SlideShare a Scribd company logo
1 of 169
Download to read offline
17|	
  Fa'y	
  Acid	
  Catabolism	
  
© 2013 W. H. Freeman and Company
21|	
  Lipid	
  Biosynthesis	
  
Oxida=on	
  of	
  fa'y	
  acids	
  is	
  a	
  major	
  energy	
  
source	
  in	
  many	
  organisms	
  
•  About	
  one-­‐third	
  of	
  our	
  energy	
  needs	
  comes	
  from	
  
dietary	
  triacylglycerols	
  
•  About	
  80%	
  of	
  energy	
  needs	
  of	
  mammalian	
  heart	
  and	
  
liver	
  are	
  met	
  by	
  oxida<on	
  of	
  fa=y	
  acids!!	
  	
  
•  Many	
  hiberna<ng	
  animals,	
  such	
  as	
  grizzly	
  bears,	
  rely	
  
almost	
  exclusively	
  on	
  fats	
  as	
  their	
  source	
  of	
  energy	
  
(and	
  water	
  during	
  their	
  long-­‐term	
  sleep)	
  
Fats	
  provide	
  efficient	
  fuel	
  storage	
  
•  The	
  advantage	
  of	
  fats	
  over	
  polysaccharides:	
  
–  Fa=y	
  acids	
  carry	
  more	
  energy	
  per	
  carbon	
  because	
  they	
  are	
  
more	
  reduced	
  
–  Fa=y	
  acids	
  carry	
  less	
  water	
  along	
  because	
  they	
  are	
  nonpolar	
  
(aggregate	
  in	
  lipid	
  droplets	
  and	
  are	
  unsolvated)	
  
	
  
•  Glucose	
  and	
  glycogen	
  are	
  for	
  short-­‐term	
  energy	
  needs,	
  quick	
  
delivery	
  
•  Fats	
  are	
  for	
  long-­‐term	
  (months)	
  energy	
  needs,	
  good	
  storage,	
  
slow	
  delivery	
  
	
  
Fat	
  Storage	
  in	
  White	
  Adipose	
  Tissue	
  
Nuclei
“Squeezed”
Dietary	
  fa'y	
  acids	
  are	
  absorbed	
  in	
  the	
  
vertebrate	
  small	
  intes=ne	
  
Emulsification
by biological
detergents
(bile)
Breakdown of
TAG to DAG,
MAG, FFA
and glycerol
Uptake by intestinal
cells
Chylomicrons
(lipoproteins)
Bloodstream to
target tissues
2nd
breakdown
of TAG
Used for
energy
(muscles)
or
reesterified
for energy
(adipose)
Remaining chylomicrons go to liver and enter by RME à used for ketone bodies synthesis.
When diet contains more f.a. than needed, liver converts them to TAG and packages
them into VLDL to be transported to adipocytes
Lipids	
  are	
  transported	
  	
  
in	
  the	
  blood	
  as	
  chylomicrons	
  
Apoliporpotein + lipids particles = lipoprotein
Lipoproteins range in density: VLDL to VHDL
Hormones	
  trigger	
  mobiliza=on	
  	
  
of	
  stored	
  triacylglycerols	
  
• Hydrolysis	
  of	
  TAGs	
  is	
  catalyzed	
  by	
  lipases	
  
	
  -­‐	
  can	
  produce	
  MAGs,	
  DAGs,	
  FFA	
  and	
  glycerol	
  
• Some	
  lipases	
  are	
  regulated	
  by	
  hormones	
  
glucagon	
  and	
  epinephrine	
  
	
  
Recall:	
  
• 	
  Epinephrine	
  means:	
  “We	
  need	
  energy	
  now”	
  
	
  	
  
• 	
  Glucagon	
  means:	
  “We	
  are	
  out	
  of	
  glucose”	
  	
  
	
  
Hormones	
  trigger	
  mobiliza=on	
  	
  
of	
  stored	
  triacylglycerols	
  
•  Perilipins	
  –	
  proteins	
  that	
  
coat	
  lipid	
  droplets	
  and	
  
restrict	
  access	
  to	
  lipids	
  to	
  
prevent	
  premature	
  
mobiliza<on	
  
•  ê[glc]blood	
  è	
  glucagon	
  
èè	
  PKA	
  è	
  
phosphoryla<on	
  of	
  
hormone-­‐sensi<ve	
  lipase	
  &	
  
perilipin	
  è	
  dissocia<on	
  of	
  
CGI	
  and	
  ac<va<on	
  of	
  
adipose	
  triacylglycerol	
  
lipase	
  
monoacylglycerol	
  lipase	
  
hydrolyzes	
  MAGs	
   Serum albumin binds up to 10 f.a. noncovalently
Glycerol	
  from	
  fats	
  enters	
  glycolysis	
  
• Only	
  5%	
  of	
  biologically-­‐ac<ve	
  
energy	
  of	
  TAG	
  is	
  in	
  glycerol	
  
• Glycerol	
  kinase	
  ac<vates	
  
glycerol	
  at	
  the	
  expense	
  of	
  	
  
ATP	
  
• Subsequent	
  reac<ons	
  	
  
recover	
  more	
  than	
  enough	
  	
  
ATP	
  to	
  cover	
  this	
  cost	
  
• Allows	
  limited	
  anaerobic	
  
catabolism	
  of	
  fats	
  
Fa'y	
  Acid	
  Transport	
  into	
  Mitochondria	
  
• Fats	
  are	
  degraded	
  into	
  fa=y	
  acids	
  and	
  glycerol	
  in	
  the	
  
cytoplasm	
  of	
  adipocytes	
  
• Fa=y	
  acids	
  are	
  transported	
  to	
  other	
  <ssues	
  for	
  fuel	
  
• β-­‐oxida<on	
  of	
  fa=y	
  acids	
  occurs	
  in	
  mitochondria	
  	
  
• Small	
  (<	
  12	
  carbons)	
  fa=y	
  acids	
  diffuse	
  freely	
  across	
  
mitochondrial	
  membranes	
  
• Larger	
  fa=y	
  acids	
  (most	
  free	
  fa=y	
  acids)	
  are	
  
transported	
  via	
  acyl-­‐carni<ne/carni<ne	
  transporter	
  
(carni=ne	
  shu'le)	
  
• Three	
  steps:	
  
Conversion	
  of	
  a	
  fa'y	
  acid	
  to	
  a	
  fa'y	
  acyl–CoA	
  
(1)	
  
Nucleophilic attack by f.a. anion
Phosphoester linkage between f.a.
carboxyl and α phosphate of ATP
Thioester linkage between f.a.
carboxyl and thiol group of
CoA-SH
Hydrolysis of PPi to 2Pi is
highly exergonic and pulls the
first reaction forward
Acyl-­‐Carni=ne/Carni=ne	
  Transport	
  
(2)	
  
(3)	
  
Transesterification
to carnitine
Transesterification
to CoA
2 separate pools of CoA:
Matrix CoA à used mostly in oxidative degradation (pyr, f.a., a.a.)
Cytosolic CoA à used in biosynthesis of f.a.
Carnitine-mediated entry is the rate limiting step for oxidation of f.a. in mito
Stages	
  of	
  Fa'y	
  Acid	
  Oxida=on	
  
•  Stage	
  1	
  consists	
  of	
  oxida<ve	
  conversion	
  of	
  two-­‐carbon	
  
units	
  into	
  acetyl-­‐CoA	
  via	
  β-­‐oxida<on	
  with	
  concomitant	
  
genera<on	
  of	
  NADH	
  and	
  FADH2	
  	
  
–  involves	
  oxida<on	
  of	
  β	
  carbon	
  to	
  thioester	
  of	
  fa=y	
  acyl-­‐CoA	
  
•  Stage	
  2	
  involves	
  oxida<on	
  of	
  acetyl-­‐CoA	
  into	
  CO2	
  via	
  citric	
  
acid	
  cycle	
  with	
  concomitant	
  genera<on	
  NADH	
  and	
  FADH2	
  	
  
•  Stage	
  3	
  generates	
  ATP	
  from	
  NADH	
  and	
  FADH2	
  via	
  the	
  
respiratory	
  chain	
  
Stages	
  of	
  Fa'y	
  Acid	
  Oxida=on	
  
The	
  β-­‐Oxida=on	
  Pathway	
  	
  
Each	
  pass	
  removes	
  one	
  acetyl	
  moiety	
  in	
  the	
  form	
  of	
  acetyl-­‐CoA.	
  
Palmitate (C16)
undergoes seven passes
through the oxidative
sequence
Formation of each
acetyl-CoA
requires removal
of 4 H atoms {2 e–
pairs and 4 H+})
Step	
  1:	
  
Dehydrogena=on	
  of	
  Alkane	
  to	
  Alkene	
  
•  Catalyzed	
  by	
  isoforms	
  of	
  acyl-­‐	
  
CoA	
  dehydrogenase	
  (AD)	
  on	
  	
  
the	
  mitochondrial	
  inner	
  	
  
membrane	
  
–  Very-­‐long-­‐chain	
  AD	
  	
  
(VLCAD,	
  12–18	
  carbons)	
  
–  Medium-­‐chain	
  AD	
  (MCAD,	
  	
  
4–14	
  carbons)	
  
–  Short-­‐chain	
  AD	
  (SCAD,	
  4–8	
  carbons)	
  
•  Results	
  in	
  trans	
  double	
  bond,	
  different	
  from	
  naturally	
  occurring	
  
unsaturated	
  fa=y	
  acids,	
  between	
  α	
  and	
  β	
  C	
  
•  Analogous	
  to	
  succinate	
  dehydrogenase	
  reac<on	
  in	
  the	
  CAC	
  
–  Electrons	
  from	
  bound	
  FAD	
  transferred	
  directly	
  to	
  the	
  electron-­‐	
  transport	
  
chain	
  via	
  electron-­‐transferring	
  flavoprotein	
  (ETF)	
  
Step	
  2:	
  
Hydra=on	
  of	
  Alkene	
  
•  Catalyzed	
  by	
  two	
  isoforms	
  of	
  enoyl-­‐CoA	
  hydratase:	
  
–  Soluble	
  short-­‐chain	
  hydratase	
  (crotonase)	
  
–  Membrane-­‐bound	
  long-­‐chain	
  hydratase,	
  part	
  of	
  
trifunc<onal	
  complex	
  
•  Water	
  adds	
  across	
  the	
  	
  
double	
  bond	
  yielding	
  	
  
alcohol	
  
•  Analogous	
  to	
  fumarase	
  	
  
reac<on	
  in	
  the	
  CAC	
  
–  Same	
  stereospecificity	
  
Step	
  3:	
  
	
  Dehydrogena=on	
  of	
  Alcohol	
  
•  Catalyzed	
  by	
  β-­‐hydroxyacyl-­‐CoA	
  dehydrogenase	
  
•  The	
  enzyme	
  uses	
  NAD	
  cofactor	
  as	
  the	
  hydride	
  acceptor	
  
•  Only	
  L-­‐isomers	
  of	
  hydroxyacyl	
  CoA	
  act	
  as	
  substrates	
  
•  Analogous	
  to	
  malate	
  dehydrogenase	
  reac<on	
  in	
  the	
  CAC	
  
•  The	
  first	
  three	
  steps	
  	
  
create	
  a	
  much	
  less	
  	
  
stable	
  C-­‐C	
  bond,	
  	
  
where	
  the	
  α	
  C	
  is	
  bound	
  	
  
to	
  2	
  carbonyl	
  groups	
  
Step	
  4:	
  
	
  Transfer	
  of	
  Fa'y	
  Acid	
  Chain	
  
•  Catalyzed	
  by	
  acyl-­‐CoA	
  acetyltransferase	
  (thiolase)	
  via	
  
covalent	
  mechanism	
  
–  The	
  carbonyl	
  carbon	
  in	
  β-­‐ketoacyl-­‐CoA	
  is	
  electrophilic	
  
–  Ac<ve	
  site	
  thiolate	
  acts	
  as	
  nucleophile	
  and	
  releases	
  acetyl-­‐
CoA	
  
–  Terminal	
  sulfur	
  in	
  CoA-­‐SH	
  	
  
acts	
  as	
  nucleophile	
  and	
  	
  
picks	
  up	
  the	
  fa=y	
  acid	
  chain	
  	
  
from	
  the	
  enzyme	
  
•  The	
  net	
  reac<on	
  is	
  	
  
thiolysis	
  of	
  	
  
a	
  carbon-­‐carbon	
  bond	
  
Trifunc=onal	
  Protein	
  (TFP)	
  
•  Hetero-­‐octamer	
  
–  Four	
  α	
  subunits	
  
•  enoyl-­‐CoA	
  hydratase	
  ac<vity	
  
•  β-­‐hydroxyacyl-­‐CoA	
  dehydrogenase	
  ac<vity	
  
•  Responsible	
  for	
  binding	
  to	
  membrane	
  
–  Four	
  β	
  subunits	
  
•  long-­‐chain	
  thiolase	
  ac<vity	
  
•  May	
  allow	
  substrate	
  channeling	
  
•  Associated	
  with	
  mitochondrial	
  inner	
  membrane	
  
•  Processes	
  fa=y	
  acid	
  chains	
  with	
  12	
  or	
  more	
  carbons	
  
•  Shorter	
  chains	
  are	
  processed	
  by	
  soluble	
  individual	
  
enzymes	
  in	
  the	
  matrix	
  
Similar	
  mechanisms	
  introduce	
  carbonyls	
  
in	
  other	
  metabolic	
  pathways	
  
Fa'y	
  Acid	
  Catabolism	
  for	
  Energy	
  
•  For	
  palmi<c	
  acid	
  (C16)	
  
–  Repea<ng	
  the	
  above	
  four-­‐step	
  process	
  six	
  more	
  <mes	
  (7	
  total)	
  
results	
  in	
  eight	
  molecules	
  of	
  acetyl-­‐CoA	
  	
  
•  FADH2	
  is	
  formed	
  in	
  each	
  cycle	
  (7	
  total)	
  
•  NADH	
  is	
  formed	
  in	
  each	
  cycle	
  (7	
  total)	
  
•  Acetyl-­‐CoA	
  enters	
  citric	
  acid	
  cycle	
  and	
  further	
  oxidizes	
  into	
  CO2	
  
–  This	
  makes	
  more	
  GTP,	
  NADH,	
  and	
  FADH2	
  
•  Electrons	
  from	
  all	
  FADH2	
  and	
  NADH	
  enter	
  ETC	
  
•  Transfer	
  of	
  e–s	
  from	
  FADH2	
  and	
  NADH	
  to	
  O2	
  yields	
  1	
  H2O	
  per	
  pair	
  
(camels	
  and	
  hiberna<ng	
  animals!)	
  
	
  	
  	
  	
  	
  	
  	
  Palmitoyl-­‐CoA	
  +	
  7CoA	
  +	
  7O2	
  +	
  28Pi+	
  28ADP	
  à	
  8	
  acetyl-­‐CoA	
  +	
  28ATP	
  +	
  7H2O	
  (β	
  
oxida<on)	
  
	
  	
  	
  	
  	
  	
  Palmitoyl-­‐CoA	
  +	
  23O2	
  +	
  108Pi+	
  108ADP	
  à	
  CoA	
  +	
  108ATP	
  +	
  16CO2	
  +	
  23H2O	
  (full	
  
oxida<on)	
  
	
  
NADH	
  and	
  FADH2	
  serve	
  as	
  sources	
  of	
  ATP	
  
Oxida=on	
  of	
  Unsaturated	
  Fa'y	
  Acids	
  
•  Naturally	
  occurring	
  Unsaturated	
  Fa=y	
  acids	
  contain	
  
cis	
  double	
  bonds	
  
–  Are	
  NOT	
  a	
  substrate	
  for	
  enoyl-­‐CoA	
  hydratase	
  
•  Two	
  addi<onal	
  enzymes	
  are	
  required	
  
–  Isomerase:	
  converts	
  cis	
  double	
  bonds	
  	
  star<ng	
  at	
  carbon	
  3	
  
to	
  trans	
  double	
  bonds	
  
–  Reductase:	
  reduces	
  cis	
  double	
  bonds	
  not	
  at	
  carbon	
  3	
  
•  Monounsaturated	
  fa=y	
  acids	
  require	
  the	
  isomerase	
  
•  Polyunsaturated	
  fa=y	
  acids	
  require	
  both	
  enzymes	
  	
  
Oxida=on	
  of	
  Monounsaturated	
  Fa'y	
  Acids	
  
Oleate (18:1 Δ9)
converted to oleoyl-CoA
and imported into mito
via carnitine shuttle
Oxida=on	
  of	
  
Polyunsaturated	
  
Fa'y	
  Acids	
  
Linoleate (Δ9,Δ12)
First	
  double	
  bond	
  requires	
  isomeriza=on	
  
Second	
  requires	
  reduc=on/isomeriza=on	
  
Oxida=on	
  of	
  odd-­‐numbered	
  fa'y	
  acids	
  
•  Most	
  dietary	
  fa=y	
  acids	
  are	
  even-­‐numbered	
  
•  Many	
  plants	
  and	
  some	
  marine	
  organisms	
  also	
  synthesize	
  
odd-­‐numbered	
  fa=y	
  acids	
  
•  Propionyl-­‐CoA	
  forms	
  from	
  β-­‐oxida<on	
  of	
  odd-­‐numbered	
  
fa=y	
  acids	
  
•  Bacterial	
  metabolism	
  in	
  the	
  rumen	
  of	
  ruminants	
  also	
  
produces	
  propionyl-­‐CoA	
  	
  
•  Oxida<on	
  is	
  iden<cal	
  to	
  even-­‐numbered	
  long-­‐chain	
  fa=y	
  
acids,	
  but	
  the	
  last	
  pass	
  through	
  β-­‐oxida<on	
  is	
  a	
  fa=y	
  
acyl-­‐CoA	
  with	
  a	
  5-­‐C	
  fa=y	
  acid	
  that	
  is	
  cleaved	
  to	
  give	
  
acetyl-­‐CoA	
  and	
  propionyl-­‐CoA	
  	
  
Carboxyla=on	
  of	
  Propionyl-­‐CoA	
  
Isomeriza=on	
  to	
  Succinyl-­‐CoA	
  à	
  CAC	
  
Isomeriza=on	
  in	
  propionate	
  oxida=on	
  
requires	
  coenzyme	
  B12	
  
Complex	
  Cobalt-­‐Containing	
  Compound:	
  
Coenzyme	
  B12	
  
•  Very unstable bond
•  Breaks to yield –CH2
. and Co3+
•  Used to transfer the hydrogen
atom to a different C in the
molecule (isomerization)
•  No mixing of the transferred H
atom with the hydrogen of the
solvent (H2O)
•  The formation of this complex
cofactor occurs in one of two
known reactions that cleaves a
triphosphate from ATP
Regula=on	
  of	
  Fa'y	
  Acid	
  	
  
Synthesis	
  and	
  Breakdown	
  
Cytosol
•  Occurs	
  only	
  when	
  need	
  for	
  energy	
  requires	
  it	
  
•  2	
  pathways	
  for	
  f.a.CoA	
  in	
  liver:	
  TAG	
  synthesis	
  in	
  cytosol	
  or	
  f.a.	
  oxida<on	
  in	
  mito	
  
•  Transfer	
  into	
  mito	
  is	
  rate	
  limi<ng,	
  once	
  f.a.	
  are	
  in	
  mito	
  they	
  WILL	
  undergo	
  oxida<on	
  
Concn	
  increases	
  when	
  CHO	
  is	
  well-­‐supplied	
  
Inhibi<on	
  of	
  shu=le	
  ensures	
  oxida<on	
  of	
  f.a.	
  is	
  
inhibited	
  when	
  ñenergy	
  
ñ[NADH]/[NAD+] ý
ñAcetyl-CoA ý
Gene=c	
  defects	
  in	
  fa'y	
  acyl-­‐CoA	
  
dehydrogenases	
  
•  Inability	
  to	
  oxidize	
  fats	
  for	
  energy	
  has	
  serious	
  effects	
  
on	
  health	
  
•  More	
  than	
  20	
  human	
  gene<c	
  defects	
  in	
  f.a.	
  
transport	
  and	
  metabolism	
  occur	
  
•  MCAD	
  (medium	
  chain	
  acyl-­‐CoA	
  dehydrogenase)	
  
deficiency	
  is	
  the	
  most	
  common	
  syndrome	
  in	
  
European	
  popula<ons	
  	
  
	
  -­‐	
  Unable	
  to	
  oxidize	
  f.a.	
  of	
  6	
  –	
  12	
  Cs	
  
	
  -­‐	
  If	
  diagnosed	
  aoer	
  birth,	
  the	
  infant	
  can	
  be	
  	
  
	
  	
  	
  treated	
  with	
  low	
  fat,	
  high	
  carbohydrate	
  diet	
  
β-­‐Oxida=on	
  in	
  
Mitochondria	
  vs.	
  
