SlideShare a Scribd company logo
1 of 98
Download to read offline
‫ر‬َ‫ـد‬ْ‫ق‬‫ِـ‬‫ن‬،،،‫لما‬‫اننا‬ ‫نصدق‬ْْ‫ق‬ِ‫ن‬‫ر‬َ‫د‬
LECTURE (7)
STATE-SPACE REPRESENTATION
OF LTI SYSTEMS
Assist. Prof. Amr E. Mohamed
Agenda
 State Variables of a Dynamical System
 State Variable Equation
 Why State space approach
 Derive Transfer Function from State Space Equation
 Time Response and State Transition Matrix
2
Introduction
 The classical control theory and methods (such as root locus) that we
have been using in class to date are based on a simple input-output
description of the plant, usually expressed as a transfer function. These
methods do not use any knowledge of the interior structure of the
plant, and limit us to single-input single-output (SISO) systems, and as
we have seen allows only limited control of the closed-loop behavior
when feedback control is used.
 Modern control theory solves many of the limitations by using a much
“richer” description of the plant dynamics. The so-called state-space
description provide the dynamics as a set of coupled first-order
differential equations in a set of internal variables known as state
variables, together with a set of algebraic equations that combine the
state variables into physical output variables.
3
Definition of System State
 State: The state of a dynamic system is the smallest set of variables
(𝒙 𝟏, 𝒙 𝟐, … … , 𝒙 𝒏) (called State Variables or State Vector) such that knowledge of
these variables at 𝑡 = 𝑡0, together with knowledge of the input for 𝑡 ≥ 𝑡0 ,
completely determines the behavior of the system for any time t to t0 .
 The number of state variables to completely define the dynamics of the system is
equal to the number of integrators involved in the system (System Order).
 Assume that a multiple-input, multiple-output system involves n integrators (State
Variables).
 Assume also that there are r inputs u1(t), u2(t),……. ur(t) and p outputs y1(t),
y2(t), …….. yp(t).
4
Inner state variables
nxxx ,, 21 
)(1 tu
)(2 tu
)(tur
)(1 ty
)(2 ty
)(typ
General State Representation
 State equation:
 Output equation:
 𝑥 = 𝑆𝑡𝑎𝑡𝑒 𝑉𝑒𝑐𝑡𝑜𝑟
 𝑥 =
𝑑 𝑥(𝑡)
𝑡
= 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑡𝑎𝑡𝑒 𝑉𝑒𝑐𝑡𝑜𝑟
 𝑢 = 𝐼𝑛𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟
 𝑦 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟
 𝐴 = 𝑆𝑡𝑎𝑡𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 = 𝑆𝑦𝑠𝑡𝑒𝑚 𝑀𝑎𝑡𝑟𝑖𝑥
 𝐵 = 𝐼𝑛𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥
 𝐶 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥
 𝐷 = 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥
)()()( tuBtxAtx 
)()()( tuDtxCty 
Dynamic equations
State-Space Equations (Model)
 State equation:
 Output equation:
6
)()()( tuBtxAtx 
)()()( tuDtxCty 
Dynamic equations
1
2
1
)(
)(
)(
)(














nn tx
tx
tx
tx

1
2
1
)(
)(
)(
)(














rr tu
tu
tu
tu

1
2
1
)(
)(
)(
)(
















pp ty
ty
ty
ty

State Vector
State variable
Input Vector Output Vector










 nnA










 rnB










 npC
1
2
1
)0(
)0(
)0(
)0(














nnx
x
x
x











 rpD
Block Diagram Representation Of State Space Model
7
C
A
D
B
s
1
+
+
+
-
)(tu )(ty
)(tx)(tx
Input/Output Models vs State-Space Models
 State Space Models:
 consider the internal behavior of a system
 can easily incorporate complicated output variables
 have significant computation advantage for computer simulation
 can represent multi-input multi-output (MIMO) systems and nonlinear
systems
 Input/Output Models:
 are conceptually simple
 are easily converted to frequency domain transfer functions that are more
intuitive to practicing engineers
 are difficult to solve in the time domain (solution: Laplace transformation)
8
Some definitions
 System variable: any variable that responds to an input or initial
conditions in a system
 State variables: the smallest set of linearly independent system
variables such that the values of the members of the set at time t0
along with known forcing functions completely determine the value of
all system variables for all t ≥ t0
 State vector: a vector whose elements are the state variables
 State space: the n-dimensional space whose axes are the state variables
 State equations: a set of first-order differential equations with b
variables, where the n variables to be solved are the state variables
 Output equation: the algebraic equation that expresses the output
variables of a system as linear combination of the state variables and
the inputs.
General State Representation
1. Select a particular subset of all possible system variables, and call
state variables.
2. For nth-order, write n simultaneous, first-order differential equations
in terms of the state variables (state equations).
3. If we know the initial condition of all of the state variables at 𝑡0 as
well as the system input for 𝑡 ≥ 𝑡0, we can solve the equations
State-Space Representation of nth-Order Systems of Linear
Differential Equations
 Consider the following nth-order system:
𝒚
(𝒏)
+ 𝒂 𝟏 𝒚
(𝒏−𝟏)
+ … + 𝒂 𝒏−𝟏 𝒚 + 𝒂 𝒏 𝒚 = 𝒖
 where y is the system output and u is the input of the System.
 The system is nth-order, then it has n-integrators (State Variables)
 Let us define n-State variables
11
State-Space Representation of nth-Order Systems of Linear
Differential Equations (Cont.)
 Then the last Equation can be written as
12
State-Space Representation of nth-Order Systems of Linear
Differential Equations (Cont.)
 Then, the stat-space state equation is
 where
13
State-Space Representation of nth-Order Systems of Linear
Differential Equations (Cont.)
 Since, the output equation is
 Then, the stat-space output Equation is
 where
14
Example #1
 From the diagram, the system Equation is
𝑀 𝑦 + 𝐵 𝑦 + 𝐾𝑦 = 𝑓(𝑡)
 This system is of second order. This means that the system involves two
integrators (State Variables).
 Let us define the state variables
𝑥1 = 𝑦
𝑥2 = 𝑦
 Then, we obtain
𝑥1 = 𝑦 = 𝑥2
𝑥2 = 𝑦 =
1
𝑀
−𝐵 𝑦 + 𝐾𝑦 −
1
𝑀
𝑓 𝑡 =
−𝐵
𝑀
𝑥2 −
𝐾
𝑀
𝑥1 −
1
𝑀
𝑓 𝑡
15
y
K
M
B
f(t)
Example #1 (Cont.)
 Then, the State Space equation is
𝑥1
𝑥2
=
0 1
−𝐾
𝑀
−𝐵
𝑀
𝑥1
𝑥2
+
0
1
𝑀
𝑓(𝑡)
 The output Equation is
𝑦 = 1 0
𝑥1
𝑥2
 The System Block diagram is
16
Example #2
17
LR
c)(tei )(tec
+
- )(ti
+
-
 
t
i tedtti
cdt
tdi
LtRi
0
)()(
1)(
)(


dttitx
titx
let
)()(
)()(
2
1
)()( tity 
  



































2
1
2
1
2
1
01)(
)(
0
1
01
1
x
x
ty
teLx
x
LCL
R
x
x
i


)()(ˆ
)()(ˆ
2
1
tetx
titx
let
c

)()( tity 
  



























 






