SlideShare a Scribd company logo
1 of 30
Metal-Insulator Transitions(I):
Basics for Non-relativistic Field
Theory of Many-Particle Systems
Detian Yang
Negele, J. W., and H. Orland, 1988, Quantum Many-Particle Systems (Addison Wesley, Redwood City, CA).
Quantum Mechanics: States, Dynamics and Measurements
(1) Physical states are described by vectors in Hilbert space.
Wavefunctions: functionals of quantum fields in 𝑥-representation
(2) The only observables are transition probability amplitudes Ψ Φ
(3) Physical processes are “artificially” divided into two “incompatible”
kinds (I) and (II)
(I) Unitary evolution processes that preserve information
(II) Non-unitary measurement processes that break time inversion
symmetry
𝑖𝜕! ⟩
|Ψ = (
𝐻 ⟩
|Ψ
Born’s Rule; Measurement Assumption;
Ψ Ψ , Ψ +
𝑂 Ψ , Ψ +
𝑂 Φ , 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑃𝑂𝑉𝑀)
𝑖𝜕!𝜌 = [ (
𝐻, 𝜌]
⟩
|𝜑" = +
𝑃" ⟩
|Ψ
⟩
|Ψ
⟩
|Ψ(𝑡) = (
𝑈(𝑡, 𝑡#) ⟩
|Ψ(𝑡#)
ℏ = 𝟏
𝜌 𝑡 = (
𝑈(𝑡, 𝑡#)𝜌 𝑡#
(
𝑈†
(𝑡, 𝑡#)
𝑃(𝑖) = Ψ '
𝑃! Ψ
𝜌 𝜌$
=
+
𝑃"𝜌 +
𝑃"
𝑡𝑟[𝜌 +
𝑃"]
𝑡𝑟[𝜌 '
𝑃!]
'
𝑃! = ⟩
|𝜑! ⟨𝜑!|
𝜌 𝜌1 =
%
𝑀2𝜌 %
𝑀2
†
𝑡𝑟[ %
𝑀2𝜌 %
𝑀2
†]
𝑡𝑟[𝜌 '
𝐹!]
4
𝑀!
4
𝑀!
† = '
𝐹!
N-particle Hilbert Space and States
Hilbert space for N-particle system: ℋ% = ℋ⨂ℋ⨂ ⋯ ℋ
|𝛼& … 𝛼%) ≡ ⟩
|𝛼& ⨂ ⟩
|𝛼' ⨂ … ⨂ ⟩
|𝛼%
Orthonormal basis
{ ⟩
|𝛼 }
Wave function 𝜓% ⃑
𝑟&, ⃑
𝑟', … , ⃑
𝑟% = (⃑
𝑟&, ⃑
𝑟', … , ⃑
𝑟%|Ψ%): probability amplitude for
finding particles in N positions ⃑
𝑟&, ⃑
𝑟', … , ⃑
𝑟%
( )
!
⟩
|𝛼 ⟨𝛼| = 1
Wave function for ⟩
|𝛼& … 𝛼% : 𝜓0!…0"
⃑
𝑟&, ⃑
𝑟', … , ⃑
𝑟% = (⃑
𝑟&, ⃑
𝑟', … , ⃑
𝑟%|𝛼&𝛼' … 𝛼%)
= (⟨⃑
𝑟&|⨂⟨⃑
𝑟'|⨂ … ⨂⟨⃑
𝑟%|)( ⟩
|𝛼& ⨂ ⟩
|𝛼' ⨂ … ⨂ ⟩
|𝛼% )
= 𝜓0!
⃑
𝑟& 𝜓0#
⃑
𝑟' … 𝜓0"
⃑
𝑟%
Orthonormality: 𝛼6, 𝛼7, … , 𝛼8 𝛼1
6𝛼1
7 … 𝛼1
8 = 𝛼6 𝛼1
6 𝛼7 𝛼1
7 … 𝛼8 𝛼1
8
= 𝛿(𝛼6 − 𝛼1
6)𝛿(𝛼7 − 𝛼1
7) … 𝛿(𝛼8 − 𝛼1
8)
𝛼 𝛼" = 𝛿(𝛼 − 𝛼")
Completeness/Closure:
( )
!!,!",…,!#
|𝛼$, 𝛼%, … , 𝛼&)(𝛼$, 𝛼%, … , 𝛼&| = 1
Spin-Statistics Theorem
Identical half-integral spin particles(Fermions) satisfy Fermi–Dirac statistics
which permit no more than one particle per quantum state; identical integral
spin particles(Bosons) satisfy Bose–Einstein statistics which permits any
number of particles in each quantum state
Ian Duck and E. C. G. Sudarshan. American Journal of Physics 66, 284 (1998); doi: 10.1119/1.18860
𝜓 ⃑
𝑟!", ⃑
𝑟!#, … , ⃑
𝑟!$ = 𝜓 ⃑
𝑟", ⃑
𝑟#, … , ⃑
𝑟$
The wave function of N Bosons is totally symmetric relative to any permutation P
The wave function of N Fermions is totally antisymmetric relative to any permutation P
𝜓 ⃑
𝑟!", ⃑
𝑟!#, … , ⃑
𝑟!$ = (−1)!
𝜓 ⃑
𝑟", ⃑
𝑟#, … , ⃑
𝑟$
(−1)#
is the parity of permutation P: the number of switching two elements which bring (1,2, . . 𝑁) to (𝑃1, 𝑃2, . . 𝑃𝑁)
𝜓 ⃑
𝑟!", ⃑
𝑟!#, … , ⃑
𝑟!$ = 𝜉!
𝜓 ⃑
𝑟", ⃑
𝑟#, … , ⃑
𝑟$ 𝜉 = B
+1, 𝐵𝑜𝑠𝑜𝑛𝑠
−1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
Define symmetrization operator 𝒫J and antisymmetrization operator 𝒫K
𝒫!/#𝜓 ⃑
𝑟", ⃑
𝑟#, … , ⃑
𝑟$ =
1
𝑁!
.
!
𝜉!
𝜓 ⃑
𝑟!", ⃑
𝑟!#, … , ⃑
𝑟!$
𝒫J𝜓 ⃑
𝑟6, ⃑
𝑟7 =
1
2
(𝜓 ⃑
𝑟6, ⃑
𝑟7 + 𝜓 ⃑
𝑟7, ⃑
𝑟6 ) 𝒫K𝜓 ⃑
𝑟6, ⃑
𝑟7 =
1
2
(𝜓 ⃑
𝑟6, ⃑
𝑟7 − 𝜓 ⃑
𝑟7, ⃑
𝑟6 )
𝜉 = B
+1, 𝐵𝑜𝑠𝑜𝑛𝑠
−1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
1 𝐻𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛
' 𝑑 ⃑
𝑟!𝑑 ⃑
𝑟" … 𝑑 ⃑
𝑟# 𝜙∗
⃑
𝑟!, ⃑
𝑟", … , ⃑
𝑟# 𝒫%/'𝜓 ⃑
𝑟!, ⃑
𝑟", … , ⃑
𝑟# = ' 𝑑 ⃑
𝑟!𝑑 ⃑
𝑟" … 𝑑 ⃑
𝑟# 𝜙∗
⃑
𝑟!, ⃑
𝑟", … , ⃑
𝑟#
1
𝑁!
2
(
𝜉(
𝜓 ⃑
𝑟(!, ⃑
𝑟(", … , ⃑
𝑟(#
=
!
#!
∑( 𝜉(
∫ 𝑑 ⃑
𝑟!𝑑 ⃑
𝑟" … 𝑑 ⃑
𝑟# 𝜙∗
⃑
𝑟!, ⃑
𝑟", … , ⃑
𝑟# 𝜓 , ⃑
𝑟(! ⃑
𝑟(", … , ⃑
𝑟(# =
!
#!
∑(! 𝜉(!
∫ 𝑑 ⃑
𝑟!!𝑑 ⃑
𝑟"! … 𝑑 ⃑
𝑟#! 𝜙∗
⃑
𝑟(!!!, ⃑
𝑟(!"!, … , ⃑
𝑟(!#! 𝜓 ⃑
𝑟!!, ⃑
𝑟"!, … , ⃑
𝑟#!
= ∫ 𝑑 ⃑
𝑟!!𝑑 ⃑
𝑟"! … 𝑑 ⃑
𝑟#!
!
#!
∑(! 𝜉(!
𝜙∗
⃑
𝑟(!!!, ⃑
𝑟(!"!, … , ⃑
𝑟(!#! 𝜓 ⃑
𝑟!!, ⃑
𝑟"!, … , ⃑
𝑟#! = ∫ 𝑑 ⃑
𝑟!!𝑑 ⃑
𝑟"! … 𝑑 ⃑
𝑟#! (𝒫%/'𝜙)∗
⃑
𝑟(!!!, ⃑
𝑟(!"!, … , ⃑
𝑟(!#! 𝜓 ⃑
𝑟!!, ⃑
𝑟"!, … , ⃑
𝑟#!
𝑃1 = 1!
, 𝑃2 = 2!
, … 𝑃𝑁 = 𝑁!
; 𝑃!
= 𝑃"#
; 𝜉$
= 𝜉$!
𝒫$/& = [𝒫$/&]†
2 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝒫2
$/& = 𝒫$/&
𝒫2
%/'𝜓 ⃑
𝑟!, ⃑
𝑟", … , ⃑
𝑟# =
!
#!
∑( 𝜉(𝒫%/'𝜓 ⃑
𝑟(!, ⃑
𝑟(", … , ⃑
𝑟(# =
!
#!
∑( 𝜉( !
#!
∑(! 𝜉(!
𝜓 ⃑
𝑟(!(!, ⃑
𝑟(!(", … , ⃑
𝑟(!(#
=
!
#!
∑(
!
#!
∑(! 𝜉(*(!
𝜓 ⃑
𝑟(!(!, ⃑
𝑟(!(", … , ⃑
𝑟(!(# =
!
#!
∑(
!
#!
∑+ 𝜉+
𝜓 ⃑
𝑟+!, ⃑
𝑟+", … , ⃑
𝑟+# =
!
#!
∑( 𝒫%/'𝜓 ⃑
𝑟(!, ⃑
𝑟(", … , ⃑
𝑟(# = 𝒫%/'𝜓 ⃑
𝑟(!, ⃑
𝑟(", … , ⃑
𝑟(#
𝑄 = 𝑃𝑃!
, 𝜉$&$!
= 𝜉$$!
𝒫!ℋ" = ℬ" 𝒫#ℋ" = ℱ"
Hilbert Space of N-Boson & N-Fermion States
https://math.mit.edu/events/stanley70/Site/Slides/Early.pdf
N-particle States as Irreducible Basis Vectors of Symmetric Group 𝑺𝑵
(1)(2)(3)(4) (12)(3)(4) (12)(34) (123)(4) (1234)
http://www.hep.caltech.edu/~fcp/math/groupTheory/young.pdf
D
𝑃MM
N+
=
𝑙O
𝑁P
G
Q
8,
𝐷MM
N+∗
𝑔 𝑃
Q (𝑚 = 1,2, . . 𝑙O)
𝑒M
N+
= D
𝑃MM
N+
𝛹 (𝑚 = 1,2, . . 𝑙O)
Any finite group 𝐺 = {𝑔} of order 𝑁Pwhose 𝑙O −dimension irreducible representations
𝛤
O(𝜈 = 1,2, . . ) are matrix group {𝐷MS
N+
}, act as operators group 𝑃P = {𝑃
Q} in a representation
space 𝑉, then the projection operators in 𝑉 corresponding to irreducible representation
𝛤
O(𝜈 = 1,2, . . ) are given by
And given any vector 𝛹 in 𝑉, the irreducible
basis vectors of 𝛤
O(𝜈 = 1,2, . . ) are
𝒫J/K𝜓 ⃑
𝑟6, ⃑
𝑟7, … , ⃑
𝑟8 =
1
𝑁!
G
U
𝜉U𝜓 ⃑
𝑟U6, ⃑
𝑟U7, … , ⃑
𝑟U8
𝜉 = B
+1, 𝐵𝑜𝑠𝑜𝑛𝑠
−1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
