SlideShare a Scribd company logo
1 of 17
Download to read offline
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
rubenszmm@gmail.com	
  
	
  
http://github.com/RubensZimbres	
  
	
  
	
  
	
  
 
NAÏVE	
  BAYES	
  
	
  
𝑃 𝑎 𝑐 =
𝑃 𝑐 𝑎 . 𝑃(𝑎)
𝑃(𝑐)
	
  
	
  
	
  
BAYES	
  OPTIMAL	
  CLASSIFIER	
  
	
  
arg max 𝑃 𝑥 𝑇 . 𝑃(𝑇|𝐷)	
  
	
  
	
  
	
  
NAÏVE	
  BAYES	
  CLASSIFIER	
  
	
  
arg max 𝑃 𝑆𝑝𝑜|𝑇𝑜𝑡 . 𝑃(𝑆𝑜𝑐|𝑆𝑝𝑜)	
  
	
  
	
  
	
  
BAYES	
  MAP	
  (maximum	
  a	
  posteriori)	
  
	
  
ℎ!"# = arg max 𝑃 𝑐|𝑎 . 𝑃(𝑎)	
  
	
  
	
  
	
  
MAXIMUM	
  LIKELIHOOD	
  
	
  
ℎ!" = arg max 𝑃 𝑐|𝑎 	
  
	
  
	
  
	
  
TOTAL	
  PROBABILITY	
  
	
  
	
  
𝑇𝑜𝑡𝑎𝑙𝑃 𝐵 = 𝑃 𝐵|𝐴 . 𝑃(𝐴)	
  
MIXTURE	
  MODELS	
  
	
  
𝑃 𝐵 = 𝑃 𝐵|𝐴 . 𝑃(𝐴)	
  
	
  
	
  
	
  
MIXTURE	
  OF	
  GAUSSIANS	
  
ANOMALY	
  DETECTION	
  
	
  
𝑃 𝑥 𝑥 =
1
2𝜋𝜎!
. 𝑒𝑥𝑝 −
1
2
𝑥 − 𝑥
𝜎
!
	
  
	
  
	
  
𝑍!" =
𝑁! 𝐶! + 𝑁! 𝐶!
𝑁! + 𝑁!
	
  
	
  
	
  
𝑃(𝑍!") → 0.50	
  
	
  
	
  
EM	
  ALGORITHM	
  
	
  
𝐸  𝑠𝑡𝑒𝑝  𝑃 𝑥|𝑥 =
𝑃 𝑥 . 𝑃 𝑥|𝑥
𝑃 𝑥 . 𝑃 𝑥
	
  
	
  
	
  
𝑀  𝑠𝑡𝑒𝑝  𝑃 𝑥′ =
𝑃(𝑥|𝑥)
𝑛
	
  
	
  
	
  
𝐸  𝑠𝑡𝑒𝑝  𝑃 𝑥|𝑥 = 𝐴𝑠𝑠𝑖𝑔𝑛  𝑣𝑎𝑙𝑢𝑒	
  
	
  
	
  
𝑀  𝑠𝑡𝑒𝑝  𝑃 𝑥′ = 𝑃(𝐵 = 1|𝐴 = 1, 𝐶 = 0)	
  
	
  
 
LAPLACE	
  ESTIMATE	
  (small	
  samples)	
  
	
  
𝑃 𝐴 =
𝐴 + 0.5
𝐴 + 𝐵 + 1
	
  
	
  
	
  
BAYESIAN	
  NETWORKS	
  
	
  
𝑡𝑢𝑝𝑙𝑒𝑠  ¬  𝑓𝑜𝑟  𝑦 = 0   ∧ 𝑦 = 1	
  
	
  
	
  
LIMITES	
  
	
  
lim
!→!
𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ
	
  
	
  
ℎ = Δ𝑥 = 𝑥′ − 𝑥	
  
	
  
	
  
	
  
DERIVADAS	
  
	
  
𝜕
𝜕𝑥
𝑥!
= 𝑛. 𝑥!!!
	
  
	
  
𝜕
𝜕𝑥
𝑦!
=
𝜕𝑦!
𝜕𝑦
.
𝜕𝑦
𝜕𝑥
	
  
	
  
	
  
PRODUCT	
  RULE	
  
	
  
𝑑
𝑑𝑥
𝑓 𝑥 . 𝑔 𝑥 = 𝑓′ 𝑥 𝑔 𝑥 + 𝑓 𝑥 . 𝑔′(𝑥)	
  
	
  
	
  
𝑑
𝑑𝑥
𝑓(𝑥)
𝑔(𝑥)
=
𝑓′ 𝑥 𝑔 𝑥 + 𝑓 𝑥 . 𝑔′(𝑥)
𝑔(𝑥)!
	
  
	
  
𝑑
𝑑𝑥
2𝑓 𝑥 = 2
𝑑
𝑑𝑥
𝑓 𝑥 	
  
	
  
	
  
𝑑
𝑑𝑥
𝑓 𝑥 + 𝑔 𝑥 =
𝑑
𝑑𝑥
𝑓 𝑥 +
𝑑
𝑑𝑥
𝑔 𝑥 	
  
	
  
	
  
𝑑
𝑑𝑥
𝑓 𝑥 + 2𝑔 𝑥 =
𝑑
𝑑𝑥
𝑓 𝑥 + 2
𝑑
𝑑𝑥
𝑔 𝑥 	
  
	
  
	
  
CHAIN	
  RULE	
  
	
  
𝑑
𝑑𝑥
𝑔 𝑓 𝑥 = 𝑔!
𝑓(𝑥) . 𝑓′(𝑥)	
  
	
  
solve	
  f(x)	
  apply	
  in	
  g’(x)	
  
	
  
	
  
	
  
	
  
VARIANCE	
  
	
  
𝑉𝑎𝑟 =
(𝑥 − 𝑥)!
𝑛 − 1
	
  
	
  
	
  
	
  
STANDARD	
  DEVIATION	
  
	
  
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒	
  
	
  
	
  
COVARIANCE	
  
	
  
	
  
𝐶𝑜𝑣 =
𝑥 − 𝑥 . (𝑦 − 𝑦)
𝑛 − 1
	
  
	
  
	
  
	
  
CONFIDENCE	
  INTERVAL	
  
	
  
𝑥 ± 1.96
𝜎
𝑛
	
  
	
  
	
  
	
  
CHI	
  SQUARED	
  
	
  
𝐶ℎ𝑖 =
(𝑦 − 𝑦)!
𝑦
=
𝛿!
𝑦
	
  
	
  
	
  
	
  
	
  
R	
  SQUARED	
  
	
  
	
  
𝑅!
=
𝑛 𝑥𝑦 − 𝑥. 𝑦
𝑛 𝑥! − ( 𝑥)! . 𝑛 𝑦! − ( 𝑦)!
	
  
	
  
	
  
	
  
LOSS	
  
	
  
𝐿𝑜𝑠𝑠 = 𝐵𝑖𝑎𝑠!
+ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒!
+ 𝑁𝑜𝑖𝑠𝑒	
  
	
  
	
  
SUM	
  OF	
  SQUARED	
  ERRORS	
  
	
  
𝐸 𝑤 =
(𝑦 − 𝑦)!
2
	
  
	
  
	
  
COST	
  FUNCTION	
  
	
  
𝐽 𝜃! ≔ 𝜃! − 𝜂.
(𝑦 − 𝑦)!
2
	
  
	
  
	
  
	
  
	
  
NUMBER	
  OF	
  EXAMPLES	
  
	
  
𝑚 ≥
log(𝑁!) + log  (
1
𝛿)
𝜖
	
  
	
  
𝑤ℎ𝑒𝑟𝑒  𝜖 =
𝑦
𝑦
  ∧   𝛿 = 𝑦 − 𝑦	
  
	
  
	
  
	
  
	
  
MARKOV	
  CHAINS	
  
	
  
𝑃!!!
𝑋 = 𝑥 = 𝑃!
. 𝑋 = 𝑥 . 𝑇(𝑥 → 𝑥)
!
	
  
	
  
	
  
	
  
	
  
	
  
	
  
K	
  NEAREST	
  NEIGHBOR	
  
	
  
𝑓 𝑥 ←
𝑓(𝑥)
𝑘
	
  
	
  
	
  
𝐷𝐸 𝑥!, 𝑥! = 𝑥! − 𝑥!
!
+ (𝑦!" − 𝑦!")!	
  
	
  
	
  
WEIGHTED	
  NEAREST	
  NEIGHBOR	
  
	
  
	
  
𝑓 𝑥 =
𝑓(𝑥)
𝐷(𝑥! 𝑥!)!
. 𝐷(𝑥! 𝑥!)!
	