Peroxisomes	
  
•  Differ	
  in	
  the	
  first	
  step:	
  
	
  	
  	
  	
  -­‐	
  passes	
  e–s	
  directly	
  to	
  O2	
  forming	
  
H2O2	
  which	
  is	
  quickly	
  removed	
  by	
  the	
  
ac<on	
  of	
  catalase	
  	
  	
  
	
  	
  	
  	
  	
  	
  -­‐	
  energy	
  is	
  lost	
  as	
  heat	
  instead	
  of	
  
producing	
  ATP	
  
•  Differ	
  in	
  f.a.	
  specificity:	
  
	
  	
  	
  	
  	
  -­‐	
  more	
  ac<ve	
  on	
  very	
  long	
  f.a.	
  and	
  
branched	
  f.a.	
  (α	
  oxida=on)	
  
	
  	
  	
  	
  	
  -­‐	
  process	
  long	
  chain	
  f.a.	
  into	
  shorter	
  
ones	
  which	
  are	
  exported	
  to	
  mito	
  to	
  
complete	
  oxida<on	
  
•  Zellweger	
  syndrome	
  –	
  inability	
  to	
  m	
  make	
  peroxisomes	
  
ω	
  oxida=on	
  
•  In	
  the	
  ER	
  of	
  liver	
  and	
  kidney	
  
•  For	
  f.a.	
  with	
  10	
  –	
  12	
  Cs	
  
•  Addi<on	
  of	
  OH	
  by	
  a	
  mixed	
  func=on	
  
oxidase	
  (cytochrome	
  P450)	
  
•  Alcohol	
  dehydrogenase	
  oxidizes	
  OH	
  	
  
to	
  aldehyde	
  
•  Aldehyde	
  dehydrogenase	
  oxidizes	
  	
  
aldehyde	
  to	
  acid	
  
•  CoA	
  can	
  a=ach	
  to	
  either	
  end	
  and	
  β	
  	
  
oxida<on	
  resumes	
  
Forma=on	
  of	
  Ketone	
  Bodies	
  
•  Entry	
  of	
  acetyl-­‐CoA	
  into	
  citric	
  acid	
  cycle	
  requires	
  
oxaloacetate	
  
•  When	
  oxaloacetate	
  is	
  depleted,	
  acetyl-­‐CoA	
  is	
  converted	
  
into	
  ketone	
  bodies	
  (acetone,	
  acetoacetate	
  and	
  D-­‐β-­‐
hydroxybutyrate)	
  
–  Frees	
  Coenzyme	
  A	
  for	
  con<nued	
  β-­‐oxida<on	
  
–  Acetone	
  is	
  exhalled	
  
–  Acetoacetate	
  and	
  β-­‐HB	
  are	
  transported	
  in	
  the	
  blood	
  	
  
•  Under	
  starva<on	
  condi<ons,	
  the	
  brain	
  can	
  use	
  ketone	
  
bodies	
  for	
  energy	
  
•  The	
  first	
  step	
  is	
  reverse	
  of	
  the	
  last	
  step	
  in	
  the	
  β-­‐
oxida<on:	
  thiolase	
  reac<on	
  joins	
  two	
  acetate	
  units	
  
Release	
  of	
  Free	
  Coenzyme	
  A	
  
Another condensation
with acetyl-CoA
yields HMG-CoA
Forma=on	
  of	
  Ketone	
  Bodies	
  
Cleaved into
acetoacetate and
acetyl-CoA
Specific for the D-
isomer; don’t confuse
it with L-β-
hydroxyacyl-CoA DH
of β oxidation
Untreated
diabetes à
[acetoacetate]
is high à more
acetone
produced à
exhaled (odor)
Ketone	
  Bodies	
  as	
  fuel	
  
In extrahepatic tissues:
Ketone bodies can be
used as fuels in all
tissues except the liver
The liver is a producer,
not a consumer, of
ketone bodies
ß CACFound in all
tissues except
the liver
Liver	
  is	
  the	
  source	
  of	
  ketone	
  bodies	
  
•  Produc<on	
  of	
  ketone	
  
bodies	
  increases	
  during	
  
starva<on	
  (and	
  diabetes)	
  
•  Ketone	
  bodies	
  are	
  
released	
  by	
  liver	
  to	
  
bloodstream	
  
•  Organs	
  other	
  than	
  liver	
  
can	
  use	
  ketone	
  bodies	
  as	
  
fuels	
  
•  High	
  levels	
  of	
  
acetoacetate	
  and	
  β-­‐
hydroxybutyrate	
  lower	
  
blood	
  pH	
  dangerously	
  
(acidosis)	
  
•  Acidosis	
  due	
  to	
  ketone	
  
bodies	
  -­‐	
  ketoacidosis	
  
Lipids	
  fulfill	
  a	
  variety	
  of	
  
biological	
  func=ons	
  
•  Energy	
  storage	
  
•  Cons<tuents	
  of	
  	
  membranes	
  
•  Anchors	
  for	
  membrane	
  proteins	
  
•  Cofactors	
  for	
  enzymes	
  
•  Signaling	
  molecules	
  
•  Pigments	
  
•  Detergents	
  
•  Transporters	
  
•  An<oxidants	
  
Catabolism	
  and	
  anabolism	
  of	
  fa'y	
  acids	
  
proceed	
  via	
  different	
  pathways	
  
•  Catabolism	
  of	
  fa=y	
  acids	
  (excergonic	
  and	
  oxida=ve)	
  
–  produces	
  acetyl-­‐CoA	
  
–  produces	
  reducing	
  power	
  (NADH	
  and	
  FADH2)	
  
–  ac<va<on	
  of	
  fa=y	
  acids	
  by	
  CoA	
  
–  takes	
  place	
  in	
  the	
  mitochondria	
  	
  
•  Anabolism	
  of	
  fa=y	
  acids	
  (endergonic	
  and	
  reduc=ve)	
  
–  requires	
  acetyl-­‐CoA	
  and	
  malonyl-­‐CoA	
  	
  
–  requires	
  reducing	
  power	
  from	
  NADPH	
  
–  ac<va<on	
  of	
  fa=y	
  acids	
  by	
  2	
  different	
  –SH	
  groups	
  on	
  protein	
  	
  
–  takes	
  place	
  in	
  cytosol	
  in	
  animals,	
  chloroplast	
  in	
  plants	
  
Subcellular	
  localiza=on	
  of	
  lipid	
  metabolism	
  
Overview	
  of	
  Fa'y	
  Acid	
  Synthesis	
  
•  Fa=y	
  acids	
  are	
  built	
  in	
  several	
  passes,	
  processing	
  
one	
  acetate	
  unit	
  at	
  a	
  <me.	
  
•  The	
  acetate	
  is	
  coming	
  from	
  ac<vated	
  malonate	
  in	
  
the	
  form	
  of	
  malonyl-­‐CoA.	
  
•  Each	
  pass	
  involves	
  reduc<on	
  of	
  a	
  carbonyl	
  carbon	
  
to	
  a	
  methylene	
  carbon.	
  	
  	
  
Malonyl-­‐CoA	
  is	
  formed	
  from	
  acetyl-­‐CoA	
  and	
  
bicarbonate	
  
•  The	
  reac<on	
  carboxylates	
  acetyl	
  CoA	
  
•  Catalyzed	
  by	
  acetyl-­‐CoA	
  carboxylase	
  (ACC)	
  
–  Enz	
  has	
  three	
  subunits:	
  
• One	
  unit	
  has	
  Bio<n	
  covalently	
  linked	
  to	
  Lys	
  
• Bio<n	
  carries	
  CO2	
  
• In	
  animals,	
  all	
  three	
  subunits	
  are	
  on	
  one	
  
polypep<de	
  chain	
  
–  HCO3
−	
  (bicarbonate)	
  is	
  the	
  source	
  of	
  CO2	
  
The	
  Acetyl-­‐CoA	
  Carboxylase	
  (ACC)	
  Reac=on	
  
•  Two-­‐step	
  rxn	
  similar	
  to	
  carboxyla<ons	
  catalyzed	
  
by	
  pyruvate	
  carboxylase	
  (gluconeogenesis)	
  and	
  
propionyl-­‐CoA	
  carboxylase	
  (odd	
  f.a.	
  metabolism)	
  	
  
•  CO2	
  binds	
  to	
  bio<n	
  
-  CO2	
  is	
  ac<vated	
  by	
  a=achment	
  to	
  N	
  in	
  ring	
  of	
  bio<n	
  
Synthesis	
  of	
  fa'y	
  acids	
  is	
  catalyzed	
  by	
  fa'y	
  
acid	
  synthase	
  (FAS)	
  
•  FAS	
  system:	
  
–  Catalyzes	
  a	
  repea<ng	
  four-­‐step	
  sequence	
  that	
  elongates	
  the	
  
fa=y	
  acyl	
  chain	
  by	
  two	
  carbons	
  at	
  each	
  step	
  
–  Uses	
  NADPH	
  as	
  as	
  the	
  electron	
  donor	
  
–  Uses	
  two	
  enzyme-­‐bound	
  -­‐SH	
  groups	
  as	
  ac<va<ng	
  groups	
  
•  FAS	
  I	
  in	
  vertebrates	
  and	
  fungi	
  
•  FAS	
  II	
  in	
  plants	
  and	
  bacteria	
  
FAS	
  I	
  vs.	
  FAS	
  II	
  
FAS	
  I	
  
•  Single	
  polypep<de	
  chain	
  in	
  
vertebrates	
  
•  Leads	
  to	
  single	
  product:	
  	
  
palmitate	
  16:0	
  
•  C-­‐15	
  and	
  C-­‐16	
  are	
  from	
  the	
  
acetyl	
  CoA	
  used	
  to	
  prime	
  
the	
  rxn	
  
FAS	
  II	
  
•  Made	
  of	
  separate,	
  diffusible	
  
enzymes	
  
•  Makes	
  many	
  products	
  
(saturated,	
  unsaturated,	
  
branched,	
  many	
  lengths,	
  
etc.)	
  
•  Mostly	
  in	
  plants	
  and	
  
bacteria	
  
Fa'y	
  Acid	
  Synthesis	
  
•  Overall	
  goal:	
  	
  a=ach	
  two-­‐C	
  acetate	
  unit	
  from	
  malonyl-­‐CoA	
  to	
  a	
  
growing	
  chain	
  and	
  then	
  reduce	
  it	
  
•  Reac<on	
  involves	
  cycles	
  of	
  four	
  enzyme-­‐catalyzed	
  steps	
  
–  Condensa<on	
  of	
  the	
  growing	
  chain	
  with	
  ac<vated	
  acetate	
  
–  Reduc<on	
  of	
  carbonyl	
  to	
  hydroxyl	
  
–  Dehydra<on	
  of	
  alcohol	
  to	
  trans-­‐alkene	
  
–  Reduc<on	
  of	
  alkene	
  to	
  alkane	
  
•  The	
  growing	
  chain	
  is	
  ini<ally	
  a=ached	
  to	
  the	
  enzyme	
  via	
  a	
  
thioester	
  linkage	
  
•  During	
  condensa<on,	
  the	
  growing	
  chain	
  is	
  transferred	
  to	
  the	
  
acyl	
  carrier	
  protein	
  (ACP)	
  
•  Aoer	
  the	
  second	
  reduc<on	
  step,	
  the	
  elongated	
  chain	
  is	
  
transferred	
  back	
  to	
  fa=y	
  acid	
  synthase	
  
The	
  General	
  Four-­‐Step	
  Fa'y	
  Acid	
  Synthase	
  I	
  
Reac=on	
  in	
  Mammals	
  (1)	
  
Prep:	
  	
  Malonyl	
  CoA	
  and	
  acetyl	
  CoA	
  (or	
  longer	
  fa=y	
  
acyl	
  chain)	
  are	
  bound	
  to	
  FAS	
  I	
  	
  
	
  -­‐	
  bind	
  via	
  thioester	
  terminus	
  of	
  a	
  Cys	
  of	
  the	
  FAS	
  
	
  -­‐	
  ac<vates	
  the	
  acyl	
  group	
  
Step	
  1:	
  	
  Condensa<on	
  rxn	
  a=aches	
  two	
  C	
  from	
  
malonyl	
  CoA	
  to	
  the	
  a=ached	
  acetyl-­‐CoA	
  (or	
  longer	
  
fa=y	
  acyl	
  chain)	
  
-­‐	
  also	
  releases	
  CO2	
  from	
  malonyl-­‐CoA	
  
-­‐	
  the	
  decarboxyla<on	
  facilitates	
  the	
  rxn	
  
-­‐	
  creates	
  β-­‐keto	
  intermediate	
  
Step	
  1	
  of	
  FAS	
  I:	
  	
  
Elonga=on	
  
Step	
  2:	
  	
  1st	
  Reduc<on:	
  	
  NADPH	
  reduces	
  the	
  β-­‐
keto	
  intermediate	
  to	
  an	
  alcohol	
  	
  
Step	
  3:	
  	
  Dehydra<on:	
  	
  OH	
  group	
  from	
  C-­‐2	
  and	
  
H	
  from	
  neighboring	
  CH2	
  are	
  eliminated,	
  
crea<ng	
  double	
  bond	
  (trans-­‐alkene)	
  
Step	
  4:	
  	
  2nd	
  Reduc<on:	
  	
  NADPH	
  reduces	
  
double	
  bond	
  to	
  yield	
  saturated	
  alkane	
  
Step	
  5:	
  Transloca<on:	
  The	
  growing	
  chain	
  is	
  
moved	
  from	
  ACP	
  to	
  –SH	
  on	
  FAS	
  
The	
  General	
  Four-­‐Step	
  Fa'y	
  Acid	
  Synthase	
  I	
  
Reac=on	
  in	
  Mammals	
  
Steps	
  2-­‐4	
  of	
  
the	
  FAS	
  I	
  rxn	
  
Overall	
  Palmitate	
  Synthesis	
  
Acyl	
  Carrier	
  Protein	
  (ACP)	
  serves	
  as	
  a	
  shu'le	
  
in	
  fa'y	
  acid	
  synthesis	
  
•  Contains	
  a	
  covalently	
  a=ached	
  prosthe<c	
  
group	
  4’-­‐phosphopantetheine	
  
–  Flexible	
  arm	
  to	
  tether	
  acyl	
  chain	
  while	
  
carrying	
  intermediates	
  from	
  one	
  
enzyme	
  subunit	
  to	
  the	
  next	
  
•  Delivers	
  malonate	
  to	
  the	
  fa=y	
  acid	
  
synthase	
  
•  Shu=les	
  the	
  growing	
  chain	
  from	
  one	
  
ac<ve	
  site	
  to	
  another	
  during	
  the	
  four-­‐step	
  
reac<on	
  
Charging	
  ACP	
  and	
  FAS	
  I	
  with	
  acyl	
  
groups	
  ac=vates	
  them	
  
•  Two	
  thiols	
  must	
  be	
  charged	
  with	
  the	
  correct	
  acyl	
  
groups	
  before	
  condensa<on	
  rxn	
  can	
  begin	
  
–  Thiol	
  from	
  4’-­‐phosphopantethine	
  in	
  ACP	
  
–  Thiol	
  from	
  Cys	
  in	
  fa=y	
  acid	
  synthase	
  
1) Acetyl	
  group	
  of	
  acetyl-­‐CoA	
  is	
  transferred	
  to	
  ACP	
  
–  Catalyzed	
  by	
  malonyl/acetyl-­‐CoA	
  transferase	
  (MAT)	
  
–  ACP	
  passes	
  this	
  acetate	
  to	
  the	
  Cys	
  of	
  the	
  β-­‐ketoacyl-­‐ACP	
  synthase	
  (KS)	
  
domain	
  of	
  FAS	
  I	
  
2)  ACP	
  –SH	
  group	
  is	
  re-­‐charged	
  with	
  malonyl	
  from	
  	
  	
  	
  
malonyl-­‐CoA	
  
Charging,	
  Ac=va=on	
  with	
  ACP,	
  and	
  the	
  
Four-­‐Step	
  Sequence	
  of	
  Mammalian	
  Fa'y	
  
Acid	
  Synthesis	
  
•  Ac<vated	
  acetyl	
  and	
  
malonyl	
  groups	
  form	
  
acetoacetyl-­‐ACP	
  and	
  
CO2	
  	
  
–  Claisen	
  condensa<on	
  rxn	
  
•  Catalyzed	
  by	
  β-­‐ketoacyl-­‐
ACP	
  synthase	
  (KS)	
  
•  Coupling	
  condensa<on	
  
to	
  decarboxyla<on	
  of	
  
malonyl-­‐CoA	
  makes	
  the	
  
rxn	
  energe<cally	
  
favorable	
  
•  Carbonyl	
  at	
  C-­‐3	
  is	
  reduced	
  to	
  form	
  D-­‐β-­‐
hydroxybutyryl-­‐ACP	
  
–  NADPH	
  is	
  e−	
  donor	
  
•  Catalyzed	
  by	
  β-­‐ketoacyl-­‐ACP	
  reductase	
  (KR)	
  
•  OH	
  and	
  H	
  removed	
  from	
  C-­‐2	
  and	
  C-­‐3	
  of	
  β-­‐hydroxybutyryl-­‐
ACP	
  to	
  form	
  trans-­‐Δ2-­‐butenoyl-­‐ACP	
  
•  Catalyzed	
  by	
  β-­‐hydroxyacyl-­‐ACP	
  dehydratase	
  (DH)	
  
•  NADPH	
  is	
  the	
  electron	
  
donor	
  to	
  reduce	
  double	
  
bond	
  of	
  trans-­‐Δ2-­‐butenoyl-­‐
ACP	
  to	
  form	
  butyryl-­‐ACP	
  
•  Catalyzed	
  by	
  enoyl-­‐ACP	
  
reductase	
  (ER)	
  
Enzymes	
  in	
  Fa'y	
  Acid	
  Synthase	
  
•  Condensa<on	
  with	
  acetate	
  
–  β-­‐ketoacyl-­‐ACP	
  synthase	
  (KS)	
  
•  Reduc<on	
  of	
  carbonyl	
  to	
  hydroxyl	
  
–  β-­‐ketoacyl-­‐ACP	
  reductase	
  (KR)	
  
•  Dehydra<on	
  of	
  alcohol	
  to	
  alkene	
  
–  β-­‐hydroxyacyl-­‐ACP	
  dehydratase	
  (DH)	
  
•  Reduc<on	
  of	
  alkene	
  to	
  alkane	
  
–  enoyl-­‐ACP	
  reductase	
  (ER)	
  
•  Chain	
  transfer/charging	
  	
  
–  Malonyl/acetyl-­‐CoA	
  ACP	
  transferase	
  
The	
  Transferase	
  and	
  FAS	
  rxns	
  are	
  
repeated	
  in	
  new	
  rounds	
  
•  Product	
  of	
  first	
  round	
  	
  is	
  butyryl-­‐ACP	
  
–  (bound	
  to	
  phosphopantetheine-­‐SH	
  group	
  of	
  ACP)	
  
•  Butyrul	
  gp	
  is	
  transferred	
  to	
  the	
  Cys	
  of	
  β-­‐
ketoacyl-­‐ACP	
  synthase	
  
–  In	
  the	
  first	
  round,	
  acetyl-­‐CoA	
  was	
  bound	
  here	
  
•  New	
  malonyl-­‐CoA	
  binds	
  to	
  ACP	
  
•  Aoer	
  new	
  round	
  of	
  four	
  steps,	
  six-­‐C	
  product	
  is	
  
made	
  (bound	
  to	
  ACP)	
  
Beginning	
  of	
  the	
  
Second	
  Round	
  of	
  
Fa'y	
  Acid	
  Synthesis	
  
Stoichiometry	
  of	
  Synthesis	
  of	
  
Palmitate	
  (16:0)	
  
1)  7	
  acetyl-­‐CoAs	
  are	
  carboxylated	
  to	
  make	
  7	
  
malonyl-­‐CoAs…	
  using	
  ATP	
  
	
  
7	
  AcCoA	
  +	
  7	
  CO2	
  +	
  7	
  ATP	
  à	
  7	
  malCoA	
  +	
  7	
  ADP	
  +	
  7	
  Pi	
  
	
  
2)  Seven	
  cycles	
  of	
  condensa<on,	
  reduc<on,	
  
dehydra<on	
  and	
  reduc<on…using	
  NADPH	
  to	
  
reduce	
  the	
  β-­‐keto	
  group	
  and	
  trans-­‐double	
  bond	
  
AcCoA	
  +	
  7	
  malCoA	
  +	
  14	
  NADPH	
  +	
  14	
  H+	
  àPalmitate	
  +	
  7	
  CO2	
  +	
  
8	
  CoA	
  +	
  14	
  NADP+	
  +	
  6	
  H2O	
  
Note:	
  	
  Eukaryotes	
  have	
  one	
  addi<onal	
  energy	
  cost.	
  	
  (Next	
  slide)	
  
Acetyl-­‐CoA	
  is	
  transported	
  into	
  the	
  
cytosol	
  for	
  fa'y	
  acid	
  synthesis	
  	
  
•  In	
  nonphotosynthe<c	
  eukaryotes…	
  
•  Acetyl-­‐CoA	
  is	
  made	
  in	
  the	
  mitochondria	
  
•  But	
  fa=y	
  acids	
  are	
  made	
  in	
  the	
  cytosol	
  
•  So	
  Acetyl-­‐CoA	
  is	
  transported	
  into	
  the	
  
cytosol	
  with	
  a	
  cost	
  of	
  2	
  ATPs	
  
•  Therefore,	
  cost	
  of	
  FA	
  synthesis	
  is	
  3	
  ATPs	
  
per	
  2-­‐C	
  unit	
  
Fa'y	
  acid	
  synthesis	
  occurs	
  in	
  cell	
  compartments	
  
where	
  NADPH	
  levels	
  are	
  high	
  
•  Cytosol	
  for	
  animals,	
  yeast	
  
•  Chloroplast	
  for	
  plants	
  
•  Sources	
  of	
  NADPH:	
  
–  In	
  adipocytes:	
  	
  pentose	
  phosphate	
  pathway	
  and	
  malic	
  
enzyme	
  	
  
–  NADPH	
  is	
  made	
  as	
  malate	
  converts	
  to	
  pyruvate	
  +	
  CO2	
  
–  In	
  hepatocytes	
  and	
  mammary	
  gland:	
  	
  pentose	
  
phosphate	
  pathway	
  
• 	
  NADPH	
  is	
  made	
  as	
  glucose-­‐6-­‐phosphate	
  converts	
  to	
  ribulose	
  6-­‐
phosphate	
  
–  In	
  plants:	
  	
  photosynthesis	
  
Pathways	
  for	
  NADPH	
  Produc=on	
  
Acetyl-­‐CoA,	
  generated	
  in	
  the	
  mitochondria,	
  is	
  
shu'led	
  to	
  the	
  cytosol	
  as	
  citrate	
  
•  In	
  most	
  eukaryotes,	
  the	
  acetyl-­‐CoA	
  for	
  lipid	
  synthesis	
  
is	
  made	
  in	
  the	
  mitochondria	
  
–  But	
  lipid	
  synthesis	
  occurs	
  in	
  the	
  cytosol	
  
• And	
  there	
  is	
  no	
  way	
  for	
  acetyl-­‐CoA	
  to	
  cross	
  
mitochondrial	
  inner	
  membrane	
  to	
  the	
  cytosol	
  
•  So	
  acetyl-­‐CoA	
  is	
  converted	
  to	
  citrate	
  
–  Acetyl-­‐CoA	
  +	
  oxaloacetate	
  à	
  citrate	
  
• Same	
  rxn	
  as	
  occurs	
  in	
  CAC	
  
• Catalyzed	
  by	
  citrate	
  synthase	
  
• Citrate	
  passes	
  through	
  citrate	
  transporter	
  
Citrate	
  is	
  cleaved	
  to	
  regenerate	
  
acetyl-­‐CoA	
  
•  Citrate	
  (now	
  in	
  cytosol)	
  is	
  cleaved	
  by	
  citrate	
  
lyase	
  
–  Regenerates	
  acetyl-­‐CoA	
  and	
  oxaloacetate	
  
–  Rxn	
  requires	
  ATP	
  
–  Acetyl-­‐CoA	
  can	
  now	
  be	
  used	
  for	
  lipid	
  synthesis	
  
•  What	
  happens	
  to	
  the	
  oxaloacetate	
  because	
  
there	
  is	
  no	
  oxaloacetate	
  transporter	
  either?	
  	