Hilbert Space of N-Boson & N-Fermion States
𝛼6𝛼7 … 𝛼8 ≡ 𝑁! 𝒫J∕K 𝛼6𝛼7 … 𝛼8 =
1
𝑁!
G
U
𝜉U ⟩
|𝛼U6 ⨂ ⟩
|𝛼U7 ⨂ … ⨂ ⟩
|𝛼U8
A basis in ℬ8 & ℱ8 labeled by a general basis { ⟩
|𝛼 }in ℋ
𝛼$𝛼$ … 𝛼& = 𝑁! 𝒫8∕: 𝛼$𝛼$ … 𝛼& = − 𝑁! 𝒫8∕: 𝛼$𝛼$ … 𝛼&
𝜉 = -
+1, 𝐵𝑜𝑠𝑜𝑛𝑠
−1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
For a N-fermion state, if 𝛼6 = 𝛼7
𝛼'𝛼' … 𝛼( = 0
Completeness/Closure: ( )
!!,!",…,!#
|𝛼$, 𝛼%, … , 𝛼&)(𝛼$, 𝛼%, … , 𝛼&| = 1
In ℋ%
( )
!!,!",…,!#
𝒫8∕:|𝛼$, 𝛼%, … , 𝛼&)(𝛼$, 𝛼%, … , 𝛼&|𝒫 ⁄
8 : = 𝒫2
⁄
8 : = 𝒫8∕:
( )
!!,!",…,!#
𝒫8∕:|𝛼$, 𝛼%, … , 𝛼&)(𝛼$, 𝛼%, … , 𝛼&|𝒫 ⁄
8 : =
1
𝑁!
( )
!!,!",…,!#
𝛼$, 𝛼%, … , 𝛼& {𝛼$, 𝛼%, … , 𝛼&| = 1
In ℬ% & ℱ%
ℋ(
ℬ( ℱ(
{ 𝛼'𝛼' … 𝛼( }
{𝒫, 𝛼#𝛼# … 𝛼- } {𝒫. 𝛼#𝛼# … 𝛼- }
𝒫$∕&
𝒫$∕& 𝛼'𝛼+ … 𝛼( = 𝛼'𝛼+ … 𝛼(
Hilbert Space of N-Boson & N-Fermion States
Orthogonality: {𝛼!, 𝛼", … , 𝛼#|𝛼$
!𝛼$
" … 𝛼$
#} = ,
%
𝜉%
𝛿(𝛼! − 𝛼$
%!)𝛿(𝛼" − 𝛼$
%") … 𝛿(𝛼# − 𝛼$
%#)
𝑁! (𝛼%, 𝛼&, … , 𝛼' 𝒫2
(∕* 𝛼+
%𝛼+
& … 𝛼+
') = 𝑁! (𝛼%, 𝛼&, … , 𝛼' 𝒫(∕* 𝛼+
%𝛼+
& … 𝛼+
')
= ∑, 𝜉, (𝛼% − 𝛼+
,%)𝛿(𝛼& − 𝛼+
,&) … 𝛿(𝛼' − 𝛼+
,')
(I) For fermions, one particle per state ⟩
|𝛼
𝛼!, 𝛼", … , 𝛼# 𝛼$
!𝛼$
" … 𝛼$
# = ∑% −1 % 𝛿 𝛼! − 𝛼$
%! 𝛿 𝛼" − 𝛼$
%" … 𝛿 𝛼# − 𝛼$
%#
= −1 %,, where 𝑃3 𝛼$
!𝛼$
" … 𝛼$
# = (𝛼!, 𝛼", … , 𝛼#)
(II) For bosons, 𝑛2 particles per state ⟩
|𝛼2 , 𝑖 = 1,2 … 𝑝 ≤ 𝑁
𝛼!, 𝛼", … , 𝛼# 𝛼$
!𝛼$
" … 𝛼$
# = ∑% −1 %
𝛿 𝛼! − 𝛼$
%! 𝛿 𝛼" − 𝛼$
%" … 𝛿 𝛼# − 𝛼$
%#
= 𝑛6! 𝑛7! … 𝑛^!, where ∑45!
6
𝑛< = 𝑁
𝛼&, 𝛼', … , 𝛼% 𝛼$
&𝛼$
' … 𝛼$
% = 𝜉;
T
0
𝑛0!
0! = 1; 𝜉 = B
+1, 𝐵𝑜𝑠𝑜𝑛𝑠
−1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
a
-
𝑛- = 𝑁
𝑃 𝛼"
'𝛼"
+ … 𝛼"
( = (𝛼', 𝛼+, … , 𝛼()
Hilbert Space of N-Boson & N-Fermion States
Orthonormal basis in 𝓑𝑵 & 𝓕𝑵
⟩
|𝛼6𝛼7 … 𝛼8 ≡
1
∏c 𝑛c!
𝛼6𝛼7 … 𝛼8 =
1
𝑁! ∏c 𝑛c!
G
U
𝜉U ⟩
|𝛼U6 ⨂ ⟩
|𝛼U7 ⨂ … ⨂ ⟩
|𝛼U8
Completeness/Closure in 𝓑𝑵 & 𝓕𝑵 :
W X
𝜶𝟏,𝜶𝟐,…,𝜶𝑵
∏0 𝑛0!
𝑁!
⟩
|𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟨𝜶𝟏𝜶𝟐 … 𝜶𝑵| = 𝟏
(𝛽#, 𝛽/, … , 𝛽- ⟩
|𝛼#𝛼/ … 𝛼- =
1
𝑁! ∏0 𝑛0!
D
$
𝜉$
𝛽# 𝛼$# 𝛽/ 𝛼$/ … 𝛽- 𝛼$- =
1
𝑁! ∏0 𝑛0!
𝑆( 𝛽1 𝛼2 )
𝑆 𝛽1 𝛼2 ≡ D
$
𝜉$
𝛽# 𝛼# 𝛽/ 𝛼/ … 𝛽- 𝛼- = H
𝑃𝑒𝑟 𝛽1 𝛼2 , 𝐵𝑜𝑠𝑜𝑛𝑠
Det 𝛽1 𝛼2 , 𝐹𝑒𝑟𝑚𝑖𝑜𝑛𝑠
Permanent 𝑃𝑒𝑟 𝑀12 = ∑$ 𝑀#,$#𝑀/,$/ … 𝑀-,$-
Determinant 𝐷𝑒𝑡 𝑀12 = ∑$ −1 $
𝑀#,$#𝑀/,$/ … 𝑀-,$-
𝜷𝟏, 𝜷𝟐, … , 𝜷𝑵 𝜶𝟏𝜶𝟐 … 𝜶𝑵 =
#
-! ∏" 9"! ∏# 9#!
∑$,$! 𝜉$&$!
𝛽$!# 𝛼$# 𝛽$!/ 𝛼$/ … 𝛽$!- 𝛼$-
=
#
-! ∏" 9"! ∏# 9#!
∑$,: 𝜉:
𝛽#! 𝛼:#! 𝛽/! 𝛼:/! … 𝛽;! 𝛼:-! =
𝟏
∏𝜶 𝒏𝜶! ∏𝜷 𝒏𝜷!
𝑺 𝜷𝒊 𝜶𝒋
𝜉#.#-
= 𝜉##-
= 𝜉#(#-)./
; 𝑄 = 𝑃(𝑃"
)1'
𝑃′1 = 1!
, 𝑃′2 = 2!
, … 𝑃′𝑁 = 𝑁!
;
G
c
𝑛c = 𝑁
Many-Body Operators
For an arbitrary operator +
𝑂 in ℬ% & ℱ% and any permutation 𝑃
(𝛼&, 𝛼', … , 𝛼%| +
𝑂|𝛼$
&𝛼$
' … 𝛼$
%) = (𝛼;&, 𝛼;', … , 𝛼;%| +
𝑂|𝛼$
;&𝛼$
;' … 𝛼$
;%)
(1) One-body Operator:
+
𝑂 𝛼&𝛼' … 𝛼% = X
"@&
%
+
𝑂" 𝛼&𝛼' … 𝛼%
Where D
𝑂2 only acts on particle 𝑖
D
𝑇 ⃑
𝑝6 ⃑
𝑝7 … ⃑
𝑝8 = G
2e6
8
`
⃑
𝑝2
7
2𝑚
⃑
𝑝6 ⃑
𝑝7 … ⃑
𝑝8
(𝛼!, 𝛼", … , 𝛼#| 6
𝑂|𝛽!, 𝛽", … , 𝛽#) = ,
45!
#
(𝛼!, 𝛼", … , 𝛼#| 6
𝑂4|𝛽!, 𝛽", … , 𝛽#) = ,
45!
#
9
784
𝛼7 𝛽7 𝛼4
6
𝑂4 𝛽4
(𝛼6, 𝛼7, … , 𝛼8| D
𝑂|𝛽6, 𝛽7, … , 𝛽8)
(𝛼6, 𝛼7, … , 𝛼8|𝛽6, 𝛽7, … , 𝛽8)
= G
2e6
8
𝛼2
D
𝑂2 𝛽2
𝛼2 𝛽2
For two non-orthogonal states
(2) Two-body Operator %
𝑉 :
Many-Body Operators
+
𝑉 𝛼&𝛼' … 𝛼% = X
&A"BCA%
%
+
𝑉"C 𝛼&𝛼' … 𝛼% =
1
2
X
&A"DCA%
%
+
𝑉"C 𝛼&𝛼' … 𝛼%
Where D
𝑉2f only acts on particles 𝑖 and 𝑗 D
𝑉2f = D
𝑉
f2
𝛼$, 𝛼%, … , 𝛼&
E
𝑉 𝛽$, 𝛽%, … , 𝛽& =
1
2
)
$=<>?=&
&
𝛼$, 𝛼%, … , 𝛼&
E
𝑉<? 𝛽$, 𝛽%, … , 𝛽& =
1
2
)
<>?
I
@><
@>?
𝛼@ 𝛽@ 𝛼<𝛼?
E
𝑉<? 𝛽<𝛽?
(𝛼6, 𝛼7, … , 𝛼8| D
𝑉|𝛽6, 𝛽7, … , 𝛽8)
(𝛼6, 𝛼7, … , 𝛼8|𝛽6, 𝛽7, … , 𝛽8)
=
1
2
G
2gf
𝛼2𝛼f
D
𝑉2f 𝛽2𝛽f
𝛼2 𝛽2 𝛼f 𝛽f
A local two-body operator satisfies ⃑
𝑟& ⃑
𝑟'
+
𝑉 ⃑
𝑟J ⃑
𝑟K = 𝛿 ⃑
𝑟& − ⃑
𝑟J 𝛿 ⃑
𝑟' − ⃑
𝑟K 𝑣(⃑
𝑟& − ⃑
𝑟')
+
𝑉 ⃑
𝑟&, ⃑
𝑟', … , ⃑
𝑟% =
1
2
X
&A"DCA%
%
𝑣(⃑
𝑟& − ⃑
𝑟') ⃑
𝑟&, ⃑
𝑟', … , ⃑
𝑟%
Many-Body Operators
(3) n-body Operator '
𝑹 :
+
𝑅 𝛼&𝛼' … 𝛼% =
1
𝑛!
X
&A"!D"#D⋯D"'A%
%
+
𝑅"!"#…"'
𝛼&𝛼' … 𝛼%
D
𝑅2T2U…2V
= D
𝑅U2T,U2U,…,U2V
(𝛼6, 𝛼7, … , 𝛼8| D
𝑅|𝛽6, 𝛽7, … , 𝛽8)
(𝛼6, 𝛼7, … , 𝛼8|𝛽6, 𝛽7, … , 𝛽8)
=
1
𝑛!
G
2Tg2Ug⋯g2V
𝛼2T
𝛼2U
… 𝛼2V
D
𝑅 𝛽2T
𝛽2U
… 𝛽2V
𝛼2T
𝛽2T
𝛼2U
𝛽2U
… 𝛼2V
𝛽2V
%
𝑅 on an N-particle state is the sum of the action of %
𝑅 on all distinct
subsets of n-particles
An n-body operator is entirely determined by its matrix elements
𝛼%!
𝛼%"
… 𝛼%#
%
𝑅 𝛽%!
𝛽%"
… 𝛽%#
in the Hilbert space ℋ& of n-particle
space.
Fock Space and !
𝒏-representation
Fock space is the direct sum of all 𝑛-particle Boson ℬ% = 𝒫M"
ℋ%(𝑁 =
0,1,2 … ) or Fermion spaces ℱ$ = 𝒫#$
ℋ'(𝑁 = 0,1,2 … ):
ℬ = ℬ(⨁ℬ)⨁ℬ*⨁ … = ⨁'+(
,
ℬ' ℱ = ℱ(⨁ℱ)⨁ℱ*⨁ … = ⨁'+(
,
ℱ'
ℬ: = ℱ: = ⟩
|0 ℬ" = ℱ" = ℋ
G
𝑵e𝟏
j
1
𝑁!
c G
𝜶𝟏,𝜶𝟐,…,𝜶𝑵
d
c
𝑛c! ⟩
|𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟨𝜶𝟏𝜶𝟐 … 𝜶𝑵| + ⟩
|𝟎 ⟨𝟎| = 𝟏
ℬ8 or ℱ8 c G
𝜶𝟏,𝜶𝟐,…,𝜶𝑵
∏c 𝑛c!
𝑁!
⟩
|𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟨𝜶𝟏𝜶𝟐 … 𝜶𝑵| = 𝟏
ℬ or ℱ
,
𝑵5𝟏
;
1
𝑁!
< ,
𝜶𝟏,𝜶𝟐,…,𝜶𝑵
9
=
𝑛=! ⟩
|𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟨𝜶𝟏𝜶𝟐 … 𝜶𝑵| + ⟩
|𝟎 ⟨𝟎| = ,
𝑵5𝟏
;
𝒫?5/A5
+ ⟩
|𝟎 ⟨𝟎|
)
!
𝑛! = 𝑁
⨁#53
;
ℋ#
Fock Space and !
𝒏-representation
𝜶𝛼&𝛼' … 𝛼% = 𝑎0
† 𝛼&𝛼' … 𝛼%
For a general basis { ⟩
|𝛼 }in ℋ, define a Boson or Fermion creation operator
𝑎0
† on any symmetrized or antisymmetrized state 𝛼&𝛼' … 𝛼% of ℬ% &
ℱ%(𝑁 = 0,1,2, … )
𝑛𝜶 + 1 ⟩
|𝜶𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝑎0
† ⟩
|𝜶𝟏𝜶𝟐 … 𝜶𝑵
Or
𝑎=
† ⟩
|𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝑎=
† !
∏6 C6!
𝛼!𝛼" … 𝛼# =