2
1
2
1
2
1
ˆ
ˆ
01)(
)(
0
1
ˆ
ˆ
01ˆ
ˆ
x
x
ty
teL
x
x
L
L
R
L
R
x
x
i

Remark : the choice of states is not unique.
Example #3
18
M2 M1
B3
B1B2
K
1y2y
)(tf
0)()(
)()()(
121222322
212121111


yyKyyByByM
tfyyKyyByByM


24
13
22
11
yx
yx
yx
yx
let






)(
4
3
2
1
4
3
2
1
tf
x
x
x
x
x
x
x
x


























































Example #4
 Find the state space model for a system that described by the following
differential equation
 Solution:
 The system is 3rd order, then it has three states as follows
 The output equation is
rcccc 2424269  
cx 1
cx 2
cx 3
21 xx 
32 xx 
rxxxx 2492624 3213 
1xcy 
differentiation
Example #4
 











3
2
1
001
x
x
x
y
r
x
x
x
x
x
x











































24
0
0
92624
100
010
3
2
1
3
2
1



State-Space Representations of
Transfer Function Systems
21
State-Space Representation in Canonical Forms
 We here consider a system defined by
 where u is the control input and y is the output. We can write this
equation as
 we shall present state-space representation of the system defined by
(1) and (2) in controllable canonical form, observable canonical form,
and diagonal canonical form.
22
Controllable Canonical Form
 We consider the following state-space representation, being called a
controllable canonical form, as
 Note that the controllable canonical form is important in discussing the
pole-placement approach to the control system design.
23
Observable Canonical Form
 We consider the following state-space representation, being called an
observable canonical form, as
24
Diagonal Canonical Form
 Diagonal Canonical Form greatly simplifies the task of computing the
analytical solution to the response to initial conditions.
 We here consider the transfer function system given by (2). We have the
case where the dominator polynomial involves only distinct roots. For
the distinct root case, we can write (2) in the form of
25
Diagonal Canonical Form (Cont.)
 The diagonal canonical form of the state-space representation of this
system is given by
26
Example #5
 Obtain the state-space representation of the transfer function system
(16) in the controllable canonical form.
 Solution: From the transfer function (16), we obtain the following
parameters: b0 = 1, b1 = 3, b2 = 3, a1 = 2, and a2 = 1. The resulting
state-space model in controllable canonical form is obtained as
27
Example #6
 Find the state-space representation of the following transfer function
system (13) in the diagonal canonical form.
 Solution: Partial fraction expansion of (13) is
 Hence, we get A = −1 and B = 3. We now have two distinct poles. For
this, we can write the transfer function (13) in the following form:
28
State Space model to Transfer
Function
29
 The state space model
 by Laplace transform
 Then, the transfer function is
     sBUsAXssX 
     sDUsCXsY 
     sBUAsIsX
1

BuAxx 
DuCxy 
      sUDBAsICsY 
1
   
 
  DBAsIC
sU
sY
sT 
1
State Space model to Transfer Function
Example (2)
 Find the transfer function from the following transfer function
 Solution:
uxx























0
0
10
321
100
010
  xy 001
 














321
10
01
s
s
s
AsI
 
)det(
)(1
AsI
AsIadj
AsI




123
)12(
)3(1
13)23(
23
2
2















sss
sss
sss
sss
Example (2)
    DBAsICsT 
1
 
123
)23(10
23
2



sss
ss
sT
 
123
0
0
10
)12(
)3(1
13)23(
001
)( 23
2
2

























sss
sss
sss
sss
sT
System Poles from State Space model
 poles and check the stability of the following state space Example find the
System model
 Solution:
 Since
 To find the poles 
 Then the poles are {-1, -2 }, the system is stable
uxx 













0
5
31
20
  xy 01
02)3(
31
2



 ss
s
s
AsI
  








31
2
s
s
AsI
State-Space Modeling with
MATLAB
34
State-Space Modeling with MATLAB
 MATLAB uses the controllable canonical form by default when converting from
a state space model to a transfer function. Referring to the first example
problem, we use MATLAB to create a transfer function model and then convert
it to find the state space model matrices:
35
State-Space Modeling with MATLAB
 Note that this does not match the result we obtained in the first example. See
below for further explanation. No we create an LTI state space model of the
system using the matrices found above:
36
State-Space Modeling with MATLAB
 we can generate the observable and controllable models as follows:
37
State transition matrix
38
Introduction
 The behavior of x(t) and y(t):
1) Homogeneous solution of x(t).
2) Non-homogeneous solution of x(t).
39
)()()(
)()()(
tDutCxty
tButAxtx
dt
d


Homogeneous solution
 State transition matrix
40
)0()()(
)()0()(
)()(
1
xAsIsX
sAXxssX
tAxtx




)0(
)0(])[()( 11
xe
xAsILtx
At

 
])[()( 11 

 AsILet At
)()()()()(
)()0(
)0()(
000
)(
0
0
0
00
0
0
txtttxetxeetx
txex
xetx
ttAAtAt
At
At





State Transition Matrix Properties
41
)()(.5
)()()(.4
)()()0(.3
)()(.2
)0(.1
020112
1
ktt
tttttt
txtx
tt
I
k






])[()( 11 

 AsILet At
Non-homogeneous solution
42
)()()(
)()()(
tDutCxty
tButAxtx
dt
d


 






t
dButxttx
sBUAsILxAsILtx
sBUAsIxAsIsX
sBUxsXAsI
sBUsAXxssX
0
1111
11
)()()0()()(
)]()[()0(])[()(
)()()0()()(
)()0()()(
)()()0()(
 Convolution
Homogeneous
Non-homogeneous solution (Cont.)
43
)()()()()()(
)()()()()(
)()()0()()(
0
0
00
00
0
tDudButCtxttCty
dButtxtttx
dButxttx
t
t
t
t
t









Zero-input response Zero-state response
Example 1
44
 T
xlet
tu
x
x
x
x
00)0(
)(
1
0
32
10
2
1
2
1




































 


tttt
ttt
At
eeee
eeee
eAsILt 22
212
11
222
2
])[()(
 
t
dButxttx
0
)()()0()()( 


















tt
tt
ee
ee
x
x
2
2
2
1
2
1
2
1
Ans: )]()[( 11
sBUAsIL 

stepunittu )(
How to find State transition matrix
45
Methode 1: ])[()( 11 
 AsILt
Methode 3: Cayley-Hamilton Theorem
Methode 2:
At
et  )(
])[()( 11 

 AsILet At
Method 1:
46
])[()( 11 
 AsILt







































































3
2
1
2
1
2
1
3
2
1
3
2
1
1
0
0
0
0
1
)(
)(
10
01
00
211
340
010
x
x
x
ty
ty
u
u
x
x
x
x
x
x




















 
ssss
ss
sss
ssssAsI
AsIadj
AsI
414
323
32116
33)2)(4(
1)(
)(
2
2
2
1
Method 2:
47
At
et  )(
 



































































3
2
1
2
1
2
1
3
2
1
3
2
1
166
)(
)(
1
1
1
300
020
001
x
x
x
ty
ty
u
u
x
x
x
x
x
x

















t
t
t
At
e
e
e
et
3
2
00
00
00
)(
diagonal matrix
linear system by Meiling CHEN 48
Diagonization
linear system by Meiling CHEN 49
Diagonization
50
Case 1: distincti 
)1)(3(
43
1
43
10










 


A
1
3
2
1
































3
1
0
433
13
)(
2
1
2
1
11
v
v
v
v
VAI
























 

1
1
0
33
11
)(
2
1
2
1
22
v
v
v
v
VAI
depend
  














 
10
03
13
11 1
21 APPVVP
51
n  321
In the case of A matrix is phase-variable form and
 













 11
2
1
1
21
21
111
n
n
nn
n
nvvvP





Vandermonde matrix
for phase-variable form













4
3
2
1
1




APP
1
 PPee tAt
52
Case 2: distincti 
)2)(1)(1(
200
010
101
200
010
101














 
 



 AIA
0
100
000
100
)(
3
2
1
11 






















v
v
v
VAI
21  
depend












































0
1
0
000
0
0
1
000
3
2
1
321
3
2
1
321
v
v
v
vvv
v
v
v
vvv
21 VV 
53
0
000
010
101
)(
3
2
1
33 





















v
v
v
VAI
23 






















1
0
1
00
3
2
1
321
v
v
v
vvv
 




















 
 
