtechnologyM srinivasu
 
Wireless zigbee communication technology 141215052616-conversion-gate01
Wireless zigbee communication technology 141215052616-conversion-gate01Wireless zigbee communication technology 141215052616-conversion-gate01
Wireless zigbee communication technology 141215052616-conversion-gate01M srinivasu
 
Review and Performance Comparison of Distributed Wireless Reprogramming Proto...
Review and Performance Comparison of Distributed Wireless Reprogramming Proto...Review and Performance Comparison of Distributed Wireless Reprogramming Proto...
Review and Performance Comparison of Distributed Wireless Reprogramming Proto...IOSR Journals
 
1. Software-Defined Networks (SDN) is a new paradigm in network ma.docx
1. Software-Defined Networks (SDN) is a new paradigm in network ma.docx1. Software-Defined Networks (SDN) is a new paradigm in network ma.docx
1. Software-Defined Networks (SDN) is a new paradigm in network ma.docxjackiewalcutt
 
Iaetsd bluetooth based smart sensor networks
Iaetsd bluetooth based smart sensor networksIaetsd bluetooth based smart sensor networks
Iaetsd bluetooth based smart sensor networksIaetsd Iaetsd
 
SOFIA - Integration of an Answer Set Engine to Smart m3. NOKIA
SOFIA - Integration of an Answer Set Engine to Smart m3. NOKIASOFIA - Integration of an Answer Set Engine to Smart m3. NOKIA
SOFIA - Integration of an Answer Set Engine to Smart m3. NOKIASofia Eu
 
Chapter 8 the role of networking in manufacturing
Chapter 8   the role of networking in manufacturingChapter 8   the role of networking in manufacturing
Chapter 8 the role of networking in manufacturingN. A. Sutisna
 
Design of optimal system level for embedded wireless sensor unit
Design of optimal system  level for embedded wireless sensor unitDesign of optimal system  level for embedded wireless sensor unit
Design of optimal system level for embedded wireless sensor unitIAEME Publication
 
Minimum Process Coordinated Checkpointing Scheme For Ad Hoc Networks
Minimum Process Coordinated Checkpointing Scheme For Ad Hoc Networks   Minimum Process Coordinated Checkpointing Scheme For Ad Hoc Networks
Minimum Process Coordinated Checkpointing Scheme For Ad Hoc Networks pijans
 
Proposed mac protocol for reduce energy consumption over wsn network
Proposed mac protocol for reduce energy consumption over wsn networkProposed mac protocol for reduce energy consumption over wsn network
Proposed mac protocol for reduce energy consumption over wsn networkeSAT Publishing House
 
Data Analysis In The Cloud
Data Analysis In The CloudData Analysis In The Cloud
Data Analysis In The CloudMonica Carter
 

Similar to JPN1405 RBTP: Low-Power Mobile Discovery Protocol through Recursive Binary Time Partitioning (20)

Nano rk rtss_05
Nano rk rtss_05Nano rk rtss_05
Nano rk rtss_05
 
Efficient and privacy aware data aggregation in mobile sensing
Efficient and privacy aware data aggregation in mobile sensingEfficient and privacy aware data aggregation in mobile sensing
Efficient and privacy aware data aggregation in mobile sensing
 
Iaetsd flexible and reconfigurable soc for sensor network under zynq processor
Iaetsd flexible and reconfigurable soc for sensor network under zynq processorIaetsd flexible and reconfigurable soc for sensor network under zynq processor
Iaetsd flexible and reconfigurable soc for sensor network under zynq processor
 
WIRELESS SENSOR NETWORKS
WIRELESS SENSOR NETWORKSWIRELESS SENSOR NETWORKS
WIRELESS SENSOR NETWORKS
 
JPJ1429 Efficient and Privacy-Aware Data Aggregation in Mobile Sensing
JPJ1429 Efficient and Privacy-Aware Data Aggregation in Mobile SensingJPJ1429 Efficient and Privacy-Aware Data Aggregation in Mobile Sensing
JPJ1429 Efficient and Privacy-Aware Data Aggregation in Mobile Sensing
 