!
∏6 C6!
𝜶𝛼!𝛼" … 𝛼# = 𝑛𝜶 + 1 ⟩
|𝜶𝜶𝟏𝜶𝟐 … 𝜶𝑵
⟩
|𝜶𝜶𝟏𝜶𝟐 … 𝜶𝑵 =
1
𝑛𝜶 + 1 ∏8 𝑛8!
𝜶𝛼'𝛼+ … 𝛼(
𝑎c
† ⟩
|𝛼6𝛼7 … 𝛼8 = 𝑛c + 1 ⟩
|𝛼𝛼6𝛼7 … 𝛼8 = 0, if 𝛼 ∈ {𝛼6, 𝛼7, … , 𝛼8}
(1) If 𝑁 = 0, 𝑎0
†
⟩
|𝟎 = ⟩
|𝛼 ;
(2) For Fermions
⟩
|𝟎 ≠ 𝟎
ℬ(.'/ℱ(.'
ℬ(/ℱ(
𝑎c
†
⟩
|𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟩
|𝜶𝜶𝟏𝜶𝟐 … 𝜶𝑵
𝑎c
(3) Any basis vector could be generated by 𝑎𝜶𝒊
† (𝑖 = 1,2, … 𝑁) from ⟩
|𝟎
Fock Space and !
𝒏-representation
𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝒂𝜶𝟏
† 𝒂𝜶𝟐
† … 𝒂𝜶𝑵
† ⟩
|𝟎
⟩
|𝜶𝟏𝜶𝟐 … 𝜶𝑵 =
1
∏𝜶 𝑛𝜶!
𝑎𝜶𝟏
† 𝑎𝜶𝟐
† … 𝑎𝜶𝑵
† ⟩
|𝟎
(4) Annihilation operator 𝑎0 = [𝑎0
†]†
𝑎c ⟩
|𝟎 = 𝟎
∀𝛼, 𝛼 𝑎c 0 = ( 0 𝑎c
† 𝛼 )∗= 0
⟨0|𝑎c
† = 0
𝑎0 𝛽#𝛽/ … 𝛽9 = ∑-?@
A #
-!
∫ ∑0&,0',…,0(
𝛼#𝛼/ … 𝛼- {𝛼#𝛼/ … 𝛼-| 𝑎0 𝛽#𝛽/ … 𝛽9 = ∑-?@
A #
-!
∫ ∑0&,0',…,0(
𝛼#𝛼/ … 𝛼- {𝛼𝛼#𝛼/ … 𝛼-| 𝛽#𝛽/ … 𝛽9}
=
#
(9"#)!
∫ ∑0&,0',…,0)*&
𝛼#𝛼/ … 𝛼9"# {𝛼𝛼#𝛼/ … 𝛼9"#| 𝛽#𝛽/ … 𝛽9} =
#
(9"#)!
∫ ∑0&,0',…,0)*&
𝛼#𝛼/ … 𝛼9"# ∑$ 𝜉$
𝛿 𝛼 − 𝛽$# 𝛿 𝛼# − 𝛽$/ … 𝛿(𝛼9"# − 𝛽$9)
=
#
(9"#)!
∫ ∑0&,0',…,0)*&
𝛼#𝛼/ … 𝛼9"# ∑1?#
9
𝜉 1"#
𝛿 𝛼 − 𝛽1 ) ∑$ 𝜉$
𝛿 𝛼# − 𝛽$# … 𝛿 𝛼1"# − 𝛽$(1"#) 𝛿 𝛼1 − 𝛽$(1&#) … 𝛿(𝛼9"# − 𝛽$9)
=
#
(9"#)!
∑1?#
9
𝜉 1"#
𝛿 𝛼 − 𝛽1 ) ∑$ 𝜉$
𝛽$# … 𝛽$(1"#)𝛽$(1&#) … 𝛽$9 =
#
(9"#)!
∑1?#
9
𝜉 1"#
𝛿 𝛼 − 𝛽1 ) ∑$ 𝜉/$
𝛽# … 𝛽(1"#)𝛽(1&#) … 𝛽9
=
#
(9"#)!
∑1?#
9
𝜉 1"#
𝛿 𝛼 − 𝛽1 )(𝑛 − 1)! 𝛽# … 𝛽(1"#)𝛽(1&#) … 𝛽9 = ∑1?#
9
𝜉 1"#
𝛿 𝛼 − 𝛽1 𝛽# … 𝛽(1"#)𝛽(1&#) … 𝛽9 = ∑1?#
9
𝜉 1"#
𝛽#𝛽/ … ]
𝛽1 … 𝛽9 𝛿 𝛼 − 𝛽1
D
𝑵?𝟏
A
1
𝑁!
^ D
𝜶𝟏,𝜶𝟐,…,𝜶𝑵
𝜶𝟏𝜶𝟐 … 𝜶𝑵 {𝜶𝟏𝜶𝟐 … 𝜶𝑵| + ⟩
|𝟎 ⟨𝟎| = 𝟏
𝑎! 𝛽$𝛽% … 𝛽A = )
<B$
A
𝜉 <C$ 𝛽$𝛽% … P
𝛽< … 𝛽A 𝛿 𝛼 − 𝛽<
𝑎! ⟩
|𝛽$𝛽% … 𝛽A =
1
𝑛𝜶
)
<B$
A
𝜉 <C$ R
|𝛽$𝛽% … P
𝛽< … 𝛽A 𝛿 𝛼 − 𝛽<
Fock Space and !
𝒏-representation
(5) Commutation & Anticommutation Relation
𝑎0
†𝑎S
† 𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝛼𝛽𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝜉 𝛽𝛼𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝜉𝑎S
†𝑎0
† 𝜶𝟏𝜶𝟐 … 𝜶𝑵
𝑎=, 𝑎D
†
EF
= 𝑎=𝑎D
† − 𝜉𝑎D
†𝑎= = 𝛿=D 𝑎=
†, 𝑎D
†
EF
= 𝑎=, 𝑎D EF
= 0
𝑎=𝑎D
† 𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝑎= 𝛽𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝛿=D 𝜶𝟏𝜶𝟐 … 𝜶𝑵 + ,
45!
#
𝜉4
𝛽𝜶!𝜶" … H
𝜶4 … 𝜶# 𝛿 𝛼 − 𝜶4
= 𝛿=D 𝜶𝟏𝜶𝟐 … 𝜶𝑵 + 𝜉 ∑45!
#
𝜉 4E! 𝑎D
† 𝜶!𝜶" … H
𝜶4 … 𝜶# 𝛿 𝛼 − 𝜶4
= 𝛿=D 𝜶𝟏𝜶𝟐 … 𝜶𝑵 + 𝜉𝑎D
†𝑎= 𝜶!𝜶" … 𝜶#
𝜉 = B
+1, 𝐵𝑜𝑠𝑜𝑛𝑠
−1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
(6) Basis Transformation ( )
!
⟩
|𝛼 ⟨𝛼| = 1 ( )
E
!
⟩
| T
𝛼 ⟨ T
𝛼| = 1
⟩
| k
𝛼 = c G
c
⟩
|𝛼 𝛼 k
𝛼
𝑎G
=
† 𝛼!𝛼" … 𝛼# = I
𝛼𝛼!𝛼" … 𝛼# = < ,
=
𝛼 I
𝛼 𝜶𝛼!𝛼" … 𝛼# = < ,
=
𝛼 I
𝛼 𝑎=
† 𝛼!𝛼" … 𝛼#
𝑎n
c
† = c G
c
𝛼 k
𝛼 𝑎c
† 𝑎n
c = c G
c
k
𝛼 𝛼 𝑎c 𝑎E
!, 𝑎o
p
†
EF
= ,
=D
̃
𝛼 𝛼 𝛽 V
𝛽 𝑎=, 𝑎D
†
EF
= k
𝛼 l
𝛽
Fock Space and !
𝒏-representation
(7) h
𝒙-representation ⟩
|𝒙 = ⟩
|𝒓𝝈𝝉 𝒓: Space Coordinate; 𝝈: Spin; 𝝉: Internal degrees of freedom
Field Operators:
6
𝜓† 𝑥 = 𝑎H
† = < ,
=
𝛼 𝑥 𝑎=
† = < ,
=
𝜙=
∗
(𝑥) 𝑎=
† 6
𝜓(𝑥) = 𝑎H = < ,
=
𝑥 𝛼 𝑎= = < ,
=
𝜙=(𝑥) 𝑎=
6
𝜓(𝑥), 6
𝜓† 𝑦
EF
= 𝛿(𝑥 − 𝑦) 6
𝜓† 𝑥 , 6
𝜓† 𝑦
EF
= 6
𝜓(𝑥), 6
𝜓(𝑦) EF
= 0
(8) h
𝒏-representation q
𝒏𝜶 = 𝒂𝜶
†𝒂𝜶
t
𝑛c 𝛼6𝛼7 … 𝛼8 = 𝑎c
†𝑎c 𝛼6𝛼7 … 𝛼8 = 𝑎c
† ∑2e6
8
𝜉 2q6 𝛿 𝛼 − 𝛼2 𝛼6𝛼7 … t
𝛼2 … 𝛼8
= ∑2e6
8
𝛿 𝛼 − 𝛼2 𝛼6𝛼7 … 𝛼2 … 𝛼8
N
𝑵 = ,
𝜶
H
𝒏𝜶 = ,
𝜶
𝒂𝜶
†𝒂𝜶
q
𝒏𝜶 ⟩
|𝒏𝜶 = 𝒏𝜶 ⟩
|𝒏𝜶
(8.1) Hermitian operator
(8.2) Eigenstates and Eigenvalues
𝒏𝜶 = 𝒏𝜶 q
𝒏𝜶 𝒏𝜶 = 𝒏𝜶 𝒂𝜶
†𝒂𝜶 𝒏𝜶 = 𝒂𝜶 ⟩
|𝒏𝜶
𝟐 ≥ 𝟎 𝒏𝜶 = 𝟎, iff 𝒂𝜶 ⟩
|𝟎 = 𝟎
(8.2.1) Bosons
𝑎=, 𝑎=
†
E
= 1 𝒂𝜶
†𝒂𝜶𝒂𝜶
† = 𝒂𝜶
†(𝟏 + 𝒂𝜶
†𝒂𝜶)
Fock Space and !
𝒏-representation
(8.2.1) Bosons 𝒂𝜶, 𝒂𝜶
†
E
= 𝟏 𝒂𝜶
†𝒂𝜶𝒂𝜶
† = 𝒂𝜶
†(𝟏 + 𝒂𝜶
†𝒂𝜶)
q
𝒏𝜶 𝒂𝜶
† ⟩
|𝒏𝜶 = 𝑎c
†𝑎c𝑎c
† ⟩
|𝑛c = 𝑎c
† 1 + 𝑎c
†𝑎c ⟩
|𝑛c = 𝑎c
† 1 + 𝑛c ⟩
|𝑛c = 𝟏 + 𝒏𝜶 (𝒂𝜶
† ⟩
|𝒏𝜶 )
q
𝒏𝜶 𝒂𝜶 ⟩
|𝒏𝜶 = 𝑎c
†𝑎c𝑎c ⟩
|𝑛c = (𝑎c𝑎c
† − 1)𝑎c ⟩
|𝑛c = 𝑎c 𝑛c − 1 ⟩
|𝑛c = 𝒏𝜶 − 𝟏 (𝒂𝜶 ⟩
|𝒏𝜶 )
𝒂𝜶
†𝒂𝜶𝒂𝜶 = (𝒂𝜶𝒂𝜶
† − 𝟏)𝒂𝜶
[
𝑛!𝑎! = 𝑎!([
𝑛! − 1)
[
𝑛!𝑎!
% = 𝑎! [
𝑛! − 𝑎! 𝑎! = 𝑎! 𝑎! [
𝑛! − 𝑎! − 𝑎!
% = 𝑎!
%([
𝑛! − 2)
[
𝑛!𝑎!
F = 𝑎!
% [
𝑛!𝑎! − 2𝑎!
F = 𝑎!
% 𝑎! [
𝑛! − 𝑎! − 2𝑎!
F = 𝑎!
F([
𝑛! − 3)
h
𝒏𝜶𝒂𝜶
𝒌
= 𝒂𝜶
𝒌
(h
𝒏𝜶 − 𝒌)
h
𝒏𝜶(𝒂𝜶
†)𝒌
= (𝒂𝜶
†)𝒌
(h
𝒏𝜶 + 𝒌)
$
𝒏𝜶(𝒂𝜶
𝒌 ⟩
|𝒏𝜶 ) = 𝒂𝜶
𝒌 $
𝒏𝜶 − 𝒌 ⟩
|𝒏𝜶 = 𝒂𝜶
𝒌
𝒏𝜶 − 𝒌 ⟩
|𝒏𝜶 = 𝒏𝜶 − 𝒌 (𝒂𝜶
𝒌 ⟩
|𝒏𝜶 )
$
𝒏𝜶((𝒂𝜶
†)𝒌 ⟩
|𝒏𝜶 ) = (𝒂𝜶
†)𝒌($
𝒏𝜶 + 𝒌) ⟩
|𝒏𝜶 = (𝒂𝜶
†)𝒌(𝒏𝜶 + 𝒌) ⟩
|𝒏𝜶 = 𝒏𝜶 + 𝒌 ((𝒂𝜶
†)𝒌 ⟩
|𝒏𝜶 )
𝒂𝜶
𝒌 ⟩
|𝒏𝜶 = 𝑨(𝒏; 𝒌) ⟩
|𝒏𝜶 − 𝒌 (𝒂𝜶
†)𝒌 ⟩
|𝒏𝜶 = 𝑩(𝒏; 𝒌) ⟩
|𝒏𝜶 + 𝒌
𝑘 = 0,1,2, …
Fock Space and !
𝒏-representation
(8.2.1) Bosons 𝒂𝜶
𝒌 ⟩
|𝒏𝜶 = 𝑨(𝒏; 𝒌) ⟩
|𝒏𝜶 − 𝒌 (𝒂𝜶
†)𝒌 ⟩
|𝒏𝜶 = 𝑩(𝒏; 𝒌) ⟩
|𝒏𝜶 + 𝒌
Since 𝑛0 ≥ 0, 𝑛0 has to be an integer, or p
𝑛0 would have negative eigenvalues !
and the minimum eigenvalue is 0 with 𝒂𝜶 ⟩
|𝟎 = 𝟎.
𝑘 = 0,1,2, …
9
𝒏𝜶 ⟩
|𝒏𝜶 = 𝒏𝜶 ⟩
|𝒏𝜶 , 𝒏𝜶 = 𝟎, 𝟏, 𝟐, 𝟑, …
(𝒂𝜶
†)𝒌 ⟩
|𝟎 = 𝑩(𝒏; 𝒌) ⟩
|𝒌 𝟎 𝒂𝜶
𝒌
(𝒂𝜶
†)𝒌 ⟩
|𝟎 = 𝑩(𝒏; 𝒌) 𝟐
𝒌 𝒌 = 𝑩(𝒏; 𝒌) 𝟐
= 𝒌!
𝒂𝜶
𝒌
(𝒂𝜶
†)𝒌
= 𝒂𝜶
𝒌"𝟏
𝟏 + e
𝒏𝜶 𝒂𝜶
†
𝒌"𝟏
= 𝒂𝜶
𝒌"𝟏
(𝒂𝜶
†)𝒌"𝟏
+𝒂𝜶
𝒌"𝟏
e
𝒏𝜶(𝒂𝜶
†)𝒌"𝟏
= 𝒂𝜶
𝒌"𝟏
(𝒂𝜶
†)𝒌"𝟏
+𝒂𝜶
𝒌"𝟏
𝒂𝜶
†
𝒌"𝟏
e
𝒏𝜶 + 𝒌 − 𝟏 = 𝒌𝒂𝜶
𝒌"𝟏
(𝒂𝜶
†)𝒌"𝟏
+𝒂𝜶
𝒌"𝟏
𝒂𝜶
†
𝒌"𝟏
e
𝒏𝜶
𝒂𝜶
𝒌
(𝒂𝜶
†)𝒌
= 𝒌 𝒌 − 𝟏 𝒂𝜶
𝒌"𝟐
𝒂𝜶
†
𝒌"𝟐
+ 𝒂𝜶
𝒌"𝟐
𝒂𝜶
†
𝒌"𝟐
e
𝒏𝜶 + 𝒂𝜶
𝒌"𝟏
𝒂𝜶
†
𝒌"𝟏
e
𝒏𝜶 = 𝒌 𝒌 − 𝟏 𝒂𝜶
𝒌"𝟐
𝒂𝜶
†
𝒌"𝟐
+ 𝒌𝒂𝜶
𝒌"𝟐
𝒂𝜶
†
𝒌"𝟐
e
𝒏𝜶 + 𝒂𝜶
𝒌"𝟏
𝒂𝜶
†
𝒌"𝟏
e
𝒏𝜶
= ⋯ … =
𝒌!
𝟎!
+ D
𝒎?𝟎
𝒌"𝟏
𝒌!
(𝒎 + 𝟏)!
𝒂𝜶
𝒎
𝒂𝜶
†
𝒎
e
𝒏𝜶
⟩
|𝒏𝜶 =
𝟏
𝒏𝜶!
(𝒂𝜶
†)𝒏𝜶 ⟩
|𝟎
𝑩 𝒏; 𝒌 = 𝒌!
𝒂𝜶 ⟩
|𝒏𝜶 =
𝒏𝜶
(𝒏𝜶 − 𝟏)!
𝒂𝜶𝒊
†
𝒏𝜶𝒊
E𝟏
⟩
|𝟎 = 𝒏𝜶 ⟩
|𝒏𝜶 − 𝟏
Fock Space and !
𝒏-representation
(8.2.2) Fermions 𝒂𝜶, 𝒂𝜶
†
K
= 𝒂𝜶𝒂𝜶
† + 𝒂𝜶
†𝒂𝜶 = 𝟏
q
𝒏𝜶 𝒂𝜶 ⟩
|𝒏𝜶 = 𝒂𝜶
†𝒂𝜶𝒂𝜶 ⟩
|𝒏𝜶 = 𝟎
q
𝒏𝜶 𝒂𝜶
† ⟩
|𝒏𝜶 = 𝒂𝜶
†(𝟏 − 𝒂𝜶
†𝒂𝜶) ⟩
|𝒏𝜶 = 𝒂𝜶
† ⟩
|𝒏𝜶
𝒂𝜶
𝟐 = (𝒂𝜶
†)𝟐= 𝟎