200
010
001
100
010
101
1
321 APPVVVP
54
Case 3: distincti  Jordan form
321  
  formJordanAPPvvvP  1
321
Generalized eigenvectors
231
121
11
)(
)(
0)(
vvAI
vvAI
vAI

















1
1
1
1
1
1
ˆ



AAPP











t
tt
tttt
tA
e
tee
etee
e
1
11
1
2
11
2
ˆ



55
Example:
2
)2(
11
13
11
13










 


A
























 

1
1
0
11
11
)(
12
11
12
11
11
v
v
v
v
VAI






























 

0
1
1
1
11
11
)(
22
21
22
21
21
v
v
v
v
VAI
  












 
20
12ˆ
01
11 1
21 AAPPVVP
1ˆ
2
22
ˆ 






 PPee
e
tee
e tAAt
t
tt
tA
56
Method 3:
57
AaAaIaAaAaa
AaAaAaA
IaAaAaA
IaAaAaA
n
nn
n
n
n
n
n
n
n
n
n
0
2
101
1
11
0
2
11
1
01
1
1
01
1
1
)(
0
















  n
n AkAkAkIkAf 2
210)(any







1
0
1
1
2
210)(
n
k
k
k
n
n
A
AAAIAf

 
58







10
21
?100
AA
Example:
AIAAflet 10
100
)(  
2,1,0)2)(1(
20
21
21 





100
210
100
22
100
110
100
11
2)(
1)(




f
f
12
22
100
1
100
0









 













10
221
10
21
)12(
10
01
)22()(
101
100100100
AAf
59





 

02
13
? AeAt
Example:
2,1,0
2
13
21 





2)2(
)1(
10210
2
10110






t
t
ef
ef
tt
tt
ee
ee




2
1
2
0 2
















 










tttt
tttt
ttttAt
eeee
eeee
eeeee
222
2
02
13
)(
10
01
2
22
22
22
60
61
62
linear system by Meiling CHEN 63
linear system by Meiling CHEN 64
linear system by Meiling CHEN 65
Controllability and Observability
66
Introduction
 The main objective of using state-space equations to model systems is
the design of suitable compensation schemes to control these systems.
 Typically, the control signal u(t) is a function of several measurable
state variables. Thus, a state variable controller, that operates on the
measurable information is developed.
 State variable controller design is typically comprised of three steps:
 Assume that all the state variables are measurable and use them to design a
full-state feedback control law. In practice, only certain states or
combination of them can be measured and provided as system outputs.
 An observer is constructed to estimate the states that are not directly
sensed and available as outputs. Reduced-order observers take advantage of
the fact that certain states are already available as outputs and they don’t
need to be estimated.
 Appropriately connecting the observer to the full-state feedback control law
yields a state-variable controller, or compensator. 67
Introduction
 a given transfer function G(s) can be realized using infinitely many
state-space models
 certain properties make some realizations preferable to others
 one such property is controllability
68
Motivation1: Controllability
69
  
































2
1
2
1
2
1
01
)(
0
1
10
12
x
x
y
tu
x
x
x
x


1
s 1
s 1
1 2
u y1x2x
s
x )0(2
s
x )0(1
1 1x2x
1
controllable
uncontrollable
Controllability and Observability
 Plant:
 Definition of Controllability
70
DuCxy
RxBuAxx n

 ,
A system is said to be (state) controllable at time , if
there exists a finite such for any and any ,
there exist an input that will transfer the state
to the state at time , otherwise the system is said to
be uncontrollable at time .
0t
01 tt  )( 0tx 1x
][ 1,0 ttu )( 0tx
1x 1t
0t
Controllability Matrix
 Consider a single-input system (u ∈ R):
 The Controllability Matrix is defined as
 We say that the above system is controllable if its controllability matrix
𝐶(𝐴, 𝐵) is invertible.
 As we will see later, if the system is controllable, then we may assign
arbitrary closed-loop poles by state feedback of the form 𝑢 = −𝐾𝑥.
 Whether or not the system is controllable depends on its state-space
realization.
71
 
 BABAABBBAC
nCrankBA
n 12
),(
,)(leControllab,




Example: Computing 𝐶(𝐴, 𝐵)
 Let’s get back to our old friend:
 Here,
 Is this system controllable?
72
Controllability Matrix
73
1
1
)(sU
)(sY
1
-1
s
3
-1
s
2
Example: An Uncontrollable System
 xy
uxx
21
0
1
30
01
















1x
2x
※ State is uncontrollable.2x
0)det(  U
 BABAABBU n 12
MatrixilityControllab 
 
Ruif
Proof of controllability matrix
74
 

































)1(
)2(
1
)1()2(1
21
)1()2(1
21
1
2
12
112
1
)(
nk
nk
k
n
k
n
nk
nknkk
n
k
n
k
n
nk
nknkk
n
k
n
k
n
nk
kkkkkkk
kkk
kkk
u
u
u
BABBAxAx
BuABuBuABuAxAx
BuABuBuABuAxAx
BuABuxABuBuAxAx
BuAxx
BuAxx




Initial condition
Motivation2: Observability
75
  
































2
1
2
1
2
1
01
)(
1
3
10
02
x
x
y
tu
x
x
x
x


1
s 1
s 1
1 2
u y1x2x
s
x )0(2
s
x )0(1
1 1x2x
3
observable
unobservable
Controllability and Observability
 Plant:
 Definition of Observability
76
DuCxy
RxBuAxx n

 ,
A system is said to be (completely state) observable at
time , if there exists a finite such that for any
at time , the knowledge of the input and the
output over the time interval suffices to
determine the state , otherwise the system is said to be
unobservable at .
0t 01 tt  )( 0tx
][ 1,0 ttu
],[ 10 tt
0x
0t
0t
][ 1,0 tty
Observability Matrix
77
Example: An Unobservable System
 xy
uxx
40
1
0
20
10















※ State is unobservable.1x
1)(sU -1
s
-1
s 1x2x
2
4
)(sY
  nVrankCA  )(Observable, 0)det(  V

















1
2
MatrixityObservabil
n
CA
CA
CA
C
V

Ry if
Proof of observability matrix
78
 
 )1()2()3(11
1
)1()2(1
321
1
111
111
1
)(),2(),1(
)(
)2()(
)1(



























nknknkkkkkk
k
n
nknkk
n
k
n
k
n
nk
kkkkkkk
kkk
kkk
kkk
DuCBuCABuDuCBuyDuy
x
CA
CA
C
n
nDuCBuBuCABuCAxCAy
DuCBuCAxDuBuAxCy
DuCxy
DuCxy
BuAxx






Inputs & outputs
Example
 Plant:
 Hence the system is both controllable and observable.
79
 10,
1
0
,
01
10












 CBA
DuCxy
RxBuAxx n

 ,
 




















01
10
MatrixtyObervabili
01
10
MatrixilityControllab
CA
C
N
ABBV
2)()(  NrankVrank
Controllability and Observability
80
Theorem I
)()()( tuBtxAtx cccc 
Controllable canonical form Controllable
Theorem II
)()(
)()()(
txCty
tuBtxAtx
oo
oooo


Observable canonical form Observable
 A system in Controller Canonical Form (CCF) is always controllable!!
 A system in Observable Canonical Form (OCF) is always controllable!!
Example
81
  c
cc
xy
uxx
12
1
0
32
10














