SlideShare a Scribd company logo
1 of 16
MEMORY INTERFACING
 The memory is made up of semiconductor material
used to store the programs and data. Three types
of memory is
1. Process memory
2. Primary or main memory
3. Secondary memory
TYPICAL EPROM AND STATIC RAM:
A typical semiconductor memory IC will have N address pins, M data pins (or
output pins).
Having two power supply pins (one for connecting required supply voltage (V and
the other for connecting ground).
The control signals needed for static RAM are chip select (chip enable), read
control (output enable) and write control (write enable).
The control signals needed for read operation in EPROM are chip select (chip
enable) and read control (output enable).
Table - Number of Address Pins and Data Pins in Memory ICs
 DECODER:
It is used to select the memory chip of processor during the execution of a
program. No of IC's used for decoder is
2-4 decoder (74LS139)
3-8 decoder (74LS138)
Fig - Block diagram and Truth table of 2-4 decoder
Fig - Block diagram and Truth table of 3-8 decoder
EXAMPLE-1
Consider a system in which the full memory space 64kb is utilized for EPROM memory.
Interface the EPROM with 8085 processor.
The memory capacity is 64 Kbytes. i.e
2^n = 64 x 1000 bytes where n = address lines.
So, n = 16.
In this system the entire 16 address lines of the processor are connected to address input
pins of memory IC in order to address the internal locations of memory.
The chip select (CS) pin of EPROM is permanently tied to logic low (i.e., tied to ground).
Since the processor is connected to EPROM, the active low RD pin is connected to active
low output enable pin of EPROM.
The range of address for EPROM is 0000H to FFFFH.
Fig - Interfacing 64Kb EPROM with 8085
EXAMPLE-2
Consider a system in which the available 64kb memory space is equally divided between
EPROM and RAM. Interface the EPROM and RAM with 8085 processor.
Implement 32kb memory capacity of EPROM using single IC 27256.
32kb RAM capacity is implemented using single IC 62256.
The 32kb memory requires 15 address lines and so the address lines A0 - A14 of the
processor are connected to 15 address pins of both EPROM and RAM.
The unused address line A15 is used as to chip select. If A15 is 1, it select RAM and
If A15 is 0, it select EPROM.
Inverter is used for selecting the memory.
The memory used is both Ram and EPROM, so the low RD and WR pins of processor are
connected to low WE and OE pins of memory respectively.
The address range of EPROM will be 0000H to 7FFFH and that of RAM will be 7FFFH to
FFFFH.
Fig - Interfacing 32Kb EPROM and 32Kb RAM with 8085
EXAMPLE-3
Consider a system in which 32kb memory space is implemented using four numbers of 8kb
memory. Interface the EPROM and RAM with 8085 processor.
Fig - Interfacing 16Kb EPROM and 16Kb RAM with 8085
Consider a system in which the 64kb memory space is implemented using eight numbers
of 8kb memory. Interface the EPROM and RAM with 8085 processor.
The total memory capacity is 64Kb. So, let 4 numbers of 8Kb EPROM and 4 numbers of 8Kb
RAM.
Each 8kb memory requires 13 address lines. So the address line A0 - A12 of the processor
are connected to 13address pins of all the memory lCs.
The address lines A13, A14 and A]5 are decoded using a 3-to-8 coder to generate eight
chip select signals. These eight chip select signals can be used to select one of the eight
memories at any one time.
memory-interfacing.ppt
memory-interfacing.ppt

More Related Content

Similar to memory-interfacing.ppt

Similar to memory-interfacing.ppt (20)

Interfacing memory with 8086 microprocessor
Interfacing memory with 8086 microprocessorInterfacing memory with 8086 microprocessor
Interfacing memory with 8086 microprocessor
 
RAM Design
RAM DesignRAM Design
RAM Design
 
Notes chapter 6
Notes chapter  6Notes chapter  6
Notes chapter 6
 
Bus Structure, Memory and I/O Interfacing
Bus Structure, Memory and I/O InterfacingBus Structure, Memory and I/O Interfacing
Bus Structure, Memory and I/O Interfacing
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Microprocessor questions converted
Microprocessor questions convertedMicroprocessor questions converted
Microprocessor questions converted
 
DIGITAL DESIGNS SLIDES 7 ENGINEERING 2ND YEAR
DIGITAL DESIGNS SLIDES 7 ENGINEERING  2ND YEARDIGITAL DESIGNS SLIDES 7 ENGINEERING  2ND YEAR
DIGITAL DESIGNS SLIDES 7 ENGINEERING 2ND YEAR
 
Programmable Logic Devices
Programmable Logic DevicesProgrammable Logic Devices
Programmable Logic Devices
 