Air Programming on Sunspot with use of Wireless Networks
Air Programming on Sunspot with use of Wireless NetworksAir Programming on Sunspot with use of Wireless Networks
Air Programming on Sunspot with use of Wireless Networks
 
Auto default gateway settings for virtual
Auto default gateway settings for virtualAuto default gateway settings for virtual
Auto default gateway settings for virtual
 
2013 2014 ieee projects titles with abstract
2013 2014 ieee projects titles with abstract2013 2014 ieee projects titles with abstract
2013 2014 ieee projects titles with abstract
 
Wireless zigbee communicationtechnology
Wireless zigbee communicationtechnologyWireless zigbee communicationtechnology
Wireless zigbee communicationtechnology
 
Wireless zigbee communication technology 141215052616-conversion-gate01
Wireless zigbee communication technology 141215052616-conversion-gate01Wireless zigbee communication technology 141215052616-conversion-gate01
Wireless zigbee communication technology 141215052616-conversion-gate01
 
What is over-the-air programming
What is over-the-air programmingWhat is over-the-air programming
What is over-the-air programming
 
Review and Performance Comparison of Distributed Wireless Reprogramming Proto...
Review and Performance Comparison of Distributed Wireless Reprogramming Proto...Review and Performance Comparison of Distributed Wireless Reprogramming Proto...
Review and Performance Comparison of Distributed Wireless Reprogramming Proto...
 
1. Software-Defined Networks (SDN) is a new paradigm in network ma.docx
1. Software-Defined Networks (SDN) is a new paradigm in network ma.docx1. Software-Defined Networks (SDN) is a new paradigm in network ma.docx
1. Software-Defined Networks (SDN) is a new paradigm in network ma.docx
 
Iaetsd bluetooth based smart sensor networks
Iaetsd bluetooth based smart sensor networksIaetsd bluetooth based smart sensor networks
Iaetsd bluetooth based smart sensor networks
 
SOFIA - Integration of an Answer Set Engine to Smart m3. NOKIA
SOFIA - Integration of an Answer Set Engine to Smart m3. NOKIASOFIA - Integration of an Answer Set Engine to Smart m3. NOKIA
SOFIA - Integration of an Answer Set Engine to Smart m3. NOKIA
 
Chapter 8 the role of networking in manufacturing
Chapter 8   the role of networking in manufacturingChapter 8   the role of networking in manufacturing
Chapter 8 the role of networking in manufacturing
 
Design of optimal system level for embedded wireless sensor unit
Design of optimal system  level for embedded wireless sensor unitDesign of optimal system  level for embedded wireless sensor unit
Design of optimal system level for embedded wireless sensor unit
 
Minimum Process Coordinated Checkpointing Scheme For Ad Hoc Networks
Minimum Process Coordinated Checkpointing Scheme For Ad Hoc Networks   Minimum Process Coordinated Checkpointing Scheme For Ad Hoc Networks
Minimum Process Coordinated Checkpointing Scheme For Ad Hoc Networks
 
Proposed mac protocol for reduce energy consumption over wsn network
Proposed mac protocol for reduce energy consumption over wsn networkProposed mac protocol for reduce energy consumption over wsn network
Proposed mac protocol for reduce energy consumption over wsn network
 
Data Analysis In The Cloud
Data Analysis In The CloudData Analysis In The Cloud
Data Analysis In The Cloud
 

More from chennaijp

JPEEE1440 Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Pow...
JPEEE1440   Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Pow...JPEEE1440   Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Pow...
JPEEE1440 Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Pow...chennaijp
 
JPN1423 Stars a Statistical Traffic Pattern
JPN1423   Stars a Statistical Traffic PatternJPN1423   Stars a Statistical Traffic Pattern
JPN1423 Stars a Statistical Traffic Patternchennaijp
 