  
	
  
	
  
	
  
PRINCIPAL	
  COMPONENTS	
  ANALYSIS	
  
	
  
𝑥′ = 𝑥 − 𝑥	
  
	
  
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 = 𝐴 − 𝜆𝐼	
  
	
  
	
  
𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 = 𝐸𝑛𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒. [𝐴]	
  
	
  
	
  
𝑓 𝑥 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟!
. [𝑥!!. . . 𝑥!"]	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
LINEAR	
  REGRESSION	
  
	
  
	
  
𝑚! =
𝑥!
!
𝑥! 𝑦 − 𝑥! 𝑥! 𝑥! 𝑦
𝑥!
!
𝑥!
!
− ( 𝑥! 𝑥!)!
	
  
	
  
	
  
𝑏 = 𝑦 − 𝑚! 𝑥! − 𝑚! 𝑥!	
  
	
  
	
  
𝑓 𝑥 = 𝑚! 𝑥!
!
!!!
+ 𝑏	
  
	
  
	
  
	
  
LOGISTIC	
  REGRESSION	
  
	
  
	
  
𝑂𝑑𝑑𝑠  𝑅𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔
𝑃
1 − 𝑃
= 𝑚𝑥 + 𝑏	
  
	
  
	
  
𝑃
1 − 𝑃
= 𝑒!"!!
  
	
  
	
  
	
  
𝐽 𝜃 = −
𝑦. log  (𝑦) + 1 − 𝑦 . log  (1 − 𝑦)
𝑛
	
  
	
  
𝑤ℎ𝑒𝑟𝑒  𝑦 =
1
1 + 𝑒!"!!
	
  
	
  
𝑓𝑜𝑟  𝑦 = 0     ∧   𝑦 = 1	
  
	
  
−2𝐿𝐿 → 0	
  
 
	
  
𝑥  !~  𝑥!   ≠ 𝑥!′  ~  𝑥!′	
  
	
  
	
  
𝑚𝑥 + 𝑏 =
𝑝
1 − 𝑝
	
  
	
  
	
  
𝑃 𝑎 𝑐 =
𝑚𝑥 + 𝑏
𝑚𝑥 + 𝑏 + 1
	
  
	
  
	
  
𝐿𝑜𝑔𝑖𝑡 =
1
100. log  (𝑃(𝑎|𝑐))
	
  
	
  
	
  
DECISION	
  TREES	
  
	
  
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑃. log  (𝑃)
!
!!!
	
  
	
  
	
  
𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 = 𝑃!. −𝑃!!. log 𝑃!! − 𝑃!(!!!)−. log  (𝑃!(!!!)) 	
  
	
  
	
  
	
  
RULE	
  INDUCTION	
  
	
  
𝐺𝑎𝑖𝑛 = 𝑃. [ −𝑃!!!. log  (𝑃) − (−𝑃!. log  (𝑃))]	
  
	
  
	
  
	
  
RULE	
  VOTE	
  
	
  
Weight=accuracy	
  .	
  coverage	
  
ENTROPY	
  
	
  
	
  
𝐻 𝐴 = − 𝑃 𝐴 . 𝑙𝑜𝑔𝑃(𝐴)	
  
	
  
	
  
JOINT	
  ENTROPY	
  
	
  
	
  
𝐻 𝐴, 𝐵 = − 𝑃 𝐴, 𝐵 . 𝑙𝑜𝑔𝑃(𝐴, 𝐵)	
  
	
  
	
  
	
  
CONDITIONAL	
  ENTROPY	
  
	
  
	
  
𝐻 𝐴|𝐵 = − 𝑃 𝐴, 𝐵 . 𝑙𝑜𝑔𝑃(𝐴|𝐵)	
  
	
  
	
  
	
  
MUTUAL	
  INFORMATION	
  
	
  
	
  
𝐼 𝐴, 𝐵 = 𝐻 𝐴 − 𝐻(𝐴|𝐵)	
  
	
  
	
  
	
  
EIGENVECTOR	
  CENTRALITY	
  =	
  PAGE	
  RANK	
  
	
  
𝑃𝑅 𝐴 =
1 − 𝑑
𝑛
− d
𝑃𝑅(𝐵)
𝑂𝑢𝑡(𝐵)
+
𝑃𝑅(𝑛)
𝑂𝑢𝑡(𝑛)
	
  
	
  
where	
  d=1	
  few	
  connections	
  
	
  
RATING	
  
	
  
𝑅 = 𝑅! + 𝛼 𝑤!. (𝑅!" − 𝑅!)	
  
	
  
	
  
SIMILARITY	
  
	
  
𝑤!" =
𝑅!" − 𝑅! . (𝑅!" − 𝑅!)!
𝑅!" − 𝑅!
!. (𝑅!" − 𝑅!)!
!
	
  
	
  
	
  
	
  
	
  
	
  
CONTENT-­‐BASED	
  RECOMMENDATION	
  
	
  
𝑅𝑎𝑡𝑖𝑛𝑔 = 𝑥! 𝑦!
!
!!!
!"#$$
!!!
	
  
	
  
	
  
	
  
COLLABORATIVE	
  FILTERING	
  
	
  
	
  
𝑅!" = 𝑅! + 𝛼.	
  
𝑅!" − 𝑅! .
𝑅!" − 𝑅! . (𝑅!" − 𝑅!)!
𝑅!" − 𝑅!
!. (𝑅!" − 𝑅!)!
!
	
  
	
  
	
  
	
  
	
  
BATCH	
  GRADIENT	
  DESCENT	
  
	
  
	
  
𝐽 𝜃! ≔ 𝜃! ± 𝜂.
(𝑦 − 𝑦)!
. 𝑥
2𝑛
	
  
	
  
	
  
STOCHASTIC	
  GRADIENT	
  DESCENT	
  
	
  
	
  
𝐽 𝜃! ≔ 𝜃! ± 𝜂. (𝑦 − 𝑦)!
. 𝑥	
  
	
  
	
  
	
  
	
  
	
  
NEURAL	
  NETWORKS	
  
	
  
𝑓 𝑥 = 𝑜 = 𝑤! + 𝑤! 𝑥!
!
!!!
	
  
	
  
	
  
	
  
LOGIT	
  
	
  
log 𝑜𝑑𝑑𝑠 = 𝑤𝑥 + 𝑏 = 𝑙𝑜𝑔
𝑝
1 − 𝑝
	
  
	
  
	
  
	
  
SOFTMAX	
  NORMALIZATION	
  
	
  
𝑆(𝑓 𝑥 ) =
𝑒!"!!
𝑒!"!!
	
  
	
  
	
  
 
CROSS	
  ENTROPY	
  
	
  
𝐻(𝑆 𝑓 𝑥 , 𝑓 𝑥 = − 𝑓 𝑥 . 𝑙𝑜𝑔𝑆(𝑓 𝑥 )	
  
	
  
	
  
LOSS	
  
	
  
𝐿𝑜𝑠𝑠 =
𝐻(𝑆(𝑓 𝑥 , 𝑓(𝑥))
𝑁
	
  
	
  
	
  
	
  
	
  
L2	
  REGULARIZATION	
  
	
  
𝑤 ← 𝑤 − 𝜂. 𝛿. 𝑥 +
𝜆. 𝑤!
2
	
  
	
  
	
  
	
  
SIGMOID	
  
	
  
1
1 + 𝑒!(!"!!)
	
  
	
  
	
  
	
  
RADIAL	
  BASIS	
  FUNCTION	
  
	
  
	
  
ℎ 𝑥 = 𝑒
!
(!!!)!
!!
	
  
	
  
	
  
	
  
	
  
PERCEPTRON	
  
	
  
𝑓 𝑥 = 𝑠𝑖𝑔𝑛 𝑤! 𝑥!"
!
!!!
	
  
	
  
	
  
PERCEPTRON	
  TRAINING	
  
	
  
𝑤! ← 𝑤! + ∆𝑤!	
  
	
  
∆𝑤! = 𝜂. 𝑡 − 𝑜 . 𝑥	
  
	
  
	
  
ERROR	
  FOR	
  A	
  SIGMOID	
  
	
  
	
  
𝜖 = 𝑡 − 𝑜 . 𝑜. 1 − 𝑜 . 𝑥	
  
	
  
	
  
	
  
	
  
AVOID	
  OVERFIT	
  NEURAL	
  NETWORKS	
  L2	
  
	
  
𝑤 =
(𝑡 − 𝑜)!
!"#!"#
2
+ F. 𝑤!"
!
	
  
	
  
	
  
where	
  F=penalty	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
BACKPROPAGATION	
  
	
  
	
  
𝛿! = 𝑜!. 1 − 𝑜! . (𝑡 − 𝑜!)	
  
	
  
	
  
𝛿! = 𝑜!. 1 − 𝑜! . 𝑤!" 𝛿!	
  
	
  
	
  
𝑤!" ← 𝑤!" + 𝜂!". 𝛿!. 𝑥!"	
  
	
  
𝑤! = 1 + (𝑡 − 𝑜!)	
  