Micro 8051
Micro 8051Micro 8051
Micro 8051
 
8051.ppt
8051.ppt8051.ppt
8051.ppt
 
timing_diagram_of_8085.pptx
timing_diagram_of_8085.pptxtiming_diagram_of_8085.pptx
timing_diagram_of_8085.pptx
 
Pdemodule 4
Pdemodule 4Pdemodule 4
Pdemodule 4
 
Microprocessor history1
Microprocessor history1Microprocessor history1
Microprocessor history1
 
Microprocessor history1
Microprocessor history1Microprocessor history1
Microprocessor history1
 
Basittttt
BasitttttBasittttt
Basittttt
 
8085 (1)
8085 (1)8085 (1)
8085 (1)
 
Part of UNIT2 Memory mapped IOjkl;'lk.pdf
Part of UNIT2 Memory mapped IOjkl;'lk.pdfPart of UNIT2 Memory mapped IOjkl;'lk.pdf
Part of UNIT2 Memory mapped IOjkl;'lk.pdf
 
Microprocessor Part 1
Microprocessor    Part 1Microprocessor    Part 1
Microprocessor Part 1
 
Chp3 designing bus system, memory & io copy
Chp3 designing bus system, memory & io   copyChp3 designing bus system, memory & io   copy
Chp3 designing bus system, memory & io copy
 
Ch3
Ch3Ch3
Ch3
 

Recently uploaded

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdfKamal Acharya
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...josephjonse
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesRashidFaridChishti
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxhublikarsn
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessorAshwiniTodkar4
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 

Recently uploaded (20)

1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 

memory-interfacing.ppt

  • 2.  The memory is made up of semiconductor material used to store the programs and data. Three types of memory is 1. Process memory 2. Primary or main memory 3. Secondary memory
  • 3. TYPICAL EPROM AND STATIC RAM: A typical semiconductor memory IC will have N address pins, M data pins (or output pins). Having two power supply pins (one for connecting required supply voltage (V and the other for connecting ground). The control signals needed for static RAM are chip select (chip enable), read control (output enable) and write control (write enable). The control signals needed for read operation in EPROM are chip select (chip enable) and read control (output enable).
  • 4. Table - Number of Address Pins and Data Pins in Memory ICs
  • 5.  DECODER: It is used to select the memory chip of processor during the execution of a program. No of IC's used for decoder is 2-4 decoder (74LS139) 3-8 decoder (74LS138) Fig - Block diagram and Truth table of 2-4 decoder
  • 6. Fig - Block diagram and Truth table of 3-8 decoder
  • 7. EXAMPLE-1 Consider a system in which the full memory space 64kb is utilized for EPROM memory. Interface the EPROM with 8085 processor. The memory capacity is 64 Kbytes. i.e 2^n = 64 x 1000 bytes where n = address lines. So, n = 16. In this system the entire 16 address lines of the processor are connected to address input pins of memory IC in order to address the internal locations of memory. The chip select (CS) pin of EPROM is permanently tied to logic low (i.e., tied to ground). Since the processor is connected to EPROM, the active low RD pin is connected to active low output enable pin of EPROM. The range of address for EPROM is 0000H to FFFFH.
  • 8. Fig - Interfacing 64Kb EPROM with 8085
  • 9. EXAMPLE-2 Consider a system in which the available 64kb memory space is equally divided between EPROM and RAM. Interface the EPROM and RAM with 8085 processor. Implement 32kb memory capacity of EPROM using single IC 27256. 32kb RAM capacity is implemented using single IC 62256. The 32kb memory requires 15 address lines and so the address lines A0 - A14 of the processor are connected to 15 address pins of both EPROM and RAM. The unused address line A15 is used as to chip select. If A15 is 1, it select RAM and If A15 is 0, it select EPROM. Inverter is used for selecting the memory. The memory used is both Ram and EPROM, so the low RD and WR pins of processor are connected to low WE and OE pins of memory respectively. The address range of EPROM will be 0000H to 7FFFH and that of RAM will be 7FFFH to FFFFH.
  • 10. Fig - Interfacing 32Kb EPROM and 32Kb RAM with 8085
  • 11. EXAMPLE-3 Consider a system in which 32kb memory space is implemented using four numbers of 8kb memory. Interface the EPROM and RAM with 8085 processor.
  • 12. Fig - Interfacing 16Kb EPROM and 16Kb RAM with 8085
  • 13.
  • 14. Consider a system in which the 64kb memory space is implemented using eight numbers of 8kb memory. Interface the EPROM and RAM with 8085 processor. The total memory capacity is 64Kb. So, let 4 numbers of 8Kb EPROM and 4 numbers of 8Kb RAM. Each 8kb memory requires 13 address lines. So the address line A0 - A12 of the processor are connected to 13address pins of all the memory lCs. The address lines A13, A14 and A]5 are decoded using a 3-to-8 coder to generate eight chip select signals. These eight chip select signals can be used to select one of the eight memories at any one time.