(i) 𝒂𝜶 ⟩
|𝒏𝜶 = 𝟎 q
𝒏𝜶 ⟩
|𝒏𝜶 = 𝒏𝜶 ⟩
|𝒏𝜶 = 𝟎 𝒏𝜶 = 𝟎 𝒂𝜶 ⟩
|𝟎 = 𝟎
𝒂𝜶
† ⟩
|𝟎 = 𝑪 ⟩
|𝟏
𝟎 𝒂𝜶𝒂𝜶
† ⟩
|𝟎 = 𝑪 𝟐
𝟏 𝟏 = 𝑪 𝟐
= 𝟏 𝑪 = 𝟏
𝒂𝜶
† ⟩
|𝟎 = ⟩
|𝟏 (𝒂𝜶
†)𝟐 ⟩
|𝟎 = 𝒂𝜶
† ⟩
|𝟏 = 𝟎
(ii) 𝒂𝜶 ⟩
|𝒏𝜶 = 𝑭 ⟩
|𝟎
𝟎 𝒂𝜶𝒂𝜶
† ⟩
|𝟎 = 𝑫 𝟐
𝟏 𝟏 = 𝑫 𝟐
= 𝟏 𝑫 = 𝟏
𝒂𝜶 ⟩
|𝟏 = 𝒂𝜶𝒂𝜶
† ⟩
|𝟎 = 𝟏 − q
𝒏𝜶 ⟩
|𝟎 = ⟩
|𝟎
𝒂𝜶 ⟩
|𝒏𝜶 = 𝟎 or 𝒂𝜶 ⟩
|𝒏𝜶 ∝ ⟩
|𝟎
𝒂𝜶
† ⟩
|𝒏𝜶 = 𝟎 or 𝒂𝜶
† ⟩
|𝒏𝜶 ∝ ⟩
|𝟏
𝒂𝜶
𝟐 ⟩
|𝒏𝜶 = 𝑫𝒂𝜶 ⟩
|𝟎 = 𝟎 𝒂𝜶 ⟩
|𝟎 = 𝟎
𝒂𝜶
† ⟩
|𝟎 = 𝑫 ⟩
|𝟏 𝒂𝜶
† ⟩
|𝟎 = ⟩
|𝟏 𝒂𝜶
† ⟩
|𝟏 = 𝟎 𝒂𝜶 ⟩
|𝟏 = ⟩
|𝟎 𝒏𝜶 = 𝟏, 𝑭 = 𝟏
9
𝒏𝜶 ⟩
|𝒏𝜶 = 𝒏𝜶 ⟩
|𝒏𝜶 , 𝒏𝜶 = 𝟎, 𝟏 ⟩
|𝒏𝜶 = (𝒂𝜶
†)𝒏𝜶 ⟩
|𝟎
G
𝒂𝜶
†|𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… = ∑𝒊 𝜹𝜶𝜶𝒊
𝟏
𝒏𝜶𝟏
!𝒏𝜶𝟐
!…𝒏𝜶𝒊
!…
(𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝒂𝜶𝟐
† )𝒏𝜶𝟐 … 𝒂𝜶𝒊
†
𝒏𝜶𝒊
*𝟏
… ⟩
|𝟎
= ∑𝒊 𝜹𝜶𝜶𝒊
𝒏𝜶𝒊
*𝟏
𝒏𝜶𝟏
!𝒏𝜶𝟐
!…(𝒏𝜶𝒊
*𝟏)!…
(𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝒂𝜶𝟐
† )𝒏𝜶𝟐 … (𝒂𝜶𝒊
† )𝒏𝜶𝒊
*𝟏
… ⟩
|𝟎 = ∑𝒊 𝜹𝜶𝜶𝒊
𝒏𝜶𝒊
+ 𝟏 P
|𝒏𝜶𝟏
𝒏𝜶𝟐
… (𝒏𝜶𝒊
+ 𝟏) …
Fock Space and !
𝒏-representation
(8.3) Orthonormal Basis in t
𝑛-representation
𝒏𝜶𝒊
(𝒊 = 𝟏, 𝟐, 𝟑, … ) are the particle numbers in state 𝜶𝒊; 𝒏𝜶𝒊
= 𝟎, 𝟏 for Fermions
•
|𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… =
𝟏
𝒏𝜶𝟏
! 𝒏𝜶𝟐
! … 𝒏𝜶𝒌
! …
(𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝒂𝜶𝟐
† )𝒏𝜶𝟐 … (𝒂𝜶𝒌
† )𝒏𝜶𝒌 … ⟩
|𝟎
P
𝒂𝜶|𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… = ∑𝒊 𝜹𝜶𝜶𝒊
𝒂𝜶𝒊
𝒏𝜶𝟏
!𝒏𝜶𝟐
!…𝒏𝜶𝒊
!…
(𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝒂𝜶𝟐
† )𝒏𝜶𝟐 … 𝒂𝜶𝒊
†
𝒏𝜶𝒊
… ⟩
|𝟎
= ∑𝒊 𝜹𝜶𝜶𝒊
𝒏𝜶𝒊
𝒏𝜶𝒊
𝒏𝜶𝟏
!𝒏𝜶𝟐
!…(𝒏𝜶𝒊
8𝟏)!…
(𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝒂𝜶𝟐
† )𝒏𝜶𝟐 … 𝒂𝜶𝒊
†
𝒏𝜶𝒊
8𝟏
… ⟩
|𝟎 𝒐𝒓 ∑𝒊 𝜹𝜶𝜶𝒊
𝜹𝟏𝒏𝜶𝒊
𝟏
𝒏𝜶𝟏
!𝒏𝜶𝟐
!…(𝒏𝜶𝒊
8𝟏)!…
(𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝒂𝜶𝟐
† )𝒏𝜶𝟐 … 𝒂𝜶𝒊
†
𝒏𝜶𝒊
8𝟏
… ⟩
|𝟎
= S
∑𝒊 𝜹𝜶𝜶𝒊
𝒏𝜶𝒊
P
|𝒏𝜶𝟏
𝒏𝜶𝟐
… (𝒏𝜶𝒊
− 𝟏) … , 𝑩𝒐𝒔𝒐𝒏
∑𝒊 𝜹𝜶𝜶𝒊
𝜹𝟏𝒏𝜶𝒊
P
|𝒏𝜶𝟏
𝒏𝜶𝟐
… (𝒏𝜶𝒊
− 𝟏) … , 𝑭𝒆𝒓𝒎𝒊𝒐𝒏 𝒂𝜶𝒊
𝒂𝜶𝒊
†
𝒏𝜶𝒊
= 𝒏𝜶𝒊
𝒂𝜶𝒊
†
𝒏𝜶𝒊
8𝟏
+ 𝒂𝜶𝒊
†
𝒏𝜶𝒊
𝒂𝜶𝒊
For 𝑩𝒐𝒔𝒐𝒏
∑𝑵:𝟎
< ∑𝒏𝜶𝟏
.𝒏𝜶𝟐
.⋯.𝒏𝜶𝒌
.⋯:𝑵 u
|𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… v𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… | = ∑𝒏𝜶𝟏
𝒏𝜶𝟐
…𝒏𝜶𝒌
…:𝟎
<
u
|𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… v𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… | = 𝟏
Completeness in Fock Space:
⟩
|𝜶 ≡ { ⟩
|𝜶𝟏 , ⟩
|𝜶𝟐 , … , ⟩
|𝜶𝒌 , … }
Fock Space and !
𝒏-representation
(9) Creation and Annihilation Operators as a Basis for Fock Space Operators
(9.1) One-body Operator
t
𝑛c 𝛼6𝛼7 … 𝛼8 = 𝑎c
†𝑎c 𝛼6𝛼7 … 𝛼8 = 𝑎c
† ∑2e6
8
𝜉 2q6 𝛿 𝛼 − 𝛼2 𝛼6𝛼7 … t
𝛼2 … 𝛼8
= ∑2e6
8
𝛿 𝛼 − 𝛼2 𝛼6𝛼7 … 𝛼2 … 𝛼8
Assume one-body operator %
𝑈 is diagonal in the orthonormal basis { ⟩
|𝛼 }
%
𝑈 ⟩
|𝛼 = 𝑈c ⟩
|𝛼 = 𝛼 %
𝑈 𝛼 ⟩
|𝛼
𝛼', 𝛼+, … , 𝛼(
4
𝑈 𝛽', 𝛽+, … , 𝛽( = a
#
𝜉#
a
!:'
(
y
@A!
𝛼#@ 𝛽@ 𝛼#!
'
𝑂! 𝛽! = a
!:'
(
𝑈-;
𝛼', 𝛼+, … , 𝛼(
4
𝑈 𝛽', 𝛽+, … , 𝛽(
= ∑- ∑!:'
(
𝑈- 𝛿 𝛼 − 𝛼! 𝛼', 𝛼+, … , 𝛼(|𝛽', 𝛽+, … , 𝛽( = 𝛼', 𝛼+, … , 𝛼( ∑- ∑!:'
(
𝑈- 𝛿 𝛼 − 𝛼! 𝛽', 𝛽+, … , 𝛽(
= 𝛼', 𝛼+, … , 𝛼( ∑- 𝑈- {
𝑛- 𝛽', 𝛽+, … , 𝛽(
%
𝑈 = G
c
𝑈c t
𝑛c = G
c
𝛼 %
𝑈 𝛼 𝑎c
†𝑎c 𝑎E
!
† = ( )
!
𝛼 T
𝛼 𝑎!
† 𝑎]
E
!
† = ( )
!
𝛼 T̀
𝛼 𝑎!
†
Diagonal Basis
General Basis %
𝑼 = G
𝜶
𝑼𝜶q
𝒏𝜶 = G
n
𝜶
G
o
n
𝜶
‚
𝜶 𝑼 ƒ
‚
𝜶 𝒂n
𝜶
†𝒂o
n
𝜶
n
𝜶 𝑼 o
n
𝜶 = a
-
}
𝛼 𝛼 𝑼𝜶 𝛼 ~
}
𝛼
Kinetic Energy Operator
'
𝑇 = −
ℏ+
2𝑚
• 𝑑3𝑥 '
𝜓† 𝑥 ∇+ '
𝜓 𝑥 = • 𝑑3𝑝 '
𝜓† ⃑
𝑝
ˆ
⃑
𝑝+
2𝑚
'
𝜓 ⃑
𝑝
Fock Space and !
𝒏-representation
(9) Creation and Annihilation Operators as a Basis for Fock Space Operators
(9.2) Two-body Operator
Assume two-body operator D
𝑉 is diagonal in the orthonormal basis { ⟩
|𝛼 }
D
𝑉 ⟩
|𝛼𝛽 = 𝑉cp|𝛼𝛽) = (𝛼𝛽| D
𝑉|𝛼𝛽) |𝛼𝛽)
𝛼', 𝛼+, … , 𝛼(
'
𝑉 𝛽', 𝛽+, … , 𝛽( = a
#
𝜉#
1
2
a
!AB
y
@A!
@AB
𝛼#@ 𝛽@ 𝛼#!𝛼#B
'
𝑉 𝛽!𝛽B =
1
2
a
'C!ABC(
(
'
𝑉
-;-<
{𝛼', 𝛼+, … , 𝛼(|𝛽', 𝛽+, … , 𝛽(}
$
%
∑$=<>?=&
& E
𝑉
!.!/
is the sum over all distinct pairs of particles in the state |𝛼$, 𝛼%, … , 𝛼&}
D
𝑃cp = t
𝑛c t
𝑛p − 𝛿cp t
𝑛c count pairs of particles
D
𝑃cp = 𝑎c
†𝑎c𝑎p
†𝑎p − 𝛿cp𝑎c
†𝑎c = 𝑎c
†(𝛿cp + 𝜉𝑎p
†𝑎c)𝑎p − 𝛿cp𝑎c
†𝑎c = 𝑎c
†𝜉𝑎p
†𝑎c𝑎p
= 𝑎c
†𝑎p
†𝑎p𝑎c
𝑎-, 𝑎8
† = 𝑎-𝑎8
† − 𝜉𝑎8
†𝑎- = 𝛿-8
𝑎-
†, 𝑎8
†
1D
= 𝑎-, 𝑎8 1D
= 0
𝜉 = B
+1, 𝐵𝑜𝑠𝑜𝑛𝑠
−1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
Fock Space and !
𝒏-representation E
𝑃!^ = [
𝑛! [
𝑛^ − 𝛿!^ [
𝑛! = 𝑎!
†𝑎^
†𝑎^𝑎!
E
𝑃!^ 𝛼$𝛼% … 𝛼& = ([
𝑛! [
𝑛^ − 𝛿!^ [
𝑛!) 𝛼$𝛼% … 𝛼& = [∑<,?B$
&
𝛿 𝛼 − 𝛼< 𝛿 𝛽 − 𝛼< − ∑@B$
&
𝛿!^𝛿(
)
𝛼 −
𝛼@ ] 𝛼$𝛼% … 𝛼&
1
2
a
'C!ABC(
(
'
𝑉
-;-<
=
1
2
[a
-
a
8
𝑉-8 a
!,B:'
(
𝛿 𝛼 − 𝛼! 𝛿 𝛽 − 𝛼! − a
-
a
8
𝑉-8 a
@:'
(
𝛿-8𝛿 𝛼 − 𝛼@ ]
𝛼', 𝛼+, … , 𝛼(
'
𝑉 𝛽', 𝛽+, … , 𝛽( =
'
+
∑'C!ABC(
( '
𝑉
-;-<
{𝛼', 𝛼+, … , 𝛼(|𝛽', 𝛽+, … , 𝛽(}
=
'
+
∑-8 𝑉-8 [∑!,B:'
(
𝛿 𝛼 − 𝛼! 𝛿 𝛽 − 𝛼! − ∑@:'
(
𝛿-8𝛿 𝛼 − 𝛼@ ] {𝛼', 𝛼+, … , 𝛼(|𝛽', 𝛽+, … , 𝛽(}
= 𝛼', 𝛼+, … , 𝛼(
'
+
∑-8 𝑉-8
'
𝑃-8 𝛽', 𝛽+, … , 𝛽(
N
𝑽 =
𝟏
𝟐
,
𝜶𝜷
𝑽𝜶𝜷
N
𝑷𝜶𝜷 =
𝟏
𝟐
,
𝜶𝜷
(𝜶𝜷|N
𝑽|𝜶𝜷)𝒂𝜶
†𝒂𝜷
†𝒂𝜷𝒂𝜶
𝑎E
!
† = ( )
!
𝛼 T
𝛼 𝑎!
† 𝑎]
E
!
† = ( )
!
𝛼 T̀
𝛼 𝑎!
†
Diagonal Basis
General Basis N
𝑽 =
𝟏
𝟐
,
E
!]
𝜷]
]
𝜷]
E
!
( k
𝛼ƒ
𝜷|N
𝑽| l
k
𝛼ƒ
ƒ
𝜷)𝒂E
!
†
𝒂]
𝜷
†
𝒂o
o
𝜷
𝒂o
n
c
=
𝟏
𝟒
,
E
!]
𝜷]
E
!]
]
𝜷
{ k
𝛼ƒ
𝜷 N
𝑽 l
k
𝛼ƒ
ƒ
𝜷}𝒂E
!
†
𝒂]
𝜷
†
𝒂o
o
𝜷
𝒂o
n
c
𝑎-, 𝑎8 1D
= 0
N
𝑽 =
𝟏
𝟐
c 𝑑3𝑥𝑑3𝑦𝑣(𝑥 − 𝑦) %
𝜓† 𝑥 %
𝜓† 𝑦 %
𝜓 𝑦 %
𝜓 𝑥
(9.3) n-body Operator
N
𝑹 =
𝟏
𝒏!
,
𝝀𝟏𝝀𝟐…𝝀𝒏;𝝁𝟏𝝁𝟐…𝝁𝒏
𝝀𝟏𝝀𝟐 … 𝝀𝒏
N
𝑽 𝝁𝟏𝝁𝟐 … 𝝁𝒏 𝒂𝝀𝟏
†
… 𝒂𝝀𝒏
†
𝒂𝝁𝒏
… 𝒂𝝁𝟏
Coherent States: Eigenstates of 𝑎! 𝑎-, 𝑎8
†
1D
= 𝑎-𝑎8
† − 𝜉𝑎8
†𝑎- = 𝛿-8
Assume 𝑎c
†
⟩
|𝜑 = 𝜑 ⟩
|𝜑 , normalized ⟩
|𝜑 ≠ 0
𝜑 𝑎c𝑎c
†
𝜑 = |𝜑|7 = 𝜑 1 + 𝜉𝑎c
†
𝑎c 𝜑 = 1 + 𝜉 𝜑 𝑎c