Controllable canonical form
 






















12
12
31
10
CA
C
V
ABBU
nVrank
nUrank


1][
2][
  o
oo
xy
uxx
10
1
2
31
20















Observable canonical form
 























31
10
11
22
CA
C
V
ABBU
nVrank
nUrank


2][
1][
)2)(1(
2
)(



ss
s
sT
Linear system (Analysis)
82
Theorem III
)()()(
)()()(
tDutCxty
tButJxtx


Jordan form
 321
3
2
1
3
2
1
CCCC
B
B
B
B
J
J
J
J























Jordan block
Least row
has no zero
row
First column has no zero column
Example
83
 xccy
ub
b
xx
3
1100
020
012
1211
12
11























If 012 b uncontrollable
If 011 c unobservable
84
xy
uxx





























































2
1
0
203
102
200
201
101
211
100
010
211
100
010
001
000
1
1
1
2
2
2
1
1
1
1








11b
12b
13b
21b
11C 12C 13C 21C
85
   
    ....
....
21131211
21131211
ILCILCCC
ILbILbbb

 controllable
observable
In the previous example
   
    ....
....
21131211
21131211
DLCILCCC
ILbILbbb

 controllable
unobservable
86









 












































0
0
1
001
002
113
111
111
122
0
1
0
0
1
1
001
123
111
112
112
1
1
11
2
2
2
12
y
uxx
L.I.
L.I.
L.I. L.D.
Example
Kalman Canonical Decomposition
 Diagonalization: &
 All the Eigenvalues of A are distinct, i.e.
 There exists a coordinate transform such that
 System in z-coordinate becomes
 Homogeneous solution of the above state equation is
87
BuAxx  DuCxy 
n  321
Txz 
.
0
0
where
1
1










 
n
mm AATTA



zCy
uBzAz
m
mm


)0()0()( 11
1
n
t
n
t
zevzevtz n
 
 mnmm
mn
m
m
ccCTC
b
b
BTB


1
1
1











 
observableandlecontrollabismode0,and0If i mimi cb
How to construct coordinate transformation matrix for diagonalization
 All the Eigenvalues of A are distinct, i.e.
 The coordinate matrix for diagonalization
 Consider diagonalized system
88
][ 21 n,v,, vvT 
t.independenare,rs,Eigenvecto 21 n,v,, vv 
n  321
ubzλz
ubzz
ubzz
mnnnn
m
m







2222
1111


nmnmm zczczcy  2211
Transfer function is
 H(s) has pole-zero cancellation.
89
n
mnmnmm
n
i i
mimi
s
bc
s
bc
s
bc
sH
 




 

1
11
1
)(
le,unobservaborableuncontrollismode0,or0If i mimi cb
1
 1mc1mb
2
 2mc2mb
n
 mncmnb
∑

)(tu
)(ty







Kalman Canonical Decomposition
90
)(ty
OC
S

COS
OC
SOC
S

)(tu
SubsystembleUnobservale,Controllab:OC
S
SubsystemObservableable,Uncontroll:OC
S
SubsystemObservablele,Controllab:COS
SubsystembleUnobservaable,Uncontroll:OC
S
Kalman Canonical Decomposition: State Space Equation
91
 xCCy
u
B
B
x
x
x
x
A
A
A
A
x
x
x
x
OCCO
OC
CO
OC
OC
OC
CO
OC
OC
OC
CO
OC
OC
OC
CO
00
0
0
000
000
000
000























































(5.X)
Example
92
 xcccy
u
b
b
b
xx
311211
31
12
11
300
020
001























3mode0,If 13 b
3mode0,If 13 c
The same reasoning may be applied to mode 1 and 2.
Plant:
is uncontrollable.
is unobservable.
Pole-zero Cancellation in Transfer Function
 From Sec. 5.2, state equation
 may be transformed to
93
n
mnmnmm
n
i i
mimi
s
bC
s
bC
s
bC
sH
 




 

1
11
1
)(
Hence, the T.F. represents the controllable and observable
parts of the state variable equation.
BuAxx 
DuCxy 
T.F..invanishesandableuncontrollismode,0If imib
T.F..invanishesandleunobservabismode0,If imic
Example
 Plant:
 Transfer Function
94
  BAsICsH
sU
sY 1
)(
)(
)( 

  
 
  
 
 
 
4
1
2
22
10
42
1
1
2
41
02
10
42
1






























s
s
s
ss
s
s
ss
4,2 21  
 xy
uxx
10
1
2
21
04
















T.F..invanishes"-2"Mode
Example 5.6
 Plant:
 Transfer Function
95
uxx 













1
2
11
60

 xy 10
 
3
1
)(
)(
)( 1



s
BAsICsT
sU
sY
T.F..invanishes"2"Mode
-3,2 21  
Minimum Realization
 Realization:
 Realize a transfer function via a state space equation.
 Example
 Realization of the T.F.
 Method 1:
 Method 2:
 There is infinity number of realizations for a given T.F. .
96
3
1
)(


s
sT
1 1)(sU )(sY
3
1 1)(sU )(sY-1
s
3
2
-1
s
-1
s
1
3
1
)(
)(
)(


s
sT
sU
sY
2
2
3
1
)(
)(
)(





s
s
s
sT
sU
sY
Minimum Realization
 Minimum realization:
 Realize a transfer function via a state space equation with elimination of its
uncontrollable and unobservable parts.
 Example 5.8
 Realization of the T.F.
97
3
5
)(
)(
)(


s
sT
sU
sY
1 5)(sU )(sY
3
-1
s
3
5
)(


s
sT
98

More Related Content

What's hot

Lyapunov stability analysis
Lyapunov stability analysisLyapunov stability analysis
Lyapunov stability analysisVanshVarshney
 
Modern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemModern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemAmr E. Mohamed
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsAmr E. Mohamed
 
Control system lectures
Control system lectures Control system lectures
Control system lectures Naqqash Sajid
 
Transfer function and mathematical modeling
Transfer  function  and  mathematical  modelingTransfer  function  and  mathematical  modeling
Transfer function and mathematical modelingvishalgohel12195
 
Lag lead compensator design in frequency domain 7th lecture
Lag lead compensator design in frequency domain  7th lectureLag lead compensator design in frequency domain  7th lecture
Lag lead compensator design in frequency domain 7th lectureKhalaf Gaeid Alshammery
 
Chapter 4 time domain analysis
Chapter 4 time domain analysisChapter 4 time domain analysis
Chapter 4 time domain analysisBin Biny Bino
 
TIME DOMAIN ANALYSIS
TIME DOMAIN ANALYSISTIME DOMAIN ANALYSIS
TIME DOMAIN ANALYSISSyed Saeed
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-functionSaifullah Memon
 
state space modeling of electrical system
state space modeling of electrical systemstate space modeling of electrical system
state space modeling of electrical systemMirza Baig
 
block diagram reduction solved problems
block diagram reduction solved problemsblock diagram reduction solved problems
block diagram reduction solved problemsAmeya Nijasure
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Amr E. Mohamed
 

What's hot (20)

Lyapunov stability analysis
Lyapunov stability analysisLyapunov stability analysis
Lyapunov stability analysis
 
Modern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control SystemModern Control - Lec 01 - Introduction to Control System
Modern Control - Lec 01 - Introduction to Control System
 
Deadbeat Response Design _8th lecture
Deadbeat Response Design _8th lectureDeadbeat Response Design _8th lecture
Deadbeat Response Design _8th lecture
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
 
Lyapunov stability
Lyapunov stability Lyapunov stability
Lyapunov stability
 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysis
 
Control system lectures
Control system lectures Control system lectures
Control system lectures
 
Root locus
Root locus Root locus
Root locus
 
Transfer function and mathematical modeling
Transfer  function  and  mathematical  modelingTransfer  function  and  mathematical  modeling
Transfer function and mathematical modeling
 
Lyapunov stability
Lyapunov stability Lyapunov stability
Lyapunov stability
 
Lag lead compensator design in frequency domain 7th lecture
Lag lead compensator design in frequency domain  7th lectureLag lead compensator design in frequency domain  7th lecture
Lag lead compensator design in frequency domain 7th lecture
 