  	
  
Oxaloacetatecyt	
  is	
  converted	
  to	
  malate	
  	
  
•  Malate	
  dehydrogenase	
  in	
  cytosol	
  reduces	
  
oxaloacetate	
  to	
  malate	
  
•  Two	
  poten<al	
  fates	
  for	
  malate:	
  
–  Can	
  be	
  converted	
  to	
  NADPHcyt	
  and	
  pyruvatecyt	
  via	
  the	
  
malic	
  enzyme	
  
•  NADPH	
  used	
  for	
  lipid	
  synthesis	
  
•  Pyruvatecyt	
  sent	
  back	
  to	
  mito	
  via	
  pyruvate	
  transporter	
  
•  Converted	
  back	
  to	
  oxaloacetatemito	
  by	
  pyruvate	
  carboxylase,	
  
requires	
  ATP	
  
–  Can	
  be	
  transported	
  back	
  to	
  mito	
  via	
  malate	
  -­‐α-­‐
ketoglutarate	
  transporter	
  
•  Malatemito	
  is	
  reoxidized	
  to	
  oxaloacetatemito	
  
Shu'le	
  for	
  Transfer	
  of	
  Acetyl	
  Groups	
  from	
  
Mitochondria	
  to	
  Cytosol	
  
Fa'y	
  acid	
  synthesis	
  is	
  =ghtly	
  regulated	
  
via	
  ACC	
  
•  Acetyl	
  CoA	
  carboxylase	
  (ACC)	
  catalyzes	
  the	
  rate-­‐
limi<ng	
  step	
  
–  ACC	
  is	
  feedback-­‐inhibited	
  by	
  palmitoyl-­‐CoA	
  
–  ACC	
  is	
  acEvated	
  by	
  citrate	
  
•  Remember	
  citrate	
  is	
  made	
  from	
  acetyl-­‐CoAmito	
  
•  Citrate	
  signals	
  excess	
  energy	
  to	
  be	
  converted	
  to	
  
fat	
  
–  When	
  [acetyl-­‐CoA]mito	
  ↑,	
  converted	
  to	
  citrate…citrate	
  
exported	
  to	
  cytosol	
  
Importance	
  of	
  Citrate	
  to	
  Regula=on	
  of	
  
Fa'y	
  Acid	
  Synthesis	
  	
  
•  In	
  animals,	
  citrate	
  s<mulates	
  fa=y	
  acid	
  
synthesis!	
  
–  Precursor	
  for	
  acetyl-­‐CoA	
  	
  
• Sent	
  to	
  cytosol	
  and	
  cleaved	
  to	
  become	
  AcCoA	
  when	
  
AcCoA	
  and	
  ATP	
  ↑	
  (energy	
  excess)	
  
–  Allosteric	
  ac<vator	
  of	
  ACC	
  
–  Inhibitor	
  of	
  PFK-­‐1	
  
• Reduces	
  glycolysis	
  
ACC	
  is	
  also	
  regulated	
  by	
  covalent	
  
modifica=on	
  
•  Inhibited	
  when	
  energy	
  is	
  needed	
  
•  Glucagon	
  and	
  epinephrine:	
  	
  
–  reduce	
  sensi<vity	
  of	
  citrate	
  ac<va<on	
  
–  lead	
  to	
  phosphoryla<on	
  and	
  inac<va<on	
  of	
  
ACC	
  via	
  PKA	
  
• ACC	
  is	
  ac<ve	
  as	
  dephosphorylated	
  monomers	
  
• When	
  phosphorylated,	
  ACC	
  polymerizes	
  into	
  long	
  
inac<ve	
  filaments	
  
• Dephosphoryla<on	
  reverses	
  the	
  polymeriza<on	
  
	
  
Regula=on	
  of	
  Fa'y	
  Acid	
  Synthesis	
  in	
  
Vertebrates	
  
Addi=onal	
  Modes	
  of	
  Regula=on	
  in	
  Fa'y	
  
Acid	
  Synthesis	
  
•  Changes	
  in	
  gene	
  expression	
  
–  Example:	
  	
  Fa=y	
  acids	
  (and	
  eicosanoids)	
  bind	
  to	
  
transcrip<on	
  factors	
  called	
  Peroxisome	
  
Proliferator-­‐Ac=vated	
  Receptors	
  (PPARs)	
  à	
  
inducing	
  gene	
  expression	
  of	
  some	
  genes	
  
•  Reciprocal	
  regula<on	
  
–  Malonyl-­‐CoA	
  inhibits	
  fa=y	
  acid	
  import	
  into	
  mito	
  
• One	
  of	
  many	
  ways	
  to	
  ensure	
  that	
  fat	
  synthesis	
  and	
  
oxida<on	
  don’t	
  occur	
  simultaneously	
  
Palmitate	
  can	
  be	
  lengthened	
  to	
  
longer-­‐chain	
  fa'y	
  acids	
  
•  Elonga<on	
  systems	
  in	
  the	
  endoplasmic	
  
re<culum	
  and	
  mitochondria	
  create	
  longer	
  
fa=y	
  acids	
  
•  As	
  in	
  palmitate	
  synthesis,	
  each	
  step	
  adds	
  
units	
  of	
  2	
  C	
  
•  Stearate	
  (18:0)	
  is	
  the	
  most	
  common	
  
product	
  
Palmitate	
  and	
  stearate	
  can	
  be	
  
desaturated	
  
•  Palmitate(16:0)àpalmitoleate(16:1;	
  Δ9)	
  	
  
•  Stearate	
  (18:0)àoleate	
  (18:1;	
  Δ9)	
  	
  
–  Catalyzed	
  by	
  fa=y	
  acyl-­‐CoA	
  desaturase	
  in	
  
animals	
  	
  
• Also	
  known	
  as	
  the	
  fa=y	
  acid	
  desaturases	
  
• Requires	
  NADPH;	
  enzyme	
  uses	
  cytochrome	
  b5	
  and	
  
cytochrome	
  b5	
  reductase	
  
Note	
  that	
  this	
  is	
  a	
  Δ9-­‐desaturase!	
  	
  
	
  It	
  reduces	
  the	
  bond	
  between	
  C-­‐9	
  and	
  C-­‐10.	
  
	
  
Vertebrate	
  fa'y	
  acyl	
  desaturase	
  is	
  a	
  non-­‐
heme,	
  iron-­‐containing,	
  mixed	
  func=on	
  
oxidase	
  
•  O2	
  accepts	
  four	
  electrons	
  from	
  two	
  substrates	
  
•  Two	
  electrons	
  come	
  from	
  saturated	
  fa=y	
  acid	
  
•  Two	
  electrons	
  come	
  from	
  ferrous	
  state	
  of	
  cytochrome	
  
b5	
  
Desatura=on	
  of	
  a	
  Fa'y	
  Acid	
  by	
  
Fa'y	
  Acyl-­‐CoA	
  Desaturase	
  
Plants	
  can	
  desaturate	
  posi=ons	
  
beyond	
  C-­‐9	
  
•  Humans	
  have	
  Δ4,	
  Δ5,	
  Δ6,	
  and	
  Δ9	
  desaturases	
  but	
  cannot	
  
desaturate	
  beyond	
  Δ9	
  
•  Plants	
  can	
  produce:	
  
–  linoleate	
  18:2(Δ9,12)	
  
–  α-­‐linolenate	
  18:3	
  (Δ9,12,15)	
  
•  These	
  fa=y	
  acids	
  are	
  “essen=al”	
  to	
  humans	
  
–  Polyunsaturated	
  fa=y	
  acids	
  (PUFAs)	
  help	
  control	
  membrane	
  
fluidity	
  
–  PUFAs	
  are	
  precursors	
  to	
  eicosanoids	
  
•  Implica<ons	
  of	
  stearoyl-­‐ACP	
  desaturase	
  (SCD)	
  on	
  obesity	
  
–  SCD1-­‐mutant	
  mice	
  are	
  resistant	
  to	
  diet-­‐induced	
  obesity!	
  
Oxidases,	
  Monooxygenases,	
  	
  and	
  
Dioxygenases	
  
Many	
  enzymes	
  use	
  oxygen	
  as	
  an	
  e−	
  acceptor,	
  but	
  not	
  all	
  
of	
  them	
  incorporate	
  oxygen	
  into	
  the	
  product.	
  
	
  
• 	
  Oxidases	
  do	
  not	
  incorporate	
  oxygen	
  into	
  the	
  product	
  
–  Oxygen	
  atoms	
  usually	
  end	
  up	
  in	
  H2O2	
  
• 	
  Oxygenases	
  do	
  incorporate	
  oxygen	
  into	
  the	
  product	
  
–  Monooxygenases	
  incorporate	
  one	
  of	
  the	
  oxygen	
  atoms	
  
into	
  the	
  product	
  
–  Dioxygenases	
  incorporate	
  both	
  oxygen	
  atoms	
  into	
  the	
  
product	
  
Monooxygenases	
  incorporate	
  one	
  
oxygen	
  into	
  the	
  product	
  	
  
AH	
  +	
  BH2	
  +	
  O-­‐O	
  àA-­‐OH	
  +	
  B	
  +	
  H2O	
  
• 	
  Product	
  is	
  ooen	
  hydroxylated,	
  so	
  also	
  called	
  
hydroxylases	
  or	
  mixed-­‐func=on	
  oxygenases	
  
–  Example:	
  	
  Phenylanine	
  hydroxylase	
  hydroxylates	
  
phenylalanine	
  to	
  form	
  tyrosine	
  
–  Deficiency	
  causes	
  phenylketonuria	
  (PKU)	
  
Cytochrome	
  P450s	
  are	
  
monooxygenases	
  	
  
•  Important	
  in	
  drug	
  metabolism	
  
•  Hydroxylate	
  nonpolar	
  molecules	
  
–  usually	
  inac<va<ng	
  them	
  and	
  making	
  them	
  
more	
  H2O-­‐soluble	
  for	
  excre<on	
  
•  If	
  two	
  drugs	
  (or	
  alcohol	
  and	
  a	
  drug)	
  use	
  the	
  
same	
  P450,	
  they	
  will	
  compete,	
  and	
  levels	
  of	
  
the	
  drug	
  or	
  alcohol	
  will	
  not	
  be	
  cleared	
  as	
  
quickly	
  
–  Can	
  be	
  deadly	
  
Dioxygenases	
  incorporate	
  two	
  oxygens	
  
in	
  the	
  product	
  
•  Usually	
  metalloproteins	
  
–  Ac<ve	
  sites	
  have	
  Fe	
  or	
  Mn	
  
ions	
  
•  Rxns	
  ooen	
  involve	
  opening	
  
an	
  aroma<c	
  ring	
  
•  Example:	
  Tryptophan	
  2,3-­‐
dioxygenase	
  
Eicosanoids	
  are	
  potent	
  short-­‐range	
  
hormones	
  made	
  from	
  arachidonate	
  
•  Eicosanoids	
  are	
  paracrine	
  signaling	
  molecules	
  
•  They	
  include	
  prostaglandins,	
  leukotrienes,	
  
thromboxanes	
  
•  Created	
  from	
  arachidonic	
  acid,	
  20:4	
  (Δ5,8,11,14)	
  	
  
•  Arachidonate	
  is	
  incorporated	
  into	
  the	
  
phospholipids	
  of	
  membranes	
  
•  In	
  response	
  to	
  s<muli	
  (hormone,	
  etc.),	
  
phospholipase	
  A2	
  is	
  ac<vated	
  and	
  a=acks	
  the	
  
C-­‐2	
  fa=y	
  acid,	
  releasing	
  arachidonate	
  
Prostaglandins	
  are	
  made	
  by	
  prostaglandin	
  H2	
  
synthase	
  (cyclooxygenase,	
  COX)	
  
•  COX	
  (aka	
  PGH2	
  synthase)	
  is	
  a	
  bifunc<onal	
  
ER	
  enzyme:	
  
•  Step	
  1:	
  	
  cyclooxygenase	
  ac<vity	
  of	
  PGH2	
  
synthase	
  adds	
  2	
  O2	
  to	
  form	
  PGG2	
  
•  Step	
  2:	
  	
  peroxidase	
  ac<vity	
  converts	
  
peroxide	
  to	
  alcohol,	
  creates	
  PGH2	
  
•  PGH2	
  is	
  precursor	
  to	
  other	
  eicosanoids	
  
Conversion	
  of	
  
Arachidonate	
  to	
  
Prostaglandins	
  and	
  
Other	
  Eicosanoids	
  
•  Thromboxane	
  synthase	
  
present	
  in	
  thrombocytes	
  
converts	
  PGH2	
  to	
  
thromboxane	
  A2	
  	
  
•  Induce	
  the	
  constric<on	
  of	
  
blood	
  vessels	
  and	
  blood	
  
clovng	
  
•  Low	
  doses	
  of	
  aspirin	
  
reduce	
  the	
  risk	
  of	
  heart	
  
a=acks	
  and	
  strokes	
  by	
  
reducing	
  thromboxane	
  
produc<on	
  	
  	
  
PGH2	
  synthase	
  has	
  two	
  isoforms	
  
•  COX-­‐1	
  catalyzes	
  synthesis	
  of	
  prostaglandins	
  
that	
  regulate	
  gastric	
  mucin	
  secreEon	
  
•  COX-­‐2	
  catalyzes	
  synthesis	
  of	
  prostaglandins	
  
that	
  mediate	
  pain,	
  inflammaEon,	
  and	
  fever	
  
NSAIDs	
  inhibit	
  cyclooxygenase	
  ac=vity	
  
•  Aspirin	
  (Acetylsalicylate)	
  is	
  an	
  irreversible	
  
inhibitor	
  
–  Acetylates	
  a	
  Ser	
  in	
  the	
  ac<ve	
  site	
  
–  Blocks	
  ac<ve	
  site	
  in	
  both	
  COX	
  isozymes	
  
•  Ibuprofen	
  and	
  naproxen	
  are	
  compe<<ve	
  
inhibitors	
  
–  Resemble	
  substrate,	
  also	
  block	
  the	
  ac<ve	
  site	
  
in	
  both	
  isozymes	
  
–  Undesired	
  side	
  effects	
  such	
  as	
  stomach	
  
irritaEon,	
  why?	
  
A	
  Few	
  NSAIDs	
  that	
  Inhibit	
  PGH2	
  
Arachidonate
(substrate)
Advil, motrin Aleve
COX-­‐2-­‐specific	
  inhibitors	
  have	
  a	
  
checkered	
  history	
  	
  
•  Developed	
  to	
  inhibit	
  prostaglandin	
  forma<on	
  
without	
  harming	
  stomach	
  
•  Includes	
  Vioxx,	
  Bextra,	
  and	
  Celebrex	
  
•  Vioxx	
  and	
  Bextra	
  removed	
  from	
  market	
  due	
  to	
  
increased	
  rates	
  of	
  stroke	
  and	
  heart	
  a=ack	
  
–  May	
  disrupt	
  balance	
  between	
  blood-­‐thinning	
  
prostacyclin	
  and	
  blood-­‐clovng	
  thromboxanes	
  
Leukotriene	
  synthesis	
  also	
  begins	
  
with	
  arachidonate	
  
•  O2	
  is	
  added	
  to	
  arachidonate	
  via	
  lipoxygenases	
  
•  Creates	
  species	
  that	
  differ	
  in	
  the	
  posi<on	
  of	
  the	
  OOH	
  group	
  
•  Not	
  inhibited	
  by	
  NSAIDs	
  
Biosynthesis	
  of	
  Triacylglycerols	
  
•  Synthesized	
  or	
  ingested	
  fa=y	
  acids	
  are	
  either	
  
stored	
  for	
  energy	
  or	
  used	
  in	
  membranes	
  
depending	
  on	
  the	
  needs	
  of	
  the	
  organism	
  
	
  	
  
•  Animals	
  and	
  plants	
  store	
  fat	
  for	
  fuel	
  
–  Plants:	
  in	
  seeds,	
  nuts	
  
–  Typical	
  70-­‐kg	
  human	
  has	
  ~15	
  kg	
  fat	
  
• Enough	
  to	
  last	
  12	
  wks	
  
• Compare	
  with	
  12	
  hrs’	
  worth	
  glycogen	
  in	
  liver	
  and	
  muscle	
  
•  Animals	
  and	
  plants	
  and	
  bacteria	
  make	
  
phospholipids	
  for	
  cell	
  membranes	
  
The	
  precursor	
  for	
  the	
  backbone	
  of	
  fat	
  and	
  
phospholipids	
  is	
  glycerol	
  3-­‐phosphate	
  
•  Both	
  pathways	
  start	
  by	
  the	
  forma<on	
  of	
  fa=y	
  acyl	
  
esters	
  of	
  glycerol	
  	
  
•  The	
  substrates	
  are	
  fa=y	
  acyl-­‐CoAs	
  and	
  L-­‐glycerol	
  3-­‐
phosphate	
  
•  Most	
  glycerol	
  3-­‐phosphate	
  comes	
  from	
  
dihydroxyacetone	
  phosphate	
  (DHAP)	
  from	
  glycolysis	
  
–  via	
  glycerol	
  3-­‐phosphate	
  dehydrogenase	
  	
  
	
  
•  Some	
  glycerol	
  3-­‐phosphate	
  made	
  from	
  glycerol	
  
–  via	
  glycerol	
  kinase	
  
–  Minor	
  pathway	
  in	
  liver	
  and	
  kidney	
  only	
  
Acyl	
  transferases	
  a'ach	
  two	
  fa'y	
  
acids	
  to	
  glycerol	
  3-­‐phosphate	
  
•  Phospha<dic	
  acid	
  is	
  the	
  
precursor	
  to	
  TAGs	
  and	
  
phospholipids	
  
–  Made	
  of	
  glycerol	
  3-­‐phosphate	
  
+	
  2	
  fa=y	
  acids	
  
–  Fa=y	
  acids	
  are	
  a=ached	
  by	
  
acyl	
  transferases 	
  	
  
–  Release	
  of	
  CoA	
  
To	
  make	
  TAG,	
  phospha=dic	
  acid	
  is	
  
dephosphorylated	
  and	
  acylated	
  	
  
•  Phospha<dic	
  acid	
  phosphatase	
  (lipin)	
  
removes	
  the	
  3-­‐phosphate	
  from	
  the	
  
phospha<dic	
  acid	
  
–  Yields	
  1,2-­‐diacylglycerol	
  
•  Third	
  carbon	
  is	
  then	
  acylated	
  with	
  a	
  third	
  
fa=y	
  acid	
  
–  Yields	
  triacylglycerol	
  
Conversion	
  of	
  
Phospha=dic	
  Acid	
  into	
  
Triacylglycerol	
  
Regula=on	
  of	
  Triacylglycerol	
  
Synthesis	
  by	
  Insulin	
  
•  Insulin	
  results	
  in	
  s<mula<on	
  
of	
  triacylglycerol	
  synthesis	
  
•  Lack	
  of	
  insulin	
  results	
  in:	
  
–  Increased	
  lipolysis	
  
–  Increased	
  fa=y	
  acid	
  oxida<on	
  
• Some<mes	
  to	
  ketones,	
  if	
  citric	
  
acid	
  cycle	
  intermediates	
  
(oxaloacetate)	
  that	
  react	
  with	
  
acetyl	
  CoA	
  are	
  depleted	
  
–  Failure	
  to	
  synthesize	
  fa=y	
  
acids	
  
Regula=on	
  of	
  Fat	
  Metabolism	
  by	
  
Glucagon	
  and	
  Epinephrine	
  
•  Glucagon	
  and	
  epinephrine	
  result	
  in	
  
s<mula<on	
  of	
  triacylglycerol	
  breakdown	
  
(mobiliza<on	
  of	
  fa=y	
  acids)	
  
–  Also	
  decrease	
  glycolysis	
  
–  Also	
  increase	
  gluconeogenesis	
  
Triacylglycerol	
  breakdown	
  and	
  
re-­‐synthesis	
  create	
  a	
  fu=le	
  cycle	
  
•  Seventy-­‐five	
  percent	
  of	
  free	
  fa=y	
  acids	
  (FFA)	
  
released	
  by	
  lipolysis	
  are	
  reesterified	
  to	
  form	
  TAGs	
  
rather	
  than	
  be	
  used	
  for	
  fuel	
  
–  Some	
  recycling	
  occurs	
  in	
  adipose	
  <ssue	
  
–  Some	
  FFA	
  from	
  adipose	
  cells	
  are	
  transported	
  to	
  liver,	
  
remade	
  into	
  TAG,	
  and	
  re-­‐deposited	
  in	
  adipose	
  cells	
  
•  Although	
  the	
  distribu<on	
  between	
  these	
  two	
  paths	
  
may	
  vary	
  (the	
  flux	
  of	
  FFA	
  into	
  and	
  out	
  of	
  the	
  
adipose),	
  overall,	
  the	
  percentage	
  of	
  FFA	
  being	
  
esterified	
  remains	
  at	
  ~75%.	
  