JPN1422 Defending Against Collaborative Attacks by Malicious Nodes in MANETs...
JPN1422  Defending Against Collaborative Attacks by Malicious Nodes in MANETs...JPN1422  Defending Against Collaborative Attacks by Malicious Nodes in MANETs...
JPN1422 Defending Against Collaborative Attacks by Malicious Nodes in MANETs...chennaijp
 
JPN1420 Joint Routing and Medium Access Control in Fixed Random Access Wire...
JPN1420   Joint Routing and Medium Access Control in Fixed Random Access Wire...JPN1420   Joint Routing and Medium Access Control in Fixed Random Access Wire...
JPN1420 Joint Routing and Medium Access Control in Fixed Random Access Wire...chennaijp
 
JPN1418 PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad H...
JPN1418  PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad H...JPN1418  PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad H...
JPN1418 PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad H...chennaijp
 
JPN1417 AASR: An Authenticated Anonymous Secure Routing Protocol for MANETs ...
JPN1417  AASR: An Authenticated Anonymous Secure Routing Protocol for MANETs ...JPN1417  AASR: An Authenticated Anonymous Secure Routing Protocol for MANETs ...
JPN1417 AASR: An Authenticated Anonymous Secure Routing Protocol for MANETs ...chennaijp
 
JPN1416 Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor...
JPN1416  Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor...JPN1416  Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor...
JPN1416 Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor...chennaijp
 
JPN1415 R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Netw...
JPN1415   R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Netw...JPN1415   R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Netw...
JPN1415 R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Netw...chennaijp
 
JPN1411 Secure Continuous Aggregation in Wireless Sensor Networks
JPN1411   Secure Continuous Aggregation in Wireless Sensor NetworksJPN1411   Secure Continuous Aggregation in Wireless Sensor Networks
JPN1411 Secure Continuous Aggregation in Wireless Sensor Networkschennaijp
 
JPN1414 Distributed Deployment Algorithms for Improved Coverage in a Networ...
JPN1414   Distributed Deployment Algorithms for Improved Coverage in a Networ...JPN1414   Distributed Deployment Algorithms for Improved Coverage in a Networ...
JPN1414 Distributed Deployment Algorithms for Improved Coverage in a Networ...chennaijp
 
JPN1413 An Energy-Balanced Routing Method Based on Forward-Aware Factor for...
JPN1413   An Energy-Balanced Routing Method Based on Forward-Aware Factor for...JPN1413   An Energy-Balanced Routing Method Based on Forward-Aware Factor for...
JPN1413 An Energy-Balanced Routing Method Based on Forward-Aware Factor for...chennaijp
 
JPN1412 Transmission-Efficient Clustering Method for Wireless Sensor Networ...
JPN1412   Transmission-Efficient Clustering Method for Wireless Sensor Networ...JPN1412   Transmission-Efficient Clustering Method for Wireless Sensor Networ...
JPN1412 Transmission-Efficient Clustering Method for Wireless Sensor Networ...chennaijp
 
JPN1410 Secure and Efficient Data Transmission for Cluster-Based Wireless Se...
JPN1410  Secure and Efficient Data Transmission for Cluster-Based Wireless Se...JPN1410  Secure and Efficient Data Transmission for Cluster-Based Wireless Se...
JPN1410 Secure and Efficient Data Transmission for Cluster-Based Wireless Se...chennaijp
 
JPN1409 Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless Networks
JPN1409  Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless NetworksJPN1409  Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless Networks
JPN1409 Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless Networkschennaijp
 
JPN1408 Hop-by-Hop Message Authentication and Source Privacy in Wireless Sen...
JPN1408  Hop-by-Hop Message Authentication and Source Privacy in Wireless Sen...JPN1408  Hop-by-Hop Message Authentication and Source Privacy in Wireless Sen...
JPN1408 Hop-by-Hop Message Authentication and Source Privacy in Wireless Sen...chennaijp
 
JPN1406 Snapshot and Continuous Data Collection in Probabilistic Wireless S...
JPN1406   Snapshot and Continuous Data Collection in Probabilistic Wireless S...JPN1406   Snapshot and Continuous Data Collection in Probabilistic Wireless S...
JPN1406 Snapshot and Continuous Data Collection in Probabilistic Wireless S...chennaijp
 