Nonlinear systems
Nonlinear systemsNonlinear systems
Nonlinear systems
 
Chapter 4 time domain analysis
Chapter 4 time domain analysisChapter 4 time domain analysis
Chapter 4 time domain analysis
 
TIME DOMAIN ANALYSIS
TIME DOMAIN ANALYSISTIME DOMAIN ANALYSIS
TIME DOMAIN ANALYSIS
 
Types of nonlinearities
Types of nonlinearitiesTypes of nonlinearities
Types of nonlinearities
 
6. steady state error
6. steady state error6. steady state error
6. steady state error
 
Lecture 2 transfer-function
Lecture 2 transfer-functionLecture 2 transfer-function
Lecture 2 transfer-function
 
state space modeling of electrical system
state space modeling of electrical systemstate space modeling of electrical system
state space modeling of electrical system
 
block diagram reduction solved problems
block diagram reduction solved problemsblock diagram reduction solved problems
block diagram reduction solved problems
 
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
Modern Control - Lec 05 - Analysis and Design of Control Systems using Freque...
 

Similar to Modern Control - Lec07 - State Space Modeling of LTI Systems

lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptHebaEng
 
Chapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.pptChapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.pptkhinmuyaraye
 
BEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIBEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIShadab Siddiqui
 
State space courses
State space coursesState space courses
State space coursesKAMEL HEMSAS
 
State equations for physical systems
State equations for physical systemsState equations for physical systems
State equations for physical systemsSarah Krystelle
 
Transfer Function Cse ppt
Transfer Function Cse pptTransfer Function Cse ppt
Transfer Function Cse pptsanjaytron
 
STATE_SPACE_ANALYSIS.pdf
STATE_SPACE_ANALYSIS.pdfSTATE_SPACE_ANALYSIS.pdf
STATE_SPACE_ANALYSIS.pdfBhuvaneshwariTr
 
Am04 ch5 24oct04-stateand integral
Am04 ch5 24oct04-stateand integralAm04 ch5 24oct04-stateand integral
Am04 ch5 24oct04-stateand integralajayj001
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
lecture1 (9).ppt
lecture1 (9).pptlecture1 (9).ppt
lecture1 (9).pptHebaEng
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMijistjournal
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMijistjournal
 
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEMACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEMecij
 
Output Regulation of SPROTT-F Chaotic System by State Feedback Control
Output Regulation of SPROTT-F Chaotic System by State Feedback ControlOutput Regulation of SPROTT-F Chaotic System by State Feedback Control
Output Regulation of SPROTT-F Chaotic System by State Feedback ControlAlessioAmedeo
 
linear algebra in control systems
linear algebra in control systemslinear algebra in control systems
linear algebra in control systemsGanesh Bhat
 

Similar to Modern Control - Lec07 - State Space Modeling of LTI Systems (20)

control systems.pdf
control systems.pdfcontrol systems.pdf
control systems.pdf
 
lecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).pptlecture1ddddgggggggggggghhhhhhh (11).ppt
lecture1ddddgggggggggggghhhhhhh (11).ppt
 
Chapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.pptChapter_3_State_Variable_Models.ppt
Chapter_3_State_Variable_Models.ppt
 
BEC- 26 control systems_unit-II
BEC- 26 control systems_unit-IIBEC- 26 control systems_unit-II
BEC- 26 control systems_unit-II
 
State space courses
State space coursesState space courses
State space courses
 
State equations for physical systems
State equations for physical systemsState equations for physical systems
State equations for physical systems
 
Transfer Function Cse ppt
Transfer Function Cse pptTransfer Function Cse ppt
Transfer Function Cse ppt
 
STATE_SPACE_ANALYSIS.pdf
STATE_SPACE_ANALYSIS.pdfSTATE_SPACE_ANALYSIS.pdf
STATE_SPACE_ANALYSIS.pdf
 
Am04 ch5 24oct04-stateand integral
Am04 ch5 24oct04-stateand integralAm04 ch5 24oct04-stateand integral
Am04 ch5 24oct04-stateand integral
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
lecture1 (9).ppt
lecture1 (9).pptlecture1 (9).ppt
lecture1 (9).ppt
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
 
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEMSTATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
STATE FEEDBACK CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF SPROTT-H SYSTEM
 
Intro Class.ppt
Intro Class.pptIntro Class.ppt
Intro Class.ppt
 
14599404.ppt
14599404.ppt14599404.ppt
14599404.ppt
 
Assignment2 control
Assignment2 controlAssignment2 control
Assignment2 control
 
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEMACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
ACTIVE CONTROLLER DESIGN FOR THE OUTPUT REGULATION OF THE WANG-CHEN-YUAN SYSTEM
 
Output Regulation of SPROTT-F Chaotic System by State Feedback Control
Output Regulation of SPROTT-F Chaotic System by State Feedback ControlOutput Regulation of SPROTT-F Chaotic System by State Feedback Control
Output Regulation of SPROTT-F Chaotic System by State Feedback Control
 
P73
P73P73
P73
 
linear algebra in control systems
linear algebra in control systemslinear algebra in control systems
linear algebra in control systems
 

More from Amr E. Mohamed

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingAmr E. Mohamed
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systemsAmr E. Mohamed
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transformAmr E. Mohamed
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systemsAmr E. Mohamed
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignAmr E. Mohamed
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsAmr E. Mohamed
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)Amr E. Mohamed
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsAmr E. Mohamed
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - IntroductionAmr E. Mohamed
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)Amr E. Mohamed
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsAmr E. Mohamed
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignAmr E. Mohamed
 

More from Amr E. Mohamed (20)

Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Dcs lec03 - z-analysis of discrete time control systems
Dcs   lec03 - z-analysis of discrete time control systemsDcs   lec03 - z-analysis of discrete time control systems
Dcs lec03 - z-analysis of discrete time control systems
 
Dcs lec02 - z-transform
Dcs   lec02 - z-transformDcs   lec02 - z-transform
Dcs lec02 - z-transform
 
Dcs lec01 - introduction to discrete-time control systems
Dcs   lec01 - introduction to discrete-time control systemsDcs   lec01 - introduction to discrete-time control systems
Dcs lec01 - introduction to discrete-time control systems
 
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing ApplicationsDDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
 
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter DesignDSP_2018_FOEHU - Lec 07 - IIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
SE2018_Lec 17_ Coding
SE2018_Lec 17_ CodingSE2018_Lec 17_ Coding
SE2018_Lec 17_ Coding
 
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-ToolsSE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec-22_-Continuous-Integration-Tools
 
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 21_ Software Configuration Management (SCM)
 
SE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design PatternsSE2018_Lec 18_ Design Principles and Design Patterns
SE2018_Lec 18_ Design Principles and Design Patterns
 
Selenium - Introduction
Selenium - IntroductionSelenium - Introduction
Selenium - Introduction
 
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 20_ Test-Driven Development (TDD)
 
SE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software TestingSE2018_Lec 19_ Software Testing
SE2018_Lec 19_ Software Testing
 
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time SignalsDSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
 
SE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software DesignSE2018_Lec 15_ Software Design
SE2018_Lec 15_ Software Design
 

Recently uploaded

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 

Recently uploaded (20)