†
𝑎c 𝜑 = 1 + 𝜉[ 𝜑 7 + || ⟩
|𝜑 Œ||7]
𝜑 𝑎c
†
𝜑 = 𝜑 𝜑 𝑎c 𝜑 = 𝜑∗
𝑎c ⟩
|𝜑 = 𝜑∗ ⟩
|𝜑 + ⟩
|𝜑 Œ
For Fermions, 𝑎c
†
𝑎c
†
⟩
|𝜑 = 𝜑7 ⟩
|𝜑 = 0 𝜑 = 0 𝑎c
†
⟩
|𝜑 = 0
⟨𝜑 ⟩
|𝜑 Œ = 0
(1) Fermions,
|𝜑|7 = 1 − [ 𝜑 7 + || ⟩
|𝜑 Œ||7] | ⟩
|𝜑 Œ||7 = 1
(2) Bosons,
|𝜑|7 = 1 + [ 𝜑 7 + || ⟩
|𝜑 Œ||7] 0 = 1 + || ⟩
|𝜑 Œ||7 Impossible !
⟩
|𝜙 = G
Se•
j
G
cT,cU,…,cV
𝜙cT,cU,…,ck
⟩
|𝛼6𝛼7 … 𝛼S
e
𝑎!
†
|𝜙 ∝ ⟩
|𝜙
⟩
𝑎!|𝜙 ∝ ⟩
|𝜙
Coherent States: Bosons
(0) 𝑎0 ⟩
|𝜙 = 𝜙0 ⟩
|𝜙
𝑎c, 𝑎p qŽ
= 0
𝑎0, 𝑎S hi
⟩
|𝜙 = 𝑎0𝑎S − 𝜉𝑎S𝑎0 ⟩
|𝜙
= 𝜙S𝜙0 ⟩
|𝜙 − 𝜉𝜙0𝜙S ⟩
|𝜙 = 0
(2) ⟩
|𝝓 = 𝒆∑𝜶 𝝓𝜶𝒂𝜶
†
⟩
|𝟎
a
𝒏𝜶𝟏
𝒏𝜶𝟐
…𝒏𝜶𝒌
…:𝟎
u
|𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… v𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… | = 𝟏
⟩
|𝜙 = )
A0!A0"…A0.
…B`
R
|𝑛!!
𝑛!"
… 𝑛!.
… 𝑛!!
𝑛!"
… 𝑛!.
… 𝜙 = )
A0!A0"…A0.
…B`
e
𝜙A0!A0"…A0.
…|𝑛!!
𝑛!"
… 𝑛!.
…
𝜙-;
⟩
|𝜙 = a
F=/F=>…F=;
…:G
𝜙F=/F=>…F=;
…𝑎-;
u
|𝑛-/
𝑛->
… 𝑛-;
…
𝝓𝜶𝒊
𝝓𝒏𝜶𝟏
𝒏𝜶𝟐
…𝒏𝜶𝒊
q𝟏… = 𝝓𝒏𝜶𝟏
𝒏𝜶𝟐
…𝒏𝜶𝒊
… 𝒏𝜶𝒊
, 𝒏𝜶𝒊
= 𝟏, 𝟐, 𝟑, …
= a
F=/F=>…F=;
…:G
𝜙F=/F=>…F=;
… 𝒏𝜶𝒊
u
|𝑛-/
𝑛->
… (𝑛-;
− 1) …
𝜙F=/F=>…F=;
… =
𝜙-;
𝒏𝜶𝒊
𝜙F=/F=>…F=;
1'… =
𝜙-;
𝒏𝜶𝒊
𝜙-;
𝒏𝜶𝒊
− 𝟏
𝜙F=/F=>…F=;
1+… = ⋯ =
𝜙-;
F=;
𝒏𝜶𝒊
!
𝜙F=/F=>…G…
𝝓𝒏𝜶𝟏
𝒏𝜶𝟐
…𝒏𝜶𝒊
… =
𝝓𝜶𝟏
𝒏𝜶𝟏
𝒏𝜶𝟏
!
𝝓𝜶𝟐
𝒏𝜶𝟐
𝒏𝜶𝟐
!
…
𝝓𝜶𝒊
𝒏𝜶𝒊
𝒏𝜶𝒊
!
Set 𝝓𝟎𝟎…𝟎… = 𝟎 𝝓 = 𝟏
(1) 𝜙0, 𝜙S hi
= 0
Coherent States: Bosons
⟩
|𝝓 = )
A0!A0"…A0.
…B`
𝝓𝜶𝟏
𝒏𝜶𝟏
𝒏𝜶𝟏
!
𝝓𝜶𝟐
𝒏𝜶𝟐
𝒏𝜶𝟐
!
…
𝝓𝜶𝒊
𝒏𝜶𝒊
𝒏𝜶𝒊
!
R
|𝑛!!
𝑛!"
… 𝑛!.
…
l
|𝒏𝜶𝟏
𝒏𝜶𝟐
… 𝒏𝜶𝒌
… =
𝟏
𝒏𝜶𝟏
! 𝒏𝜶𝟐
! … 𝒏𝜶𝒌
! …
(𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝒂𝜶𝟐
† )𝒏𝜶𝟐 … (𝒂𝜶𝒌
† )𝒏𝜶𝒌 … ⟩
|𝟎
= )
A0!A0"…A0.
…B`
𝝓𝜶𝟏
𝒏𝜶𝟏
𝒏𝜶𝟏
!
𝝓𝜶𝟐
𝒏𝜶𝟐
𝒏𝜶𝟐
!
…
𝝓𝜶𝒊
𝒏𝜶𝒊
𝒏𝜶𝒊
!
𝟏
𝒏𝜶𝟏
! 𝒏𝜶𝟐
! … 𝒏𝜶𝒊
! …
(𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝒂𝜶𝟐
† )𝒏𝜶𝟐 … (𝒂𝜶𝒊
† )𝒏𝜶𝒊 … ⟩
|𝟎
= )
A0!A0"…A0.
…B`
𝟏
𝒏𝜶𝟏
! 𝒏𝜶𝟐
! … 𝒏𝜶𝒊
! …
(𝜙!!
𝒂𝜶𝟏
† )𝒏𝜶𝟏 (𝜙!"
𝒂𝜶𝟐
† )𝒏𝜶𝟐 … (𝜙!.
𝒂𝜶𝒊
† )𝒏𝜶𝒊 … ⟩
|𝟎
= 𝑒a0!𝒂𝜶𝟏
†
𝑒a0"𝒂𝜶𝟐
†
… 𝑒a0.
𝒂𝜶𝒊
†
… ⟩
|𝟎
= 𝒆∑𝜶 𝝓𝜶𝒂𝜶
†
⟩
|𝟎
𝜙0, 𝜙G "
= 0
⟩
|𝜶 ≡ { ⟩
|𝜶𝟏 , ⟩
|𝜶𝟐 , … , ⟩
|𝜶𝒌 , … }
⟨𝝓| = ⟨0|𝒆∑𝜶 𝝓𝜶
∗ c0
𝑎- ⟩
|𝜙 = 𝜙- ⟩
|𝜙
⟨𝝓|𝒂𝜶
† = ⟨𝝓| 𝝓𝜶
∗
𝒂𝜶
† ⟩
|𝝓 = 𝒂𝜶
†𝒆
∑𝜶- 𝝓𝜶-𝒂𝜶-
†
⟩
|𝟎 =
𝝏
𝝏𝝓𝜶
⟩
|𝝓
⟨𝝓|𝑎- = ⟨0|𝒆
∑𝜶- 𝝓𝜶-
∗
L𝜶-
𝑎- =
𝝏
𝝏𝝓𝜶
∗ ⟨𝝓|
𝝓 𝝓" = 𝒆∑𝜶 𝝓𝜶
∗ 𝝓𝜶
-
𝑛-/
𝑛->
… 𝑛-;
… 𝑛′-/
𝑛′->
… 𝑛′-;
… = 𝛿F=/F"=/
𝛿F=>F"=>
… 𝛿F=;
F"=;
Coherent States: Bosons
(3) Completeness/Closure Relation
c d
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆q ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 ⟩
|𝝓 ⟨𝝓| = 𝟏
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
=
𝒅(𝑹𝒆𝝓𝜶)𝒅(𝑰𝒎𝝓𝜶)
𝝅
(3.1) Directly Integrate the l.h.s
(3.2) Schur’s lemma: if an operator commutes with all 𝑎c and 𝑎c
†
, then it is proportional to
the unit operator in Fock Space
𝒂𝜶, ⟩
|𝝓 ⟨𝝓| = 𝑎- ⟩
|𝜙 ⟨𝜙| − ⟩
|𝜙 ⟨𝜙|𝑎- = (𝝓𝜶 −
𝝏
𝝏𝝓𝜶
∗ ) ⟩
|𝝓 ⟨𝝓|
𝑎- ⟩
|𝜙 = 𝜙- ⟩
|𝜙
⟨𝝓|𝑎- =
𝝏
𝝏𝝓𝜶
∗ ⟨𝝓|
𝒂𝜷, • y
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 ⟩
|𝝓 ⟨𝝓| = • y
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 (𝝓𝜷 −
𝝏
𝝏𝝓𝜷
∗ ) ⟩
|𝝓 ⟨𝝓|
= • y
𝜶
𝒅𝝓𝜶
∗
𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 𝝓𝜷 ⟩
|𝝓 ⟨𝝓| − • y
𝜶
𝒅𝝓𝜶
∗
𝒅𝝓𝜶
𝟐𝒊𝝅
𝝏
𝝏𝝓𝜷
∗ 𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 ⟩
|𝝓 ⟨𝝓| + 𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶𝝓𝜷 ⟩
|𝝓 ⟨𝝓| = 𝟎
𝑎8
†
, • y
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 ⟩
|𝝓 ⟨𝝓| = 𝟎 • y
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 𝟎 𝝓 𝝓 𝟎 = • y
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 = 𝟏
Set 𝝓𝟎𝟎…𝟎… = 𝟎 𝝓 = 𝟏
• 𝒅𝒙𝒆1𝒙𝟐
= 𝝅
Coherent States: Bosons
(4) 𝝓 –representation/Holomorphic representation
Trace of operators: 𝑻𝒓4
𝑨 = • a
𝝀
𝝀 4
𝑨 𝝀 = • y
𝜶
𝒅𝝓𝜶
∗
𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 • a
𝝀
𝝀 𝝓 𝝓 4
𝑨 𝝀
( )
𝝀
⟩
|𝝀 ⟨𝝀| = 1
= • y
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 • a
𝝀
𝝓 4
𝑨 𝝀 𝝀 𝝓 = • y
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 𝝓 4
𝑨 𝝓
States: ⟩
|𝝍 = • y
𝜶
𝒅𝝓𝜶
∗ 𝒅𝝓𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 ⟩
|𝝓 𝝓 𝝍
Holomorphic function 𝝍(𝝓∗
) = 𝝓 𝝍
𝝍 𝝓∗ = 𝝓 𝝍 = • y
𝜶
𝒅𝝓′𝜶
∗ 𝒅𝝓′𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓"𝜶
∗ 𝝓"𝜶 𝝓 𝝓′ 𝝓′ 𝝍
= • y
𝜶
𝒅𝝓′𝜶
∗
𝒅𝝓′𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶 𝝓"𝜶
∗ 𝝓"𝜶 𝒆∑𝜶 𝝓𝜶
∗ 𝝓𝜶
-
𝝍 𝝓"∗
𝝓 𝝓" = 𝒆∑𝜶 𝝓𝜶
∗ 𝝓𝜶
-
= • y
𝜶
𝒅𝝓′𝜶
∗ 𝒅𝝓′𝜶
𝟐𝒊𝝅
𝒆1 ∑𝜶(𝝓-
𝜶
∗
1𝝓𝜶
∗ )𝝓"𝜶 𝝍 𝝓"∗
Particle number in a coherent state
| 𝑛cT
𝑛cU
… 𝑛cp
… 𝜙 |7 = d
c
|𝝓𝜶|𝟐
𝒏𝜶! Poisson distribution with |𝝓𝜶|𝟐 as mean value
Coherent States: Bosons ⟨𝝓|𝑎- =
𝝏
𝝏𝝓𝜶
∗ ⟨𝝓|
⟨𝝓|𝒂𝜶
† = ⟨𝝓| 𝝓𝜶
∗
Operators: 𝝓 𝑎- 𝝍 =
𝝏
𝝏𝝓𝜶
∗ 𝝓 𝝍 =
𝝏
𝝏𝝓𝜶
∗ 𝝍(𝝓∗)
𝝓 𝒂𝜶
† 𝝍 = 𝝓𝜶
∗
𝝓 𝝍 = 𝝓𝜶
∗
𝝍(𝝓∗
)
𝒂𝜶 =
𝝏
𝝏𝝓𝜶
∗
𝒂𝜶
† = 𝝓𝜶
∗
𝑎-, 𝑎8
†
1
= 𝑎-𝑎8
† − 𝑎8
†𝑎- = 𝛿-8
𝑎-
†, 𝑎8
†
1
= 𝑎-, 𝑎8 1
= 0
𝝓𝜶
∗
, 𝝓𝜷
∗
1
=
𝝏
𝝏𝝓𝜶
∗ ,
𝝏
𝝏𝝓𝜷
∗
1
= 𝟎
𝝏
𝝏𝝓𝜶
∗ , 𝝓𝜷
∗
1
= 𝜹𝜶𝜷
4
𝐻 ⟩
|𝝍 = 𝑯 𝒂𝜶
†, 𝑎- ⟩
|𝝍 = 𝑬 ⟩
|𝝍
Schr ̈
odinger Equation 𝑯 𝝓𝜶
∗
,
𝝏
𝝏𝝓𝜶
∗ 𝝍 𝝓∗
= 𝑬𝝍(𝝓∗
)
a
𝜶,𝜷
𝑻𝜶𝜷𝝓𝜶
∗
𝝏
𝝏𝝓𝜶
∗ +
𝟏
𝟐
a
𝜶,𝜷,𝜸,𝜹
(𝜶𝜷|𝒗|𝜸𝜹)𝝓𝜶
∗ 𝝓𝜷
∗ 𝝏
𝝏𝝓𝜹
∗
𝝏
𝝏𝝓𝜸
∗ 𝝍 𝝓∗ = 𝑬𝝍(𝝓∗)
4
𝐻 = '
𝑇 + '
𝑉
Matrix Elements of Normal-ordered Operators
𝝓 𝐴(𝒂𝜶
†, 𝑎-) 𝝓" = 𝐴(𝝓𝜶
∗ , 𝝓′𝜶)𝒆∑𝜶 𝝓𝜶
∗ 𝝓𝜶
-
𝝓 𝝓"
= 𝒆∑𝜶 𝝓𝜶
∗ 𝝓𝜶
-
Two-body Operators
𝝓 r
𝑽 𝝓f =
𝟏
𝟐
∑ghij(𝝀𝝁|r
𝑽|𝜈𝜌) 𝝓 𝒂𝝀
†
𝒂𝝁
†
𝒂j𝒂i 𝝓f =
𝟏
𝟐
∑ghij(𝝀𝝁|r
𝑽|𝜈𝜌)𝝓𝝀
∗
𝝓𝝁
∗ 𝝓j
f 𝝓i
f 𝒆∑𝜶 𝝓𝜶
∗ 𝝓𝜶
6
The distribution of particle numbers
Q
𝑁 =
𝝓 S
𝑁 𝝓
𝝓 𝝓
=
∑𝜶 𝝓 𝒂𝜶
†𝒂𝜶 𝝓
𝝓 𝝓
= U
𝜶
𝝓𝜶
∗ 𝝓𝜶
4
𝑵 = a
𝜶
©
𝒏𝜶 = a
𝜶
𝒂𝜶
†𝒂𝜶
Variance 𝜎& =
𝝓 S
𝑁𝟐 𝝓
𝝓 𝝓
− Q
𝑁& = ∑𝜶 𝝓𝜶
∗ 𝝓𝜶 = Q
𝑁 lim
S
(→<
𝜎
®
𝑁
= lim
S
(→<
1
®
𝑁
= 0