The	
  Triacylglycerol	
  Cycle	
  
*	
  In	
  mammals,	
  
TAG	
  molecules	
  
are	
  broken	
  
down	
  and	
  
resynthesized	
  
in	
  a	
  TAG	
  cycle	
  
even	
  during	
  
starva<on.	
  
	
  	
  
	
  
Benefits	
  of	
  this	
  fu=le	
  cycle?	
  
•  Recycling	
  con<nues	
  even	
  in	
  starvaEon	
  
•  Specula<on:	
  
–  energy	
  reserve	
  for	
  “fight	
  or	
  flight”	
  crises	
  that	
  
might	
  occur	
  during	
  fas<ng	
  
•  The	
  total	
  #	
  of	
  FFA	
  in	
  flux	
  may	
  change	
  but	
  the	
  
%	
  recycled	
  remains	
  	
  	
  
–  unless	
  a	
  pharamacological	
  interven<on	
  happens	
  
(i.e.,	
  thiazolidinedione	
  drugs,	
  type	
  2	
  DM)	
  
What	
  is	
  the	
  source	
  of	
  the	
  glycerol	
  3-­‐
phosphate	
  needed	
  for	
  fa'y	
  acid	
  
reesterifica=on?	
  
•  During	
  lipolysis	
  (s<mulated	
  by	
  glucagon	
  or	
  
epinephrine),	
  glycolysis	
  is	
  inhibited	
  
–  So	
  DHAP	
  is	
  not	
  readily	
  available	
  to	
  make	
  glycerol	
  3-­‐
phosphate	
  
•  And	
  adipose	
  cells	
  don’t	
  have	
  glycerol	
  kinase	
  to	
  
make	
  glycerol	
  3-­‐phosphate	
  on-­‐site	
  
•  So	
  cells	
  make	
  DHAP	
  via	
  glyceroneogenesis	
  
Glyceroneogenesis	
  makes	
  DHAP	
  for	
  
glycerol	
  3-­‐phosphate	
  genera=on	
  
•  Glyceroneogenesis	
  contains	
  some	
  of	
  the	
  
same	
  steps	
  of	
  gluconeogenesis	
  
–  Converts	
  pyruvate	
  à	
  DHAP	
  
–  Basically,	
  a	
  shortened	
  version	
  of	
  
gluconeogenesis	
  in	
  the	
  liver	
  and	
  adipose	
  <ssue	
  
•  Explains	
  why	
  adipose	
  cells	
  express	
  pyruvate	
  
carboxylase	
  and	
  PEPCK	
  even	
  though	
  fat	
  cells	
  don’t	
  
make	
  glucose	
  
Glyceroneogenesis	
  
Regula=on	
  of	
  PEPCK	
  expression	
  is	
  
=ssue-­‐dependent	
  
•  Cor<sol	
  and	
  glucagon	
  both	
  increase	
  PEPCK	
  
expression	
  in	
  liver.	
  
–  Results	
  in	
  more	
  TAG	
  synthesis,	
  so	
  more	
  released	
  to	
  the	
  
blood	
  
•  Cor<sol	
  and	
  other	
  glucocor<coids	
  decrease	
  PEPCK	
  
expression	
  in	
  adipose	
  <ssue	
  
–  ↓	
  glyceroneogenesis	
  in	
  adipose	
  means	
  less	
  recycling;	
  
more	
  FFA	
  are	
  released	
  into	
  the	
  blood	
  
–  Most	
  glycerol	
  freed	
  from	
  TAG	
  in	
  adipose	
  is	
  sent	
  to	
  liver	
  
and	
  converted	
  to	
  glucose	
  
	
  
Regula=on	
  of	
  Glyceroneogenesis	
  via	
  Glucocor=coid	
  
Hormones	
  
Cor=sol	
  and	
  glucagon	
  can	
  elevate	
  blood	
  
sugar	
  
1)  ↑	
  PEPCK	
  expression	
  in	
  liver	
  à↑	
  gluconeogenesis	
  
(so	
  ↑	
  [glucose])	
  
2)  ↓	
  PEPCK	
  expression	
  in	
  adipose	
  <ssue	
  à	
  glycerol	
  
freed,	
  sent	
  to	
  liver,	
  converted	
  to	
  glucose	
  
3)  Plus,	
  the	
  FFA	
  associated	
  with	
  increased	
  flux	
  
through	
  TAG	
  cycle	
  à	
  interfere	
  with	
  glucose	
  
uptake	
  in	
  muscle,	
  keep	
  [glucose]blood	
  high	
  à	
  may	
  
lead	
  to	
  insulin	
  resistance	
  (type	
  2	
  DM)	
  
Thiazolidinedione	
  drugs	
  target	
  insulin	
  
resistance	
  by	
  increasing	
  glyceroneogenesis	
  
•  Elevated	
  FFA	
  levels	
  seem	
  to	
  promote	
  insulin	
  
resistance	
  
•  Thiazolidinediones	
  upregulate	
  PEPCK	
  in	
  
adipose	
  <ssue	
  via	
  PPARγ,	
  lead	
  to	
  ↑	
  
glyceroneogenesis,↑	
  resynthesis	
  of	
  TAG	
  in	
  
adipose	
  <ssue	
  and	
  ↓	
  release	
  of	
  FFA	
  
•  Thus	
  the	
  drugs	
  promote	
  sensi<vity	
  to	
  insulin	
  
Thiazolidinediones/Glitazones	
  
Have	
  this	
  group	
  	
  
in	
  common	
  
Avandia	
  (Rosiglitazone)	
  –	
  removed	
  from	
  
market	
  due	
  to	
  associa<on	
  with	
  heart	
  a=ack	
  
Pioglitazone	
  (Actos)	
  
Regula=on	
  of	
  Glyceroneogenesis	
  via	
  
Thiazolidinediones	
  
Biosynthesis	
  of	
  Membrane	
  
Phospholipds	
  
•  Begin	
  with	
  phospha<dic	
  
acid	
  or	
  diacylglycerol	
  
•  A=ach	
  head	
  group	
  to	
  C-­‐3	
  
OH	
  group	
  
–  C-­‐3	
  has	
  OH,	
  head	
  group	
  has	
  
OH	
  
–  New	
  phospho-­‐head	
  group	
  
created	
  when	
  phosphoric	
  
acid	
  condenses	
  with	
  these	
  
two	
  alcohols	
  
–  Eliminates	
  two	
  H2O	
  
Further	
  Details	
  on	
  A'aching	
  the	
  
Head	
  Group	
  	
  
•  Either	
  one	
  of	
  the	
  
alcohols	
  is	
  ac<vated	
  
by	
  a=aching	
  to	
  CDP	
  
(cy<dine	
  diphosphate)	
  
	
  
•  The	
  free	
  (not	
  bound	
  to	
  
CDP)	
  alcohol	
  then	
  
does	
  nucleophilic	
  
a=ack	
  on	
  the	
  CDP-­‐
ac<vated	
  phosphate	
  
•  Releases	
  CMP	
  and	
  a	
  
glycerophospholipid	
   E. coli: CDP-DAG
Eukaryotes: both
Synthesis	
  of	
  Phospha=dylethanolamine	
  and	
  
Phospha=dylcholine	
  in	
  Yeast	
  
•  Phospha<dylserine	
  is	
  decarboxylated	
  to	
  
phospha7dylethanolamine	
  
–  phospha<dylserine	
  decarboxylase	
  
•  Phospha<dylethanolamine	
  acted	
  on	
  by	
  
S-­‐adenosylmethionine	
  (methyl	
  group	
  
donor),	
  adds	
  three	
  methyl	
  groups	
  to	
  
amino	
  group	
  à	
  phopsha7dylcholine	
  
(lecithin)	
  
–  Catalyzed	
  by	
  methyltransferase	
  
Phospholipid	
  Synthesis	
  in	
  Mammals	
  
•  Phospha7dylserine	
  isn’t	
  synthesized	
  from	
  CDP-­‐
diacylglycerol	
  as	
  it	
  is

in	
  yeast	
  and	
  

bacteria	
  
•  Made	
  “backwards” 

from	
  PE	
  or	
  PC	
  via	
  	
  
head	
  group	
  exchange	
  	
  
rxns	
  
–  Catalyzed	
  by	
  specific	
  synthases	
  
–  Pathway	
  “salvages”	
  the	
  choline	
  
Sphingolipids	
  are	
  made	
  in	
  four	
  steps	
  
1)  Synthesis	
  of	
  sphinganine	
  from	
  palmitoyl-­‐CoA	
  
and	
  serine	
  
2)  A=achment	
  of	
  fa'y	
  acid	
  via	
  amide	
  linkage	
  
3)  Desatura=on	
  of	
  N-­‐acylsphinganine	
  
(dihydroceramide)	
  
• Yields	
  N-­‐acylsphingosine	
  (ceramide)	
  
4)	
  	
  A=achment	
  of	
  head	
  group	
  
• Can	
  yield	
  a	
  cerebroside	
  or	
  ganglioside	
  
	
  
ER
Golgi
Phospholipids	
  must	
  be	
  transported	
  
from	
  the	
  ER	
  to	
  membranes	
  
•  Phospholipids	
  are:	
  	
  
–  synthesized	
  in	
  the	
  smooth	
  ER	
  
–  transported	
  to	
  Golgi	
  complex	
  for	
  addi<onal	
  synthesis	
  
•  Must	
  be	
  inserted	
  into	
  specific	
  membranes	
  in	
  specific	
  
propor7ons	
  but	
  can’t	
  diffuse	
  because	
  they	
  are	
  
nonpolar	
  
•  So	
  transported	
  in	
  membrane	
  vesicles	
  that	
  fuse	
  with	
  
target	
  membrane	
  
•  Details	
  of	
  the	
  process	
  are	
  not	
  well-­‐understood	
  
Four	
  Steps	
  of	
  Cholesterol	
  Synthesis	
  
1)  Three	
  acetates	
  condense	
  to	
  
form	
  5-­‐C	
  mevalonate	
  
2)  Mevalonate	
  converts	
  to	
  
phosphorylated	
  5-­‐C	
  isoprene	
  
3)  Six	
  isoprenes	
  polymerize	
  to	
  
form	
  the	
  30-­‐C	
  linear	
  squalene	
  
4)  Squalene	
  cyclizes	
  to	
  form	
  the	
  
four	
  rings	
  that	
  are	
  modified	
  to	
  
produce	
  cholesterol	
  	
  	
  
Step	
  1:	
  	
  Forma=on	
  of	
  
Mevalonate	
  from	
  Acetyl-­‐CoA	
  
•  2	
  Acetyl-­‐CoAs	
  àAcetoacetyl-­‐CoA	
  
–  Catalyzed	
  by	
  acetyl-­‐CoA	
  acyl	
  transferase	
  
(thiolase)	
  
•  Acetyl-­‐CoA	
  +	
  Acetoacetyl-­‐CoA	
  à	
  β-­‐
hydroxyl-­‐β-­‐methylglutaryl-­‐CoA	
  
(HMG-­‐CoA)	
  
–  Catalyzed	
  by	
  HMG-­‐CoA	
  synthase	
  
•  NOT	
  the	
  mitochondrial	
  HMG-­‐CoA	
  
synthase	
  used	
  in	
  ketone	
  body	
  forma<on	
  
•  HMG-­‐CoA	
  +	
  2	
  NADPH	
  àmevalonate	
  
–  Catalyzed	
  by	
  HMG-­‐CoA	
  reductase	
  
–  Rate-­‐limi7ng	
  step	
  and	
  point	
  of	
  
regula7on!	
  
–  HMG-­‐CoA	
  reductase	
  is	
  a	
  target	
  for	
  some	
  
cardiovascular	
  drugs
Sta=n	
  drugs	
  inhibit	
  HMG-­‐CoA	
  
reductase	
  to	
  lower	
  cholesterol	
  
•  Sta<ns	
  resemble	
  HMG-­‐CoA	
  and	
  mevalonate	
  à	
  
compe<<ve	
  inhibitors	
  of	
  HMG-­‐CoA	
  reductase	
  
•  First	
  sta<n,	
  lovasta<n,	
  was	
  found	
  in	
  fungi	
  
•  Lowers	
  serum	
  cholesterol	
  by	
  ~20	
  –	
  40%	
  
•  Also	
  reported	
  to	
  improve	
  	
  
circula<on,	
  stabilize	
  
plaques	
  by	
  removing	
  chol	
  	
  
from	
  them,	
  reduce	
  vascular	
  
inflamma<on	
  
•  Most	
  circulaEng	
  chol	
  comes	
  	
  
from	
  internal	
  manufacture	
  rather	
  than	
  the	
  diet	
  
Step	
  2:	
  	
  Conversion	
  of	
  Mevalonate	
  
to	
  Two	
  Ac=vated	
  Isoprenes	
  
•  3	
  PO4
3−	
  transferred	
  stepwise	
  from	
  
ATP	
  to	
  mevalonate	
  
•  Decarboxyla<on	
  and	
  hydrolysis	
  
creates	
  a	
  diphosphorylated	
  5-­‐C	
  
product	
  (isoprene)	
  with	
  a	
  double	
  
bond	
  
•  Isomeriza<on	
  to	
  a	
  second	
  
isoprene	
  
•  The	
  two	
  “ac<vated”	
  isoprene	
  
units	
  are	
  Δ3-­‐isopentyl	
  
pyrophosphate	
  and	
  dimethylallyl	
  
pyrophosphate	
  
Step	
  3:	
  	
  Six	
  Ac=vated	
  Isoprene	
  Units	
  
Condense	
  to	
  Form	
  Squalene	
  
•  The	
  two	
  isoprenes	
  join	
  head	
  
-­‐to-­‐tail,	
  displacing	
  one	
  set	
  of	
  
diphosphates	
  
à	
  forms10-­‐C	
  geranyl	
  
pyrophopshate	
  
•  Geranyl	
  pyrophosphate	
  joins	
  to	
  
another	
  isopentenyl	
  
pyrophosphate	
  
à	
  forms	
  15-­‐C	
  farnesyl	
  
pyrophosphate	
  
•  Two	
  farnesyl	
  pyrophosphates	
  
join	
  head-­‐to-­‐head	
  to	
  form	
  
phosphate-­‐free	
  squalene	
  
Step	
  4:	
  	
  Conversion	
  of	
  Squalene	
  to	
  
Four-­‐Ring	
  Steroid	
  Nucleus	
  
•  Squalene	
  monooxygenase	
  adds	
  one	
  oxygen	
  to	
  
the	
  end	
  of	
  the	
  squalene	
  chain	
  
à	
  forms	
  squalene	
  2,3-­‐epoxide	
  
•  Here	
  pathways	
  diverse	
  in	
  animal	
  cells	
  vs.	
  plant	
  
cells	
  
•  The	
  cycliza<on	
  product	
  in	
  animals	
  is	
  lanosterol,	
  
which	
  converts	
  to	
  cholesterol	
  
•  In	
  plants,	
  the	
  epoxide	
  cyclizes	
  to	
  other	
  sterols	
  
such	
  as	
  s<gmasterol	
  
Conversion	
  of	
  
Squalene	
  to	
  
Cholesterol	
  
Fates	
  of	
  Cholesterol	
  Aner	
  Synthesis	
  
•  In	
  vertebrates,	
  most	
  cholesterol	
  
synthesized	
  in	
  the	
  liver,	
  then	
  exported:	
  
-  As	
  bile	
  acids,	
  biliary	
  cholesterol	
  or	
  cholesteryl	
  
esters	
  
•  Other	
  <ssues	
  convert	
  cholesterol	
  into	
  
steroid	
  hormones,	
  etc.	
  
Bile	
  Acids	
  Assist	
  in	
  Emulsifica=on	
  of	
  Fats	
  
•  Bile	
  is	
  stored	
  in	
  the	
  gall	
  bladder,	
  secreted	
  
into	
  small	
  intes<ne	
  aoer	
  fa=y	
  meal	
  
•  Bile	
  acids	
  such	
  as	
  taurocholic	
  acid	
  emulsify	
  
fats	
  
–  Surround	
  droplets	
  of	
  fat,	
  	
  
increase	
  surface	
  area	
  for	
  	
  
a=ack	
  by	
  lipases	
  
Cholsteryl	
  esters	
  are	
  more	
  nonpolar	
  
than	
  cholesterol	
  
•  Contain	
  a	
  fa=y	
  acid	
  esterified	
  to	
  the	
  oxygen	
  
–  Comes	
  from	
  a	
  fa=y	
  acyl-­‐CoA	
  
–  Makes	
  the	
  cholesterol	
  more	
  hydrophobic,	
  
unable	
  to	
  enter	
  membranes	
  
•  Transported	
  in	
  lipoproteins	
  to	
  other	
  <ssues	
  
or	
  stored	
  in	
  liver	
  	
  
Cholesterol	
  and	
  other	
  lipids	
  are	
  
carried	
  on	
  lipoprotein	
  par=cles	
  
•  Lipids	
  are	
  carried	
  
through	
  plasma	
  
on	
  spherical	
  	
  
par<cles	
  	
  
–  Surface	
  is	
  made	
  	
  
of	
  apolipoprotein	
  	
  
and	
  phospholipid	
  	
  
monolayer	
  
–  Interior	
  contains	
  cholesterol,	
  TAGs,	
  cholesteryl	
  esters	
  	
  
Four	
  Major	
  Classes	
  of	
  Lipoprotein	
  
Par=cles	
  
•  Named	
  based	
  on	
  posi<on	
  of	
  sedimenta<on	
  (density)	
  
in	
  centrifuge	
  
•  Large	
  enough	
  to	
  see	
  in	
  electron	
  microscope	
  
•  Includes:	
  
–  Chylomicrons	
  (largest	
  and	
  least	
  dense)	
  
–  Very	
  low-­‐density	
  lipoproteins	
  (VLDL)	
  
–  Low-­‐density	
  lipoproteins	
  (LDL)	
  
–  High-­‐density	
  lipoproteins	
  (HDL)	
  –	
  smallest,	
  most	
  dense	
  
Electron	
  Microscope	
  Pictures	
  of	
  Lipoproteins	
  
Apolipoproteins	
  in	
  Lipoproteins	
  
•  “Apo”	
  for	
  “without”…	
  	
  
–  So	
  “apolipoprotein”	
  refers	
  to	
  the	
  protein	
  part	
  
of	
  a	
  lipoprotein	
  par<cle	
  
•  Provide	
  sites	
  for	
  the	
  par<cle	
  to	
  bind	
  to	
  cell	
  
surface	
  receptors,	
  ac<vate	
  enzymes,	
  etc.	
  
•  At	
  least	
  ten	
  have	
  been	
  characterized	
  in	
  
humans	
  
Chylomicrons	
  carry	
  fa'y	
  acids	
  to	
  
=ssues	
  
•  Have	
  more	
  TAG	
  and	
  less	
  protein	
  à	
  hence,	
  
least	
  dense.	
  