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 

Modern Control - Lec07 - State Space Modeling of LTI Systems

  • 2. Agenda  State Variables of a Dynamical System  State Variable Equation  Why State space approach  Derive Transfer Function from State Space Equation  Time Response and State Transition Matrix 2
  • 3. Introduction  The classical control theory and methods (such as root locus) that we have been using in class to date are based on a simple input-output description of the plant, usually expressed as a transfer function. These methods do not use any knowledge of the interior structure of the plant, and limit us to single-input single-output (SISO) systems, and as we have seen allows only limited control of the closed-loop behavior when feedback control is used.  Modern control theory solves many of the limitations by using a much “richer” description of the plant dynamics. The so-called state-space description provide the dynamics as a set of coupled first-order differential equations in a set of internal variables known as state variables, together with a set of algebraic equations that combine the state variables into physical output variables. 3
  • 4. Definition of System State  State: The state of a dynamic system is the smallest set of variables (𝒙 𝟏, 𝒙 𝟐, … … , 𝒙 𝒏) (called State Variables or State Vector) such that knowledge of these variables at 𝑡 = 𝑡0, together with knowledge of the input for 𝑡 ≥ 𝑡0 , completely determines the behavior of the system for any time t to t0 .  The number of state variables to completely define the dynamics of the system is equal to the number of integrators involved in the system (System Order).  Assume that a multiple-input, multiple-output system involves n integrators (State Variables).  Assume also that there are r inputs u1(t), u2(t),……. ur(t) and p outputs y1(t), y2(t), …….. yp(t). 4 Inner state variables nxxx ,, 21  )(1 tu )(2 tu )(tur )(1 ty )(2 ty )(typ
  • 5. General State Representation  State equation:  Output equation:  𝑥 = 𝑆𝑡𝑎𝑡𝑒 𝑉𝑒𝑐𝑡𝑜𝑟  𝑥 = 𝑑 𝑥(𝑡) 𝑡 = 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑡𝑎𝑡𝑒 𝑉𝑒𝑐𝑡𝑜𝑟  𝑢 = 𝐼𝑛𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟  𝑦 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑉𝑒𝑐𝑡𝑜𝑟  𝐴 = 𝑆𝑡𝑎𝑡𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 = 𝑆𝑦𝑠𝑡𝑒𝑚 𝑀𝑎𝑡𝑟𝑖𝑥  𝐵 = 𝐼𝑛𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥  𝐶 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥  𝐷 = 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 )()()( tuBtxAtx  )()()( tuDtxCty  Dynamic equations
  • 6. State-Space Equations (Model)  State equation:  Output equation: 6 )()()( tuBtxAtx  )()()( tuDtxCty  Dynamic equations 1 2 1 )( )( )( )(               nn tx tx tx tx  1 2 1 )( )( )( )(               rr tu tu tu tu  1 2 1 )( )( )( )(                 pp ty ty ty ty  State Vector State variable Input Vector Output Vector            nnA            rnB            npC 1 2 1 )0( )0( )0( )0(               nnx x x x             rpD
  • 7. Block Diagram Representation Of State Space Model 7 C A D B s 1 + + + - )(tu )(ty )(tx)(tx
  • 8. Input/Output Models vs State-Space Models  State Space Models:  consider the internal behavior of a system  can easily incorporate complicated output variables  have significant computation advantage for computer simulation  can represent multi-input multi-output (MIMO) systems and nonlinear systems  Input/Output Models:  are conceptually simple  are easily converted to frequency domain transfer functions that are more intuitive to practicing engineers  are difficult to solve in the time domain (solution: Laplace transformation) 8
  • 9. Some definitions  System variable: any variable that responds to an input or initial conditions in a system  State variables: the smallest set of linearly independent system variables such that the values of the members of the set at time t0 along with known forcing functions completely determine the value of all system variables for all t ≥ t0  State vector: a vector whose elements are the state variables  State space: the n-dimensional space whose axes are the state variables  State equations: a set of first-order differential equations with b variables, where the n variables to be solved are the state variables  Output equation: the algebraic equation that expresses the output variables of a system as linear combination of the state variables and the inputs.
  • 10. General State Representation 1. Select a particular subset of all possible system variables, and call state variables. 2. For nth-order, write n simultaneous, first-order differential equations in terms of the state variables (state equations). 3. If we know the initial condition of all of the state variables at 𝑡0 as well as the system input for 𝑡 ≥ 𝑡0, we can solve the equations
  • 11. State-Space Representation of nth-Order Systems of Linear Differential Equations  Consider the following nth-order system: 𝒚 (𝒏) + 𝒂 𝟏 𝒚 (𝒏−𝟏) + … + 𝒂 𝒏−𝟏 𝒚 + 𝒂 𝒏 𝒚 = 𝒖  where y is the system output and u is the input of the System.  The system is nth-order, then it has n-integrators (State Variables)  Let us define n-State variables 11
  • 12. State-Space Representation of nth-Order Systems of Linear Differential Equations (Cont.)  Then the last Equation can be written as 12
  • 13. State-Space Representation of nth-Order Systems of Linear Differential Equations (Cont.)  Then, the stat-space state equation is  where 13
  • 14. State-Space Representation of nth-Order Systems of Linear Differential Equations (Cont.)  Since, the output equation is  Then, the stat-space output Equation is  where 14
  • 15. Example #1  From the diagram, the system Equation is 𝑀 𝑦 + 𝐵 𝑦 + 𝐾𝑦 = 𝑓(𝑡)  This system is of second order. This means that the system involves two integrators (State Variables).  Let us define the state variables 𝑥1 = 𝑦 𝑥2 = 𝑦  Then, we obtain 𝑥1 = 𝑦 = 𝑥2 𝑥2 = 𝑦 = 1 𝑀 −𝐵 𝑦 + 𝐾𝑦 − 1 𝑀 𝑓 𝑡 = −𝐵 𝑀 𝑥2 − 𝐾 𝑀 𝑥1 − 1 𝑀 𝑓 𝑡 15 y K M B f(t)
  • 16. Example #1 (Cont.)  Then, the State Space equation is 𝑥1 𝑥2 = 0 1 −𝐾 𝑀 −𝐵 𝑀 𝑥1 𝑥2 + 0 1 𝑀 𝑓(𝑡)  The output Equation is 𝑦 = 1 0 𝑥1 𝑥2  The System Block diagram is 16
  • 17. Example #2 17 LR c)(tei )(tec + - )(ti + -   t i tedtti cdt tdi LtRi 0 )()( 1)( )(   dttitx titx let )()( )()( 2 1 )()( tity                                        2 1 2 1 2 1 01)( )( 0 1 01 1 x x ty teLx x LCL R x x i   )()(ˆ )()(ˆ 2 1 tetx titx let c  )()( tity                                        2 1 2 1 2 1 ˆ ˆ 01)( )( 0 1 ˆ ˆ 01ˆ ˆ x x ty teL x x L L R L R x x i  Remark : the choice of states is not unique.
  • 19. Example #4  Find the state space model for a system that described by the following differential equation  Solution:  The system is 3rd order, then it has three states as follows  The output equation is rcccc 2424269   cx 1 cx 2 cx 3 21 xx  32 xx  rxxxx 2492624 3213  1xcy  differentiation
  • 22. State-Space Representation in Canonical Forms  We here consider a system defined by  where u is the control input and y is the output. We can write this equation as  we shall present state-space representation of the system defined by (1) and (2) in controllable canonical form, observable canonical form, and diagonal canonical form. 22