	
  
	
  
∆𝑤!"(𝑛) = 𝜂. 𝛿!. 𝑥!" + 𝑀. ∆𝑤!"(𝑛 − 1)	
  
	
  
where	
  M=momentum	
  
	
  
	
  
NEURAL	
  NETWORKS	
  COST	
  FUNCTION	
  
	
  
𝐽! =
𝑡!. log 𝑜 + 1 − 𝑡 . log  (1 − 𝑜)!
!!!
!
!!!
𝑁
+
𝜆 𝜃!"
!!!!!
!!!
!!
!!!
!!
!!!
2𝑁
	
  
	
  
	
  
	
  
MOMENTUM	
  Υ	
  
	
  
	
  
𝜃 = 𝜃 − (𝛾𝑣!!! + 𝜂. ∇𝐽 𝜃 )	
  
	
  
	
  
	
  
	
  
	
  
NESTEROV	
  
	
  
	
  
𝜃 = 𝜃 − (𝛾𝑣!!! + 𝜂. ∇𝐽(𝜃 − 𝛾𝑣!!!))	
  
	
  
	
  
ADAGRAD	
  
	
  
	
  
𝜃 = 𝜃 −
𝜂
𝑆𝑆𝐺!"#$ + 𝜖
. ∇𝐽(𝜃)	
  
	
  
	
  
	
  
ADADELTA	
  
	
  
𝜃 = 𝜃 −
𝑅𝑀𝑆[∆𝜃]!!!
𝑅𝑀𝑆∇𝐽(𝜃)
	
  
	
  
	
  
𝑅𝑀𝑆 Δ𝜃 = 𝐸 ∆𝜃! + 𝜖	
  
	
  
	
  
RMSprop	
  
	
  
	
  
𝜃 = 𝜃 −
𝜂
𝐸 𝑔! + 𝜖
. ∇𝐽(𝜃)	
  
	
  
	
  
ADAM	
  
	
  
𝜃 = 𝜃 −
𝜂
𝑣 + 𝜖
. 𝑚	
  
	
  
 
𝑚 =
𝛽! 𝑚!!! + 1 − 𝛽! . ∇𝐽(𝜃)
1 − 𝛽!
	
  
	
  
	
  
𝑣 =
𝛽! 𝑣!!! + 1 − 𝛽! . ∇𝐽(𝜃)!
1 − 𝛽!
	
  
	
  
	
  
	
  
SUPPORT	
  VECTOR	
  MACHINES	
  
	
  
𝑓 𝑥 = 𝑠𝑖𝑔𝑛 𝜆. 𝑦. 𝐾(𝑥! ∙ 𝑥!) 	
  
	
  
𝐾 𝑥! ∙ 𝑥! = 𝑒𝑥𝑝 −
𝑥! − 𝑥!
!
+ (𝑦! − 𝑦!)!
𝑤𝑖𝑑𝑡ℎ!!"#
	
  
	
  
𝜆 → ∇𝐿 = 0	
  
	
  
	
  
𝑦 = 1   ∧ 𝑦 = −1	
  
	
  
	
  
𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑥!. 𝑐𝑜𝑠𝜃	
  
	
  
	
  
𝑐𝑜𝑠!
𝜃 + 𝑠𝑒𝑛!
𝜃 = 1	
  
	
  
	
  
𝑠𝑒𝑛𝜃 =
𝑥! − 𝑥!
!
+ (𝑦!" − 𝑦!")!
𝑥!
	
  
	
  
𝑥! ∙ 𝑥! = (𝑥!
!
+ 𝑦!
!). 1 −
𝑥! − 𝑥!
! + (𝑦! − 𝑦!)!
𝑥!
! + 𝑦!
!
	
  
	
  
	
  
	
  
	
  
SUPPORT	
  VECTOR	
  REGRESSION	
  
	
  
𝑌 = 𝜆. 𝐾 𝑥! ∙ 𝑥! + 𝑏	
  
	
  
𝐾 𝑥! ∙ 𝑥! = 𝑒𝑥𝑝 −
𝑥! − 𝑥!
!
+ (𝑦! − 𝑦!)!
𝑤𝑖𝑑𝑡ℎ!!"#
	
  
	
  
𝜆 → arg 𝑚𝑖𝑛 ∇𝐿	
  
	
  
	
  
	
  
RIDGE	
  REGRESSION	
  -­‐	
  REGULARIZATION	
  
	
  
𝑚 ≔ 𝑚 −
𝑦 − 𝑦 !
𝑁
−
𝜆. 𝑚
𝑁
	
  
	
  
	
  
𝑦 = 𝜆. 𝑚𝑥 + 𝑏 −
𝜆
𝑁
	
  
	
  
	
  
LASSO	
  REGRESSION	
  	
  -­‐	
  REGULARIZATION	
  
	
  
	
  
	
  
𝑏 ≔
(𝑦 − 𝑦)!
𝑁
+
𝜆. 𝑏
𝑁
  
	
  
𝑚 → 0	
  
	
  
𝑦 = 𝑚𝑥 + 𝜆. 𝑏 +
𝜆
𝑁
	
  
	
  
	
  
SKEWNESS	
  
	
  
Skewness	
  <	
  1	
  
	
  
KOLMOGOROV	
  SMIRNOV	
  
	
  
Normal	
  sig	
  >	
  .005	
  
	
  
	
  
	
  
	
  
NÃO	
  PARAMÉTRICOS	
  
	
  
T	
  test	
  =	
  Normal	
  Teste	
  U	
  Mann	
  Whitney	
  sig	
  <	
  .05	
  
	
  
	
  
CRONBACH	
  
	
  
>	
  .60	
  .70	
  
	
  
	
  
MÉDIA	
  ARITMÉTICA	
  
	
  
𝑥
𝑁
	
  
	
  
	
  
	
  
MÉDIA	
  GEOMÉTRICA	
  
	
  
	
  
1,2,4 = 1.2.4
!
	
  
	
  
	
  
	
  
MEDIANA	
  
	
  
𝑀𝑎𝑥 − 𝑀𝑖𝑛
2
	
  
	
  
	
  
TESTE	
  t	
  
	
  
𝑡 =
𝑥! − 𝑥! − (𝜇! − 𝜇!)
𝑥! − 𝑥!
	
  
	
  
Diferença	
  significante	
  sig	
  <	
  .05	
  
	
  
TESTE	
  t	
  2	
  AMOSTRAS	
  
	
  
Levene	
  Variância	
  
	
  
	
  
	
  
ANOVA	
  +	
  3	
  
	
  
𝐹 =
𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎  𝑒𝑛𝑡𝑟𝑒  𝑔𝑟𝑢𝑝𝑜𝑠
𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎  𝑑𝑒𝑛𝑡𝑟𝑜  𝑑𝑜  𝑔𝑟𝑢𝑝𝑜
	
  
	
  
Sig	
  <	
  .05	
  
	
  
	
  
TOLERÂNCIA	
  
	
  
 
Tolerância	
  >	
  .1	
  
	
  
𝑇𝑜𝑙𝑒𝑟â𝑛𝑐𝑖𝑎 =
1
𝑉𝐼𝐹
	
  
	
  
	
  
VARIANCE	
  INFLATION	
  FACTOR	
  
	
  
VIF	
  <10	
  
	
  
	
  
	
  
ENTER	
  METHOD	
  
	
  
+	
  15	
  cases	
  /	
  Variable	
  
	
  
	
  
	
  
STEPWISE	
  METHOD	
  
	
  
+	
  50	
  cases	
  /	
  Variable	
  
	
  
	
  
VARIABLE	
  SELECTION	
  
	
  
F	
  Test	
  =	
  47	
  sig	
  <	
  .05	
  
	
  
	
  
	
  
MISSING	
  DATA	
  
	
  
Delete	
  if	
  >	
  15%	
  
	
  
	
  
	
  
	
  
ANÁLISE	
  DISCRIMINANTE	
  
	
  
	
  
Box	
  M	
  sig	
  <	
  .05	
  rejeita	
  H0	
  
	
  
	
  
Wilk’s	
  Lambda	
  sig	
  <	
  .05	
  
	
  
	
  
𝑥  !~  𝑥!   ≠ 𝑥!′  ~  𝑥!′	
  
𝑃 𝑥 𝑥 =
1
2𝜋𝜎!
. 𝑒𝑥𝑝 −
1
2
𝑥 − 𝑥
𝜎
!
	
  
	
  
	
  
𝑍!" =
𝑁! 𝐶! + 𝑁! 𝐶!
𝑁! + 𝑁!
	
