Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.                                          Upcoming SlideShare
Loading in …5
×

# Diprotic Acids and Equivalence Points

1,160 views

Published on

Mathematical description of an acid-base system using the tableaux method (including proton balance and mole balance). Equivalence points for carbonic acid are calculated.

Published in: Science
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here • Njce! Thanks for sharing.

Are you sure you want to  Yes  No
Your message goes here

### Diprotic Acids and Equivalence Points

1. 1. Diprotic Acids Tableaux & Equivalence Points aqion.de updated 2017-04-15
2. 2. monoprotic acid: HA diprotic acid: H2A triprotic acid: H3A our focus most prominent representative: carbonic acid (with A-2 =CO3 -2)
3. 3. pure H2O OH- H+ H2O + H2A H2A HA- A-2 OH- H+ acid H2A 5species 2 components
4. 4. Acid H2A (Concepts & Notation) Part 1
5. 5. Two Dissociation Steps H2A ⇄ H+ + HA- ⇄ 2H+ + A-2 Five Species (NS = 5) H+, OH-, H2A, HA-, A-2
6. 6. (1) Species are interrelated by conservation rules: H+ OH- H2A HA- A-2 charge balance massbalance [H2A]+[HA-]+[A-2]=CT [H+] – [OH-] – [HA-] – 2[A-2] = 0 total amount of acid
7. 7. (2) Species are interrelated by Mass-Action Laws: H2A = H+ + HA- HA- = H+ + A-2 H2O = H+ + OH- Kw = {H+ }{OH- } K1 = {H+ }{HA- }/{H2A} H+ OH- H2A HA- A-2 K2 = {H+ }{A-2 }/{HA- } EquilibriumReactions self-ionization of water
8. 8. H+ OH- H2A HA- A-2 Kw = {H+} {OH-} = 10-14 K1 = {H+} {HA-} / {H2A} (1st diss. step) K2 = {H+} {A-2} / {HA-} (2nd diss. step) CT = [H2A] + [HA-] + [A-2] (mass balance) 0 = [H+] – [HA-] – 2[A-2] – [OH-] (charge balance) 5 species (unknowns)  5 equations {..} = activities, [..] = molar concentrations
9. 9. Replace: Activities {..}  Concentrations [..] Kw = [H+] [OH-] K1 = [H+] [HA-] / [H2A] K2 = [H+] [A-2] / [HA-] CT = [H2A] + [HA-] + [A-2] 0 = [H+] – [HA-] – 2[A-2] – [OH-] This is valid for small ionic strengths (I0) or apparent equilibrium constants. Ionization Fractions (a0, a1, a2) exact relation between pH and CT
10. 10. Ionization Fractions a0 = [1 + K1/x + K1K2/x2]-1 [H2A] = CT a0 a1 = [x/K1 + 1 + K2/x]-1 [HA-] = CT a1 a2 = [x2/(K1K2) + x/K2 + 1]-1 [A-2] = CT a2 x = [H+] = 10-pH K1 = 10-6.35 K2 = 10-10.33 carbonic acid mass balance a0 + a1 + a2 = 1 pK1 pK2
11. 11. Exact Relations between pH and CT 4th order equation in x = [H+] = 10-pH 0 = x4 + K1x3 + {K1K2– CTK1– Kw} x2 – K1 {2CTK2 + Kw} x – K1K2Kw x/K21 x/K1K/x x K xC 2 21w T          total amount CT (of acid H2A) for a given pH measured quantities
12. 12. x/K21 x/K1K/x x K xC 2 21w T          constraint: CT  0 CT  (x – Kw/x) x2  Kw x  Kw 1/2 x  10-7 pH  7 (pure water: CT = 0  pH = 7)
13. 13. Remark: Don’t confuse CT with [H2A] CT > [H2A] total amount of acid H2A that enters the solution: CT = [H2A] + [HA-] + [A-2] amount of aqueous species H2A(aq) (dissolved, but non-dissociated)(measured quantity)