JPN1404 Optimal Multicast Capacity and Delay Tradeoffs in MANETs
JPN1404 Optimal Multicast Capacity and Delay Tradeoffs in MANETsJPN1404 Optimal Multicast Capacity and Delay Tradeoffs in MANETs
JPN1404 Optimal Multicast Capacity and Delay Tradeoffs in MANETschennaijp
 
JPM1410 Images as Occlusions of Textures: A Framework for Segmentation
JPM1410   Images as Occlusions of Textures: A Framework for SegmentationJPM1410   Images as Occlusions of Textures: A Framework for Segmentation
JPM1410 Images as Occlusions of Textures: A Framework for Segmentationchennaijp
 
JPM1407 Exposing Digital Image Forgeries by Illumination Color Classification
JPM1407   Exposing Digital Image Forgeries by Illumination Color ClassificationJPM1407   Exposing Digital Image Forgeries by Illumination Color Classification
JPM1407 Exposing Digital Image Forgeries by Illumination Color Classificationchennaijp
 
JPM1417 Characterness: An Indicator of Text in the Wild
JPM1417   Characterness: An Indicator of Text in the WildJPM1417   Characterness: An Indicator of Text in the Wild
JPM1417 Characterness: An Indicator of Text in the Wildchennaijp
 

More from chennaijp (20)

JPEEE1440 Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Pow...
JPEEE1440   Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Pow...JPEEE1440   Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Pow...
JPEEE1440 Cascaded Two-Level Inverter-Based Multilevel STATCOM for High-Pow...
 
JPN1423 Stars a Statistical Traffic Pattern
JPN1423   Stars a Statistical Traffic PatternJPN1423   Stars a Statistical Traffic Pattern
JPN1423 Stars a Statistical Traffic Pattern
 
JPN1422 Defending Against Collaborative Attacks by Malicious Nodes in MANETs...
JPN1422  Defending Against Collaborative Attacks by Malicious Nodes in MANETs...JPN1422  Defending Against Collaborative Attacks by Malicious Nodes in MANETs...
JPN1422 Defending Against Collaborative Attacks by Malicious Nodes in MANETs...
 
JPN1420 Joint Routing and Medium Access Control in Fixed Random Access Wire...
JPN1420   Joint Routing and Medium Access Control in Fixed Random Access Wire...JPN1420   Joint Routing and Medium Access Control in Fixed Random Access Wire...
JPN1420 Joint Routing and Medium Access Control in Fixed Random Access Wire...
 
JPN1418 PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad H...
JPN1418  PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad H...JPN1418  PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad H...
JPN1418 PSR: A Lightweight Proactive Source Routing Protocol For Mobile Ad H...
 
JPN1417 AASR: An Authenticated Anonymous Secure Routing Protocol for MANETs ...
JPN1417  AASR: An Authenticated Anonymous Secure Routing Protocol for MANETs ...JPN1417  AASR: An Authenticated Anonymous Secure Routing Protocol for MANETs ...
JPN1417 AASR: An Authenticated Anonymous Secure Routing Protocol for MANETs ...
 
JPN1416 Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor...
JPN1416  Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor...JPN1416  Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor...
JPN1416 Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor...
 
JPN1415 R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Netw...
JPN1415   R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Netw...JPN1415   R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Netw...
JPN1415 R3E: Reliable Reactive Routing Enhancement for Wireless Sensor Netw...
 
JPN1411 Secure Continuous Aggregation in Wireless Sensor Networks
JPN1411   Secure Continuous Aggregation in Wireless Sensor NetworksJPN1411   Secure Continuous Aggregation in Wireless Sensor Networks
JPN1411 Secure Continuous Aggregation in Wireless Sensor Networks
 
JPN1414 Distributed Deployment Algorithms for Improved Coverage in a Networ...
JPN1414   Distributed Deployment Algorithms for Improved Coverage in a Networ...JPN1414   Distributed Deployment Algorithms for Improved Coverage in a Networ...
JPN1414 Distributed Deployment Algorithms for Improved Coverage in a Networ...
 