  
	
  
	
  
	
  
ERROR	
  MARGIN	
  
	
  
1.96  
𝜎
𝑁
	
  
	
  
ACCURACY	
  
	
  
Confidence	
  Interval	
  ~	
  P	
  value	
  
	
  
	
  
	
  
HYPOTHESES	
  TESTING	
  
	
  
P	
  value	
  <	
  .05	
  
	
  
	
  
	
  
TRANSFORMATION	
  OK	
  
	
  
𝑥
𝜎
< 4	
  
	
  
	
  
MULTICOLLINEARITY	
  
	
  
Correlation	
  >	
  .90	
  
	
  
VIF	
  <10	
  
	
  
Tolerance	
  >	
  .1	
  
	
  
	
  
SUM	
  OF	
  SQUARES	
  (explain)	
  
	
  
𝐹!"#$% =
𝑆𝑆!"#!"$$%&'  . (𝑁 − 𝑐𝑜𝑒𝑓)
𝑐𝑜𝑒𝑓 − 1   . 𝑆𝑆!"#$%&'(#
	
  
	
  
	
  
	
  
	
  
	
  
	
  
STANDARD	
  ERROR	
  ESTIMATE	
  (SEE)	
  
	
  
	
  
𝑆𝐸𝐸 =
𝑆𝑢𝑚𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟𝑠
𝑛 − 2
	
  
	
  
	
  
𝑆𝐸𝐸 =
(𝑦 − 𝑦)!
𝑛 − 2
	
  
	
  
MAHALANOBIS	
  DISTANCE	
  
same	
  variable	
  
	
  
𝑀 =
(𝑥! − 𝑥!)!
𝜎!
	
  
	
  
	
  
MANHATTAN	
  DISTANCE	
  L	
  
	
  
𝑀𝑎𝑛ℎ = |𝑥! − 𝑥!| + |𝑦! − 𝑦!|	
  
	
  
	
  
NET	
  PRESENT	
  VALUE	
  
	
  
𝑃! = 𝑃!. 𝜃!
	
  
	
  
𝑃! = 𝑃!. 𝜃!!
	
  
	
  
	
  
	
  
MARKOV	
  DECISION	
  PROCESS	
  
	
  
𝑈! = 𝑅! + 𝛿   max
!
𝑇 𝑠, 𝑎, 𝑠′ . 𝑈(𝑠′)
!
	
  
	
  
𝜋! = argmax
!
𝑇 𝑠, 𝑎, 𝑠′ . 𝑈(𝑠′)
!
	
  
	
  
𝑄!,! = 𝑅! + 𝛿   max
!!
𝑇 𝑠, 𝑎, 𝑠!
. max
!  !
𝑄(𝑠!
, 𝑎′)
!
	
  
	
  
𝑄!,! ←! 𝑅! + 𝛿   max
!
𝑄 𝑠!
, 𝑎′ 	
  
	
  
	
  
PROBABILIDADE	
  (coins)	
  
	
  
	
  
𝑃 𝑎 =
𝑃(𝑎)
𝑃(𝐴)
	
  
	
  
	
  
	
  
	
  
	
  
FREQUENTISTA	
  
	
  
	
  
lim
!→!
=
𝑚
𝑛
=
𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑠
𝑡𝑜𝑑𝑎𝑠  𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒𝑠
=
𝑒𝑣𝑒𝑛𝑡𝑜𝑠
𝑒𝑠𝑝𝑎ç𝑜  𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑙
	
  
	
  
	
  
AXIOMÁTICA	
   	
  
	
  
𝑃(𝐴) ≥ 0	
  
	
  
𝑃(𝐴, 𝐵, 𝐶) = 1	
  
	
  
	
  
TEROREMAS	
  DE	
  PROBABILIDADE	
  
	
  
	
  
UNIÃO	
  =	
  A	
  ou	
  B	
  
	
  
𝑃(𝐴𝑈𝐵)!"#$%&!'(!) = 𝑃 𝐴 + 𝑃(𝐵)	
  
	
  
	
  
𝑃(𝐴𝑈𝐵)!Ã!  !"#$%&!'(!) = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃(𝐴 ∩ 𝐵)	
  
	
  
	
  
𝑃(𝐴𝑈𝐵𝑈𝐶)!Ã!  !"#$%&!'(!)
= 𝑃 𝐴 + 𝑃 𝐵 + 𝑃 𝐶 − 𝑃 𝐴 ∩ 𝐵 − 𝑃(𝐴 ∩ 𝐶) − 𝑃(𝐵
∩ 𝐶) − 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)	
  
	
  
	
  
EVENTO	
  COMPLEMENTAR	
  
	
  
	
  
𝑃 Ã = 1 − 𝑃(𝐴)	
  
	
  
	
  
	
  
PROBABILIDADE	
  MARGINAL	
  
	
  
𝑃 𝑎 =
𝑃(𝐴 = 𝑎)
𝑃(𝐴)
	
  
	
  
	
  
	
  
	
  
PROBABILIDADE	
  A	
  e	
  B	
  
	
  
𝑃 𝐴  𝑒  𝐵 =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)
	
  
	
  
	
  
	
  
PROBABILIDADE	
  CONDICIONAL	
  
	
  
	
  
𝑃 𝐴 𝐵 !"#$%$"#$"&$' = 𝑃(𝐴)	
  
	
  
	
  
	
  
	
  
	
  
BAYES	
  (52	
  cartas	
  ,	
  cancer)	
  
	
  
	
  
𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)
=
𝑃 𝐵 𝐴 . 𝑃(𝐴)
𝑃(𝐵)
	
  
	
  
	
  
BINOMIAL	
  DISTRIBUTION	
  (0,1	
  sucesso)	
  
	
  
	
  
𝑃 𝐷 =
𝑒𝑠𝑝𝑎ç𝑜  𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑙
𝑠𝑢𝑐𝑒𝑠𝑠𝑜
. 𝑃 𝑠 !
. (1 − 𝑃 𝑠 )!
	
  
	
  
𝑃 𝐷 =
𝑒𝑠𝑝𝑎ç𝑜  𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑙
𝑠𝑢𝑐𝑒𝑠𝑠𝑜
. 𝑃 𝑠 !
. (𝑃 𝑠 )!
	
  
	
  
	
  
𝑃 𝑆𝑢𝑐𝑒𝑠𝑠𝑜 =
𝑆
𝑠
𝑃 𝑠 . 𝑃(𝑠)
!∈!!∈!
	
  
	
  
𝑃 𝐷 =
𝑐!
𝑎! 𝑐 − 𝑎 !
. 𝑃 𝑎 !
. (1 − 𝑃 𝑎 )!
	
  
	
  
	
  
	
  
PROBABILIDADE	
  TOTAL	
  (urnas)	
  
	
  
𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 . 𝑃(𝐵|𝐴)	
  
	
  
	
  
	
  
PROBABILITY	
  k	
  SUCCESS	
  in	
  n	
  TRIALS	
  
	
  
𝑃 𝑘  𝑖𝑛  𝑛 =
𝑛
𝑘
. 𝑝!
. (1 − 𝑝)!!!
	
  
	
  
INTEGRAIS	
  
	
  
𝐹 𝑏 − 𝐹 𝑎
!
!
	
  
	
  
	
  
𝑥!
𝑑𝑥 =
1
3
𝑥!
=
!
!
1
3
2!
−
1
3
1!
	
  
	
  
	
  
PRODUCT	
  RULE	
  
	
  
	
  
𝑐. 𝑓′ 𝑥 . 𝑑𝑥 = 𝑐 𝑓′ 𝑥 . 𝑑𝑥	
  
	
  
	
  
CHAIN	
  RULE	
  
	
  
	
  
𝑓 𝑥 + 𝑔 𝑥 . 𝑑𝑥 = 𝑓 𝑥 . 𝑑𝑥 + 𝑔 𝑥 . 𝑑(𝑥)	
  
	
  
INTEGRATION	
  
	
  
	
  
𝑓′ 𝑥 . Δ𝑥
Δ𝑥 = 0
𝑁 → ∞
	
  
	
  
	
  
DIFFERENTIATION	
  
	
  
	
  
lim
!→!
𝑓 𝑎 + Δ𝑥 − 𝑓(𝑎)
Δ𝑥
	
  
	
  
 
LINEAR	
  ALGEBRA	
  
	
  
ADDITION	
  
	
  
	
  
1 2
4 3
+
2 2
5 3
=
2 4
9 6
	
  
	
  
	
  
SCALAR	
  MULTIPLY	
  
	
  
	
  
3 ∗
2 2
5 3
=
6 6
15 9
	
  
	
  
	
  
MATRIX	
  VECTOR	
  MULTIPLICATION	
  
	
  
Linhas	
  x	
  Colunas	
  
	
  
x	
  Vetor:	
  Colunas	
  A	
  =	
  Linhas	
  B	
  
	
  
𝐴!,! ∗ 𝐵!,! = 𝐶!,!	
  