  • 23. Controllable Canonical Form  We consider the following state-space representation, being called a controllable canonical form, as  Note that the controllable canonical form is important in discussing the pole-placement approach to the control system design. 23
  • 24. Observable Canonical Form  We consider the following state-space representation, being called an observable canonical form, as 24
  • 25. Diagonal Canonical Form  Diagonal Canonical Form greatly simplifies the task of computing the analytical solution to the response to initial conditions.  We here consider the transfer function system given by (2). We have the case where the dominator polynomial involves only distinct roots. For the distinct root case, we can write (2) in the form of 25
  • 26. Diagonal Canonical Form (Cont.)  The diagonal canonical form of the state-space representation of this system is given by 26
  • 27. Example #5  Obtain the state-space representation of the transfer function system (16) in the controllable canonical form.  Solution: From the transfer function (16), we obtain the following parameters: b0 = 1, b1 = 3, b2 = 3, a1 = 2, and a2 = 1. The resulting state-space model in controllable canonical form is obtained as 27
  • 28. Example #6  Find the state-space representation of the following transfer function system (13) in the diagonal canonical form.  Solution: Partial fraction expansion of (13) is  Hence, we get A = −1 and B = 3. We now have two distinct poles. For this, we can write the transfer function (13) in the following form: 28
  • 29. State Space model to Transfer Function 29
  • 30.  The state space model  by Laplace transform  Then, the transfer function is      sBUsAXssX       sDUsCXsY       sBUAsIsX 1  BuAxx  DuCxy        sUDBAsICsY  1         DBAsIC sU sY sT  1 State Space model to Transfer Function
  • 31. Example (2)  Find the transfer function from the following transfer function  Solution: uxx                        0 0 10 321 100 010   xy 001                 321 10 01 s s s AsI   )det( )(1 AsI AsIadj AsI     123 )12( )3(1 13)23( 23 2 2                sss sss sss sss
  • 32. Example (2)     DBAsICsT  1   123 )23(10 23 2    sss ss sT   123 0 0 10 )12( )3(1 13)23( 001 )( 23 2 2                          sss sss sss sss sT
  • 33. System Poles from State Space model  poles and check the stability of the following state space Example find the System model  Solution:  Since  To find the poles   Then the poles are {-1, -2 }, the system is stable uxx               0 5 31 20   xy 01 02)3( 31 2     ss s s AsI            31 2 s s AsI
  • 35. State-Space Modeling with MATLAB  MATLAB uses the controllable canonical form by default when converting from a state space model to a transfer function. Referring to the first example problem, we use MATLAB to create a transfer function model and then convert it to find the state space model matrices: 35
  • 36. State-Space Modeling with MATLAB  Note that this does not match the result we obtained in the first example. See below for further explanation. No we create an LTI state space model of the system using the matrices found above: 36
  • 37. State-Space Modeling with MATLAB  we can generate the observable and controllable models as follows: 37
  • 39. Introduction  The behavior of x(t) and y(t): 1) Homogeneous solution of x(t). 2) Non-homogeneous solution of x(t). 39 )()()( )()()( tDutCxty tButAxtx dt d  
  • 40. Homogeneous solution  State transition matrix 40 )0()()( )()0()( )()( 1 xAsIsX sAXxssX tAxtx     )0( )0(])[()( 11 xe xAsILtx At    ])[()( 11    AsILet At )()()()()( )()0( )0()( 000 )( 0 0 0 00 0 0 txtttxetxeetx txex xetx ttAAtAt At At     
  • 41. State Transition Matrix Properties 41 )()(.5 )()()(.4 )()()0(.3 )()(.2 )0(.1 020112 1 ktt tttttt txtx tt I k       ])[()( 11    AsILet At
  • 44. Example 1 44  T xlet tu x x x x 00)0( )( 1 0 32 10 2 1 2 1                                         tttt ttt At eeee eeee eAsILt 22 212 11 222 2 ])[()(   t dButxttx 0 )()()0()()(                    tt tt ee ee x x 2 2 2 1 2 1 2 1 Ans: )]()[( 11 sBUAsIL   stepunittu )(
  • 45. How to find State transition matrix 45 Methode 1: ])[()( 11   AsILt Methode 3: Cayley-Hamilton Theorem Methode 2: At et  )( ])[()( 11    AsILet At
  • 46. Method 1: 46 ])[()( 11   AsILt                                                                        3 2 1 2 1 2 1 3 2 1 3 2 1 1 0 0 0 0 1 )( )( 10 01 00 211 340 010 x x x ty ty u u x x x x x x                       ssss ss sss ssssAsI AsIadj AsI 414 323 32116 33)2)(4( 1)( )( 2 2 2 1
  • 47. Method 2: 47 At et  )(                                                                      3 2 1 2 1 2 1 3 2 1 3 2 1 166 )( )( 1 1 1 300 020 001 x x x ty ty u u x x x x x x                  t t t At e e e et 3 2 00 00 00 )( diagonal matrix
  • 48. linear system by Meiling CHEN 48 Diagonization
  • 49. linear system by Meiling CHEN 49 Diagonization
  • 50. 50 Case 1: distincti  )1)(3( 43 1 43 10               A 1 3 2 1                                 3 1 0 433 13 )( 2 1 2 1 11 v v v v VAI                            1 1 0 33 11 )( 2 1 2 1 22 v v v v VAI depend                    10 03 13 11 1 21 APPVVP
  • 51. 51 n  321 In the case of A matrix is phase-variable form and                 11 2 1 1 21 21 111 n n nn n nvvvP      Vandermonde matrix for phase-variable form              4 3 2 1 1     APP 1  PPee tAt
  • 52. 52 Case 2: distincti  )2)(1)(1( 200 010 101 200 010 101                       AIA 0 100 000 100 )( 3 2 1 11                        v v v VAI 21   depend                                             0 1 0 000 0 0 1 000 3 2 1 321 3 2 1 321 v v v vvv v v v vvv 21 VV 
  • 54. 54 Case 3: distincti  Jordan form 321     formJordanAPPvvvP  1 321 Generalized eigenvectors 231 121 11 )( )( 0)( vvAI vvAI vAI                  1 1 1 1 1 1 ˆ    AAPP            t tt tttt tA e tee etee e 1 11 1 2 11 2 ˆ   
  • 58. 58        10 21 ?100 AA Example: AIAAflet 10 100 )(   2,1,0)2)(1( 20 21 21       100 210 100 22 100 110 100 11 2)( 1)(     f f 12 22 100 1 100 0                         10 221 10 21 )12( 10 01 )22()( 101 100100100 AAf
  • 59. 59         02 13 ? AeAt Example: 2,1,0 2 13 21       2)2( )1( 10210 2 10110       t t ef ef tt tt ee ee     2 1 2 0 2                             tttt tttt ttttAt eeee eeee eeeee 222 2 02 13 )( 10 01 2 22 22 22
  • 60. 60
  • 61. 61
  • 62. 62
  • 63. linear system by Meiling CHEN 63
  • 64. linear system by Meiling CHEN 64
  • 65. linear system by Meiling CHEN 65
  • 67. Introduction  The main objective of using state-space equations to model systems is the design of suitable compensation schemes to control these systems.  Typically, the control signal u(t) is a function of several measurable state variables. Thus, a state variable controller, that operates on the measurable information is developed.  State variable controller design is typically comprised of three steps:  Assume that all the state variables are measurable and use them to design a full-state feedback control law. In practice, only certain states or combination of them can be measured and provided as system outputs.  An observer is constructed to estimate the states that are not directly sensed and available as outputs. Reduced-order observers take advantage of the fact that certain states are already available as outputs and they don’t need to be estimated.  Appropriately connecting the observer to the full-state feedback control law yields a state-variable controller, or compensator. 67