14. 14. Generalization (Acids, Ampholytes, Bases) Part 2
15. 15. NS = NC + NR number of species number of equilibrium reactions number of components (master species)
16. 16. C1 C2 ... s1 11 12 s2 21 22 s3 31 32 ... Tableaux Method TOT C1 = 11 s1 + 21 s2 +  31 s3 + ... NSNC matrix of stoichiometric coefficientsNC components NSspecies s2 = 21 C1 + 22 C2 +  ...
17. 17. C1 C2 ... s1 11 12 K1 s2 21 22 K2 s3 31 32 K3 ... Tableaux Method {C1}21 {C2}21 / {s2} = K2 NC components NSspecies s2 = 21 C1 + 22 C2 +  ... equilibrium constants mass-action law
18. 18. Example: pure H2A solution choice is arbitrary (H+ should be included) H+ H2A NC = 2 A set of NC components defines a basis in the „vector space“ of chemical species.
19. 19. H+ H2A H+ 1 OH- -1 -Kw H2A 1 HA- -1 1 -K1 A-2 -2 1 -K1K2 H2A 0 1 pure H2A solution (NS = 5, NC = 2) TOT H = [H+] –  [HA-] – 2[A-2] – [OH-] = 0 chargebalance=protonbalance
20. 20. Generalization BnH2-n A B+ = Na+, K+, NH4 + n = 0 acid n = 1 ampholyte n = 2 base H2A BHA B2A
21. 21. A clever choice of components simplifies the calculations: n C1 C2 0 H2A H+ H2A 1 BHA H+ HA- 2 B2A H+ A-2 also called Proton Reference Level (PRL)
22. 22. H+ H2A B+ H+ 1 OH- -1 -Kw H2A 1 HA- -1 1 -K1 A-2 -2 1 -K1K2 B+ 0 H2A 0 1 0 pure H2A solution TOT H = [H+] –  [HA-] – 2[A-2] – [OH-] = 0 n=0
23. 23. H+ HA- B+ H+ 1 OH- -1 -Kw H2A 1 1 K1 HA- 1 A-2 -1 1 -K2 B+ 1 BHA 0 1 1 pure BHA (or HA-) solution TOT H = [H+] +  [H2A] – [A-2] – [OH-] = 0 n=1
24. 24. H+ A-2 B+ H+ 1 OH- -1 -Kw H2A 2 1 K1K2 HA- 1 1 K2 A-2 1 B+ 2 B2A 0 1 2 pure B2A (or A-2) solution TOT H = [H+] + 2[H2A] + [HA-] – [OH-] = 0 n=2
25. 25. H+ H2-nA-n B+ n=0 n=1 n=2 H+ 1 OH- -1 -Kw -Kw -Kw H2A n 1 1 K1 K1K2 HA- n-1 1 -K1 1 K2 A-2 n-2 1 -K1K2 -K2 1 B+ n BnH2-nA 0 1 n General Case: pure BnH2-nA solution TOT H = [H+] – [OH-] + n[H2A] + (n-1)[HA-] + (n-2)[A-2] = 0
26. 26. Kw = {H+} {OH-} = 10-14 K1 = {H+} {HA-} / {H2A} (1st diss. step) K2 = {H+} {A-2} / {HA-} (2nd diss. step) CT = [H2A] + [HA-] + [A-2] (mass balance) 0 = [H+] + n[H2A] + (n-1)[HA-] + (n-2)[A-2] – [OH-] General Case: pure BnH2-nA solution (proton balance) Set of 5 equations
27. 27. only for n=0: proton balance = charge balance The general case (BnH2-nA) differs from the pure acid case (H2A) by the proton balance only TOT H = [H+] + n[H2A] + (n-1)[HA-] + (n-2)[A-2] – [OH-] = 0 [H+] – [HA-] – 2[A-2] – [OH-] = 0 Proton Balance
28. 28. Set of 5 equations replace activities {..} by concentrations [..] (or K by conditional equilibrium constants cK) closed-form 4th order equation in x=[H+] 0 = x4 + {K1+ nCT} x3 + {K1K2+ (n-1)CTK1– Kw} x2 + K1 {(n-2)CTK2– Kw} x – K1K2Kw exact relation between CT and pH=-log x
29. 29. C C convert 4th-order equation to CT 12 12w T K/x)n0()n1(x/K)n2( K/x1x/K x K xC          total amount of BnH2-nA as a function of pH = – log x 1 21 2w T n x/KK/x1 x/K21 x K xC                 