	
  
0 3
1 3
2 4
∗
1
2
=
6
7
9
	
  
	
  
	
  
1 2 3
1 4 5
0 3 2
∗
1
2
0
=
5
9
6
	
  
	
  
OU	
  
	
  
1 2 3
1 4 5
0 3 2
∗
1
2
0
= 1 ∗
1
1
0
+ 2 ∗
2
4
3
+ 0 ∗
3
5
2
=
5
9
6
	
  
	
  
	
  
x	
  Matrix:	
  Colunas	
  A	
  =	
  Linhas	
  B	
  
Linhas	
  A	
  =	
  Colunas	
  B	
  
	
  
𝑨 𝟐,𝟏 = 𝟐𝒂  𝒍𝒊𝒏𝒉𝒂  𝒙  𝟏𝒂  𝒄𝒐𝒍𝒖𝒏𝒂	
  
	
  
1 2 3
0 4 5
∗
0 3
1 3
2 5
=
8 24
14 37
	
  
	
  
	
  
1 2 0 ∗
1 2 3
4 5 6
7 8 9
= 12 30 0 	
  
	
  
	
  
IMPORTANTE	
  
	
  
𝑨 𝟐,𝟑 = 𝟐𝒂  𝒍𝒊𝒏𝒉𝒂  𝒙  𝟑𝒂  𝒄𝒐𝒍𝒖𝒏𝒂	
  
	
  
	
  
1 0 0
−3 1 0
0 0 1
∗
1 2 1
3 8 1
0 4 1
=	
  
	
  
=
𝐴!,! 𝐴!,! 𝐴!,!
𝐴!,! 𝐴!,! 𝐴!,!
𝐴!,! 𝐴!,! 𝐴!,!
=
1 2 1
0 2 −2
0 4 1
	
  
	
  
	
  
	
  
	
  
	
  
PERMUTATION	
  
	
  
LEFT=exchange	
  rows	
  
	
  
0 1
1 0
∗
𝑎 𝑏
𝑐 𝑑
=
𝑐 𝑑
𝑎 𝑏
	
  
	
  
RIGHT=exchange	
  columns	
  
	
  
𝑎 𝑏
𝑐 𝑑
∗
0 1
1 0
=
𝑏 𝑎
𝑑 𝑐
	
  
	
  
	
  
	
  
IDENTIDADE	
  
	
  
1 0 0
0 1 0
0 0 1
	
  
	
  
	
  
DIAGONAL	
  
	
  
2 0 0
0 2 0
0 0 2
	
  
	
  
	
  
	
  
	
  
	
  
TRANSPOSE	
  
	
  
𝐴 =
1 2 3
4 5 6
  𝐴!
=
1 4
2 5
3 6
	
  
	
  
	
  
PROPRIEDADES	
  
	
  
	
  
Not	
  commutative	
  
𝐴 ∗ 𝐵 ≠ 𝐵 ∗ 𝐴	
  
	
  
	
  
Associative	
  
𝐴 ∗ 𝐵 ∗ 𝐶 = 𝐴 ∗ (𝐵 ∗ 𝐶)	
  
	
  
	
  
	
  
Inverse	
  (only	
  squared)	
  
𝐴!!
≠
1
𝐴
	
  
	
  
𝐴!!
. 𝐴 = 𝐼 =
1 0
0 1
	
  
	
  
	
  
DETERMINANTE	
  
	
  
1 3
4 2
= 1.2 − 3.4 = −10	
  
	
  
	
  
1 4 7
2 5 8
3 6 9
1 4
2 5
3 6
= 1.5.9 + 4.8.3 + 7.2.6 − 7.5.3 − 1.8.6 − 4.2.9	
  
	
  
	
  
ELASTICIDADE	
  DE	
  DEMANDA	
  
	
  
𝜌 =
(𝑄! − 𝑄!)
(𝑄! + 𝑄!)
.
(𝑃! + 𝑃!)
(𝑃! − 𝑃!)
	
  

More Related Content

Similar to Some Equations for MAchine LEarning

Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptxjorgejvc777
 
07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuasHipólito Aguilar
 
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiaPenjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiabisma samudra
 
SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)tungwc
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)tungwc
 
Metal-Insulator Transitions I.pdf
Metal-Insulator Transitions I.pdfMetal-Insulator Transitions I.pdf
Metal-Insulator Transitions I.pdfTheAnalyzed
 
05.mdsd_modelado_mecanico_electrico
05.mdsd_modelado_mecanico_electrico05.mdsd_modelado_mecanico_electrico
05.mdsd_modelado_mecanico_electricoHipólito Aguilar
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raicesHipólito Aguilar
 
SUEC 高中 Adv Maths (Irrational Part 1)
SUEC 高中 Adv Maths (Irrational Part 1)SUEC 高中 Adv Maths (Irrational Part 1)
SUEC 高中 Adv Maths (Irrational Part 1)tungwc
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones linealesemojose107
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
 
07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidos07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidosHipólito Aguilar
 
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniformeFranklin Jesper
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
 

Similar to Some Equations for MAchine LEarning (20)

Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptx
 
07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas07.scd_digitalizacion_de_senales_continuas
07.scd_digitalizacion_de_senales_continuas
 
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiaPenjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
 
SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
 
07.5.scd_ejemplos
07.5.scd_ejemplos07.5.scd_ejemplos
07.5.scd_ejemplos
 
Metal-Insulator Transitions I.pdf
Metal-Insulator Transitions I.pdfMetal-Insulator Transitions I.pdf
Metal-Insulator Transitions I.pdf
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Relativity
RelativityRelativity
Relativity
 
05.mdsd_modelado_mecanico_electrico
05.mdsd_modelado_mecanico_electrico05.mdsd_modelado_mecanico_electrico
05.mdsd_modelado_mecanico_electrico
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices
 
04.mdsd_laplace_fourier
04.mdsd_laplace_fourier04.mdsd_laplace_fourier
04.mdsd_laplace_fourier
 
SUEC 高中 Adv Maths (Irrational Part 1)
SUEC 高中 Adv Maths (Irrational Part 1)SUEC 高中 Adv Maths (Irrational Part 1)
SUEC 高中 Adv Maths (Irrational Part 1)
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones lineales
 
K to 12 math
K to 12 mathK to 12 math
K to 12 math
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
 
07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidos07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidos
 
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 

Recently uploaded

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 

Recently uploaded (20)