  • 68. Introduction  a given transfer function G(s) can be realized using infinitely many state-space models  certain properties make some realizations preferable to others  one such property is controllability 68
  • 69. Motivation1: Controllability 69                                    2 1 2 1 2 1 01 )( 0 1 10 12 x x y tu x x x x   1 s 1 s 1 1 2 u y1x2x s x )0(2 s x )0(1 1 1x2x 1 controllable uncontrollable
  • 70. Controllability and Observability  Plant:  Definition of Controllability 70 DuCxy RxBuAxx n   , A system is said to be (state) controllable at time , if there exists a finite such for any and any , there exist an input that will transfer the state to the state at time , otherwise the system is said to be uncontrollable at time . 0t 01 tt  )( 0tx 1x ][ 1,0 ttu )( 0tx 1x 1t 0t
  • 71. Controllability Matrix  Consider a single-input system (u ∈ R):  The Controllability Matrix is defined as  We say that the above system is controllable if its controllability matrix 𝐶(𝐴, 𝐵) is invertible.  As we will see later, if the system is controllable, then we may assign arbitrary closed-loop poles by state feedback of the form 𝑢 = −𝐾𝑥.  Whether or not the system is controllable depends on its state-space realization. 71    BABAABBBAC nCrankBA n 12 ),( ,)(leControllab,    
  • 72. Example: Computing 𝐶(𝐴, 𝐵)  Let’s get back to our old friend:  Here,  Is this system controllable? 72
  • 73. Controllability Matrix 73 1 1 )(sU )(sY 1 -1 s 3 -1 s 2 Example: An Uncontrollable System  xy uxx 21 0 1 30 01                 1x 2x ※ State is uncontrollable.2x 0)det(  U  BABAABBU n 12 MatrixilityControllab    Ruif
  • 74. Proof of controllability matrix 74                                    )1( )2( 1 )1()2(1 21 )1()2(1 21 1 2 12 112 1 )( nk nk k n k n nk nknkk n k n k n nk nknkk n k n k n nk kkkkkkk kkk kkk u u u BABBAxAx BuABuBuABuAxAx BuABuBuABuAxAx BuABuxABuBuAxAx BuAxx BuAxx     Initial condition
  • 75. Motivation2: Observability 75                                    2 1 2 1 2 1 01 )( 1 3 10 02 x x y tu x x x x   1 s 1 s 1 1 2 u y1x2x s x )0(2 s x )0(1 1 1x2x 3 observable unobservable
  • 76. Controllability and Observability  Plant:  Definition of Observability 76 DuCxy RxBuAxx n   , A system is said to be (completely state) observable at time , if there exists a finite such that for any at time , the knowledge of the input and the output over the time interval suffices to determine the state , otherwise the system is said to be unobservable at . 0t 01 tt  )( 0tx ][ 1,0 ttu ],[ 10 tt 0x 0t 0t ][ 1,0 tty
  • 77. Observability Matrix 77 Example: An Unobservable System  xy uxx 40 1 0 20 10                ※ State is unobservable.1x 1)(sU -1 s -1 s 1x2x 2 4 )(sY   nVrankCA  )(Observable, 0)det(  V                  1 2 MatrixityObservabil n CA CA CA C V  Ry if
  • 78. Proof of observability matrix 78    )1()2()3(11 1 )1()2(1 321 1 111 111 1 )(),2(),1( )( )2()( )1(                            nknknkkkkkk k n nknkk n k n k n nk kkkkkkk kkk kkk kkk DuCBuCABuDuCBuyDuy x CA CA C n nDuCBuBuCABuCAxCAy DuCBuCAxDuBuAxCy DuCxy DuCxy BuAxx       Inputs & outputs
  • 79. Example  Plant:  Hence the system is both controllable and observable. 79  10, 1 0 , 01 10              CBA DuCxy RxBuAxx n   ,                       01 10 MatrixtyObervabili 01 10 MatrixilityControllab CA C N ABBV 2)()(  NrankVrank
  • 80. Controllability and Observability 80 Theorem I )()()( tuBtxAtx cccc  Controllable canonical form Controllable Theorem II )()( )()()( txCty tuBtxAtx oo oooo   Observable canonical form Observable  A system in Controller Canonical Form (CCF) is always controllable!!  A system in Observable Canonical Form (OCF) is always controllable!!
  • 81. Example 81   c cc xy uxx 12 1 0 32 10               Controllable canonical form                         12 12 31 10 CA C V ABBU nVrank nUrank   1][ 2][   o oo xy uxx 10 1 2 31 20                Observable canonical form                          31 10 11 22 CA C V ABBU nVrank nUrank   2][ 1][ )2)(1( 2 )(    ss s sT
  • 82. Linear system (Analysis) 82 Theorem III )()()( )()()( tDutCxty tButJxtx   Jordan form  321 3 2 1 3 2 1 CCCC B B B B J J J J                        Jordan block Least row has no zero row First column has no zero column
  • 85. 85         .... .... 21131211 21131211 ILCILCCC ILbILbbb   controllable observable In the previous example         .... .... 21131211 21131211 DLCILCCC ILbILbbb   controllable unobservable
  • 87. Kalman Canonical Decomposition  Diagonalization: &  All the Eigenvalues of A are distinct, i.e.  There exists a coordinate transform such that  System in z-coordinate becomes  Homogeneous solution of the above state equation is 87 BuAxx  DuCxy  n  321 Txz  . 0 0 where 1 1             n mm AATTA    zCy uBzAz m mm   )0()0()( 11 1 n t n t zevzevtz n    mnmm mn m m ccCTC b b BTB   1 1 1              observableandlecontrollabismode0,and0If i mimi cb
  • 88. How to construct coordinate transformation matrix for diagonalization  All the Eigenvalues of A are distinct, i.e.  The coordinate matrix for diagonalization  Consider diagonalized system 88 ][ 21 n,v,, vvT  t.independenare,rs,Eigenvecto 21 n,v,, vv  n  321 ubzλz ubzz ubzz mnnnn m m        2222 1111   nmnmm zczczcy  2211
  • 89. Transfer function is  H(s) has pole-zero cancellation. 89 n mnmnmm n i i mimi s bc s bc s bc sH          1 11 1 )( le,unobservaborableuncontrollismode0,or0If i mimi cb 1  1mc1mb 2  2mc2mb n  mncmnb ∑  )(tu )(ty       
  • 91. Kalman Canonical Decomposition: State Space Equation 91  xCCy u B B x x x x A A A A x x x x OCCO OC CO OC OC OC CO OC OC OC CO OC OC OC CO 00 0 0 000 000 000 000                                                        (5.X)
  • 92. Example 92  xcccy u b b b xx 311211 31 12 11 300 020 001                        3mode0,If 13 b 3mode0,If 13 c The same reasoning may be applied to mode 1 and 2. Plant: is uncontrollable. is unobservable.
  • 93. Pole-zero Cancellation in Transfer Function  From Sec. 5.2, state equation  may be transformed to 93 n mnmnmm n i i mimi s bC s bC s bC sH          1 11 1 )( Hence, the T.F. represents the controllable and observable parts of the state variable equation. BuAxx  DuCxy  T.F..invanishesandableuncontrollismode,0If imib T.F..invanishesandleunobservabismode0,If imic
  • 94. Example  Plant:  Transfer Function 94   BAsICsH sU sY 1 )( )( )(                 4 1 2 22 10 42 1 1 2 41 02 10 42 1                               s s s ss s s ss 4,2 21    xy uxx 10 1 2 21 04                 T.F..invanishes"-2"Mode
  • 95. Example 5.6  Plant:  Transfer Function 95 uxx               1 2 11 60   xy 10   3 1 )( )( )( 1    s BAsICsT sU sY T.F..invanishes"2"Mode -3,2 21  
  • 96. Minimum Realization  Realization:  Realize a transfer function via a state space equation.  Example  Realization of the T.F.  Method 1:  Method 2:  There is infinity number of realizations for a given T.F. . 96 3 1 )(   s sT 1 1)(sU )(sY 3 1 1)(sU )(sY-1 s 3 2 -1 s -1 s 1 3 1 )( )( )(   s sT sU sY 2 2 3 1 )( )( )(      s s s sT sU sY
  • 97. Minimum Realization  Minimum realization:  Realize a transfer function via a state space equation with elimination of its uncontrollable and unobservable parts.  Example 5.8  Realization of the T.F. 97 3 5 )( )( )(   s sT sU sY 1 5)(sU )(sY 3 -1 s 3 5 )(   s sT
  • 98. 98