More Related Content

Similar to Metal-Insulator Transitions I.pdf

Some Equations for MAchine LEarning
Some Equations for MAchine LEarningSome Equations for MAchine LEarning
Some Equations for MAchine LEarningShridharSharma9
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3Yosia Adi Setiawan
 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleLiang Kai Hu
 
Unit 1 Set Theory-Engineering Mathematics.pptx
Unit 1 Set Theory-Engineering Mathematics.pptxUnit 1 Set Theory-Engineering Mathematics.pptx
Unit 1 Set Theory-Engineering Mathematics.pptxG2018ChoudhariNikita
 
Serie de fourier
Serie de fourierSerie de fourier
Serie de fourierJenny D.
 
Милан Циркович. Антропная тень
Милан Циркович. Антропная теньМилан Циркович. Антропная тень
Милан Циркович. Антропная теньavturchin
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)tungwc
 
Lf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiLf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiluc faucheux
 
Blow up in a degenerate keller--segel system(Eng.)
Blow up in a degenerate keller--segel system(Eng.)Blow up in a degenerate keller--segel system(Eng.)
Blow up in a degenerate keller--segel system(Eng.)Takahiro Hashira
 
01. integral fungsi aljabar
01. integral fungsi aljabar01. integral fungsi aljabar
01. integral fungsi aljabarHirwanto Iwan
 
Talk at the QCDN 2012 conference in Bilbao
Talk at the QCDN 2012 conference in BilbaoTalk at the QCDN 2012 conference in Bilbao
Talk at the QCDN 2012 conference in BilbaoFrancesca Giordano
 
Annals of Statistics読み回 第一回
Annals of Statistics読み回 第一回Annals of Statistics読み回 第一回
Annals of Statistics読み回 第一回jkomiyama
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3Yosia Adi Setiawan
 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Hojin Yang
 
Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptxjorgejvc777
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)PhysicsLover
 
ゲーム理論 BASIC 演習88 -投票ゲームにおけるシャープレイ•シュービック指数-
ゲーム理論 BASIC 演習88 -投票ゲームにおけるシャープレイ•シュービック指数-ゲーム理論 BASIC 演習88 -投票ゲームにおけるシャープレイ•シュービック指数-
ゲーム理論 BASIC 演習88 -投票ゲームにおけるシャープレイ•シュービック指数-ssusere0a682
 

Similar to Metal-Insulator Transitions I.pdf (20)

Some Equations for MAchine LEarning
Some Equations for MAchine LEarningSome Equations for MAchine LEarning
Some Equations for MAchine LEarning
 
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
Periodic Solutions for Nonlinear Systems of Integro-Differential Equations of...
 
Relativity
RelativityRelativity
Relativity
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
 
Maximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of BeetleMaximum Likelihood Estimation of Beetle
Maximum Likelihood Estimation of Beetle
 
Lf 2021 rates_vi
Lf 2021 rates_viLf 2021 rates_vi
Lf 2021 rates_vi
 
Unit 1 Set Theory-Engineering Mathematics.pptx
Unit 1 Set Theory-Engineering Mathematics.pptxUnit 1 Set Theory-Engineering Mathematics.pptx
Unit 1 Set Theory-Engineering Mathematics.pptx
 
Serie de fourier
Serie de fourierSerie de fourier
Serie de fourier
 
Милан Циркович. Антропная тень
Милан Циркович. Антропная теньМилан Циркович. Антропная тень
Милан Циркович. Антропная тень
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
SUEC 高中 Adv Maths (Trigo Equation) (Part 3)
 
Lf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-iiLf 2020 stochastic_calculus_ito-ii
Lf 2020 stochastic_calculus_ito-ii
 
Blow up in a degenerate keller--segel system(Eng.)
Blow up in a degenerate keller--segel system(Eng.)Blow up in a degenerate keller--segel system(Eng.)
Blow up in a degenerate keller--segel system(Eng.)
 
01. integral fungsi aljabar
01. integral fungsi aljabar01. integral fungsi aljabar
01. integral fungsi aljabar
 
Talk at the QCDN 2012 conference in Bilbao
Talk at the QCDN 2012 conference in BilbaoTalk at the QCDN 2012 conference in Bilbao
Talk at the QCDN 2012 conference in Bilbao
 
Annals of Statistics読み回 第一回
Annals of Statistics読み回 第一回Annals of Statistics読み回 第一回
Annals of Statistics読み回 第一回
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
 
Variational Autoencoder Tutorial
Variational Autoencoder Tutorial Variational Autoencoder Tutorial
Variational Autoencoder Tutorial
 
Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptx
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
 
ゲーム理論 BASIC 演習88 -投票ゲームにおけるシャープレイ•シュービック指数-
ゲーム理論 BASIC 演習88 -投票ゲームにおけるシャープレイ•シュービック指数-ゲーム理論 BASIC 演習88 -投票ゲームにおけるシャープレイ•シュービック指数-
ゲーム理論 BASIC 演習88 -投票ゲームにおけるシャープレイ•シュービック指数-
 

Recently uploaded

Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111GangaMaiya1
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Celine George
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsSandeep D Chaudhary
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17Celine George
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024Elizabeth Walsh
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningMarc Dusseiller Dusjagr
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfPondicherry University
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptxJoelynRubio1
 
What is 3 Way Matching Process in Odoo 17.pptx
What is 3 Way Matching Process in Odoo 17.pptxWhat is 3 Way Matching Process in Odoo 17.pptx
What is 3 Way Matching Process in Odoo 17.pptxCeline George
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 

Recently uploaded (20)

Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17
 
Our Environment Class 10 Science Notes pdf
Our Environment Class 10 Science Notes pdfOur Environment Class 10 Science Notes pdf
Our Environment Class 10 Science Notes pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
What is 3 Way Matching Process in Odoo 17.pptx
What is 3 Way Matching Process in Odoo 17.pptxWhat is 3 Way Matching Process in Odoo 17.pptx
What is 3 Way Matching Process in Odoo 17.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 