College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 

Some Equations for MAchine LEarning

  • 1.                                                                     rubenszmm@gmail.com     http://github.com/RubensZimbres        
  • 2.   NAÏVE  BAYES     𝑃 𝑎 𝑐 = 𝑃 𝑐 𝑎 . 𝑃(𝑎) 𝑃(𝑐)       BAYES  OPTIMAL  CLASSIFIER     arg max 𝑃 𝑥 𝑇 . 𝑃(𝑇|𝐷)         NAÏVE  BAYES  CLASSIFIER     arg max 𝑃 𝑆𝑝𝑜|𝑇𝑜𝑡 . 𝑃(𝑆𝑜𝑐|𝑆𝑝𝑜)         BAYES  MAP  (maximum  a  posteriori)     ℎ!"# = arg max 𝑃 𝑐|𝑎 . 𝑃(𝑎)         MAXIMUM  LIKELIHOOD     ℎ!" = arg max 𝑃 𝑐|𝑎         TOTAL  PROBABILITY       𝑇𝑜𝑡𝑎𝑙𝑃 𝐵 = 𝑃 𝐵|𝐴 . 𝑃(𝐴)   MIXTURE  MODELS     𝑃 𝐵 = 𝑃 𝐵|𝐴 . 𝑃(𝐴)         MIXTURE  OF  GAUSSIANS   ANOMALY  DETECTION     𝑃 𝑥 𝑥 = 1 2𝜋𝜎! . 𝑒𝑥𝑝 − 1 2 𝑥 − 𝑥 𝜎 !       𝑍!" = 𝑁! 𝐶! + 𝑁! 𝐶! 𝑁! + 𝑁!       𝑃(𝑍!") → 0.50       EM  ALGORITHM     𝐸  𝑠𝑡𝑒𝑝  𝑃 𝑥|𝑥 = 𝑃 𝑥 . 𝑃 𝑥|𝑥 𝑃 𝑥 . 𝑃 𝑥       𝑀  𝑠𝑡𝑒𝑝  𝑃 𝑥′ = 𝑃(𝑥|𝑥) 𝑛       𝐸  𝑠𝑡𝑒𝑝  𝑃 𝑥|𝑥 = 𝐴𝑠𝑠𝑖𝑔𝑛  𝑣𝑎𝑙𝑢𝑒       𝑀  𝑠𝑡𝑒𝑝  𝑃 𝑥′ = 𝑃(𝐵 = 1|𝐴 = 1, 𝐶 = 0)    
  • 3.   LAPLACE  ESTIMATE  (small  samples)     𝑃 𝐴 = 𝐴 + 0.5 𝐴 + 𝐵 + 1       BAYESIAN  NETWORKS     𝑡𝑢𝑝𝑙𝑒𝑠  ¬  𝑓𝑜𝑟  𝑦 = 0   ∧ 𝑦 = 1       LIMITES     lim !→! 𝑓 𝑥 + ℎ − 𝑓(𝑥) ℎ     ℎ = Δ𝑥 = 𝑥′ − 𝑥         DERIVADAS     𝜕 𝜕𝑥 𝑥! = 𝑛. 𝑥!!!     𝜕 𝜕𝑥 𝑦! = 𝜕𝑦! 𝜕𝑦 . 𝜕𝑦 𝜕𝑥       PRODUCT  RULE     𝑑 𝑑𝑥 𝑓 𝑥 . 𝑔 𝑥 = 𝑓′ 𝑥 𝑔 𝑥 + 𝑓 𝑥 . 𝑔′(𝑥)       𝑑 𝑑𝑥 𝑓(𝑥) 𝑔(𝑥) = 𝑓′ 𝑥 𝑔 𝑥 + 𝑓 𝑥 . 𝑔′(𝑥) 𝑔(𝑥)!     𝑑 𝑑𝑥 2𝑓 𝑥 = 2 𝑑 𝑑𝑥 𝑓 𝑥       𝑑 𝑑𝑥 𝑓 𝑥 + 𝑔 𝑥 = 𝑑 𝑑𝑥 𝑓 𝑥 + 𝑑 𝑑𝑥 𝑔 𝑥       𝑑 𝑑𝑥 𝑓 𝑥 + 2𝑔 𝑥 = 𝑑 𝑑𝑥 𝑓 𝑥 + 2 𝑑 𝑑𝑥 𝑔 𝑥       CHAIN  RULE     𝑑 𝑑𝑥 𝑔 𝑓 𝑥 = 𝑔! 𝑓(𝑥) . 𝑓′(𝑥)     solve  f(x)  apply  in  g’(x)           VARIANCE     𝑉𝑎𝑟 = (𝑥 − 𝑥)! 𝑛 − 1         STANDARD  DEVIATION     𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒      
  • 4. COVARIANCE       𝐶𝑜𝑣 = 𝑥 − 𝑥 . (𝑦 − 𝑦) 𝑛 − 1         CONFIDENCE  INTERVAL     𝑥 ± 1.96 𝜎 𝑛         CHI  SQUARED     𝐶ℎ𝑖 = (𝑦 − 𝑦)! 𝑦 = 𝛿! 𝑦           R  SQUARED       𝑅! = 𝑛 𝑥𝑦 − 𝑥. 𝑦 𝑛 𝑥! − ( 𝑥)! . 𝑛 𝑦! − ( 𝑦)!         LOSS     𝐿𝑜𝑠𝑠 = 𝐵𝑖𝑎𝑠! + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒! + 𝑁𝑜𝑖𝑠𝑒       SUM  OF  SQUARED  ERRORS     𝐸 𝑤 = (𝑦 − 𝑦)! 2       COST  FUNCTION     𝐽 𝜃! ≔ 𝜃! − 𝜂. (𝑦 − 𝑦)! 2           NUMBER  OF  EXAMPLES     𝑚 ≥ log(𝑁!) + log  ( 1 𝛿) 𝜖     𝑤ℎ𝑒𝑟𝑒  𝜖 = 𝑦 𝑦  ∧  𝛿 = 𝑦 − 𝑦           MARKOV  CHAINS     𝑃!!! 𝑋 = 𝑥 = 𝑃! . 𝑋 = 𝑥 . 𝑇(𝑥 → 𝑥) !              
  • 5. K  NEAREST  NEIGHBOR     𝑓 𝑥 ← 𝑓(𝑥) 𝑘       𝐷𝐸 𝑥!, 𝑥! = 𝑥! − 𝑥! ! + (𝑦!" − 𝑦!")!       WEIGHTED  NEAREST  NEIGHBOR       𝑓 𝑥 = 𝑓(𝑥) 𝐷(𝑥! 𝑥!)! . 𝐷(𝑥! 𝑥!)!         PRINCIPAL  COMPONENTS  ANALYSIS     𝑥′ = 𝑥 − 𝑥     𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 = 𝐴 − 𝜆𝐼       𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 = 𝐸𝑛𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒. [𝐴]       𝑓 𝑥 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟! . [𝑥!!. . . 𝑥!"]                 LINEAR  REGRESSION       𝑚! = 𝑥! ! 𝑥! 𝑦 − 𝑥! 𝑥! 𝑥! 𝑦 𝑥! ! 𝑥! ! − ( 𝑥! 𝑥!)!       𝑏 = 𝑦 − 𝑚! 𝑥! − 𝑚! 𝑥!       𝑓 𝑥 = 𝑚! 𝑥! ! !!! + 𝑏         LOGISTIC  REGRESSION       𝑂𝑑𝑑𝑠  𝑅𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔 𝑃 1 − 𝑃 = 𝑚𝑥 + 𝑏       𝑃 1 − 𝑃 = 𝑒!"!!         𝐽 𝜃 = − 𝑦. log  (𝑦) + 1 − 𝑦 . log  (1 − 𝑦) 𝑛     𝑤ℎ𝑒𝑟𝑒  𝑦 = 1 1 + 𝑒!"!!     𝑓𝑜𝑟  𝑦 = 0     ∧  𝑦 = 1     −2𝐿𝐿 → 0  
  • 6.     𝑥  !~  𝑥!  ≠ 𝑥!′  ~  𝑥!′       𝑚𝑥 + 𝑏 = 𝑝 1 − 𝑝       𝑃 𝑎 𝑐 = 𝑚𝑥 + 𝑏 𝑚𝑥 + 𝑏 + 1       𝐿𝑜𝑔𝑖𝑡 = 1 100. log  (𝑃(𝑎|𝑐))       DECISION  TREES     𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑃. log  (𝑃) ! !!!       𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛 = 𝑃!. −𝑃!!. log 𝑃!! − 𝑃!(!!!)−. log  (𝑃!(!!!))         RULE  INDUCTION     𝐺𝑎𝑖𝑛 = 𝑃. [ −𝑃!!!. log  (𝑃) − (−𝑃!. log  (𝑃))]         RULE  VOTE     Weight=accuracy  .  coverage   ENTROPY       𝐻 𝐴 = − 𝑃 𝐴 . 𝑙𝑜𝑔𝑃(𝐴)       JOINT  ENTROPY       𝐻 𝐴, 𝐵 = − 𝑃 𝐴, 𝐵 . 𝑙𝑜𝑔𝑃(𝐴, 𝐵)         CONDITIONAL  ENTROPY       𝐻 𝐴|𝐵 = − 𝑃 𝐴, 𝐵 . 𝑙𝑜𝑔𝑃(𝐴|𝐵)         MUTUAL  INFORMATION       𝐼 𝐴, 𝐵 = 𝐻 𝐴 − 𝐻(𝐴|𝐵)         EIGENVECTOR  CENTRALITY  =  PAGE  RANK     𝑃𝑅 𝐴 = 1 − 𝑑 𝑛 − d 𝑃𝑅(𝐵) 𝑂𝑢𝑡(𝐵) + 𝑃𝑅(𝑛) 𝑂𝑢𝑡(𝑛)     where  d=1  few  connections    