JPN1413 An Energy-Balanced Routing Method Based on Forward-Aware Factor for...
JPN1413   An Energy-Balanced Routing Method Based on Forward-Aware Factor for...JPN1413   An Energy-Balanced Routing Method Based on Forward-Aware Factor for...
JPN1413 An Energy-Balanced Routing Method Based on Forward-Aware Factor for...
 
JPN1412 Transmission-Efficient Clustering Method for Wireless Sensor Networ...
JPN1412   Transmission-Efficient Clustering Method for Wireless Sensor Networ...JPN1412   Transmission-Efficient Clustering Method for Wireless Sensor Networ...
JPN1412 Transmission-Efficient Clustering Method for Wireless Sensor Networ...
 
JPN1410 Secure and Efficient Data Transmission for Cluster-Based Wireless Se...
JPN1410  Secure and Efficient Data Transmission for Cluster-Based Wireless Se...JPN1410  Secure and Efficient Data Transmission for Cluster-Based Wireless Se...
JPN1410 Secure and Efficient Data Transmission for Cluster-Based Wireless Se...
 
JPN1409 Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless Networks
JPN1409  Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless NetworksJPN1409  Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless Networks
JPN1409 Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless Networks
 
JPN1408 Hop-by-Hop Message Authentication and Source Privacy in Wireless Sen...
JPN1408  Hop-by-Hop Message Authentication and Source Privacy in Wireless Sen...JPN1408  Hop-by-Hop Message Authentication and Source Privacy in Wireless Sen...
JPN1408 Hop-by-Hop Message Authentication and Source Privacy in Wireless Sen...
 
JPN1406 Snapshot and Continuous Data Collection in Probabilistic Wireless S...
JPN1406   Snapshot and Continuous Data Collection in Probabilistic Wireless S...JPN1406   Snapshot and Continuous Data Collection in Probabilistic Wireless S...
JPN1406 Snapshot and Continuous Data Collection in Probabilistic Wireless S...
 
JPN1404 Optimal Multicast Capacity and Delay Tradeoffs in MANETs
JPN1404 Optimal Multicast Capacity and Delay Tradeoffs in MANETsJPN1404 Optimal Multicast Capacity and Delay Tradeoffs in MANETs
JPN1404 Optimal Multicast Capacity and Delay Tradeoffs in MANETs
 
JPM1410 Images as Occlusions of Textures: A Framework for Segmentation
JPM1410   Images as Occlusions of Textures: A Framework for SegmentationJPM1410   Images as Occlusions of Textures: A Framework for Segmentation
JPM1410 Images as Occlusions of Textures: A Framework for Segmentation
 
JPM1407 Exposing Digital Image Forgeries by Illumination Color Classification
JPM1407   Exposing Digital Image Forgeries by Illumination Color ClassificationJPM1407   Exposing Digital Image Forgeries by Illumination Color Classification
JPM1407 Exposing Digital Image Forgeries by Illumination Color Classification
 
JPM1417 Characterness: An Indicator of Text in the Wild
JPM1417   Characterness: An Indicator of Text in the WildJPM1417   Characterness: An Indicator of Text in the Wild
JPM1417 Characterness: An Indicator of Text in the Wild
 

Recently uploaded

An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 

Recently uploaded (20)

An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 

JPN1405 RBTP: Low-Power Mobile Discovery Protocol through Recursive Binary Time Partitioning