Metal-Insulator Transitions I.pdf

  • 1. Metal-Insulator Transitions(I): Basics for Non-relativistic Field Theory of Many-Particle Systems Detian Yang Negele, J. W., and H. Orland, 1988, Quantum Many-Particle Systems (Addison Wesley, Redwood City, CA).
  • 2. Quantum Mechanics: States, Dynamics and Measurements (1) Physical states are described by vectors in Hilbert space. Wavefunctions: functionals of quantum fields in 𝑥-representation (2) The only observables are transition probability amplitudes Ψ Φ (3) Physical processes are “artificially” divided into two “incompatible” kinds (I) and (II) (I) Unitary evolution processes that preserve information (II) Non-unitary measurement processes that break time inversion symmetry 𝑖𝜕! ⟩ |Ψ = ( 𝐻 ⟩ |Ψ Born’s Rule; Measurement Assumption; Ψ Ψ , Ψ + 𝑂 Ψ , Ψ + 𝑂 Φ , 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑃𝑂𝑉𝑀) 𝑖𝜕!𝜌 = [ ( 𝐻, 𝜌] ⟩ |𝜑" = + 𝑃" ⟩ |Ψ ⟩ |Ψ ⟩ |Ψ(𝑡) = ( 𝑈(𝑡, 𝑡#) ⟩ |Ψ(𝑡#) ℏ = 𝟏 𝜌 𝑡 = ( 𝑈(𝑡, 𝑡#)𝜌 𝑡# ( 𝑈† (𝑡, 𝑡#) 𝑃(𝑖) = Ψ ' 𝑃! Ψ 𝜌 𝜌$ = + 𝑃"𝜌 + 𝑃" 𝑡𝑟[𝜌 + 𝑃"] 𝑡𝑟[𝜌 ' 𝑃!] ' 𝑃! = ⟩ |𝜑! ⟨𝜑!| 𝜌 𝜌1 = % 𝑀2𝜌 % 𝑀2 † 𝑡𝑟[ % 𝑀2𝜌 % 𝑀2 †] 𝑡𝑟[𝜌 ' 𝐹!] 4 𝑀! 4 𝑀! † = ' 𝐹!
  • 3. N-particle Hilbert Space and States Hilbert space for N-particle system: ℋ% = ℋ⨂ℋ⨂ ⋯ ℋ |𝛼& … 𝛼%) ≡ ⟩ |𝛼& ⨂ ⟩ |𝛼' ⨂ … ⨂ ⟩ |𝛼% Orthonormal basis { ⟩ |𝛼 } Wave function 𝜓% ⃑ 𝑟&, ⃑ 𝑟', … , ⃑ 𝑟% = (⃑ 𝑟&, ⃑ 𝑟', … , ⃑ 𝑟%|Ψ%): probability amplitude for finding particles in N positions ⃑ 𝑟&, ⃑ 𝑟', … , ⃑ 𝑟% ( ) ! ⟩ |𝛼 ⟨𝛼| = 1 Wave function for ⟩ |𝛼& … 𝛼% : 𝜓0!…0" ⃑ 𝑟&, ⃑ 𝑟', … , ⃑ 𝑟% = (⃑ 𝑟&, ⃑ 𝑟', … , ⃑ 𝑟%|𝛼&𝛼' … 𝛼%) = (⟨⃑ 𝑟&|⨂⟨⃑ 𝑟'|⨂ … ⨂⟨⃑ 𝑟%|)( ⟩ |𝛼& ⨂ ⟩ |𝛼' ⨂ … ⨂ ⟩ |𝛼% ) = 𝜓0! ⃑ 𝑟& 𝜓0# ⃑ 𝑟' … 𝜓0" ⃑ 𝑟% Orthonormality: 𝛼6, 𝛼7, … , 𝛼8 𝛼1 6𝛼1 7 … 𝛼1 8 = 𝛼6 𝛼1 6 𝛼7 𝛼1 7 … 𝛼8 𝛼1 8 = 𝛿(𝛼6 − 𝛼1 6)𝛿(𝛼7 − 𝛼1 7) … 𝛿(𝛼8 − 𝛼1 8) 𝛼 𝛼" = 𝛿(𝛼 − 𝛼") Completeness/Closure: ( ) !!,!",…,!# |𝛼$, 𝛼%, … , 𝛼&)(𝛼$, 𝛼%, … , 𝛼&| = 1
  • 4. Spin-Statistics Theorem Identical half-integral spin particles(Fermions) satisfy Fermi–Dirac statistics which permit no more than one particle per quantum state; identical integral spin particles(Bosons) satisfy Bose–Einstein statistics which permits any number of particles in each quantum state Ian Duck and E. C. G. Sudarshan. American Journal of Physics 66, 284 (1998); doi: 10.1119/1.18860 𝜓 ⃑ 𝑟!", ⃑ 𝑟!#, … , ⃑ 𝑟!$ = 𝜓 ⃑ 𝑟", ⃑ 𝑟#, … , ⃑ 𝑟$ The wave function of N Bosons is totally symmetric relative to any permutation P The wave function of N Fermions is totally antisymmetric relative to any permutation P 𝜓 ⃑ 𝑟!", ⃑ 𝑟!#, … , ⃑ 𝑟!$ = (−1)! 𝜓 ⃑ 𝑟", ⃑ 𝑟#, … , ⃑ 𝑟$ (−1)# is the parity of permutation P: the number of switching two elements which bring (1,2, . . 𝑁) to (𝑃1, 𝑃2, . . 𝑃𝑁) 𝜓 ⃑ 𝑟!", ⃑ 𝑟!#, … , ⃑ 𝑟!$ = 𝜉! 𝜓 ⃑ 𝑟", ⃑ 𝑟#, … , ⃑ 𝑟$ 𝜉 = B +1, 𝐵𝑜𝑠𝑜𝑛𝑠 −1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
  • 5. Define symmetrization operator 𝒫J and antisymmetrization operator 𝒫K 𝒫!/#𝜓 ⃑ 𝑟", ⃑ 𝑟#, … , ⃑ 𝑟$ = 1 𝑁! . ! 𝜉! 𝜓 ⃑ 𝑟!", ⃑ 𝑟!#, … , ⃑ 𝑟!$ 𝒫J𝜓 ⃑ 𝑟6, ⃑ 𝑟7 = 1 2 (𝜓 ⃑ 𝑟6, ⃑ 𝑟7 + 𝜓 ⃑ 𝑟7, ⃑ 𝑟6 ) 𝒫K𝜓 ⃑ 𝑟6, ⃑ 𝑟7 = 1 2 (𝜓 ⃑ 𝑟6, ⃑ 𝑟7 − 𝜓 ⃑ 𝑟7, ⃑ 𝑟6 ) 𝜉 = B +1, 𝐵𝑜𝑠𝑜𝑛𝑠 −1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠 1 𝐻𝑒𝑟𝑚𝑖𝑡𝑖𝑎𝑛 ' 𝑑 ⃑ 𝑟!𝑑 ⃑ 𝑟" … 𝑑 ⃑ 𝑟# 𝜙∗ ⃑ 𝑟!, ⃑ 𝑟", … , ⃑ 𝑟# 𝒫%/'𝜓 ⃑ 𝑟!, ⃑ 𝑟", … , ⃑ 𝑟# = ' 𝑑 ⃑ 𝑟!𝑑 ⃑ 𝑟" … 𝑑 ⃑ 𝑟# 𝜙∗ ⃑ 𝑟!, ⃑ 𝑟", … , ⃑ 𝑟# 1 𝑁! 2 ( 𝜉( 𝜓 ⃑ 𝑟(!, ⃑ 𝑟(", … , ⃑ 𝑟(# = ! #! ∑( 𝜉( ∫ 𝑑 ⃑ 𝑟!𝑑 ⃑ 𝑟" … 𝑑 ⃑ 𝑟# 𝜙∗ ⃑ 𝑟!, ⃑ 𝑟", … , ⃑ 𝑟# 𝜓 , ⃑ 𝑟(! ⃑ 𝑟(", … , ⃑ 𝑟(# = ! #! ∑(! 𝜉(! ∫ 𝑑 ⃑ 𝑟!!𝑑 ⃑ 𝑟"! … 𝑑 ⃑ 𝑟#! 𝜙∗ ⃑ 𝑟(!!!, ⃑ 𝑟(!"!, … , ⃑ 𝑟(!#! 𝜓 ⃑ 𝑟!!, ⃑ 𝑟"!, … , ⃑ 𝑟#! = ∫ 𝑑 ⃑ 𝑟!!𝑑 ⃑ 𝑟"! … 𝑑 ⃑ 𝑟#! ! #! ∑(! 𝜉(! 𝜙∗ ⃑ 𝑟(!!!, ⃑ 𝑟(!"!, … , ⃑ 𝑟(!#! 𝜓 ⃑ 𝑟!!, ⃑ 𝑟"!, … , ⃑ 𝑟#! = ∫ 𝑑 ⃑ 𝑟!!𝑑 ⃑ 𝑟"! … 𝑑 ⃑ 𝑟#! (𝒫%/'𝜙)∗ ⃑ 𝑟(!!!, ⃑ 𝑟(!"!, … , ⃑ 𝑟(!#! 𝜓 ⃑ 𝑟!!, ⃑ 𝑟"!, … , ⃑ 𝑟#! 𝑃1 = 1! , 𝑃2 = 2! , … 𝑃𝑁 = 𝑁! ; 𝑃! = 𝑃"# ; 𝜉$ = 𝜉$! 𝒫$/& = [𝒫$/&]† 2 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝒫2 $/& = 𝒫$/& 𝒫2 %/'𝜓 ⃑ 𝑟!, ⃑ 𝑟", … , ⃑ 𝑟# = ! #! ∑( 𝜉(𝒫%/'𝜓 ⃑ 𝑟(!, ⃑ 𝑟(", … , ⃑ 𝑟(# = ! #! ∑( 𝜉( ! #! ∑(! 𝜉(! 𝜓 ⃑ 𝑟(!(!, ⃑ 𝑟(!(", … , ⃑ 𝑟(!(# = ! #! ∑( ! #! ∑(! 𝜉(*(! 𝜓 ⃑ 𝑟(!(!, ⃑ 𝑟(!(", … , ⃑ 𝑟(!(# = ! #! ∑( ! #! ∑+ 𝜉+ 𝜓 ⃑ 𝑟+!, ⃑ 𝑟+", … , ⃑ 𝑟+# = ! #! ∑( 𝒫%/'𝜓 ⃑ 𝑟(!, ⃑ 𝑟(", … , ⃑ 𝑟(# = 𝒫%/'𝜓 ⃑ 𝑟(!, ⃑ 𝑟(", … , ⃑ 𝑟(# 𝑄 = 𝑃𝑃! , 𝜉$&$! = 𝜉$$! 𝒫!ℋ" = ℬ" 𝒫#ℋ" = ℱ" Hilbert Space of N-Boson & N-Fermion States
  • 6. https://math.mit.edu/events/stanley70/Site/Slides/Early.pdf N-particle States as Irreducible Basis Vectors of Symmetric Group 𝑺𝑵 (1)(2)(3)(4) (12)(3)(4) (12)(34) (123)(4) (1234) http://www.hep.caltech.edu/~fcp/math/groupTheory/young.pdf D 𝑃MM N+ = 𝑙O 𝑁P G Q 8, 𝐷MM N+∗ 𝑔 𝑃 Q (𝑚 = 1,2, . . 𝑙O) 𝑒M N+ = D 𝑃MM N+ 𝛹 (𝑚 = 1,2, . . 𝑙O) Any finite group 𝐺 = {𝑔} of order 𝑁Pwhose 𝑙O −dimension irreducible representations 𝛤 O(𝜈 = 1,2, . . ) are matrix group {𝐷MS N+ }, act as operators group 𝑃P = {𝑃 Q} in a representation space 𝑉, then the projection operators in 𝑉 corresponding to irreducible representation 𝛤 O(𝜈 = 1,2, . . ) are given by And given any vector 𝛹 in 𝑉, the irreducible basis vectors of 𝛤 O(𝜈 = 1,2, . . ) are 𝒫J/K𝜓 ⃑ 𝑟6, ⃑ 𝑟7, … , ⃑ 𝑟8 = 1 𝑁! G U 𝜉U𝜓 ⃑ 𝑟U6, ⃑ 𝑟U7, … , ⃑ 𝑟U8 𝜉 = B +1, 𝐵𝑜𝑠𝑜𝑛𝑠 −1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
  • 7. Hilbert Space of N-Boson & N-Fermion States 𝛼6𝛼7 … 𝛼8 ≡ 𝑁! 𝒫J∕K 𝛼6𝛼7 … 𝛼8 = 1 𝑁! G U 𝜉U ⟩ |𝛼U6 ⨂ ⟩ |𝛼U7 ⨂ … ⨂ ⟩ |𝛼U8 A basis in ℬ8 & ℱ8 labeled by a general basis { ⟩ |𝛼 }in ℋ 𝛼$𝛼$ … 𝛼& = 𝑁! 𝒫8∕: 𝛼$𝛼$ … 𝛼& = − 𝑁! 𝒫8∕: 𝛼$𝛼$ … 𝛼& 𝜉 = - +1, 𝐵𝑜𝑠𝑜𝑛𝑠 −1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠 For a N-fermion state, if 𝛼6 = 𝛼7 𝛼'𝛼' … 𝛼( = 0 Completeness/Closure: ( ) !!,!",…,!# |𝛼$, 𝛼%, … , 𝛼&)(𝛼$, 𝛼%, … , 𝛼&| = 1 In ℋ% ( ) !!,!",…,!# 𝒫8∕:|𝛼$, 𝛼%, … , 𝛼&)(𝛼$, 𝛼%, … , 𝛼&|𝒫 ⁄ 8 : = 𝒫2 ⁄ 8 : = 𝒫8∕: ( ) !!,!",…,!# 𝒫8∕:|𝛼$, 𝛼%, … , 𝛼&)(𝛼$, 𝛼%, … , 𝛼&|𝒫 ⁄ 8 : = 1 𝑁! ( ) !!,!",…,!# 𝛼$, 𝛼%, … , 𝛼& {𝛼$, 𝛼%, … , 𝛼&| = 1 In ℬ% & ℱ% ℋ( ℬ( ℱ( { 𝛼'𝛼' … 𝛼( } {𝒫, 𝛼#𝛼# … 𝛼- } {𝒫. 𝛼#𝛼# … 𝛼- } 𝒫$∕& 𝒫$∕& 𝛼'𝛼+ … 𝛼( = 𝛼'𝛼+ … 𝛼(
  • 8. Hilbert Space of N-Boson & N-Fermion States Orthogonality: {𝛼!, 𝛼", … , 𝛼#|𝛼$ !𝛼$ " … 𝛼$ #} = , % 𝜉% 𝛿(𝛼! − 𝛼$ %!)𝛿(𝛼" − 𝛼$ %") … 𝛿(𝛼# − 𝛼$ %#) 𝑁! (𝛼%, 𝛼&, … , 𝛼' 𝒫2 (∕* 𝛼+ %𝛼+ & … 𝛼+ ') = 𝑁! (𝛼%, 𝛼&, … , 𝛼' 𝒫(∕* 𝛼+ %𝛼+ & … 𝛼+ ') = ∑, 𝜉, (𝛼% − 𝛼+ ,%)𝛿(𝛼& − 𝛼+ ,&) … 𝛿(𝛼' − 𝛼+ ,') (I) For fermions, one particle per state ⟩ |𝛼 𝛼!, 𝛼", … , 𝛼# 𝛼$ !𝛼$ " … 𝛼$ # = ∑% −1 % 𝛿 𝛼! − 𝛼$ %! 𝛿 𝛼" − 𝛼$ %" … 𝛿 𝛼# − 𝛼$ %# = −1 %,, where 𝑃3 𝛼$ !𝛼$ " … 𝛼$ # = (𝛼!, 𝛼", … , 𝛼#) (II) For bosons, 𝑛2 particles per state ⟩ |𝛼2 , 𝑖 = 1,2 … 𝑝 ≤ 𝑁 𝛼!, 𝛼", … , 𝛼# 𝛼$ !𝛼$ " … 𝛼$ # = ∑% −1 % 𝛿 𝛼! − 𝛼$ %! 𝛿 𝛼" − 𝛼$ %" … 𝛿 𝛼# − 𝛼$ %# = 𝑛6! 𝑛7! … 𝑛^!, where ∑45! 6 𝑛< = 𝑁 𝛼&, 𝛼', … , 𝛼% 𝛼$ &𝛼$ ' … 𝛼$ % = 𝜉; T 0 𝑛0! 0! = 1; 𝜉 = B +1, 𝐵𝑜𝑠𝑜𝑛𝑠 −1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠 a - 𝑛- = 𝑁 𝑃 𝛼" '𝛼" + … 𝛼" ( = (𝛼', 𝛼+, … , 𝛼()
  • 9. Hilbert Space of N-Boson & N-Fermion States Orthonormal basis in 𝓑𝑵 & 𝓕𝑵 ⟩ |𝛼6𝛼7 … 𝛼8 ≡ 1 ∏c 𝑛c! 𝛼6𝛼7 … 𝛼8 = 1 𝑁! ∏c 𝑛c! G U 𝜉U ⟩ |𝛼U6 ⨂ ⟩ |𝛼U7 ⨂ … ⨂ ⟩ |𝛼U8 Completeness/Closure in 𝓑𝑵 & 𝓕𝑵 : W X 𝜶𝟏,𝜶𝟐,…,𝜶𝑵 ∏0 𝑛0! 𝑁! ⟩ |𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟨𝜶𝟏𝜶𝟐 … 𝜶𝑵| = 𝟏 (𝛽#, 𝛽/, … , 𝛽- ⟩ |𝛼#𝛼/ … 𝛼- = 1 𝑁! ∏0 𝑛0! D $ 𝜉$ 𝛽# 𝛼$# 𝛽/ 𝛼$/ … 𝛽- 𝛼$- = 1 𝑁! ∏0 𝑛0! 𝑆( 𝛽1 𝛼2 ) 𝑆 𝛽1 𝛼2 ≡ D $ 𝜉$ 𝛽# 𝛼# 𝛽/ 𝛼/ … 𝛽- 𝛼- = H 𝑃𝑒𝑟 𝛽1 𝛼2 , 𝐵𝑜𝑠𝑜𝑛𝑠 Det 𝛽1 𝛼2 , 𝐹𝑒𝑟𝑚𝑖𝑜𝑛𝑠 Permanent 𝑃𝑒𝑟 𝑀12 = ∑$ 𝑀#,$#𝑀/,$/ … 𝑀-,$- Determinant 𝐷𝑒𝑡 𝑀12 = ∑$ −1 $ 𝑀#,$#𝑀/,$/ … 𝑀-,$- 𝜷𝟏, 𝜷𝟐, … , 𝜷𝑵 𝜶𝟏𝜶𝟐 … 𝜶𝑵 = # -! ∏" 9"! ∏# 9#! ∑$,$! 𝜉$&$! 𝛽$!# 𝛼$# 𝛽$!/ 𝛼$/ … 𝛽$!- 𝛼$- = # -! ∏" 9"! ∏# 9#! ∑$,: 𝜉: 𝛽#! 𝛼:#! 𝛽/! 𝛼:/! … 𝛽;! 𝛼:-! = 𝟏 ∏𝜶 𝒏𝜶! ∏𝜷 𝒏𝜷! 𝑺 𝜷𝒊 𝜶𝒋 𝜉#.#- = 𝜉##- = 𝜉#(#-)./ ; 𝑄 = 𝑃(𝑃" )1' 𝑃′1 = 1! , 𝑃′2 = 2! , … 𝑃′𝑁 = 𝑁! ; G c 𝑛c = 𝑁