  • 7. RATING     𝑅 = 𝑅! + 𝛼 𝑤!. (𝑅!" − 𝑅!)       SIMILARITY     𝑤!" = 𝑅!" − 𝑅! . (𝑅!" − 𝑅!)! 𝑅!" − 𝑅! !. (𝑅!" − 𝑅!)! !             CONTENT-­‐BASED  RECOMMENDATION     𝑅𝑎𝑡𝑖𝑛𝑔 = 𝑥! 𝑦! ! !!! !"#$$ !!!         COLLABORATIVE  FILTERING       𝑅!" = 𝑅! + 𝛼.   𝑅!" − 𝑅! . 𝑅!" − 𝑅! . (𝑅!" − 𝑅!)! 𝑅!" − 𝑅! !. (𝑅!" − 𝑅!)! !           BATCH  GRADIENT  DESCENT       𝐽 𝜃! ≔ 𝜃! ± 𝜂. (𝑦 − 𝑦)! . 𝑥 2𝑛       STOCHASTIC  GRADIENT  DESCENT       𝐽 𝜃! ≔ 𝜃! ± 𝜂. (𝑦 − 𝑦)! . 𝑥             NEURAL  NETWORKS     𝑓 𝑥 = 𝑜 = 𝑤! + 𝑤! 𝑥! ! !!!         LOGIT     log 𝑜𝑑𝑑𝑠 = 𝑤𝑥 + 𝑏 = 𝑙𝑜𝑔 𝑝 1 − 𝑝         SOFTMAX  NORMALIZATION     𝑆(𝑓 𝑥 ) = 𝑒!"!! 𝑒!"!!      
  • 8.   CROSS  ENTROPY     𝐻(𝑆 𝑓 𝑥 , 𝑓 𝑥 = − 𝑓 𝑥 . 𝑙𝑜𝑔𝑆(𝑓 𝑥 )       LOSS     𝐿𝑜𝑠𝑠 = 𝐻(𝑆(𝑓 𝑥 , 𝑓(𝑥)) 𝑁           L2  REGULARIZATION     𝑤 ← 𝑤 − 𝜂. 𝛿. 𝑥 + 𝜆. 𝑤! 2         SIGMOID     1 1 + 𝑒!(!"!!)         RADIAL  BASIS  FUNCTION       ℎ 𝑥 = 𝑒 ! (!!!)! !!           PERCEPTRON     𝑓 𝑥 = 𝑠𝑖𝑔𝑛 𝑤! 𝑥!" ! !!!       PERCEPTRON  TRAINING     𝑤! ← 𝑤! + ∆𝑤!     ∆𝑤! = 𝜂. 𝑡 − 𝑜 . 𝑥       ERROR  FOR  A  SIGMOID       𝜖 = 𝑡 − 𝑜 . 𝑜. 1 − 𝑜 . 𝑥           AVOID  OVERFIT  NEURAL  NETWORKS  L2     𝑤 = (𝑡 − 𝑜)! !"#!"# 2 + F. 𝑤!" !       where  F=penalty              
  • 9.   BACKPROPAGATION       𝛿! = 𝑜!. 1 − 𝑜! . (𝑡 − 𝑜!)       𝛿! = 𝑜!. 1 − 𝑜! . 𝑤!" 𝛿!       𝑤!" ← 𝑤!" + 𝜂!". 𝛿!. 𝑥!"     𝑤! = 1 + (𝑡 − 𝑜!)       ∆𝑤!"(𝑛) = 𝜂. 𝛿!. 𝑥!" + 𝑀. ∆𝑤!"(𝑛 − 1)     where  M=momentum       NEURAL  NETWORKS  COST  FUNCTION     𝐽! = 𝑡!. log 𝑜 + 1 − 𝑡 . log  (1 − 𝑜)! !!! ! !!! 𝑁 + 𝜆 𝜃!" !!!!! !!! !! !!! !! !!! 2𝑁         MOMENTUM  Υ       𝜃 = 𝜃 − (𝛾𝑣!!! + 𝜂. ∇𝐽 𝜃 )             NESTEROV       𝜃 = 𝜃 − (𝛾𝑣!!! + 𝜂. ∇𝐽(𝜃 − 𝛾𝑣!!!))       ADAGRAD       𝜃 = 𝜃 − 𝜂 𝑆𝑆𝐺!"#$ + 𝜖 . ∇𝐽(𝜃)         ADADELTA     𝜃 = 𝜃 − 𝑅𝑀𝑆[∆𝜃]!!! 𝑅𝑀𝑆∇𝐽(𝜃)       𝑅𝑀𝑆 Δ𝜃 = 𝐸 ∆𝜃! + 𝜖       RMSprop       𝜃 = 𝜃 − 𝜂 𝐸 𝑔! + 𝜖 . ∇𝐽(𝜃)       ADAM     𝜃 = 𝜃 − 𝜂 𝑣 + 𝜖 . 𝑚    
  • 10.   𝑚 = 𝛽! 𝑚!!! + 1 − 𝛽! . ∇𝐽(𝜃) 1 − 𝛽!       𝑣 = 𝛽! 𝑣!!! + 1 − 𝛽! . ∇𝐽(𝜃)! 1 − 𝛽!         SUPPORT  VECTOR  MACHINES     𝑓 𝑥 = 𝑠𝑖𝑔𝑛 𝜆. 𝑦. 𝐾(𝑥! ∙ 𝑥!)     𝐾 𝑥! ∙ 𝑥! = 𝑒𝑥𝑝 − 𝑥! − 𝑥! ! + (𝑦! − 𝑦!)! 𝑤𝑖𝑑𝑡ℎ!!"#     𝜆 → ∇𝐿 = 0       𝑦 = 1   ∧ 𝑦 = −1       𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑥!. 𝑐𝑜𝑠𝜃       𝑐𝑜𝑠! 𝜃 + 𝑠𝑒𝑛! 𝜃 = 1       𝑠𝑒𝑛𝜃 = 𝑥! − 𝑥! ! + (𝑦!" − 𝑦!")! 𝑥!     𝑥! ∙ 𝑥! = (𝑥! ! + 𝑦! !). 1 − 𝑥! − 𝑥! ! + (𝑦! − 𝑦!)! 𝑥! ! + 𝑦! !           SUPPORT  VECTOR  REGRESSION     𝑌 = 𝜆. 𝐾 𝑥! ∙ 𝑥! + 𝑏     𝐾 𝑥! ∙ 𝑥! = 𝑒𝑥𝑝 − 𝑥! − 𝑥! ! + (𝑦! − 𝑦!)! 𝑤𝑖𝑑𝑡ℎ!!"#     𝜆 → arg 𝑚𝑖𝑛 ∇𝐿         RIDGE  REGRESSION  -­‐  REGULARIZATION     𝑚 ≔ 𝑚 − 𝑦 − 𝑦 ! 𝑁 − 𝜆. 𝑚 𝑁       𝑦 = 𝜆. 𝑚𝑥 + 𝑏 − 𝜆 𝑁       LASSO  REGRESSION    -­‐  REGULARIZATION        
  • 11. 𝑏 ≔ (𝑦 − 𝑦)! 𝑁 + 𝜆. 𝑏 𝑁     𝑚 → 0     𝑦 = 𝑚𝑥 + 𝜆. 𝑏 + 𝜆 𝑁       SKEWNESS     Skewness  <  1     KOLMOGOROV  SMIRNOV     Normal  sig  >  .005           NÃO  PARAMÉTRICOS     T  test  =  Normal  Teste  U  Mann  Whitney  sig  <  .05       CRONBACH     >  .60  .70       MÉDIA  ARITMÉTICA     𝑥 𝑁         MÉDIA  GEOMÉTRICA       1,2,4 = 1.2.4 !         MEDIANA     𝑀𝑎𝑥 − 𝑀𝑖𝑛 2       TESTE  t     𝑡 = 𝑥! − 𝑥! − (𝜇! − 𝜇!) 𝑥! − 𝑥!     Diferença  significante  sig  <  .05     TESTE  t  2  AMOSTRAS     Levene  Variância         ANOVA  +  3     𝐹 = 𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎  𝑒𝑛𝑡𝑟𝑒  𝑔𝑟𝑢𝑝𝑜𝑠 𝑉𝑎𝑟𝑖â𝑛𝑐𝑖𝑎  𝑑𝑒𝑛𝑡𝑟𝑜  𝑑𝑜  𝑔𝑟𝑢𝑝𝑜     Sig  <  .05       TOLERÂNCIA    
  • 12.   Tolerância  >  .1     𝑇𝑜𝑙𝑒𝑟â𝑛𝑐𝑖𝑎 = 1 𝑉𝐼𝐹       VARIANCE  INFLATION  FACTOR     VIF  <10         ENTER  METHOD     +  15  cases  /  Variable         STEPWISE  METHOD     +  50  cases  /  Variable       VARIABLE  SELECTION     F  Test  =  47  sig  <  .05         MISSING  DATA     Delete  if  >  15%           ANÁLISE  DISCRIMINANTE       Box  M  sig  <  .05  rejeita  H0       Wilk’s  Lambda  sig  <  .05       𝑥  !~  𝑥!  ≠ 𝑥!′  ~  𝑥!′   𝑃 𝑥 𝑥 = 1 2𝜋𝜎! . 𝑒𝑥𝑝 − 1 2 𝑥 − 𝑥 𝜎 !       𝑍!" = 𝑁! 𝐶! + 𝑁! 𝐶! 𝑁! + 𝑁!         ERROR  MARGIN     1.96   𝜎 𝑁     ACCURACY     Confidence  Interval  ~  P  value         HYPOTHESES  TESTING     P  value  <  .05        