•  Have	
  ApoB-­‐48,	
  ApoE,	
  and	
  ApoC-­‐II	
  
•  ApoC-­‐II	
  ac<vates	
  lipoprotein	
  lipase	
  to	
  allow	
  
FFA	
  release	
  for	
  fuel	
  in	
  adipose	
  <ssue,	
  heart,	
  
and	
  skeletal	
  muscle	
  
Chylomicron	
  remnants	
  deposit	
  
their	
  cholesterol	
  in	
  the	
  liver	
  
•  When	
  chylomicrons	
  are	
  depleted	
  of	
  their	
  
TAG,	
  “remnants”	
  go	
  to	
  liver	
  
•  ApoE	
  receptors	
  in	
  liver	
  bind	
  the	
  remnants,	
  
take	
  them	
  up	
  by	
  endocytosis	
  
•  Remnants	
  release	
  their	
  cholesterol	
  in	
  the	
  
liver	
  
VLDLs	
  transport	
  endogenous	
  lipids	
  	
  
•  Cholesteryl	
  esters	
  and	
  TAGs	
  from	
  excess	
  FA	
  
and	
  cholesterol	
  are	
  packed	
  into	
  very	
  low-­‐
density	
  lipoproteins	
  (VLDL)	
  
•  Excess	
  carbohydrate	
  in	
  the	
  diet	
  can	
  also	
  be	
  
made	
  into	
  TAG	
  in	
  the	
  liver	
  and	
  packed	
  into	
  
VLDL	
  
•  Contain	
  apoB-­‐100,	
  apoC-­‐I,	
  apoC-­‐II,	
  apoC-­‐III,	
  
and	
  apoE	
  
VLDLs	
  take	
  TAGs	
  to	
  adipose	
  =ssue	
  
and	
  muscle	
  
•  Again,	
  ApoC-­‐II	
  ac<vates	
  lipoprotein	
  lipase	
  
to	
  release	
  free	
  fa=y	
  acids	
  
•  Adipocytes	
  take	
  up	
  the	
  FFA,	
  reconvert	
  
them	
  to	
  TAGs,	
  and	
  store	
  them	
  in	
  lipid	
  
droplets	
  
•  Muscle	
  uses	
  the	
  TAG	
  for	
  energy	
  
VLDL	
  remnants	
  become	
  LDL	
  
•  Removal	
  of	
  TAG	
  from	
  VLDL	
  produces	
  LDL	
  
•  Because	
  TAG	
  removed,	
  LDL	
  is	
  enriched	
  in	
  
cholesterol/chloesteryl	
  esters	
  	
  
•  ApoB-­‐100	
  is	
  the	
  major	
  apolipoprotein	
  
LDLs	
  carry	
  cholesterol	
  from	
  liver	
  to	
  
muscle	
  and	
  adipose	
  =ssue	
  
•  Muscle	
  and	
  adipose	
  <ssue	
  have	
  LDL	
  
receptors,	
  recognize	
  apoB-­‐100	
  
	
  à	
  Enable	
  myocytes	
  and	
  adipocytes	
  to	
  take	
  
up	
  cholesterol	
  via	
  receptor-­‐mediated	
  
endocytosis	
  
Cholesterol	
  Uptake	
  by	
  Receptor-­‐
Mediated	
  Endocytosis	
  
Familial	
  hypercholesterolemia	
  is	
  associated	
  
with	
  LDL	
  receptor	
  muta=ons	
  
•  Muta<ons	
  in	
  LDL	
  receptor	
  prevent	
  normal	
  
uptake	
  of	
  LDL	
  by	
  liver	
  and	
  other	
  <ssues	
  
•  LDL	
  accumulates	
  in	
  blood	
  
•  Heterozygous	
  individuals	
  have	
  risk	
  of	
  heart	
  
a=ack	
  greater	
  than	
  normal	
  
•  Homozygous	
  individuals	
  have	
  much	
  
increased	
  risk	
  of	
  heart	
  a=ack	
  
HDL	
  carries	
  out	
  reverse	
  cholesterol	
  
transport	
  
•  HDLs	
  contain	
  a	
  lot	
  of	
  protein	
  
–  Including	
  ApoA-­‐I	
  and	
  	
  
lecithin-­‐cholesterol	
  acyl	
  	
  
transferase	
  (LCAT)	
  
•  Catalyzes	
  the	
  forma<on	
  of	
  	
  
cholesteryl	
  esters	
  from	
  	
  
lecithin	
  and	
  cholesterol	
  
•  Enzyme	
  converts	
  chol	
  of	
  	
  
chylomicron	
  and	
  	
  
VLDL	
  remnants	
  to	
  	
  
cholesteryl	
  esters	
  
•  HDL	
  picks	
  up	
  cholesterol	
  from	
  cells	
  and	
  returns	
  
them	
  to	
  the	
  liver	
  
Five	
  Modes	
  of	
  Regula=on	
  of	
  Cholesterol	
  
Synthesis	
  and	
  Transport	
  
1)  Covalent	
  modifica<on	
  of	
  HMG-­‐CoA	
  reductase	
  
2)  Transcrip<onal	
  regula<on	
  of	
  HMG-­‐CoA	
  gene	
  
3)  Proteoly<c	
  degrada<on	
  of	
  HMG-­‐CoA	
  reductase	
  
4)  Ac<va<on	
  of	
  ACAT,	
  which	
  increases	
  esterifica<on	
  
for	
  storage	
  
5)  Transcrip<onal	
  regula<on	
  of	
  the	
  LDL	
  receptor	
  
Regula=on	
  of	
  
Cholesterol	
  
Metabolism	
  
HMG-­‐CoA	
  reductase	
  is	
  most	
  ac=ve	
  when	
  
dephosphorylated	
  
1)  AMP-­‐dependent	
  protein	
  kinase	
  
-­‐	
  when	
  AMP	
  rises,	
  kinase	
  phosphorylates	
  the	
  
enzyme	
  à	
  ac<vity	
  ↓,	
  cholesterol	
  synthesis	
  ↓	
  
2)  	
  Glucagon,	
  epinephrine	
  
-­‐	
  cascades	
  lead	
  to	
  phosphoryla<on,	
  ↓	
  ac<vity	
  
3)  Insulin	
  
-­‐	
  cascades	
  lead	
  to	
  dephosphoryla<on,↑	
  ac<vity	
  
Covalent	
  	
  modifica=on	
  provides	
  short-­‐term	
  regula=on.	
  
LOW
Energy
Level
Longer-­‐term	
  Regula=on	
  of	
  HMG-­‐CoA	
  
Reductase	
  through	
  Transcrip=onal	
  Control	
  
•  Sterol	
  regulatory	
  element-­‐binding	
  proteins	
  
(SREBPs)	
  
–  When	
  sterol	
  levels	
  are	
  high,	
  SREBP	
  is	
  in	
  ER	
  
membrane	
  with	
  other	
  proteins	
  	
  
–  When	
  sterol	
  levels	
  decline,	
  complex	
  is	
  cleaved,	
  
moves	
  to	
  the	
  nucleus	
  
–  SREBP	
  ac<vates	
  transcrip<on	
  of	
  HMG-­‐CoA	
  
reductase	
  and	
  LDL	
  receptor	
  as	
  well	
  as	
  other	
  
genes	
  à	
  more	
  cholesterol	
  produced	
  and	
  
imported	
  
Regula=on	
  of	
  Cholesterol	
  Synthesis	
  by	
  SREBP	
  
Regula=on	
  of	
  HMG-­‐CoA	
  Reductase	
  by	
  
Proteoly=c	
  Degrada=on	
  
•  Insig	
  (insulin-­‐induced	
  gene	
  protein)	
  senses	
  
cholesterol	
  levels.	
  
–  Binds	
  to	
  HMG-­‐Co-­‐A	
  reductase,	
  
–  Triggers	
  ubiquina<on	
  of	
  HMG-­‐CoA	
  reductase	
  
–  Targets	
  the	
  enzyme	
  for	
  degrada<on	
  by	
  
proteasomes	
  
–  Also	
  prevents	
  the	
  synthesis	
  of	
  HMG-­‐CoA	
  
reductase	
  (complexing	
  and	
  inhibi<ng	
  SREBP)	
  
Cardiovascular	
  disease	
  (CVD)	
  is	
  
mul=-­‐factorial	
  
•  Very	
  high	
  LDL-­‐cholesterol	
  levels	
  tend	
  to	
  
correlate	
  with	
  atherosclerosis	
  
–  Although	
  many	
  heart	
  a=ack	
  vic<ms	
  have	
  
normal	
  cholesterol,	
  and	
  many	
  people	
  with	
  high	
  
cholesterol	
  do	
  not	
  have	
  heart	
  a=acks	
  
•  Low	
  HDL-­‐cholesterol	
  levels	
  are	
  nega<vely	
  
associated	
  with	
  heart	
  disease	
  
How	
  Plaques	
  Form	
  
•  LDL	
  with	
  partly	
  oxidized	
  fa=y	
  acyl	
  groups	
  
s<cks	
  to	
  the	
  lining	
  of	
  arteries	
  
•  A=racts	
  macrophage	
  cells	
  of	
  the	
  immune	
  
system	
  
•  These	
  cells	
  don’t	
  regulate	
  their	
  uptake	
  of	
  
sterols,	
  so	
  they	
  accumulate	
  cholesterol	
  and	
  
cholesteryl	
  esters	
  
•  The	
  macrophages	
  become	
  foam	
  cells	
  
(named	
  for	
  appearance)	
  
How	
  Plaques	
  Form	
  (cont.)	
  
•  Foam	
  cells	
  undergo	
  apoptosis	
  
•  Remnants	
  accumulate,	
  along	
  with	
  scar	
  
<ssue,	
  etc.	
  
•  Can	
  occlude	
  a	
  blood	
  vessel	
  or	
  break	
  off	
  and	
  
travel	
  to	
  another	
  artery	
  
•  Occlusion	
  of	
  blood	
  vessels	
  in	
  the	
  heart	
  
cause	
  heart	
  a=ack;	
  occlusion	
  in	
  the	
  brain	
  
causes	
  stroke	
  
Familial	
  Hypercholesterolemia	
  
•  Due	
  to	
  gene<c	
  muta<on	
  in	
  LDL	
  receptor	
  
•  Impairs	
  receptor-­‐mediated	
  uptake	
  of	
  cholesterol	
  
from	
  LDL	
  	
  	
  
•  Cholesterol	
  accumulates	
  in	
  the	
  blood	
  and	
  in	
  foam	
  
cells	
  
•  Regula<on	
  mechanisms	
  based	
  on	
  cholesterol	
  
sensing	
  inside	
  the	
  cell	
  don’t	
  work	
  
•  Homozygous	
  individuals	
  can	
  experience	
  severe	
  
CVD	
  as	
  youths	
  
Reverse	
  cholesterol	
  transport	
  by	
  HDL	
  explains	
  
why	
  HDL	
  is	
  cardioprotec=ve	
  
•  HDL	
  picks	
  up	
  cholesterol	
  from	
  non-­‐liver	
  
<ssues,	
  including	
  foam	
  cells	
  at	
  growing	
  
plaques	
  
•  ABC	
  (ATP-­‐Binding	
  Casse=e)	
  transporters	
  
bring	
  cholesterol	
  from	
  inside	
  the	
  cell	
  to	
  the	
  
plasma	
  membrane	
  
•  HDL	
  carries	
  cholesterol	
  back	
  to	
  liver	
  
Reverse	
  Cholesterol	
  Transport	
  
Ques=on	
  7	
  (Take	
  home	
  exam)	
  	
  
Due:	
  NEXT	
  WEEK	
  (js=ban@birzeit.edu)	
  
•  Please	
  solve	
  ques=ons:	
  
1.  6	
  (uncouplers)	
  
2.  17	
  (ATP	
  turnover)	
  
3.  22	
  (alanine)	
  
4.  24	
  (diabetes)	
  
For	
  wri[en	
  answers,	
  I	
  prefer	
  to	
  have	
  them	
  typed	
  in	
  Word.	
  I	
  
can	
  accept	
  the	
  assignment	
  in	
  one	
  file	
  sent	
  to	
  my	
  email.	
  For	
  
answers	
  that	
  require	
  solving	
  mathemaEcally,	
  you	
  can	
  either	
  
type	
  them	
  or	
  write	
  them	
  down	
  and	
  scan	
  them.	
  

More Related Content

What's hot

Gluconeogenesis and glycogenolysis
Gluconeogenesis and glycogenolysisGluconeogenesis and glycogenolysis
Gluconeogenesis and glycogenolysisHasnahana Chetia
 
Biosynthesis of Phospholipids
Biosynthesis of PhospholipidsBiosynthesis of Phospholipids
Biosynthesis of PhospholipidsRuchiRawal1
 
Chapter 14 - Glucose utilization and biosynthesis - Biochemistry
Chapter 14 - Glucose utilization and biosynthesis - BiochemistryChapter 14 - Glucose utilization and biosynthesis - Biochemistry
Chapter 14 - Glucose utilization and biosynthesis - BiochemistryAreej Abu Hanieh
 
PENTOSE PHOSPHATE PATHWAY.pptx
PENTOSE PHOSPHATE PATHWAY.pptxPENTOSE PHOSPHATE PATHWAY.pptx
PENTOSE PHOSPHATE PATHWAY.pptxSuganyaPaulraj
 
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCAPyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCAChetan Ganteppanavar
 
Electron Transport Chain lecture.ppt
Electron Transport Chain lecture.pptElectron Transport Chain lecture.ppt
Electron Transport Chain lecture.pptNatalya80
 
Triglyceride metabolism
Triglyceride metabolismTriglyceride metabolism
Triglyceride metabolismshivaakumar
 
Metabolism of phospholipids
Metabolism of phospholipidsMetabolism of phospholipids
Metabolism of phospholipidsRamesh Gupta
 
Biosynthesis of phospholipids
Biosynthesis of phospholipidsBiosynthesis of phospholipids
Biosynthesis of phospholipidsNusrat Sheikh
 
Metabolism of glycogen
Metabolism of glycogenMetabolism of glycogen
Metabolism of glycogenAshok Katta
 
Glycogen metabolism
Glycogen metabolismGlycogen metabolism
Glycogen metabolismRamesh Gupta
 
Glycogenesis ---Sir Khalid (Biochem)
Glycogenesis ---Sir Khalid (Biochem)Glycogenesis ---Sir Khalid (Biochem)
Glycogenesis ---Sir Khalid (Biochem)Soft-Learners
 
Learning Keys , Lehninger Chapter # 10 LIPIDS
Learning Keys , Lehninger Chapter # 10 LIPIDSLearning Keys , Lehninger Chapter # 10 LIPIDS
Learning Keys , Lehninger Chapter # 10 LIPIDSTauqeer Ahmad
 

What's hot (20)

Gluconeogenesis and glycogenolysis
Gluconeogenesis and glycogenolysisGluconeogenesis and glycogenolysis
Gluconeogenesis and glycogenolysis
 
Glycogenesis
GlycogenesisGlycogenesis
Glycogenesis
 
Fatty acid synthesis 2018
Fatty acid synthesis 2018Fatty acid synthesis 2018
Fatty acid synthesis 2018
 
Biosynthesis of Phospholipids
Biosynthesis of PhospholipidsBiosynthesis of Phospholipids
Biosynthesis of Phospholipids
 
Chapter 14 - Glucose utilization and biosynthesis - Biochemistry
Chapter 14 - Glucose utilization and biosynthesis - BiochemistryChapter 14 - Glucose utilization and biosynthesis - Biochemistry
Chapter 14 - Glucose utilization and biosynthesis - Biochemistry
 
PENTOSE PHOSPHATE PATHWAY.pptx
PENTOSE PHOSPHATE PATHWAY.pptxPENTOSE PHOSPHATE PATHWAY.pptx
PENTOSE PHOSPHATE PATHWAY.pptx
 
6 shuttles
6 shuttles6 shuttles
6 shuttles
 
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCAPyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle - PDH and TCA
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Electron Transport Chain lecture.ppt
Electron Transport Chain lecture.pptElectron Transport Chain lecture.ppt
Electron Transport Chain lecture.ppt
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Triglyceride metabolism
Triglyceride metabolismTriglyceride metabolism
Triglyceride metabolism
 
Metabolism of phospholipids
Metabolism of phospholipidsMetabolism of phospholipids
Metabolism of phospholipids
 
Biosynthesis of phospholipids
Biosynthesis of phospholipidsBiosynthesis of phospholipids
Biosynthesis of phospholipids
 
Metabolism of glycogen
Metabolism of glycogenMetabolism of glycogen
Metabolism of glycogen
 
Fatty acid synthesis
Fatty acid synthesisFatty acid synthesis
Fatty acid synthesis
 
Fatty acid oxidation
Fatty acid oxidationFatty acid oxidation
Fatty acid oxidation
 
Glycogen metabolism
Glycogen metabolismGlycogen metabolism
Glycogen metabolism
 
Glycogenesis ---Sir Khalid (Biochem)
Glycogenesis ---Sir Khalid (Biochem)Glycogenesis ---Sir Khalid (Biochem)
Glycogenesis ---Sir Khalid (Biochem)
 
Learning Keys , Lehninger Chapter # 10 LIPIDS
Learning Keys , Lehninger Chapter # 10 LIPIDSLearning Keys , Lehninger Chapter # 10 LIPIDS
Learning Keys , Lehninger Chapter # 10 LIPIDS
 

Similar to Fatty Acid Catabolism: A Major Energy Source

Similar to Fatty Acid Catabolism: A Major Energy Source (20)

Carbohydrate energetics
Carbohydrate energeticsCarbohydrate energetics
Carbohydrate energetics
 
membrane models and biosynthesis
membrane models and biosynthesismembrane models and biosynthesis
membrane models and biosynthesis
 
Chem 45 Biochemistry: Stoker chapter 25 Lipid Metabolism
Chem 45 Biochemistry: Stoker chapter 25 Lipid MetabolismChem 45 Biochemistry: Stoker chapter 25 Lipid Metabolism
Chem 45 Biochemistry: Stoker chapter 25 Lipid Metabolism
 
Beta oxidation & protein catabolism
Beta oxidation & protein catabolismBeta oxidation & protein catabolism
Beta oxidation & protein catabolism
 
Lipid metabolism
Lipid metabolismLipid metabolism
Lipid metabolism
 
Lipid metabolism
Lipid metabolismLipid metabolism
Lipid metabolism
 
37. FATTY ACID OXIDATION.pptx
37. FATTY ACID OXIDATION.pptx37. FATTY ACID OXIDATION.pptx
37. FATTY ACID OXIDATION.pptx
 
Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cycle
 
Beta oxidation & protein catabolism
Beta oxidation & protein catabolismBeta oxidation & protein catabolism
Beta oxidation & protein catabolism
 
Tca cycle
Tca cycleTca cycle
Tca cycle
 
Biosynthesis
BiosynthesisBiosynthesis
Biosynthesis
 
TCA.pptx
TCA.pptxTCA.pptx
TCA.pptx
 
The tricarboxylic acid cycle
The tricarboxylic acid cycleThe tricarboxylic acid cycle
The tricarboxylic acid cycle
 
sir niamat ullah metabolism
sir niamat ullah metabolismsir niamat ullah metabolism
sir niamat ullah metabolism
 
TCA Cycle
TCA CycleTCA Cycle
TCA Cycle
 
Beta oxidation of fatty acids
Beta oxidation of fatty acids Beta oxidation of fatty acids
Beta oxidation of fatty acids
 
BIOC 202 Metabolism of lipids 2-1.ppt
BIOC 202 Metabolism of lipids 2-1.pptBIOC 202 Metabolism of lipids 2-1.ppt
BIOC 202 Metabolism of lipids 2-1.ppt
 
fatty-acid-metabolism
 fatty-acid-metabolism fatty-acid-metabolism
fatty-acid-metabolism
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
Lipid Metabolism
Lipid MetabolismLipid Metabolism
Lipid Metabolism
 

More from Areej Abu Hanieh

Announcement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAnnouncement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAreej Abu Hanieh
 
Hospital acquired pneumonia
Hospital acquired pneumoniaHospital acquired pneumonia
Hospital acquired pneumoniaAreej Abu Hanieh
 
catheter related blood stream infection
catheter related blood stream infection catheter related blood stream infection
catheter related blood stream infection Areej Abu Hanieh
 
Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Areej Abu Hanieh
 
Carbapenems - Pharmacology
Carbapenems - PharmacologyCarbapenems - Pharmacology
Carbapenems - PharmacologyAreej Abu Hanieh
 
Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Areej Abu Hanieh
 
Hypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesHypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesAreej Abu Hanieh
 
Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency  Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency Areej Abu Hanieh
 
Acute decompensated heart failure
Acute decompensated heart failureAcute decompensated heart failure
Acute decompensated heart failureAreej Abu Hanieh
 
Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Areej Abu Hanieh
 
Deep Vein Thrombosis - DVT
Deep Vein Thrombosis  - DVTDeep Vein Thrombosis  - DVT
Deep Vein Thrombosis - DVTAreej Abu Hanieh
 

More from Areej Abu Hanieh (20)

Announcement about my previous presentations - Thank you
Announcement about my previous presentations - Thank youAnnouncement about my previous presentations - Thank you
Announcement about my previous presentations - Thank you
 
Infection - penicillins
Infection - penicillinsInfection - penicillins
Infection - penicillins
 
Hospital acquired pneumonia
Hospital acquired pneumoniaHospital acquired pneumonia
Hospital acquired pneumonia
 
catheter related blood stream infection
catheter related blood stream infection catheter related blood stream infection
catheter related blood stream infection
 
Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy Community acquired pneumonia - Pharmacotherapy
Community acquired pneumonia - Pharmacotherapy
 
Cellulitis - Treatment
Cellulitis - TreatmentCellulitis - Treatment
Cellulitis - Treatment
 
Carbapenems - Pharmacology
Carbapenems - PharmacologyCarbapenems - Pharmacology
Carbapenems - Pharmacology
 
Cephalosporins - Pharmacology
Cephalosporins - Pharmacology Cephalosporins - Pharmacology
Cephalosporins - Pharmacology
 
Sickle cell anemia
Sickle cell anemia Sickle cell anemia
Sickle cell anemia
 
Poisoning - Treatment
Poisoning - TreatmentPoisoning - Treatment
Poisoning - Treatment
 
Hypertensive urgencies and emergencies
Hypertensive urgencies and emergenciesHypertensive urgencies and emergencies
Hypertensive urgencies and emergencies
 
Diabetic ketoacidosis DKA
Diabetic ketoacidosis DKADiabetic ketoacidosis DKA
Diabetic ketoacidosis DKA
 
Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency  Asthma and COPD exacerbation - Emergency
Asthma and COPD exacerbation - Emergency
 
Acute decompensated heart failure
Acute decompensated heart failureAcute decompensated heart failure
Acute decompensated heart failure
 
Acute Coronary syndrome
Acute Coronary syndrome Acute Coronary syndrome
Acute Coronary syndrome
 
Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus Glycemic Control - Diabetes Mellitus
Glycemic Control - Diabetes Mellitus
 
Stress ulcer prophylaxis
Stress ulcer prophylaxis Stress ulcer prophylaxis
Stress ulcer prophylaxis
 
Pain in the ICU
Pain in the ICUPain in the ICU
Pain in the ICU
 
Deep Vein Thrombosis - DVT
Deep Vein Thrombosis  - DVTDeep Vein Thrombosis  - DVT
Deep Vein Thrombosis - DVT
 
Anti - Coagulants agents
Anti - Coagulants agentsAnti - Coagulants agents
Anti - Coagulants agents
 

Recently uploaded

Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxnoordubaliya2003
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 

Recently uploaded (20)

Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 

Fatty Acid Catabolism: A Major Energy Source

  • 1. 17|  Fa'y  Acid  Catabolism   © 2013 W. H. Freeman and Company 21|  Lipid  Biosynthesis  
  • 2. Oxida=on  of  fa'y  acids  is  a  major  energy   source  in  many  organisms   •  About  one-­‐third  of  our  energy  needs  comes  from   dietary  triacylglycerols   •  About  80%  of  energy  needs  of  mammalian  heart  and   liver  are  met  by  oxida<on  of  fa=y  acids!!     •  Many  hiberna<ng  animals,  such  as  grizzly  bears,  rely   almost  exclusively  on  fats  as  their  source  of  energy   (and  water  during  their  long-­‐term  sleep)  
  • 3. Fats  provide  efficient  fuel  storage   •  The  advantage  of  fats  over  polysaccharides:   –  Fa=y  acids  carry  more  energy  per  carbon  because  they  are   more  reduced   –  Fa=y  acids  carry  less  water  along  because  they  are  nonpolar   (aggregate  in  lipid  droplets  and  are  unsolvated)     •  Glucose  and  glycogen  are  for  short-­‐term  energy  needs,  quick   delivery   •  Fats  are  for  long-­‐term  (months)  energy  needs,  good  storage,   slow  delivery    
  • 4. Fat  Storage  in  White  Adipose  Tissue   Nuclei “Squeezed”
  • 5. Dietary  fa'y  acids  are  absorbed  in  the   vertebrate  small  intes=ne   Emulsification by biological detergents (bile) Breakdown of TAG to DAG, MAG, FFA and glycerol Uptake by intestinal cells Chylomicrons (lipoproteins) Bloodstream to target tissues 2nd breakdown of TAG Used for energy (muscles) or reesterified for energy (adipose) Remaining chylomicrons go to liver and enter by RME à used for ketone bodies synthesis. When diet contains more f.a. than needed, liver converts them to TAG and packages them into VLDL to be transported to adipocytes
  • 6. Lipids  are  transported     in  the  blood  as  chylomicrons   Apoliporpotein + lipids particles = lipoprotein Lipoproteins range in density: VLDL to VHDL
  • 7. Hormones  trigger  mobiliza=on     of  stored  triacylglycerols   • Hydrolysis  of  TAGs  is  catalyzed  by  lipases    -­‐  can  produce  MAGs,  DAGs,  FFA  and  glycerol   • Some  lipases  are  regulated  by  hormones   glucagon  and  epinephrine     Recall:   •   Epinephrine  means:  “We  need  energy  now”       •   Glucagon  means:  “We  are  out  of  glucose”      
  • 8. Hormones  trigger  mobiliza=on     of  stored  triacylglycerols   •  Perilipins  –  proteins  that   coat  lipid  droplets  and   restrict  access  to  lipids  to   prevent  premature   mobiliza<on   •  ê[glc]blood  è  glucagon   èè  PKA  è   phosphoryla<on  of   hormone-­‐sensi<ve  lipase  &   perilipin  è  dissocia<on  of   CGI  and  ac<va<on  of   adipose  triacylglycerol   lipase   monoacylglycerol  lipase   hydrolyzes  MAGs   Serum albumin binds up to 10 f.a. noncovalently
  • 9. Glycerol  from  fats  enters  glycolysis   • Only  5%  of  biologically-­‐ac<ve   energy  of  TAG  is  in  glycerol   • Glycerol  kinase  ac<vates   glycerol  at  the  expense  of     ATP   • Subsequent  reac<ons     recover  more  than  enough     ATP  to  cover  this  cost   • Allows  limited  anaerobic   catabolism  of  fats  
  • 10. Fa'y  Acid  Transport  into  Mitochondria   • Fats  are  degraded  into  fa=y  acids  and  glycerol  in  the   cytoplasm  of  adipocytes   • Fa=y  acids  are  transported  to  other  <ssues  for  fuel   • β-­‐oxida<on  of  fa=y  acids  occurs  in  mitochondria     • Small  (<  12  carbons)  fa=y  acids  diffuse  freely  across   mitochondrial  membranes   • Larger  fa=y  acids  (most  free  fa=y  acids)  are   transported  via  acyl-­‐carni<ne/carni<ne  transporter   (carni=ne  shu'le)   • Three  steps:  
  • 11. Conversion  of  a  fa'y  acid  to  a  fa'y  acyl–CoA   (1)   Nucleophilic attack by f.a. anion Phosphoester linkage between f.a. carboxyl and α phosphate of ATP Thioester linkage between f.a. carboxyl and thiol group of CoA-SH Hydrolysis of PPi to 2Pi is highly exergonic and pulls the first reaction forward
  • 12. Acyl-­‐Carni=ne/Carni=ne  Transport   (2)   (3)   Transesterification to carnitine Transesterification to CoA 2 separate pools of CoA: Matrix CoA à used mostly in oxidative degradation (pyr, f.a., a.a.) Cytosolic CoA à used in biosynthesis of f.a. Carnitine-mediated entry is the rate limiting step for oxidation of f.a. in mito
  • 13. Stages  of  Fa'y  Acid  Oxida=on   •  Stage  1  consists  of  oxida<ve  conversion  of  two-­‐carbon   units  into  acetyl-­‐CoA  via  β-­‐oxida<on  with  concomitant   genera<on  of  NADH  and  FADH2     –  involves  oxida<on  of  β  carbon  to  thioester  of  fa=y  acyl-­‐CoA   •  Stage  2  involves  oxida<on  of  acetyl-­‐CoA  into  CO2  via  citric   acid  cycle  with  concomitant  genera<on  NADH  and  FADH2     •  Stage  3  generates  ATP  from  NADH  and  FADH2  via  the   respiratory  chain  
  • 14. Stages  of  Fa'y  Acid  Oxida=on  
  • 15. The  β-­‐Oxida=on  Pathway     Each  pass  removes  one  acetyl  moiety  in  the  form  of  acetyl-­‐CoA.   Palmitate (C16) undergoes seven passes through the oxidative sequence Formation of each acetyl-CoA requires removal of 4 H atoms {2 e– pairs and 4 H+})
  • 16. Step  1:   Dehydrogena=on  of  Alkane  to  Alkene   •  Catalyzed  by  isoforms  of  acyl-­‐   CoA  dehydrogenase  (AD)  on     the  mitochondrial  inner     membrane   –  Very-­‐long-­‐chain  AD     (VLCAD,  12–18  carbons)   –  Medium-­‐chain  AD  (MCAD,     4–14  carbons)   –  Short-­‐chain  AD  (SCAD,  4–8  carbons)   •  Results  in  trans  double  bond,  different  from  naturally  occurring   unsaturated  fa=y  acids,  between  α  and  β  C   •  Analogous  to  succinate  dehydrogenase  reac<on  in  the  CAC   –  Electrons  from  bound  FAD  transferred  directly  to  the  electron-­‐  transport   chain  via  electron-­‐transferring  flavoprotein  (ETF)  
  • 17. Step  2:   Hydra=on  of  Alkene   •  Catalyzed  by  two  isoforms  of  enoyl-­‐CoA  hydratase:   –  Soluble  short-­‐chain  hydratase  (crotonase)   –  Membrane-­‐bound  long-­‐chain  hydratase,  part  of   trifunc<onal  complex   •  Water  adds  across  the     double  bond  yielding     alcohol   •  Analogous  to  fumarase     reac<on  in  the  CAC   –  Same  stereospecificity  
  • 18. Step  3:    Dehydrogena=on  of  Alcohol   •  Catalyzed  by  β-­‐hydroxyacyl-­‐CoA  dehydrogenase   •  The  enzyme  uses  NAD  cofactor  as  the  hydride  acceptor   •  Only  L-­‐isomers  of  hydroxyacyl  CoA  act  as  substrates   •  Analogous  to  malate  dehydrogenase  reac<on  in  the  CAC   •  The  first  three  steps     create  a  much  less     stable  C-­‐C  bond,     where  the  α  C  is  bound     to  2  carbonyl  groups  
  • 19. Step  4:    Transfer  of  Fa'y  Acid  Chain   •  Catalyzed  by  acyl-­‐CoA  acetyltransferase  (thiolase)  via   covalent  mechanism   –  The  carbonyl  carbon  in  β-­‐ketoacyl-­‐CoA  is  electrophilic   –  Ac<ve  site  thiolate  acts  as  nucleophile  and  releases  acetyl-­‐ CoA   –  Terminal  sulfur  in  CoA-­‐SH     acts  as  nucleophile  and     picks  up  the  fa=y  acid  chain     from  the  enzyme   •  The  net  reac<on  is     thiolysis  of     a  carbon-­‐carbon  bond  
  • 20. Trifunc=onal  Protein  (TFP)   •  Hetero-­‐octamer   –  Four  α  subunits   •  enoyl-­‐CoA  hydratase  ac<vity   •  β-­‐hydroxyacyl-­‐CoA  dehydrogenase  ac<vity   •  Responsible  for  binding  to  membrane   –  Four  β  subunits   •  long-­‐chain  thiolase  ac<vity   •  May  allow  substrate  channeling   •  Associated  with  mitochondrial  inner  membrane   •  Processes  fa=y  acid  chains  with  12  or  more  carbons   •  Shorter  chains  are  processed  by  soluble  individual   enzymes  in  the  matrix  
  • 21. Similar  mechanisms  introduce  carbonyls   in  other  metabolic  pathways  
  • 22. Fa'y  Acid  Catabolism  for  Energy   •  For  palmi<c  acid  (C16)   –  Repea<ng  the  above  four-­‐step  process  six  more  <mes  (7  total)   results  in  eight  molecules  of  acetyl-­‐CoA     •  FADH2  is  formed  in  each  cycle  (7  total)   •  NADH  is  formed  in  each  cycle  (7  total)   •  Acetyl-­‐CoA  enters  citric  acid  cycle  and  further  oxidizes  into  CO2   –  This  makes  more  GTP,  NADH,  and  FADH2   •  Electrons  from  all  FADH2  and  NADH  enter  ETC   •  Transfer  of  e–s  from  FADH2  and  NADH  to  O2  yields  1  H2O  per  pair   (camels  and  hiberna<ng  animals!)                Palmitoyl-­‐CoA  +  7CoA  +  7O2  +  28Pi+  28ADP  à  8  acetyl-­‐CoA  +  28ATP  +  7H2O  (β   oxida<on)              Palmitoyl-­‐CoA  +  23O2  +  108Pi+  108ADP  à  CoA  +  108ATP  +  16CO2  +  23H2O  (full   oxida<on)    
  • 23. NADH  and  FADH2  serve  as  sources  of  ATP  
  • 24.
  • 25. Oxida=on  of  Unsaturated  Fa'y  Acids   •  Naturally  occurring  Unsaturated  Fa=y  acids  contain   cis  double  bonds   –  Are  NOT  a  substrate  for  enoyl-­‐CoA  hydratase   •  Two  addi<onal  enzymes  are  required   –  Isomerase:  converts  cis  double  bonds    star<ng  at  carbon  3   to  trans  double  bonds   –  Reductase:  reduces  cis  double  bonds  not  at  carbon  3   •  Monounsaturated  fa=y  acids  require  the  isomerase   •  Polyunsaturated  fa=y  acids  require  both  enzymes    
  • 26. Oxida=on  of  Monounsaturated  Fa'y  Acids   Oleate (18:1 Δ9) converted to oleoyl-CoA and imported into mito via carnitine shuttle
  • 27. Oxida=on  of   Polyunsaturated   Fa'y  Acids   Linoleate (Δ9,Δ12)
  • 28. First  double  bond  requires  isomeriza=on  
  • 30. Oxida=on  of  odd-­‐numbered  fa'y  acids   •  Most  dietary  fa=y  acids  are  even-­‐numbered   •  Many  plants  and  some  marine  organisms  also  synthesize   odd-­‐numbered  fa=y  acids   •  Propionyl-­‐CoA  forms  from  β-­‐oxida<on  of  odd-­‐numbered   fa=y  acids   •  Bacterial  metabolism  in  the  rumen  of  ruminants  also   produces  propionyl-­‐CoA     •  Oxida<on  is  iden<cal  to  even-­‐numbered  long-­‐chain  fa=y   acids,  but  the  last  pass  through  β-­‐oxida<on  is  a  fa=y   acyl-­‐CoA  with  a  5-­‐C  fa=y  acid  that  is  cleaved  to  give   acetyl-­‐CoA  and  propionyl-­‐CoA    
  • 33. Isomeriza=on  in  propionate  oxida=on   requires  coenzyme  B12  
  • 34. Complex  Cobalt-­‐Containing  Compound:   Coenzyme  B12   •  Very unstable bond •  Breaks to yield –CH2 . and Co3+ •  Used to transfer the hydrogen atom to a different C in the molecule (isomerization) •  No mixing of the transferred H atom with the hydrogen of the solvent (H2O) •  The formation of this complex cofactor occurs in one of two known reactions that cleaves a triphosphate from ATP
  • 35. Regula=on  of  Fa'y  Acid     Synthesis  and  Breakdown   Cytosol •  Occurs  only  when  need  for  energy  requires  it   •  2  pathways  for  f.a.CoA  in  liver:  TAG  synthesis  in  cytosol  or  f.a.  oxida<on  in  mito   •  Transfer  into  mito  is  rate  limi<ng,  once  f.a.  are  in  mito  they  WILL  undergo  oxida<on   Concn  increases  when  CHO  is  well-­‐supplied   Inhibi<on  of  shu=le  ensures  oxida<on  of  f.a.  is   inhibited  when  ñenergy   ñ[NADH]/[NAD+] ý ñAcetyl-CoA ý
  • 36. Gene=c  defects  in  fa'y  acyl-­‐CoA   dehydrogenases   •  Inability  to  oxidize  fats  for  energy  has  serious  effects   on  health   •  More  than  20  human  gene<c  defects  in  f.a.   transport  and  metabolism  occur   •  MCAD  (medium  chain  acyl-­‐CoA  dehydrogenase)   deficiency  is  the  most  common  syndrome  in   European  popula<ons      -­‐  Unable  to  oxidize  f.a.  of  6  –  12  Cs    -­‐  If  diagnosed  aoer  birth,  the  infant  can  be          treated  with  low  fat,  high  carbohydrate  diet  
  • 37. β-­‐Oxida=on  in   Mitochondria  vs.   Peroxisomes   •  Differ  in  the  first  step:          -­‐  passes  e–s  directly  to  O2  forming   H2O2  which  is  quickly  removed  by  the   ac<on  of  catalase                  -­‐  energy  is  lost  as  heat  instead  of   producing  ATP   •  Differ  in  f.a.  specificity:            -­‐  more  ac<ve  on  very  long  f.a.  and   branched  f.a.  (α  oxida=on)            -­‐  process  long  chain  f.a.  into  shorter   ones  which  are  exported  to  mito  to   complete  oxida<on   •  Zellweger  syndrome  –  inability  to  m  make  peroxisomes  
  • 38. ω  oxida=on   •  In  the  ER  of  liver  and  kidney   •  For  f.a.  with  10  –  12  Cs   •  Addi<on  of  OH  by  a  mixed  func=on   oxidase  (cytochrome  P450)   •  Alcohol  dehydrogenase  oxidizes  OH     to  aldehyde   •  Aldehyde  dehydrogenase  oxidizes     aldehyde  to  acid   •  CoA  can  a=ach  to  either  end  and  β     oxida<on  resumes  
  • 39. Forma=on  of  Ketone  Bodies   •  Entry  of  acetyl-­‐CoA  into  citric  acid  cycle  requires   oxaloacetate   •  When  oxaloacetate  is  depleted,  acetyl-­‐CoA  is  converted   into  ketone  bodies  (acetone,  acetoacetate  and  D-­‐β-­‐ hydroxybutyrate)   –  Frees  Coenzyme  A  for  con<nued  β-­‐oxida<on   –  Acetone  is  exhalled   –  Acetoacetate  and  β-­‐HB  are  transported  in  the  blood     •  Under  starva<on  condi<ons,  the  brain  can  use  ketone   bodies  for  energy   •  The  first  step  is  reverse  of  the  last  step  in  the  β-­‐ oxida<on:  thiolase  reac<on  joins  two  acetate  units  
  • 40. Release  of  Free  Coenzyme  A   Another condensation with acetyl-CoA yields HMG-CoA
  • 41. Forma=on  of  Ketone  Bodies   Cleaved into acetoacetate and acetyl-CoA Specific for the D- isomer; don’t confuse it with L-β- hydroxyacyl-CoA DH of β oxidation Untreated diabetes à [acetoacetate] is high à more acetone produced à exhaled (odor)
  • 42. Ketone  Bodies  as  fuel   In extrahepatic tissues: Ketone bodies can be used as fuels in all tissues except the liver The liver is a producer, not a consumer, of ketone bodies ß CACFound in all tissues except the liver
  • 43. Liver  is  the  source  of  ketone  bodies   •  Produc<on  of  ketone   bodies  increases  during   starva<on  (and  diabetes)   •  Ketone  bodies  are   released  by  liver  to   bloodstream   •  Organs  other  than  liver   can  use  ketone  bodies  as   fuels   •  High  levels  of   acetoacetate  and  β-­‐ hydroxybutyrate  lower   blood  pH  dangerously   (acidosis)   •  Acidosis  due  to  ketone   bodies  -­‐  ketoacidosis  
  • 44.
  • 45. Lipids  fulfill  a  variety  of   biological  func=ons   •  Energy  storage   •  Cons<tuents  of    membranes   •  Anchors  for  membrane  proteins   •  Cofactors  for  enzymes   •  Signaling  molecules   •  Pigments   •  Detergents   •  Transporters   •  An<oxidants  
  • 46. Catabolism  and  anabolism  of  fa'y  acids   proceed  via  different  pathways   •  Catabolism  of  fa=y  acids  (excergonic  and  oxida=ve)   –  produces  acetyl-­‐CoA   –  produces  reducing  power  (NADH  and  FADH2)   –  ac<va<on  of  fa=y  acids  by  CoA   –  takes  place  in  the  mitochondria     •  Anabolism  of  fa=y  acids  (endergonic  and  reduc=ve)   –  requires  acetyl-­‐CoA  and  malonyl-­‐CoA     –  requires  reducing  power  from  NADPH   –  ac<va<on  of  fa=y  acids  by  2  different  –SH  groups  on  protein     –  takes  place  in  cytosol  in  animals,  chloroplast  in  plants  
  • 47. Subcellular  localiza=on  of  lipid  metabolism  
  • 48. Overview  of  Fa'y  Acid  Synthesis   •  Fa=y  acids  are  built  in  several  passes,  processing   one  acetate  unit  at  a  <me.   •  The  acetate  is  coming  from  ac<vated  malonate  in   the  form  of  malonyl-­‐CoA.   •  Each  pass  involves  reduc<on  of  a  carbonyl  carbon   to  a  methylene  carbon.      
  • 49. Malonyl-­‐CoA  is  formed  from  acetyl-­‐CoA  and   bicarbonate   •  The  reac<on  carboxylates  acetyl  CoA   •  Catalyzed  by  acetyl-­‐CoA  carboxylase  (ACC)   –  Enz  has  three  subunits:   • One  unit  has  Bio<n  covalently  linked  to  Lys   • Bio<n  carries  CO2   • In  animals,  all  three  subunits  are  on  one   polypep<de  chain   –  HCO3 −  (bicarbonate)  is  the  source  of  CO2  
  • 50. The  Acetyl-­‐CoA  Carboxylase  (ACC)  Reac=on   •  Two-­‐step  rxn  similar  to  carboxyla<ons  catalyzed   by  pyruvate  carboxylase  (gluconeogenesis)  and   propionyl-­‐CoA  carboxylase  (odd  f.a.  metabolism)     •  CO2  binds  to  bio<n   -  CO2  is  ac<vated  by  a=achment  to  N  in  ring  of  bio<n  
  • 51. Synthesis  of  fa'y  acids  is  catalyzed  by  fa'y   acid  synthase  (FAS)   •  FAS  system:   –  Catalyzes  a  repea<ng  four-­‐step  sequence  that  elongates  the   fa=y  acyl  chain  by  two  carbons  at  each  step   –  Uses  NADPH  as  as  the  electron  donor   –  Uses  two  enzyme-­‐bound  -­‐SH  groups  as  ac<va<ng  groups   •  FAS  I  in  vertebrates  and  fungi   •  FAS  II  in  plants  and  bacteria  
  • 52. FAS  I  vs.  FAS  II   FAS  I   •  Single  polypep<de  chain  in   vertebrates   •  Leads  to  single  product:     palmitate  16:0   •  C-­‐15  and  C-­‐16  are  from  the   acetyl  CoA  used  to  prime   the  rxn   FAS  II   •  Made  of  separate,  diffusible   enzymes   •  Makes  many  products   (saturated,  unsaturated,   branched,  many  lengths,   etc.)   •  Mostly  in  plants  and   bacteria  
  • 53. Fa'y  Acid  Synthesis   •  Overall  goal:    a=ach  two-­‐C  acetate  unit  from  malonyl-­‐CoA  to  a   growing  chain  and  then  reduce  it   •  Reac<on  involves  cycles  of  four  enzyme-­‐catalyzed  steps   –  Condensa<on  of  the  growing  chain  with  ac<vated  acetate   –  Reduc<on  of  carbonyl  to  hydroxyl   –  Dehydra<on  of  alcohol  to  trans-­‐alkene   –  Reduc<on  of  alkene  to  alkane   •  The  growing  chain  is  ini<ally  a=ached  to  the  enzyme  via  a   thioester  linkage   •  During  condensa<on,  the  growing  chain  is  transferred  to  the   acyl  carrier  protein  (ACP)   •  Aoer  the  second  reduc<on  step,  the  elongated  chain  is   transferred  back  to  fa=y  acid  synthase  