30. 30. Ionization Fractions a0 = [1 + K1/x + K1K2/x2]-1 [H2A] = CT a0 a1 = [x/K1 + 1 + K2/x]-1 [HA-] = CT a1 a2 = [x2/(K1K2) + x/K2 + 1]-1 [A-2] = CT a2 x = [H+] = 10-pH are independent of n (same for pure H2A, HBA, B2A solutions)
31. 31. Equivalence Points (of Carbonic Acid & Co) Part 3
32. 32. Equivalence Points (EP) n=0 pH of pure H2A solution: [H+] = [HA-] n=1 pH of pure BHA solution: [H2A] = [A-2] n=2 pH of pure B2A solution: [HA-] = [OH-] amount of acid amount of base=
33. 33. Carbonic Acid & Co pH of pure H2CO3 solution: [H+] = [HCO3 -] pH of pure NaHCO3 solution: [H2CO3] = [CO3 -2] pH of pure Na2CO3 solution: [HCO3 -] = [OH-] Equivalence Points pK1 = -log K1 6.35 pK2 = -log K2 10.33 pKw = -log Kw 14.0
34. 34. Calculation of Equivalence Points 1 from Ionization Fractions (a0, a1, a2) 2 from 1 21 2w T n x/KK/x1 x/K21 x K xC                  3 numerical model (e.g. PhreeqC) (incl. activity corrections) exact approximation
35. 35. x = [H+] = 10-pH EP based on Ionization Fractions [H+] = [HA-]  x = CT a1  CT = x2/K1 + x + K2 [H2A] = [A-2]  a0 = a2  x2 = K1K2 (independent of CT) [HA-] = [OH-]  CT a1 = Kw/x  CT = (Kw/x2)(x2/K1 + x + K2) pH = -log x CT[M] [H+] = [HA-] [H2A] = [A-2] [HA-] = [OH-] Example: Carbonic Acid This is an approximation and fails for CT  10-7 M. 1 outside range of applicability self-ionization of H2O is ignored
36. 36. pH CT[M] H2CO3 NaHCO3 Na2CO3 n= 0 n=1 n=2 )pH(fn x/KK/x1 x/K21 x K xC n 1 21 2w T                  Equivalence Points (EP) based on2 n = 0 H2CO3 n = 1 NaHCO3 n = 2 Na2CO3
37. 37. versus EP based on ionization fractions (approximate) Equivalence Points (exact) 1 pH CT[M] H2CO3 NaHCO3 Na2CO3 n=0 n=1 n=2 2 dashed lines )pH(fn x/KK/x1 x/K21 x K xC n 1 21 2w T                 
38. 38. Equivalence Points (EP) pH CT[M] H2CO3 NaHCO3 Na2CO3 I = 0 seawater pK1 6.35 6.00 pK2 10.33 9.10 pKw 14.0 13.9 dashed: seawater conditional (apparent) equilibrium constants at 25 °C [Millero 1995] 2
39. 39. pH CT[M] H2CO3 NaHCO3 Na2CO3  activity corrections  NaHCO3 and NaCO3 - species 3 lines: xlogpHwithn x/KK/x1 x/K21 x K xC 1 21 2w T                  2 dots: PhreeqC calculations with: 3 EP based on Numerical Model
40. 40. Summary of Assumptions done in previous EP Calculations approach self-ionization of water activity corrections formation of complexes (e.g. NaHCO3 -) no no no yes no no yes yes yes 1 2 3 determines behavior at very low CT determines behavior at very high CT (especially for Na2CO3)
41. 41. CT = 10-4 M CT = 10-3 M [H+] = [HCO3 -] [HCO3 -] = [OH-] Equivalence Points (EP) as intersection points EP pH at CT = 10-4 M pH at CT = 10-3 M H2CO3 5.16 4.68 Na2CO3 9.86 10.52 plots based on PhreeqC or aqion calculations demonstrated for two total concentrations CT:
42. 42. www.aqion.de/site/122 (EN) www.aqion.de/site/59 (DE) Ref www.aqion.de/file/acid-base-systems.pdf