  • 13. TRANSFORMATION  OK     𝑥 𝜎 < 4       MULTICOLLINEARITY     Correlation  >  .90     VIF  <10     Tolerance  >  .1       SUM  OF  SQUARES  (explain)     𝐹!"#$% = 𝑆𝑆!"#!"$$%&'  . (𝑁 − 𝑐𝑜𝑒𝑓) 𝑐𝑜𝑒𝑓 − 1  . 𝑆𝑆!"#$%&'(#               STANDARD  ERROR  ESTIMATE  (SEE)       𝑆𝐸𝐸 = 𝑆𝑢𝑚𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟𝑠 𝑛 − 2       𝑆𝐸𝐸 = (𝑦 − 𝑦)! 𝑛 − 2     MAHALANOBIS  DISTANCE   same  variable     𝑀 = (𝑥! − 𝑥!)! 𝜎!       MANHATTAN  DISTANCE  L     𝑀𝑎𝑛ℎ = |𝑥! − 𝑥!| + |𝑦! − 𝑦!|       NET  PRESENT  VALUE     𝑃! = 𝑃!. 𝜃!     𝑃! = 𝑃!. 𝜃!!         MARKOV  DECISION  PROCESS     𝑈! = 𝑅! + 𝛿   max ! 𝑇 𝑠, 𝑎, 𝑠′ . 𝑈(𝑠′) !     𝜋! = argmax ! 𝑇 𝑠, 𝑎, 𝑠′ . 𝑈(𝑠′) !     𝑄!,! = 𝑅! + 𝛿   max !! 𝑇 𝑠, 𝑎, 𝑠! . max !  ! 𝑄(𝑠! , 𝑎′) !     𝑄!,! ←! 𝑅! + 𝛿   max ! 𝑄 𝑠! , 𝑎′      
  • 14. PROBABILIDADE  (coins)       𝑃 𝑎 = 𝑃(𝑎) 𝑃(𝐴)             FREQUENTISTA       lim !→! = 𝑚 𝑛 = 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑠 𝑡𝑜𝑑𝑎𝑠  𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒𝑠 = 𝑒𝑣𝑒𝑛𝑡𝑜𝑠 𝑒𝑠𝑝𝑎ç𝑜  𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑙       AXIOMÁTICA       𝑃(𝐴) ≥ 0     𝑃(𝐴, 𝐵, 𝐶) = 1       TEROREMAS  DE  PROBABILIDADE       UNIÃO  =  A  ou  B     𝑃(𝐴𝑈𝐵)!"#$%&!'(!) = 𝑃 𝐴 + 𝑃(𝐵)       𝑃(𝐴𝑈𝐵)!Ã!  !"#$%&!'(!) = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃(𝐴 ∩ 𝐵)       𝑃(𝐴𝑈𝐵𝑈𝐶)!Ã!  !"#$%&!'(!) = 𝑃 𝐴 + 𝑃 𝐵 + 𝑃 𝐶 − 𝑃 𝐴 ∩ 𝐵 − 𝑃(𝐴 ∩ 𝐶) − 𝑃(𝐵 ∩ 𝐶) − 𝑃(𝐴 ∩ 𝐵 ∩ 𝐶)       EVENTO  COMPLEMENTAR       𝑃 Ã = 1 − 𝑃(𝐴)         PROBABILIDADE  MARGINAL     𝑃 𝑎 = 𝑃(𝐴 = 𝑎) 𝑃(𝐴)           PROBABILIDADE  A  e  B     𝑃 𝐴  𝑒  𝐵 = 𝑃(𝐴 ∩ 𝐵) 𝑃(𝐵)         PROBABILIDADE  CONDICIONAL       𝑃 𝐴 𝐵 !"#$%$"#$"&$' = 𝑃(𝐴)            
  • 15. BAYES  (52  cartas  ,  cancer)       𝑃 𝐴 𝐵 = 𝑃(𝐴 ∩ 𝐵) 𝑃(𝐵) = 𝑃 𝐵 𝐴 . 𝑃(𝐴) 𝑃(𝐵)       BINOMIAL  DISTRIBUTION  (0,1  sucesso)       𝑃 𝐷 = 𝑒𝑠𝑝𝑎ç𝑜  𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑙 𝑠𝑢𝑐𝑒𝑠𝑠𝑜 . 𝑃 𝑠 ! . (1 − 𝑃 𝑠 )!     𝑃 𝐷 = 𝑒𝑠𝑝𝑎ç𝑜  𝑎𝑚𝑜𝑠𝑡𝑟𝑎𝑙 𝑠𝑢𝑐𝑒𝑠𝑠𝑜 . 𝑃 𝑠 ! . (𝑃 𝑠 )!       𝑃 𝑆𝑢𝑐𝑒𝑠𝑠𝑜 = 𝑆 𝑠 𝑃 𝑠 . 𝑃(𝑠) !∈!!∈!     𝑃 𝐷 = 𝑐! 𝑎! 𝑐 − 𝑎 ! . 𝑃 𝑎 ! . (1 − 𝑃 𝑎 )!         PROBABILIDADE  TOTAL  (urnas)     𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 . 𝑃(𝐵|𝐴)         PROBABILITY  k  SUCCESS  in  n  TRIALS     𝑃 𝑘  𝑖𝑛  𝑛 = 𝑛 𝑘 . 𝑝! . (1 − 𝑝)!!!     INTEGRAIS     𝐹 𝑏 − 𝐹 𝑎 ! !       𝑥! 𝑑𝑥 = 1 3 𝑥! = ! ! 1 3 2! − 1 3 1!       PRODUCT  RULE       𝑐. 𝑓′ 𝑥 . 𝑑𝑥 = 𝑐 𝑓′ 𝑥 . 𝑑𝑥       CHAIN  RULE       𝑓 𝑥 + 𝑔 𝑥 . 𝑑𝑥 = 𝑓 𝑥 . 𝑑𝑥 + 𝑔 𝑥 . 𝑑(𝑥)     INTEGRATION       𝑓′ 𝑥 . Δ𝑥 Δ𝑥 = 0 𝑁 → ∞       DIFFERENTIATION       lim !→! 𝑓 𝑎 + Δ𝑥 − 𝑓(𝑎) Δ𝑥    
  • 16.   LINEAR  ALGEBRA     ADDITION       1 2 4 3 + 2 2 5 3 = 2 4 9 6       SCALAR  MULTIPLY       3 ∗ 2 2 5 3 = 6 6 15 9       MATRIX  VECTOR  MULTIPLICATION     Linhas  x  Colunas     x  Vetor:  Colunas  A  =  Linhas  B     𝐴!,! ∗ 𝐵!,! = 𝐶!,!     0 3 1 3 2 4 ∗ 1 2 = 6 7 9       1 2 3 1 4 5 0 3 2 ∗ 1 2 0 = 5 9 6     OU     1 2 3 1 4 5 0 3 2 ∗ 1 2 0 = 1 ∗ 1 1 0 + 2 ∗ 2 4 3 + 0 ∗ 3 5 2 = 5 9 6       x  Matrix:  Colunas  A  =  Linhas  B   Linhas  A  =  Colunas  B     𝑨 𝟐,𝟏 = 𝟐𝒂  𝒍𝒊𝒏𝒉𝒂  𝒙  𝟏𝒂  𝒄𝒐𝒍𝒖𝒏𝒂     1 2 3 0 4 5 ∗ 0 3 1 3 2 5 = 8 24 14 37       1 2 0 ∗ 1 2 3 4 5 6 7 8 9 = 12 30 0       IMPORTANTE     𝑨 𝟐,𝟑 = 𝟐𝒂  𝒍𝒊𝒏𝒉𝒂  𝒙  𝟑𝒂  𝒄𝒐𝒍𝒖𝒏𝒂       1 0 0 −3 1 0 0 0 1 ∗ 1 2 1 3 8 1 0 4 1 =     = 𝐴!,! 𝐴!,! 𝐴!,! 𝐴!,! 𝐴!,! 𝐴!,! 𝐴!,! 𝐴!,! 𝐴!,! = 1 2 1 0 2 −2 0 4 1            
  • 17. PERMUTATION     LEFT=exchange  rows     0 1 1 0 ∗ 𝑎 𝑏 𝑐 𝑑 = 𝑐 𝑑 𝑎 𝑏     RIGHT=exchange  columns     𝑎 𝑏 𝑐 𝑑 ∗ 0 1 1 0 = 𝑏 𝑎 𝑑 𝑐         IDENTIDADE     1 0 0 0 1 0 0 0 1       DIAGONAL     2 0 0 0 2 0 0 0 2             TRANSPOSE     𝐴 = 1 2 3 4 5 6  𝐴! = 1 4 2 5 3 6       PROPRIEDADES       Not  commutative   𝐴 ∗ 𝐵 ≠ 𝐵 ∗ 𝐴       Associative   𝐴 ∗ 𝐵 ∗ 𝐶 = 𝐴 ∗ (𝐵 ∗ 𝐶)         Inverse  (only  squared)   𝐴!! ≠ 1 𝐴     𝐴!! . 𝐴 = 𝐼 = 1 0 0 1       DETERMINANTE     1 3 4 2 = 1.2 − 3.4 = −10       1 4 7 2 5 8 3 6 9 1 4 2 5 3 6 = 1.5.9 + 4.8.3 + 7.2.6 − 7.5.3 − 1.8.6 − 4.2.9       ELASTICIDADE  DE  DEMANDA     𝜌 = (𝑄! − 𝑄!) (𝑄! + 𝑄!) . (𝑃! + 𝑃!) (𝑃! − 𝑃!)