  • 54. The  General  Four-­‐Step  Fa'y  Acid  Synthase  I   Reac=on  in  Mammals  (1)   Prep:    Malonyl  CoA  and  acetyl  CoA  (or  longer  fa=y   acyl  chain)  are  bound  to  FAS  I      -­‐  bind  via  thioester  terminus  of  a  Cys  of  the  FAS    -­‐  ac<vates  the  acyl  group   Step  1:    Condensa<on  rxn  a=aches  two  C  from   malonyl  CoA  to  the  a=ached  acetyl-­‐CoA  (or  longer   fa=y  acyl  chain)   -­‐  also  releases  CO2  from  malonyl-­‐CoA   -­‐  the  decarboxyla<on  facilitates  the  rxn   -­‐  creates  β-­‐keto  intermediate  
  • 55. Step  1  of  FAS  I:     Elonga=on  
  • 56. Step  2:    1st  Reduc<on:    NADPH  reduces  the  β-­‐ keto  intermediate  to  an  alcohol     Step  3:    Dehydra<on:    OH  group  from  C-­‐2  and   H  from  neighboring  CH2  are  eliminated,   crea<ng  double  bond  (trans-­‐alkene)   Step  4:    2nd  Reduc<on:    NADPH  reduces   double  bond  to  yield  saturated  alkane   Step  5:  Transloca<on:  The  growing  chain  is   moved  from  ACP  to  –SH  on  FAS   The  General  Four-­‐Step  Fa'y  Acid  Synthase  I   Reac=on  in  Mammals  
  • 57. Steps  2-­‐4  of   the  FAS  I  rxn  
  • 59. Acyl  Carrier  Protein  (ACP)  serves  as  a  shu'le   in  fa'y  acid  synthesis   •  Contains  a  covalently  a=ached  prosthe<c   group  4’-­‐phosphopantetheine   –  Flexible  arm  to  tether  acyl  chain  while   carrying  intermediates  from  one   enzyme  subunit  to  the  next   •  Delivers  malonate  to  the  fa=y  acid   synthase   •  Shu=les  the  growing  chain  from  one   ac<ve  site  to  another  during  the  four-­‐step   reac<on  
  • 60. Charging  ACP  and  FAS  I  with  acyl   groups  ac=vates  them   •  Two  thiols  must  be  charged  with  the  correct  acyl   groups  before  condensa<on  rxn  can  begin   –  Thiol  from  4’-­‐phosphopantethine  in  ACP   –  Thiol  from  Cys  in  fa=y  acid  synthase   1) Acetyl  group  of  acetyl-­‐CoA  is  transferred  to  ACP   –  Catalyzed  by  malonyl/acetyl-­‐CoA  transferase  (MAT)   –  ACP  passes  this  acetate  to  the  Cys  of  the  β-­‐ketoacyl-­‐ACP  synthase  (KS)   domain  of  FAS  I   2)  ACP  –SH  group  is  re-­‐charged  with  malonyl  from         malonyl-­‐CoA  
  • 61. Charging,  Ac=va=on  with  ACP,  and  the   Four-­‐Step  Sequence  of  Mammalian  Fa'y   Acid  Synthesis  
  • 62.
  • 63.
  • 64. •  Ac<vated  acetyl  and   malonyl  groups  form   acetoacetyl-­‐ACP  and   CO2     –  Claisen  condensa<on  rxn   •  Catalyzed  by  β-­‐ketoacyl-­‐ ACP  synthase  (KS)   •  Coupling  condensa<on   to  decarboxyla<on  of   malonyl-­‐CoA  makes  the   rxn  energe<cally   favorable  
  • 65. •  Carbonyl  at  C-­‐3  is  reduced  to  form  D-­‐β-­‐ hydroxybutyryl-­‐ACP   –  NADPH  is  e−  donor   •  Catalyzed  by  β-­‐ketoacyl-­‐ACP  reductase  (KR)  
  • 66. •  OH  and  H  removed  from  C-­‐2  and  C-­‐3  of  β-­‐hydroxybutyryl-­‐ ACP  to  form  trans-­‐Δ2-­‐butenoyl-­‐ACP   •  Catalyzed  by  β-­‐hydroxyacyl-­‐ACP  dehydratase  (DH)  
  • 67. •  NADPH  is  the  electron   donor  to  reduce  double   bond  of  trans-­‐Δ2-­‐butenoyl-­‐ ACP  to  form  butyryl-­‐ACP   •  Catalyzed  by  enoyl-­‐ACP   reductase  (ER)  
  • 68.
  • 69.
  • 70. Enzymes  in  Fa'y  Acid  Synthase   •  Condensa<on  with  acetate   –  β-­‐ketoacyl-­‐ACP  synthase  (KS)   •  Reduc<on  of  carbonyl  to  hydroxyl   –  β-­‐ketoacyl-­‐ACP  reductase  (KR)   •  Dehydra<on  of  alcohol  to  alkene   –  β-­‐hydroxyacyl-­‐ACP  dehydratase  (DH)   •  Reduc<on  of  alkene  to  alkane   –  enoyl-­‐ACP  reductase  (ER)   •  Chain  transfer/charging     –  Malonyl/acetyl-­‐CoA  ACP  transferase  
  • 71. The  Transferase  and  FAS  rxns  are   repeated  in  new  rounds   •  Product  of  first  round    is  butyryl-­‐ACP   –  (bound  to  phosphopantetheine-­‐SH  group  of  ACP)   •  Butyrul  gp  is  transferred  to  the  Cys  of  β-­‐ ketoacyl-­‐ACP  synthase   –  In  the  first  round,  acetyl-­‐CoA  was  bound  here   •  New  malonyl-­‐CoA  binds  to  ACP   •  Aoer  new  round  of  four  steps,  six-­‐C  product  is   made  (bound  to  ACP)  
  • 72. Beginning  of  the   Second  Round  of   Fa'y  Acid  Synthesis  
  • 73. Stoichiometry  of  Synthesis  of   Palmitate  (16:0)   1)  7  acetyl-­‐CoAs  are  carboxylated  to  make  7   malonyl-­‐CoAs…  using  ATP     7  AcCoA  +  7  CO2  +  7  ATP  à  7  malCoA  +  7  ADP  +  7  Pi     2)  Seven  cycles  of  condensa<on,  reduc<on,   dehydra<on  and  reduc<on…using  NADPH  to   reduce  the  β-­‐keto  group  and  trans-­‐double  bond   AcCoA  +  7  malCoA  +  14  NADPH  +  14  H+  àPalmitate  +  7  CO2  +   8  CoA  +  14  NADP+  +  6  H2O   Note:    Eukaryotes  have  one  addi<onal  energy  cost.    (Next  slide)  
  • 74. Acetyl-­‐CoA  is  transported  into  the   cytosol  for  fa'y  acid  synthesis     •  In  nonphotosynthe<c  eukaryotes…   •  Acetyl-­‐CoA  is  made  in  the  mitochondria   •  But  fa=y  acids  are  made  in  the  cytosol   •  So  Acetyl-­‐CoA  is  transported  into  the   cytosol  with  a  cost  of  2  ATPs   •  Therefore,  cost  of  FA  synthesis  is  3  ATPs   per  2-­‐C  unit  
  • 75. Fa'y  acid  synthesis  occurs  in  cell  compartments   where  NADPH  levels  are  high   •  Cytosol  for  animals,  yeast   •  Chloroplast  for  plants   •  Sources  of  NADPH:   –  In  adipocytes:    pentose  phosphate  pathway  and  malic   enzyme     –  NADPH  is  made  as  malate  converts  to  pyruvate  +  CO2   –  In  hepatocytes  and  mammary  gland:    pentose   phosphate  pathway   •   NADPH  is  made  as  glucose-­‐6-­‐phosphate  converts  to  ribulose  6-­‐ phosphate   –  In  plants:    photosynthesis  
  • 76. Pathways  for  NADPH  Produc=on  
  • 77. Acetyl-­‐CoA,  generated  in  the  mitochondria,  is   shu'led  to  the  cytosol  as  citrate   •  In  most  eukaryotes,  the  acetyl-­‐CoA  for  lipid  synthesis   is  made  in  the  mitochondria   –  But  lipid  synthesis  occurs  in  the  cytosol   • And  there  is  no  way  for  acetyl-­‐CoA  to  cross   mitochondrial  inner  membrane  to  the  cytosol   •  So  acetyl-­‐CoA  is  converted  to  citrate   –  Acetyl-­‐CoA  +  oxaloacetate  à  citrate   • Same  rxn  as  occurs  in  CAC   • Catalyzed  by  citrate  synthase   • Citrate  passes  through  citrate  transporter  
  • 78. Citrate  is  cleaved  to  regenerate   acetyl-­‐CoA   •  Citrate  (now  in  cytosol)  is  cleaved  by  citrate   lyase   –  Regenerates  acetyl-­‐CoA  and  oxaloacetate   –  Rxn  requires  ATP   –  Acetyl-­‐CoA  can  now  be  used  for  lipid  synthesis   •  What  happens  to  the  oxaloacetate  because   there  is  no  oxaloacetate  transporter  either?      
  • 79. Oxaloacetatecyt  is  converted  to  malate     •  Malate  dehydrogenase  in  cytosol  reduces   oxaloacetate  to  malate   •  Two  poten<al  fates  for  malate:   –  Can  be  converted  to  NADPHcyt  and  pyruvatecyt  via  the   malic  enzyme   •  NADPH  used  for  lipid  synthesis   •  Pyruvatecyt  sent  back  to  mito  via  pyruvate  transporter   •  Converted  back  to  oxaloacetatemito  by  pyruvate  carboxylase,   requires  ATP   –  Can  be  transported  back  to  mito  via  malate  -­‐α-­‐ ketoglutarate  transporter   •  Malatemito  is  reoxidized  to  oxaloacetatemito  
  • 80. Shu'le  for  Transfer  of  Acetyl  Groups  from   Mitochondria  to  Cytosol  
  • 81. Fa'y  acid  synthesis  is  =ghtly  regulated   via  ACC   •  Acetyl  CoA  carboxylase  (ACC)  catalyzes  the  rate-­‐ limi<ng  step   –  ACC  is  feedback-­‐inhibited  by  palmitoyl-­‐CoA   –  ACC  is  acEvated  by  citrate   •  Remember  citrate  is  made  from  acetyl-­‐CoAmito   •  Citrate  signals  excess  energy  to  be  converted  to   fat   –  When  [acetyl-­‐CoA]mito  ↑,  converted  to  citrate…citrate   exported  to  cytosol  
  • 82. Importance  of  Citrate  to  Regula=on  of   Fa'y  Acid  Synthesis     •  In  animals,  citrate  s<mulates  fa=y  acid   synthesis!   –  Precursor  for  acetyl-­‐CoA     • Sent  to  cytosol  and  cleaved  to  become  AcCoA  when   AcCoA  and  ATP  ↑  (energy  excess)   –  Allosteric  ac<vator  of  ACC   –  Inhibitor  of  PFK-­‐1   • Reduces  glycolysis  
  • 83. ACC  is  also  regulated  by  covalent   modifica=on   •  Inhibited  when  energy  is  needed   •  Glucagon  and  epinephrine:     –  reduce  sensi<vity  of  citrate  ac<va<on   –  lead  to  phosphoryla<on  and  inac<va<on  of   ACC  via  PKA   • ACC  is  ac<ve  as  dephosphorylated  monomers   • When  phosphorylated,  ACC  polymerizes  into  long   inac<ve  filaments   • Dephosphoryla<on  reverses  the  polymeriza<on    
  • 84. Regula=on  of  Fa'y  Acid  Synthesis  in   Vertebrates  
  • 85. Addi=onal  Modes  of  Regula=on  in  Fa'y   Acid  Synthesis   •  Changes  in  gene  expression   –  Example:    Fa=y  acids  (and  eicosanoids)  bind  to   transcrip<on  factors  called  Peroxisome   Proliferator-­‐Ac=vated  Receptors  (PPARs)  à   inducing  gene  expression  of  some  genes   •  Reciprocal  regula<on   –  Malonyl-­‐CoA  inhibits  fa=y  acid  import  into  mito   • One  of  many  ways  to  ensure  that  fat  synthesis  and   oxida<on  don’t  occur  simultaneously  
  • 86. Palmitate  can  be  lengthened  to   longer-­‐chain  fa'y  acids   •  Elonga<on  systems  in  the  endoplasmic   re<culum  and  mitochondria  create  longer   fa=y  acids   •  As  in  palmitate  synthesis,  each  step  adds   units  of  2  C   •  Stearate  (18:0)  is  the  most  common   product  
  • 87. Palmitate  and  stearate  can  be   desaturated   •  Palmitate(16:0)àpalmitoleate(16:1;  Δ9)     •  Stearate  (18:0)àoleate  (18:1;  Δ9)     –  Catalyzed  by  fa=y  acyl-­‐CoA  desaturase  in   animals     • Also  known  as  the  fa=y  acid  desaturases   • Requires  NADPH;  enzyme  uses  cytochrome  b5  and   cytochrome  b5  reductase   Note  that  this  is  a  Δ9-­‐desaturase!      It  reduces  the  bond  between  C-­‐9  and  C-­‐10.    
  • 88. Vertebrate  fa'y  acyl  desaturase  is  a  non-­‐ heme,  iron-­‐containing,  mixed  func=on   oxidase   •  O2  accepts  four  electrons  from  two  substrates   •  Two  electrons  come  from  saturated  fa=y  acid   •  Two  electrons  come  from  ferrous  state  of  cytochrome   b5  
  • 89. Desatura=on  of  a  Fa'y  Acid  by   Fa'y  Acyl-­‐CoA  Desaturase  
  • 90. Plants  can  desaturate  posi=ons   beyond  C-­‐9   •  Humans  have  Δ4,  Δ5,  Δ6,  and  Δ9  desaturases  but  cannot   desaturate  beyond  Δ9   •  Plants  can  produce:   –  linoleate  18:2(Δ9,12)   –  α-­‐linolenate  18:3  (Δ9,12,15)   •  These  fa=y  acids  are  “essen=al”  to  humans   –  Polyunsaturated  fa=y  acids  (PUFAs)  help  control  membrane   fluidity   –  PUFAs  are  precursors  to  eicosanoids   •  Implica<ons  of  stearoyl-­‐ACP  desaturase  (SCD)  on  obesity   –  SCD1-­‐mutant  mice  are  resistant  to  diet-­‐induced  obesity!  
  • 91. Oxidases,  Monooxygenases,    and   Dioxygenases   Many  enzymes  use  oxygen  as  an  e−  acceptor,  but  not  all   of  them  incorporate  oxygen  into  the  product.     •   Oxidases  do  not  incorporate  oxygen  into  the  product   –  Oxygen  atoms  usually  end  up  in  H2O2   •   Oxygenases  do  incorporate  oxygen  into  the  product   –  Monooxygenases  incorporate  one  of  the  oxygen  atoms   into  the  product   –  Dioxygenases  incorporate  both  oxygen  atoms  into  the   product  
  • 92. Monooxygenases  incorporate  one   oxygen  into  the  product     AH  +  BH2  +  O-­‐O  àA-­‐OH  +  B  +  H2O   •   Product  is  ooen  hydroxylated,  so  also  called   hydroxylases  or  mixed-­‐func=on  oxygenases   –  Example:    Phenylanine  hydroxylase  hydroxylates   phenylalanine  to  form  tyrosine   –  Deficiency  causes  phenylketonuria  (PKU)  
  • 93. Cytochrome  P450s  are   monooxygenases     •  Important  in  drug  metabolism   •  Hydroxylate  nonpolar  molecules   –  usually  inac<va<ng  them  and  making  them   more  H2O-­‐soluble  for  excre<on   •  If  two  drugs  (or  alcohol  and  a  drug)  use  the   same  P450,  they  will  compete,  and  levels  of   the  drug  or  alcohol  will  not  be  cleared  as   quickly   –  Can  be  deadly  
  • 94. Dioxygenases  incorporate  two  oxygens   in  the  product   •  Usually  metalloproteins   –  Ac<ve  sites  have  Fe  or  Mn   ions   •  Rxns  ooen  involve  opening   an  aroma<c  ring   •  Example:  Tryptophan  2,3-­‐ dioxygenase  
  • 95. Eicosanoids  are  potent  short-­‐range   hormones  made  from  arachidonate   •  Eicosanoids  are  paracrine  signaling  molecules   •  They  include  prostaglandins,  leukotrienes,   thromboxanes   •  Created  from  arachidonic  acid,  20:4  (Δ5,8,11,14)     •  Arachidonate  is  incorporated  into  the   phospholipids  of  membranes   •  In  response  to  s<muli  (hormone,  etc.),   phospholipase  A2  is  ac<vated  and  a=acks  the   C-­‐2  fa=y  acid,  releasing  arachidonate  
  • 96. Prostaglandins  are  made  by  prostaglandin  H2   synthase  (cyclooxygenase,  COX)   •  COX  (aka  PGH2  synthase)  is  a  bifunc<onal   ER  enzyme:   •  Step  1:    cyclooxygenase  ac<vity  of  PGH2   synthase  adds  2  O2  to  form  PGG2   •  Step  2:    peroxidase  ac<vity  converts   peroxide  to  alcohol,  creates  PGH2   •  PGH2  is  precursor  to  other  eicosanoids  
  • 97. Conversion  of   Arachidonate  to   Prostaglandins  and   Other  Eicosanoids   •  Thromboxane  synthase   present  in  thrombocytes   converts  PGH2  to   thromboxane  A2     •  Induce  the  constric<on  of   blood  vessels  and  blood   clovng   •  Low  doses  of  aspirin   reduce  the  risk  of  heart   a=acks  and  strokes  by   reducing  thromboxane   produc<on      
  • 98. PGH2  synthase  has  two  isoforms   •  COX-­‐1  catalyzes  synthesis  of  prostaglandins   that  regulate  gastric  mucin  secreEon   •  COX-­‐2  catalyzes  synthesis  of  prostaglandins   that  mediate  pain,  inflammaEon,  and  fever  
  • 99. NSAIDs  inhibit  cyclooxygenase  ac=vity   •  Aspirin  (Acetylsalicylate)  is  an  irreversible   inhibitor   –  Acetylates  a  Ser  in  the  ac<ve  site   –  Blocks  ac<ve  site  in  both  COX  isozymes   •  Ibuprofen  and  naproxen  are  compe<<ve   inhibitors   –  Resemble  substrate,  also  block  the  ac<ve  site   in  both  isozymes   –  Undesired  side  effects  such  as  stomach   irritaEon,  why?  
  • 100. A  Few  NSAIDs  that  Inhibit  PGH2   Arachidonate (substrate) Advil, motrin Aleve
  • 101. COX-­‐2-­‐specific  inhibitors  have  a   checkered  history     •  Developed  to  inhibit  prostaglandin  forma<on   without  harming  stomach   •  Includes  Vioxx,  Bextra,  and  Celebrex   •  Vioxx  and  Bextra  removed  from  market  due  to   increased  rates  of  stroke  and  heart  a=ack   –  May  disrupt  balance  between  blood-­‐thinning   prostacyclin  and  blood-­‐clovng  thromboxanes  
  • 102. Leukotriene  synthesis  also  begins   with  arachidonate   •  O2  is  added  to  arachidonate  via  lipoxygenases   •  Creates  species  that  differ  in  the  posi<on  of  the  OOH  group   •  Not  inhibited  by  NSAIDs  
  • 103.
  • 104. Biosynthesis  of  Triacylglycerols   •  Synthesized  or  ingested  fa=y  acids  are  either   stored  for  energy  or  used  in  membranes   depending  on  the  needs  of  the  organism       •  Animals  and  plants  store  fat  for  fuel   –  Plants:  in  seeds,  nuts   –  Typical  70-­‐kg  human  has  ~15  kg  fat   • Enough  to  last  12  wks   • Compare  with  12  hrs’  worth  glycogen  in  liver  and  muscle   •  Animals  and  plants  and  bacteria  make   phospholipids  for  cell  membranes  
  • 105. The  precursor  for  the  backbone  of  fat  and   phospholipids  is  glycerol  3-­‐phosphate   •  Both  pathways  start  by  the  forma<on  of  fa=y  acyl   esters  of  glycerol     •  The  substrates  are  fa=y  acyl-­‐CoAs  and  L-­‐glycerol  3-­‐ phosphate   •  Most  glycerol  3-­‐phosphate  comes  from   dihydroxyacetone  phosphate  (DHAP)  from  glycolysis   –  via  glycerol  3-­‐phosphate  dehydrogenase       •  Some  glycerol  3-­‐phosphate  made  from  glycerol   –  via  glycerol  kinase   –  Minor  pathway  in  liver  and  kidney  only  
  • 106. Acyl  transferases  a'ach  two  fa'y   acids  to  glycerol  3-­‐phosphate   •  Phospha<dic  acid  is  the   precursor  to  TAGs  and   phospholipids   –  Made  of  glycerol  3-­‐phosphate   +  2  fa=y  acids   –  Fa=y  acids  are  a=ached  by   acyl  transferases     –  Release  of  CoA  
  • 107. To  make  TAG,  phospha=dic  acid  is   dephosphorylated  and  acylated     •  Phospha<dic  acid  phosphatase  (lipin)   removes  the  3-­‐phosphate  from  the   phospha<dic  acid   –  Yields  1,2-­‐diacylglycerol   •  Third  carbon  is  then  acylated  with  a  third   fa=y  acid   –  Yields  triacylglycerol  
  • 108. Conversion  of   Phospha=dic  Acid  into   Triacylglycerol  
  • 109. Regula=on  of  Triacylglycerol   Synthesis  by  Insulin   •  Insulin  results  in  s<mula<on   of  triacylglycerol  synthesis   •  Lack  of  insulin  results  in:   –  Increased  lipolysis   –  Increased  fa=y  acid  oxida<on   • Some<mes  to  ketones,  if  citric   acid  cycle  intermediates   (oxaloacetate)  that  react  with   acetyl  CoA  are  depleted   –  Failure  to  synthesize  fa=y   acids  
  • 110. Regula=on  of  Fat  Metabolism  by   Glucagon  and  Epinephrine   •  Glucagon  and  epinephrine  result  in   s<mula<on  of  triacylglycerol  breakdown   (mobiliza<on  of  fa=y  acids)   –  Also  decrease  glycolysis   –  Also  increase  gluconeogenesis  