  • 1. RBTP: Low-Power Mobile Discovery Protocol through Recursive Binary Time Partitioning ABSTRACT: With increasing prevalence of mobile wireless devices with WiFi and Bluetooth capability, new applications that can make use of limited contact opportunities when the devices are physically close are emerging. Proximity-based social networking, and location specific dissemination of advertisements and events, are some such applications. Discovering such services is a challenging problem due to energy budget limitations, user mobility, and non-uniformity and the time-varying nature of energy budgets across users. It is important to rapidly discover such mobile services to make use of limited contact opportunities. To support such applications, we seek to design a localized discovery scheme that can minimize the expected contact latency between mobile phones with limited energy budgets. All the existing neighbor discovery schemes assume lack of any time synchronization. However, in practice sufficiently accurate time synchronization can be achieved with existing time synchronization techniques. We propose Recursive Binary Time Partitioning (RBTP), a scheme that determines how the devices should wake up and sleep to achieve minimal contact latency with other nearby devices. RBTP
  • 2. achieves provable performance bound and outperforms state-of-the-art asynchronous protocols for smartphones. When compared with the optimum scheme, the contact latency is shown to be within a factor of 9=8 in the expected case and 2 in the worst case. EXISTING SYSTEM: In an existing works on neighbor discovery of mobile devices assume that the clocks of the devices are not synchronized. They adopt a slotted time model in which time is divided into equal-sized slots. A device is scheduled to wake up or sleep in a slot deterministically or probabilistically. Devices in their mutual contact range are assumed to be able to discover each other when two wake-up slots overlap. These protocols are mainly designed for sensor networks where time synchronization is challenging but the devices can quickly switch the network interface to different states. We show that the protocols have poor performance in terms of both high contact latency and high missing rate in our simulations. In contrast, a smartphone has the luxury of synchronizing its clock through GPS, Internet, or cellular protocols.
  • 3. DISADVANTAGES OF EXISTING SYSTEM:  Partial synchronization or synchronization with limited inaccuracy can be exploited to design better neighbor discovery protocols  Optimizing the contact latency also optimizes the missing rate, which is the probability that two devices that are in each other’s contact range fail to discover each other during the period in which they were in their mutual range. If the contact latency is high, the missing rate is expected to be high as well PROPOSED SYSTEM: The proposed scheme, called Recursive Binary Time Partitioning (RBTP), is a synchronized protocol comprised of the number and the patterns of wake ups for the phones. Within a time period, the number of wake-up instances depends on the phone’s own energy budget. RBTP wakes up the network interface at certain times and puts it to sleep until the next wake-up instance. In a typical smartphone, the WiFi chipsets already have implemented the functions to quickly switch between wake-up and sleep modes.in the 802.11 protocol power saving mode, the mobile device can choose its sleep period in multiples of beacon intervals, and can wake up at the beginning of a beacon interval for a fixed duration of time, which is
  • 4. called the Announcement Traffic Indication Messages (ATIM) window. The ATIM window is smaller than a beacon interval Gast. Because a typical beacon interval is 100 milliseconds, the WiFi module should be able to switch between wake-up and sleep modes in 100 milliseconds. However, these functions are provided by proprietary binary drivers or firmwares and are unavailable for user-space applications. ADVANTAGES OF PROPOSED SYSTEM:  In our experiments, a smartphone only needs to connect to a public NTP server every 6 hours to calibrate its clock and keep the clock error within 100 milliseconds. The energy overhead for this operation is negligible.  Our design allows the devices to adapt their number of wake-up instances independently based on their respective energy limitations. SYSTEM REQUIREMENTS: HARDWARE REQUIREMENTS:  System : Pentium IV 2.4 GHz.
  • 5.  Hard Disk : 40 GB.  Floppy Drive : 1.44 Mb.  Monitor : 15 VGA Colour.  Mouse : Logitech.  Ram : 512 Mb. SOFTWARE REQUIREMENTS:  Operating system : Windows XP/7/LINUX.  Implementation : NS2  NS2 Version : NS2.2.28  Front End : OTCL (Object Oriented Tool Command Language)  Tool : Cygwin (To simulate in Windows OS) REFERENCE: Dong Li, Student Member, IEEE, and Prasun Sinha, Senior Member, IEEE, “RBTP: Low-Power Mobile Discovery Protocol through Recursive Binary Time Partitioning”, IEEE/ACM TRANSACTIONS ON MOBILE COMPUTING, VOL. 13, NO. 2, FEBRUARY 2014.