  • 111. Triacylglycerol  breakdown  and   re-­‐synthesis  create  a  fu=le  cycle   •  Seventy-­‐five  percent  of  free  fa=y  acids  (FFA)   released  by  lipolysis  are  reesterified  to  form  TAGs   rather  than  be  used  for  fuel   –  Some  recycling  occurs  in  adipose  <ssue   –  Some  FFA  from  adipose  cells  are  transported  to  liver,   remade  into  TAG,  and  re-­‐deposited  in  adipose  cells   •  Although  the  distribu<on  between  these  two  paths   may  vary  (the  flux  of  FFA  into  and  out  of  the   adipose),  overall,  the  percentage  of  FFA  being   esterified  remains  at  ~75%.  
  • 112. The  Triacylglycerol  Cycle   *  In  mammals,   TAG  molecules   are  broken   down  and   resynthesized   in  a  TAG  cycle   even  during   starva<on.        
  • 113. Benefits  of  this  fu=le  cycle?   •  Recycling  con<nues  even  in  starvaEon   •  Specula<on:   –  energy  reserve  for  “fight  or  flight”  crises  that   might  occur  during  fas<ng   •  The  total  #  of  FFA  in  flux  may  change  but  the   %  recycled  remains       –  unless  a  pharamacological  interven<on  happens   (i.e.,  thiazolidinedione  drugs,  type  2  DM)  
  • 114. What  is  the  source  of  the  glycerol  3-­‐ phosphate  needed  for  fa'y  acid   reesterifica=on?   •  During  lipolysis  (s<mulated  by  glucagon  or   epinephrine),  glycolysis  is  inhibited   –  So  DHAP  is  not  readily  available  to  make  glycerol  3-­‐ phosphate   •  And  adipose  cells  don’t  have  glycerol  kinase  to   make  glycerol  3-­‐phosphate  on-­‐site   •  So  cells  make  DHAP  via  glyceroneogenesis  
  • 115. Glyceroneogenesis  makes  DHAP  for   glycerol  3-­‐phosphate  genera=on   •  Glyceroneogenesis  contains  some  of  the   same  steps  of  gluconeogenesis   –  Converts  pyruvate  à  DHAP   –  Basically,  a  shortened  version  of   gluconeogenesis  in  the  liver  and  adipose  <ssue   •  Explains  why  adipose  cells  express  pyruvate   carboxylase  and  PEPCK  even  though  fat  cells  don’t   make  glucose  
  • 117. Regula=on  of  PEPCK  expression  is   =ssue-­‐dependent   •  Cor<sol  and  glucagon  both  increase  PEPCK   expression  in  liver.   –  Results  in  more  TAG  synthesis,  so  more  released  to  the   blood   •  Cor<sol  and  other  glucocor<coids  decrease  PEPCK   expression  in  adipose  <ssue   –  ↓  glyceroneogenesis  in  adipose  means  less  recycling;   more  FFA  are  released  into  the  blood   –  Most  glycerol  freed  from  TAG  in  adipose  is  sent  to  liver   and  converted  to  glucose    
  • 118. Regula=on  of  Glyceroneogenesis  via  Glucocor=coid   Hormones  
  • 119. Cor=sol  and  glucagon  can  elevate  blood   sugar   1)  ↑  PEPCK  expression  in  liver  à↑  gluconeogenesis   (so  ↑  [glucose])   2)  ↓  PEPCK  expression  in  adipose  <ssue  à  glycerol   freed,  sent  to  liver,  converted  to  glucose   3)  Plus,  the  FFA  associated  with  increased  flux   through  TAG  cycle  à  interfere  with  glucose   uptake  in  muscle,  keep  [glucose]blood  high  à  may   lead  to  insulin  resistance  (type  2  DM)  
  • 120. Thiazolidinedione  drugs  target  insulin   resistance  by  increasing  glyceroneogenesis   •  Elevated  FFA  levels  seem  to  promote  insulin   resistance   •  Thiazolidinediones  upregulate  PEPCK  in   adipose  <ssue  via  PPARγ,  lead  to  ↑   glyceroneogenesis,↑  resynthesis  of  TAG  in   adipose  <ssue  and  ↓  release  of  FFA   •  Thus  the  drugs  promote  sensi<vity  to  insulin  
  • 121. Thiazolidinediones/Glitazones   Have  this  group     in  common   Avandia  (Rosiglitazone)  –  removed  from   market  due  to  associa<on  with  heart  a=ack   Pioglitazone  (Actos)  
  • 122. Regula=on  of  Glyceroneogenesis  via   Thiazolidinediones  
  • 123. Biosynthesis  of  Membrane   Phospholipds   •  Begin  with  phospha<dic   acid  or  diacylglycerol   •  A=ach  head  group  to  C-­‐3   OH  group   –  C-­‐3  has  OH,  head  group  has   OH   –  New  phospho-­‐head  group   created  when  phosphoric   acid  condenses  with  these   two  alcohols   –  Eliminates  two  H2O  
  • 124. Further  Details  on  A'aching  the   Head  Group     •  Either  one  of  the   alcohols  is  ac<vated   by  a=aching  to  CDP   (cy<dine  diphosphate)     •  The  free  (not  bound  to   CDP)  alcohol  then   does  nucleophilic   a=ack  on  the  CDP-­‐ ac<vated  phosphate   •  Releases  CMP  and  a   glycerophospholipid   E. coli: CDP-DAG Eukaryotes: both
  • 125. Synthesis  of  Phospha=dylethanolamine  and   Phospha=dylcholine  in  Yeast   •  Phospha<dylserine  is  decarboxylated  to   phospha7dylethanolamine   –  phospha<dylserine  decarboxylase   •  Phospha<dylethanolamine  acted  on  by   S-­‐adenosylmethionine  (methyl  group   donor),  adds  three  methyl  groups  to   amino  group  à  phopsha7dylcholine   (lecithin)   –  Catalyzed  by  methyltransferase  
  • 126. Phospholipid  Synthesis  in  Mammals   •  Phospha7dylserine  isn’t  synthesized  from  CDP-­‐ diacylglycerol  as  it  is
 in  yeast  and  
 bacteria   •  Made  “backwards” 
 from  PE  or  PC  via     head  group  exchange     rxns   –  Catalyzed  by  specific  synthases   –  Pathway  “salvages”  the  choline  
  • 127. Sphingolipids  are  made  in  four  steps   1)  Synthesis  of  sphinganine  from  palmitoyl-­‐CoA   and  serine   2)  A=achment  of  fa'y  acid  via  amide  linkage   3)  Desatura=on  of  N-­‐acylsphinganine   (dihydroceramide)   • Yields  N-­‐acylsphingosine  (ceramide)   4)    A=achment  of  head  group   • Can  yield  a  cerebroside  or  ganglioside     ER Golgi
  • 128.
  • 129. Phospholipids  must  be  transported   from  the  ER  to  membranes   •  Phospholipids  are:     –  synthesized  in  the  smooth  ER   –  transported  to  Golgi  complex  for  addi<onal  synthesis   •  Must  be  inserted  into  specific  membranes  in  specific   propor7ons  but  can’t  diffuse  because  they  are   nonpolar   •  So  transported  in  membrane  vesicles  that  fuse  with   target  membrane   •  Details  of  the  process  are  not  well-­‐understood  
  • 130.
  • 131.
  • 132. Four  Steps  of  Cholesterol  Synthesis   1)  Three  acetates  condense  to   form  5-­‐C  mevalonate   2)  Mevalonate  converts  to   phosphorylated  5-­‐C  isoprene   3)  Six  isoprenes  polymerize  to   form  the  30-­‐C  linear  squalene   4)  Squalene  cyclizes  to  form  the   four  rings  that  are  modified  to   produce  cholesterol      
  • 133. Step  1:    Forma=on  of   Mevalonate  from  Acetyl-­‐CoA   •  2  Acetyl-­‐CoAs  àAcetoacetyl-­‐CoA   –  Catalyzed  by  acetyl-­‐CoA  acyl  transferase   (thiolase)   •  Acetyl-­‐CoA  +  Acetoacetyl-­‐CoA  à  β-­‐ hydroxyl-­‐β-­‐methylglutaryl-­‐CoA   (HMG-­‐CoA)   –  Catalyzed  by  HMG-­‐CoA  synthase   •  NOT  the  mitochondrial  HMG-­‐CoA   synthase  used  in  ketone  body  forma<on   •  HMG-­‐CoA  +  2  NADPH  àmevalonate   –  Catalyzed  by  HMG-­‐CoA  reductase   –  Rate-­‐limi7ng  step  and  point  of   regula7on!   –  HMG-­‐CoA  reductase  is  a  target  for  some   cardiovascular  drugs
  • 134. Sta=n  drugs  inhibit  HMG-­‐CoA   reductase  to  lower  cholesterol   •  Sta<ns  resemble  HMG-­‐CoA  and  mevalonate  à   compe<<ve  inhibitors  of  HMG-­‐CoA  reductase   •  First  sta<n,  lovasta<n,  was  found  in  fungi   •  Lowers  serum  cholesterol  by  ~20  –  40%   •  Also  reported  to  improve     circula<on,  stabilize   plaques  by  removing  chol     from  them,  reduce  vascular   inflamma<on   •  Most  circulaEng  chol  comes     from  internal  manufacture  rather  than  the  diet  
  • 135. Step  2:    Conversion  of  Mevalonate   to  Two  Ac=vated  Isoprenes   •  3  PO4 3−  transferred  stepwise  from   ATP  to  mevalonate   •  Decarboxyla<on  and  hydrolysis   creates  a  diphosphorylated  5-­‐C   product  (isoprene)  with  a  double   bond   •  Isomeriza<on  to  a  second   isoprene   •  The  two  “ac<vated”  isoprene   units  are  Δ3-­‐isopentyl   pyrophosphate  and  dimethylallyl   pyrophosphate  
  • 136. Step  3:    Six  Ac=vated  Isoprene  Units   Condense  to  Form  Squalene   •  The  two  isoprenes  join  head   -­‐to-­‐tail,  displacing  one  set  of   diphosphates   à  forms10-­‐C  geranyl   pyrophopshate   •  Geranyl  pyrophosphate  joins  to   another  isopentenyl   pyrophosphate   à  forms  15-­‐C  farnesyl   pyrophosphate   •  Two  farnesyl  pyrophosphates   join  head-­‐to-­‐head  to  form   phosphate-­‐free  squalene  
  • 137. Step  4:    Conversion  of  Squalene  to   Four-­‐Ring  Steroid  Nucleus   •  Squalene  monooxygenase  adds  one  oxygen  to   the  end  of  the  squalene  chain   à  forms  squalene  2,3-­‐epoxide   •  Here  pathways  diverse  in  animal  cells  vs.  plant   cells   •  The  cycliza<on  product  in  animals  is  lanosterol,   which  converts  to  cholesterol   •  In  plants,  the  epoxide  cyclizes  to  other  sterols   such  as  s<gmasterol  
  • 138. Conversion  of   Squalene  to   Cholesterol  
  • 139. Fates  of  Cholesterol  Aner  Synthesis   •  In  vertebrates,  most  cholesterol   synthesized  in  the  liver,  then  exported:   -  As  bile  acids,  biliary  cholesterol  or  cholesteryl   esters   •  Other  <ssues  convert  cholesterol  into   steroid  hormones,  etc.  
  • 140. Bile  Acids  Assist  in  Emulsifica=on  of  Fats   •  Bile  is  stored  in  the  gall  bladder,  secreted   into  small  intes<ne  aoer  fa=y  meal   •  Bile  acids  such  as  taurocholic  acid  emulsify   fats   –  Surround  droplets  of  fat,     increase  surface  area  for     a=ack  by  lipases  
  • 141. Cholsteryl  esters  are  more  nonpolar   than  cholesterol   •  Contain  a  fa=y  acid  esterified  to  the  oxygen   –  Comes  from  a  fa=y  acyl-­‐CoA   –  Makes  the  cholesterol  more  hydrophobic,   unable  to  enter  membranes   •  Transported  in  lipoproteins  to  other  <ssues   or  stored  in  liver    
  • 142. Cholesterol  and  other  lipids  are   carried  on  lipoprotein  par=cles   •  Lipids  are  carried   through  plasma   on  spherical     par<cles     –  Surface  is  made     of  apolipoprotein     and  phospholipid     monolayer   –  Interior  contains  cholesterol,  TAGs,  cholesteryl  esters    
  • 143. Four  Major  Classes  of  Lipoprotein   Par=cles   •  Named  based  on  posi<on  of  sedimenta<on  (density)   in  centrifuge   •  Large  enough  to  see  in  electron  microscope   •  Includes:   –  Chylomicrons  (largest  and  least  dense)   –  Very  low-­‐density  lipoproteins  (VLDL)   –  Low-­‐density  lipoproteins  (LDL)   –  High-­‐density  lipoproteins  (HDL)  –  smallest,  most  dense  
  • 144. Electron  Microscope  Pictures  of  Lipoproteins  
  • 145.
  • 146. Apolipoproteins  in  Lipoproteins   •  “Apo”  for  “without”…     –  So  “apolipoprotein”  refers  to  the  protein  part   of  a  lipoprotein  par<cle   •  Provide  sites  for  the  par<cle  to  bind  to  cell   surface  receptors,  ac<vate  enzymes,  etc.   •  At  least  ten  have  been  characterized  in   humans  
  • 147.
  • 148. Chylomicrons  carry  fa'y  acids  to   =ssues   •  Have  more  TAG  and  less  protein  à  hence,   least  dense.   •  Have  ApoB-­‐48,  ApoE,  and  ApoC-­‐II   •  ApoC-­‐II  ac<vates  lipoprotein  lipase  to  allow   FFA  release  for  fuel  in  adipose  <ssue,  heart,   and  skeletal  muscle  
  • 149. Chylomicron  remnants  deposit   their  cholesterol  in  the  liver   •  When  chylomicrons  are  depleted  of  their   TAG,  “remnants”  go  to  liver   •  ApoE  receptors  in  liver  bind  the  remnants,   take  them  up  by  endocytosis   •  Remnants  release  their  cholesterol  in  the   liver  
  • 150. VLDLs  transport  endogenous  lipids     •  Cholesteryl  esters  and  TAGs  from  excess  FA   and  cholesterol  are  packed  into  very  low-­‐ density  lipoproteins  (VLDL)   •  Excess  carbohydrate  in  the  diet  can  also  be   made  into  TAG  in  the  liver  and  packed  into   VLDL   •  Contain  apoB-­‐100,  apoC-­‐I,  apoC-­‐II,  apoC-­‐III,   and  apoE  
  • 151. VLDLs  take  TAGs  to  adipose  =ssue   and  muscle   •  Again,  ApoC-­‐II  ac<vates  lipoprotein  lipase   to  release  free  fa=y  acids   •  Adipocytes  take  up  the  FFA,  reconvert   them  to  TAGs,  and  store  them  in  lipid   droplets   •  Muscle  uses  the  TAG  for  energy  
  • 152. VLDL  remnants  become  LDL   •  Removal  of  TAG  from  VLDL  produces  LDL   •  Because  TAG  removed,  LDL  is  enriched  in   cholesterol/chloesteryl  esters     •  ApoB-­‐100  is  the  major  apolipoprotein  
  • 153. LDLs  carry  cholesterol  from  liver  to   muscle  and  adipose  =ssue   •  Muscle  and  adipose  <ssue  have  LDL   receptors,  recognize  apoB-­‐100    à  Enable  myocytes  and  adipocytes  to  take   up  cholesterol  via  receptor-­‐mediated   endocytosis  
  • 154. Cholesterol  Uptake  by  Receptor-­‐ Mediated  Endocytosis  
  • 155. Familial  hypercholesterolemia  is  associated   with  LDL  receptor  muta=ons   •  Muta<ons  in  LDL  receptor  prevent  normal   uptake  of  LDL  by  liver  and  other  <ssues   •  LDL  accumulates  in  blood   •  Heterozygous  individuals  have  risk  of  heart   a=ack  greater  than  normal   •  Homozygous  individuals  have  much   increased  risk  of  heart  a=ack  
  • 156. HDL  carries  out  reverse  cholesterol   transport   •  HDLs  contain  a  lot  of  protein   –  Including  ApoA-­‐I  and     lecithin-­‐cholesterol  acyl     transferase  (LCAT)   •  Catalyzes  the  forma<on  of     cholesteryl  esters  from     lecithin  and  cholesterol   •  Enzyme  converts  chol  of     chylomicron  and     VLDL  remnants  to     cholesteryl  esters   •  HDL  picks  up  cholesterol  from  cells  and  returns   them  to  the  liver  
  • 157. Five  Modes  of  Regula=on  of  Cholesterol   Synthesis  and  Transport   1)  Covalent  modifica<on  of  HMG-­‐CoA  reductase   2)  Transcrip<onal  regula<on  of  HMG-­‐CoA  gene   3)  Proteoly<c  degrada<on  of  HMG-­‐CoA  reductase   4)  Ac<va<on  of  ACAT,  which  increases  esterifica<on   for  storage   5)  Transcrip<onal  regula<on  of  the  LDL  receptor  
  • 158. Regula=on  of   Cholesterol   Metabolism  
  • 159. HMG-­‐CoA  reductase  is  most  ac=ve  when   dephosphorylated   1)  AMP-­‐dependent  protein  kinase   -­‐  when  AMP  rises,  kinase  phosphorylates  the   enzyme  à  ac<vity  ↓,  cholesterol  synthesis  ↓   2)   Glucagon,  epinephrine   -­‐  cascades  lead  to  phosphoryla<on,  ↓  ac<vity   3)  Insulin   -­‐  cascades  lead  to  dephosphoryla<on,↑  ac<vity   Covalent    modifica=on  provides  short-­‐term  regula=on.   LOW Energy Level
  • 160. Longer-­‐term  Regula=on  of  HMG-­‐CoA   Reductase  through  Transcrip=onal  Control   •  Sterol  regulatory  element-­‐binding  proteins   (SREBPs)   –  When  sterol  levels  are  high,  SREBP  is  in  ER   membrane  with  other  proteins     –  When  sterol  levels  decline,  complex  is  cleaved,   moves  to  the  nucleus   –  SREBP  ac<vates  transcrip<on  of  HMG-­‐CoA   reductase  and  LDL  receptor  as  well  as  other   genes  à  more  cholesterol  produced  and   imported  
  • 161. Regula=on  of  Cholesterol  Synthesis  by  SREBP  
  • 162. Regula=on  of  HMG-­‐CoA  Reductase  by   Proteoly=c  Degrada=on   •  Insig  (insulin-­‐induced  gene  protein)  senses   cholesterol  levels.   –  Binds  to  HMG-­‐Co-­‐A  reductase,   –  Triggers  ubiquina<on  of  HMG-­‐CoA  reductase   –  Targets  the  enzyme  for  degrada<on  by   proteasomes   –  Also  prevents  the  synthesis  of  HMG-­‐CoA   reductase  (complexing  and  inhibi<ng  SREBP)  
  • 163. Cardiovascular  disease  (CVD)  is   mul=-­‐factorial   •  Very  high  LDL-­‐cholesterol  levels  tend  to   correlate  with  atherosclerosis   –  Although  many  heart  a=ack  vic<ms  have   normal  cholesterol,  and  many  people  with  high   cholesterol  do  not  have  heart  a=acks   •  Low  HDL-­‐cholesterol  levels  are  nega<vely   associated  with  heart  disease  
  • 164. How  Plaques  Form   •  LDL  with  partly  oxidized  fa=y  acyl  groups   s<cks  to  the  lining  of  arteries   •  A=racts  macrophage  cells  of  the  immune   system   •  These  cells  don’t  regulate  their  uptake  of   sterols,  so  they  accumulate  cholesterol  and   cholesteryl  esters   •  The  macrophages  become  foam  cells   (named  for  appearance)  
  • 165. How  Plaques  Form  (cont.)   •  Foam  cells  undergo  apoptosis   •  Remnants  accumulate,  along  with  scar   <ssue,  etc.   •  Can  occlude  a  blood  vessel  or  break  off  and   travel  to  another  artery   •  Occlusion  of  blood  vessels  in  the  heart   cause  heart  a=ack;  occlusion  in  the  brain   causes  stroke  
  • 166. Familial  Hypercholesterolemia   •  Due  to  gene<c  muta<on  in  LDL  receptor   •  Impairs  receptor-­‐mediated  uptake  of  cholesterol   from  LDL       •  Cholesterol  accumulates  in  the  blood  and  in  foam   cells   •  Regula<on  mechanisms  based  on  cholesterol   sensing  inside  the  cell  don’t  work   •  Homozygous  individuals  can  experience  severe   CVD  as  youths  
  • 167. Reverse  cholesterol  transport  by  HDL  explains   why  HDL  is  cardioprotec=ve   •  HDL  picks  up  cholesterol  from  non-­‐liver   <ssues,  including  foam  cells  at  growing   plaques   •  ABC  (ATP-­‐Binding  Casse=e)  transporters   bring  cholesterol  from  inside  the  cell  to  the   plasma  membrane   •  HDL  carries  cholesterol  back  to  liver  
  • 169. Ques=on  7  (Take  home  exam)     Due:  NEXT  WEEK  (js=ban@birzeit.edu)   •  Please  solve  ques=ons:   1.  6  (uncouplers)   2.  17  (ATP  turnover)   3.  22  (alanine)   4.  24  (diabetes)   For  wri[en  answers,  I  prefer  to  have  them  typed  in  Word.  I   can  accept  the  assignment  in  one  file  sent  to  my  email.  For   answers  that  require  solving  mathemaEcally,  you  can  either   type  them  or  write  them  down  and  scan  them.