  • 10. Many-Body Operators For an arbitrary operator + 𝑂 in ℬ% & ℱ% and any permutation 𝑃 (𝛼&, 𝛼', … , 𝛼%| + 𝑂|𝛼$ &𝛼$ ' … 𝛼$ %) = (𝛼;&, 𝛼;', … , 𝛼;%| + 𝑂|𝛼$ ;&𝛼$ ;' … 𝛼$ ;%) (1) One-body Operator: + 𝑂 𝛼&𝛼' … 𝛼% = X "@& % + 𝑂" 𝛼&𝛼' … 𝛼% Where D 𝑂2 only acts on particle 𝑖 D 𝑇 ⃑ 𝑝6 ⃑ 𝑝7 … ⃑ 𝑝8 = G 2e6 8 ` ⃑ 𝑝2 7 2𝑚 ⃑ 𝑝6 ⃑ 𝑝7 … ⃑ 𝑝8 (𝛼!, 𝛼", … , 𝛼#| 6 𝑂|𝛽!, 𝛽", … , 𝛽#) = , 45! # (𝛼!, 𝛼", … , 𝛼#| 6 𝑂4|𝛽!, 𝛽", … , 𝛽#) = , 45! # 9 784 𝛼7 𝛽7 𝛼4 6 𝑂4 𝛽4 (𝛼6, 𝛼7, … , 𝛼8| D 𝑂|𝛽6, 𝛽7, … , 𝛽8) (𝛼6, 𝛼7, … , 𝛼8|𝛽6, 𝛽7, … , 𝛽8) = G 2e6 8 𝛼2 D 𝑂2 𝛽2 𝛼2 𝛽2 For two non-orthogonal states
  • 11. (2) Two-body Operator % 𝑉 : Many-Body Operators + 𝑉 𝛼&𝛼' … 𝛼% = X &A"BCA% % + 𝑉"C 𝛼&𝛼' … 𝛼% = 1 2 X &A"DCA% % + 𝑉"C 𝛼&𝛼' … 𝛼% Where D 𝑉2f only acts on particles 𝑖 and 𝑗 D 𝑉2f = D 𝑉 f2 𝛼$, 𝛼%, … , 𝛼& E 𝑉 𝛽$, 𝛽%, … , 𝛽& = 1 2 ) $=<>?=& & 𝛼$, 𝛼%, … , 𝛼& E 𝑉<? 𝛽$, 𝛽%, … , 𝛽& = 1 2 ) <>? I @>< @>? 𝛼@ 𝛽@ 𝛼<𝛼? E 𝑉<? 𝛽<𝛽? (𝛼6, 𝛼7, … , 𝛼8| D 𝑉|𝛽6, 𝛽7, … , 𝛽8) (𝛼6, 𝛼7, … , 𝛼8|𝛽6, 𝛽7, … , 𝛽8) = 1 2 G 2gf 𝛼2𝛼f D 𝑉2f 𝛽2𝛽f 𝛼2 𝛽2 𝛼f 𝛽f A local two-body operator satisfies ⃑ 𝑟& ⃑ 𝑟' + 𝑉 ⃑ 𝑟J ⃑ 𝑟K = 𝛿 ⃑ 𝑟& − ⃑ 𝑟J 𝛿 ⃑ 𝑟' − ⃑ 𝑟K 𝑣(⃑ 𝑟& − ⃑ 𝑟') + 𝑉 ⃑ 𝑟&, ⃑ 𝑟', … , ⃑ 𝑟% = 1 2 X &A"DCA% % 𝑣(⃑ 𝑟& − ⃑ 𝑟') ⃑ 𝑟&, ⃑ 𝑟', … , ⃑ 𝑟%
  • 12. Many-Body Operators (3) n-body Operator ' 𝑹 : + 𝑅 𝛼&𝛼' … 𝛼% = 1 𝑛! X &A"!D"#D⋯D"'A% % + 𝑅"!"#…"' 𝛼&𝛼' … 𝛼% D 𝑅2T2U…2V = D 𝑅U2T,U2U,…,U2V (𝛼6, 𝛼7, … , 𝛼8| D 𝑅|𝛽6, 𝛽7, … , 𝛽8) (𝛼6, 𝛼7, … , 𝛼8|𝛽6, 𝛽7, … , 𝛽8) = 1 𝑛! G 2Tg2Ug⋯g2V 𝛼2T 𝛼2U … 𝛼2V D 𝑅 𝛽2T 𝛽2U … 𝛽2V 𝛼2T 𝛽2T 𝛼2U 𝛽2U … 𝛼2V 𝛽2V % 𝑅 on an N-particle state is the sum of the action of % 𝑅 on all distinct subsets of n-particles An n-body operator is entirely determined by its matrix elements 𝛼%! 𝛼%" … 𝛼%# % 𝑅 𝛽%! 𝛽%" … 𝛽%# in the Hilbert space ℋ& of n-particle space.
  • 13. Fock Space and ! 𝒏-representation Fock space is the direct sum of all 𝑛-particle Boson ℬ% = 𝒫M" ℋ%(𝑁 = 0,1,2 … ) or Fermion spaces ℱ$ = 𝒫#$ ℋ'(𝑁 = 0,1,2 … ): ℬ = ℬ(⨁ℬ)⨁ℬ*⨁ … = ⨁'+( , ℬ' ℱ = ℱ(⨁ℱ)⨁ℱ*⨁ … = ⨁'+( , ℱ' ℬ: = ℱ: = ⟩ |0 ℬ" = ℱ" = ℋ G 𝑵e𝟏 j 1 𝑁! c G 𝜶𝟏,𝜶𝟐,…,𝜶𝑵 d c 𝑛c! ⟩ |𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟨𝜶𝟏𝜶𝟐 … 𝜶𝑵| + ⟩ |𝟎 ⟨𝟎| = 𝟏 ℬ8 or ℱ8 c G 𝜶𝟏,𝜶𝟐,…,𝜶𝑵 ∏c 𝑛c! 𝑁! ⟩ |𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟨𝜶𝟏𝜶𝟐 … 𝜶𝑵| = 𝟏 ℬ or ℱ , 𝑵5𝟏 ; 1 𝑁! < , 𝜶𝟏,𝜶𝟐,…,𝜶𝑵 9 = 𝑛=! ⟩ |𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟨𝜶𝟏𝜶𝟐 … 𝜶𝑵| + ⟩ |𝟎 ⟨𝟎| = , 𝑵5𝟏 ; 𝒫?5/A5 + ⟩ |𝟎 ⟨𝟎| ) ! 𝑛! = 𝑁 ⨁#53 ; ℋ#
  • 14. Fock Space and ! 𝒏-representation 𝜶𝛼&𝛼' … 𝛼% = 𝑎0 † 𝛼&𝛼' … 𝛼% For a general basis { ⟩ |𝛼 }in ℋ, define a Boson or Fermion creation operator 𝑎0 † on any symmetrized or antisymmetrized state 𝛼&𝛼' … 𝛼% of ℬ% & ℱ%(𝑁 = 0,1,2, … ) 𝑛𝜶 + 1 ⟩ |𝜶𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝑎0 † ⟩ |𝜶𝟏𝜶𝟐 … 𝜶𝑵 Or 𝑎= † ⟩ |𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝑎= † ! ∏6 C6! 𝛼!𝛼" … 𝛼# = ! ∏6 C6! 𝜶𝛼!𝛼" … 𝛼# = 𝑛𝜶 + 1 ⟩ |𝜶𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟩ |𝜶𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 1 𝑛𝜶 + 1 ∏8 𝑛8! 𝜶𝛼'𝛼+ … 𝛼( 𝑎c † ⟩ |𝛼6𝛼7 … 𝛼8 = 𝑛c + 1 ⟩ |𝛼𝛼6𝛼7 … 𝛼8 = 0, if 𝛼 ∈ {𝛼6, 𝛼7, … , 𝛼8} (1) If 𝑁 = 0, 𝑎0 † ⟩ |𝟎 = ⟩ |𝛼 ; (2) For Fermions ⟩ |𝟎 ≠ 𝟎 ℬ(.'/ℱ(.' ℬ(/ℱ( 𝑎c † ⟩ |𝜶𝟏𝜶𝟐 … 𝜶𝑵 ⟩ |𝜶𝜶𝟏𝜶𝟐 … 𝜶𝑵 𝑎c
  • 15. (3) Any basis vector could be generated by 𝑎𝜶𝒊 † (𝑖 = 1,2, … 𝑁) from ⟩ |𝟎 Fock Space and ! 𝒏-representation 𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝒂𝜶𝟏 † 𝒂𝜶𝟐 † … 𝒂𝜶𝑵 † ⟩ |𝟎 ⟩ |𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 1 ∏𝜶 𝑛𝜶! 𝑎𝜶𝟏 † 𝑎𝜶𝟐 † … 𝑎𝜶𝑵 † ⟩ |𝟎 (4) Annihilation operator 𝑎0 = [𝑎0 †]† 𝑎c ⟩ |𝟎 = 𝟎 ∀𝛼, 𝛼 𝑎c 0 = ( 0 𝑎c † 𝛼 )∗= 0 ⟨0|𝑎c † = 0 𝑎0 𝛽#𝛽/ … 𝛽9 = ∑-?@ A # -! ∫ ∑0&,0',…,0( 𝛼#𝛼/ … 𝛼- {𝛼#𝛼/ … 𝛼-| 𝑎0 𝛽#𝛽/ … 𝛽9 = ∑-?@ A # -! ∫ ∑0&,0',…,0( 𝛼#𝛼/ … 𝛼- {𝛼𝛼#𝛼/ … 𝛼-| 𝛽#𝛽/ … 𝛽9} = # (9"#)! ∫ ∑0&,0',…,0)*& 𝛼#𝛼/ … 𝛼9"# {𝛼𝛼#𝛼/ … 𝛼9"#| 𝛽#𝛽/ … 𝛽9} = # (9"#)! ∫ ∑0&,0',…,0)*& 𝛼#𝛼/ … 𝛼9"# ∑$ 𝜉$ 𝛿 𝛼 − 𝛽$# 𝛿 𝛼# − 𝛽$/ … 𝛿(𝛼9"# − 𝛽$9) = # (9"#)! ∫ ∑0&,0',…,0)*& 𝛼#𝛼/ … 𝛼9"# ∑1?# 9 𝜉 1"# 𝛿 𝛼 − 𝛽1 ) ∑$ 𝜉$ 𝛿 𝛼# − 𝛽$# … 𝛿 𝛼1"# − 𝛽$(1"#) 𝛿 𝛼1 − 𝛽$(1&#) … 𝛿(𝛼9"# − 𝛽$9) = # (9"#)! ∑1?# 9 𝜉 1"# 𝛿 𝛼 − 𝛽1 ) ∑$ 𝜉$ 𝛽$# … 𝛽$(1"#)𝛽$(1&#) … 𝛽$9 = # (9"#)! ∑1?# 9 𝜉 1"# 𝛿 𝛼 − 𝛽1 ) ∑$ 𝜉/$ 𝛽# … 𝛽(1"#)𝛽(1&#) … 𝛽9 = # (9"#)! ∑1?# 9 𝜉 1"# 𝛿 𝛼 − 𝛽1 )(𝑛 − 1)! 𝛽# … 𝛽(1"#)𝛽(1&#) … 𝛽9 = ∑1?# 9 𝜉 1"# 𝛿 𝛼 − 𝛽1 𝛽# … 𝛽(1"#)𝛽(1&#) … 𝛽9 = ∑1?# 9 𝜉 1"# 𝛽#𝛽/ … ] 𝛽1 … 𝛽9 𝛿 𝛼 − 𝛽1 D 𝑵?𝟏 A 1 𝑁! ^ D 𝜶𝟏,𝜶𝟐,…,𝜶𝑵 𝜶𝟏𝜶𝟐 … 𝜶𝑵 {𝜶𝟏𝜶𝟐 … 𝜶𝑵| + ⟩ |𝟎 ⟨𝟎| = 𝟏 𝑎! 𝛽$𝛽% … 𝛽A = ) <B$ A 𝜉 <C$ 𝛽$𝛽% … P 𝛽< … 𝛽A 𝛿 𝛼 − 𝛽< 𝑎! ⟩ |𝛽$𝛽% … 𝛽A = 1 𝑛𝜶 ) <B$ A 𝜉 <C$ R |𝛽$𝛽% … P 𝛽< … 𝛽A 𝛿 𝛼 − 𝛽<
  • 16. Fock Space and ! 𝒏-representation (5) Commutation & Anticommutation Relation 𝑎0 †𝑎S † 𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝛼𝛽𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝜉 𝛽𝛼𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝜉𝑎S †𝑎0 † 𝜶𝟏𝜶𝟐 … 𝜶𝑵 𝑎=, 𝑎D † EF = 𝑎=𝑎D † − 𝜉𝑎D †𝑎= = 𝛿=D 𝑎= †, 𝑎D † EF = 𝑎=, 𝑎D EF = 0 𝑎=𝑎D † 𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝑎= 𝛽𝜶𝟏𝜶𝟐 … 𝜶𝑵 = 𝛿=D 𝜶𝟏𝜶𝟐 … 𝜶𝑵 + , 45! # 𝜉4 𝛽𝜶!𝜶" … H 𝜶4 … 𝜶# 𝛿 𝛼 − 𝜶4 = 𝛿=D 𝜶𝟏𝜶𝟐 … 𝜶𝑵 + 𝜉 ∑45! # 𝜉 4E! 𝑎D † 𝜶!𝜶" … H 𝜶4 … 𝜶# 𝛿 𝛼 − 𝜶4 = 𝛿=D 𝜶𝟏𝜶𝟐 … 𝜶𝑵 + 𝜉𝑎D †𝑎= 𝜶!𝜶" … 𝜶# 𝜉 = B +1, 𝐵𝑜𝑠𝑜𝑛𝑠 −1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠 (6) Basis Transformation ( ) ! ⟩ |𝛼 ⟨𝛼| = 1 ( ) E ! ⟩ | T 𝛼 ⟨ T 𝛼| = 1 ⟩ | k 𝛼 = c G c ⟩ |𝛼 𝛼 k 𝛼 𝑎G = † 𝛼!𝛼" … 𝛼# = I 𝛼𝛼!𝛼" … 𝛼# = < , = 𝛼 I 𝛼 𝜶𝛼!𝛼" … 𝛼# = < , = 𝛼 I 𝛼 𝑎= † 𝛼!𝛼" … 𝛼# 𝑎n c † = c G c 𝛼 k 𝛼 𝑎c † 𝑎n c = c G c k 𝛼 𝛼 𝑎c 𝑎E !, 𝑎o p † EF = , =D ̃ 𝛼 𝛼 𝛽 V 𝛽 𝑎=, 𝑎D † EF = k 𝛼 l 𝛽
  • 17. Fock Space and ! 𝒏-representation (7) h 𝒙-representation ⟩ |𝒙 = ⟩ |𝒓𝝈𝝉 𝒓: Space Coordinate; 𝝈: Spin; 𝝉: Internal degrees of freedom Field Operators: 6 𝜓† 𝑥 = 𝑎H † = < , = 𝛼 𝑥 𝑎= † = < , = 𝜙= ∗ (𝑥) 𝑎= † 6 𝜓(𝑥) = 𝑎H = < , = 𝑥 𝛼 𝑎= = < , = 𝜙=(𝑥) 𝑎= 6 𝜓(𝑥), 6 𝜓† 𝑦 EF = 𝛿(𝑥 − 𝑦) 6 𝜓† 𝑥 , 6 𝜓† 𝑦 EF = 6 𝜓(𝑥), 6 𝜓(𝑦) EF = 0 (8) h 𝒏-representation q 𝒏𝜶 = 𝒂𝜶 †𝒂𝜶 t 𝑛c 𝛼6𝛼7 … 𝛼8 = 𝑎c †𝑎c 𝛼6𝛼7 … 𝛼8 = 𝑎c † ∑2e6 8 𝜉 2q6 𝛿 𝛼 − 𝛼2 𝛼6𝛼7 … t 𝛼2 … 𝛼8 = ∑2e6 8 𝛿 𝛼 − 𝛼2 𝛼6𝛼7 … 𝛼2 … 𝛼8 N 𝑵 = , 𝜶 H 𝒏𝜶 = , 𝜶 𝒂𝜶 †𝒂𝜶 q 𝒏𝜶 ⟩ |𝒏𝜶 = 𝒏𝜶 ⟩ |𝒏𝜶 (8.1) Hermitian operator (8.2) Eigenstates and Eigenvalues 𝒏𝜶 = 𝒏𝜶 q 𝒏𝜶 𝒏𝜶 = 𝒏𝜶 𝒂𝜶 †𝒂𝜶 𝒏𝜶 = 𝒂𝜶 ⟩ |𝒏𝜶 𝟐 ≥ 𝟎 𝒏𝜶 = 𝟎, iff 𝒂𝜶 ⟩ |𝟎 = 𝟎 (8.2.1) Bosons 𝑎=, 𝑎= † E = 1 𝒂𝜶 †𝒂𝜶𝒂𝜶 † = 𝒂𝜶 †(𝟏 + 𝒂𝜶 †𝒂𝜶)
  • 18. Fock Space and ! 𝒏-representation (8.2.1) Bosons 𝒂𝜶, 𝒂𝜶 † E = 𝟏 𝒂𝜶 †𝒂𝜶𝒂𝜶 † = 𝒂𝜶 †(𝟏 + 𝒂𝜶 †𝒂𝜶) q 𝒏𝜶 𝒂𝜶 † ⟩ |𝒏𝜶 = 𝑎c †𝑎c𝑎c † ⟩ |𝑛c = 𝑎c † 1 + 𝑎c †𝑎c ⟩ |𝑛c = 𝑎c † 1 + 𝑛c ⟩ |𝑛c = 𝟏 + 𝒏𝜶 (𝒂𝜶 † ⟩ |𝒏𝜶 ) q 𝒏𝜶 𝒂𝜶 ⟩ |𝒏𝜶 = 𝑎c †𝑎c𝑎c ⟩ |𝑛c = (𝑎c𝑎c † − 1)𝑎c ⟩ |𝑛c = 𝑎c 𝑛c − 1 ⟩ |𝑛c = 𝒏𝜶 − 𝟏 (𝒂𝜶 ⟩ |𝒏𝜶 ) 𝒂𝜶 †𝒂𝜶𝒂𝜶 = (𝒂𝜶𝒂𝜶 † − 𝟏)𝒂𝜶 [ 𝑛!𝑎! = 𝑎!([ 𝑛! − 1) [ 𝑛!𝑎! % = 𝑎! [ 𝑛! − 𝑎! 𝑎! = 𝑎! 𝑎! [ 𝑛! − 𝑎! − 𝑎! % = 𝑎! %([ 𝑛! − 2) [ 𝑛!𝑎! F = 𝑎! % [ 𝑛!𝑎! − 2𝑎! F = 𝑎! % 𝑎! [ 𝑛! − 𝑎! − 2𝑎! F = 𝑎! F([ 𝑛! − 3) h 𝒏𝜶𝒂𝜶 𝒌 = 𝒂𝜶 𝒌 (h 𝒏𝜶 − 𝒌) h 𝒏𝜶(𝒂𝜶 †)𝒌 = (𝒂𝜶 †)𝒌 (h 𝒏𝜶 + 𝒌) $ 𝒏𝜶(𝒂𝜶 𝒌 ⟩ |𝒏𝜶 ) = 𝒂𝜶 𝒌 $ 𝒏𝜶 − 𝒌 ⟩ |𝒏𝜶 = 𝒂𝜶 𝒌 𝒏𝜶 − 𝒌 ⟩ |𝒏𝜶 = 𝒏𝜶 − 𝒌 (𝒂𝜶 𝒌 ⟩ |𝒏𝜶 ) $ 𝒏𝜶((𝒂𝜶 †)𝒌 ⟩ |𝒏𝜶 ) = (𝒂𝜶 †)𝒌($ 𝒏𝜶 + 𝒌) ⟩ |𝒏𝜶 = (𝒂𝜶 †)𝒌(𝒏𝜶 + 𝒌) ⟩ |𝒏𝜶 = 𝒏𝜶 + 𝒌 ((𝒂𝜶 †)𝒌 ⟩ |𝒏𝜶 ) 𝒂𝜶 𝒌 ⟩ |𝒏𝜶 = 𝑨(𝒏; 𝒌) ⟩ |𝒏𝜶 − 𝒌 (𝒂𝜶 †)𝒌 ⟩ |𝒏𝜶 = 𝑩(𝒏; 𝒌) ⟩ |𝒏𝜶 + 𝒌 𝑘 = 0,1,2, …
  • 19. Fock Space and ! 𝒏-representation (8.2.1) Bosons 𝒂𝜶 𝒌 ⟩ |𝒏𝜶 = 𝑨(𝒏; 𝒌) ⟩ |𝒏𝜶 − 𝒌 (𝒂𝜶 †)𝒌 ⟩ |𝒏𝜶 = 𝑩(𝒏; 𝒌) ⟩ |𝒏𝜶 + 𝒌 Since 𝑛0 ≥ 0, 𝑛0 has to be an integer, or p 𝑛0 would have negative eigenvalues ! and the minimum eigenvalue is 0 with 𝒂𝜶 ⟩ |𝟎 = 𝟎. 𝑘 = 0,1,2, … 9 𝒏𝜶 ⟩ |𝒏𝜶 = 𝒏𝜶 ⟩ |𝒏𝜶 , 𝒏𝜶 = 𝟎, 𝟏, 𝟐, 𝟑, … (𝒂𝜶 †)𝒌 ⟩ |𝟎 = 𝑩(𝒏; 𝒌) ⟩ |𝒌 𝟎 𝒂𝜶 𝒌 (𝒂𝜶 †)𝒌 ⟩ |𝟎 = 𝑩(𝒏; 𝒌) 𝟐 𝒌 𝒌 = 𝑩(𝒏; 𝒌) 𝟐 = 𝒌! 𝒂𝜶 𝒌 (𝒂𝜶 †)𝒌 = 𝒂𝜶 𝒌"𝟏 𝟏 + e 𝒏𝜶 𝒂𝜶 † 𝒌"𝟏 = 𝒂𝜶 𝒌"𝟏 (𝒂𝜶 †)𝒌"𝟏 +𝒂𝜶 𝒌"𝟏 e 𝒏𝜶(𝒂𝜶 †)𝒌"𝟏 = 𝒂𝜶 𝒌"𝟏 (𝒂𝜶 †)𝒌"𝟏 +𝒂𝜶 𝒌"𝟏 𝒂𝜶 † 𝒌"𝟏 e 𝒏𝜶 + 𝒌 − 𝟏 = 𝒌𝒂𝜶 𝒌"𝟏 (𝒂𝜶 †)𝒌"𝟏 +𝒂𝜶 𝒌"𝟏 𝒂𝜶 † 𝒌"𝟏 e 𝒏𝜶 𝒂𝜶 𝒌 (𝒂𝜶 †)𝒌 = 𝒌 𝒌 − 𝟏 𝒂𝜶 𝒌"𝟐 𝒂𝜶 † 𝒌"𝟐 + 𝒂𝜶 𝒌"𝟐 𝒂𝜶 † 𝒌"𝟐 e 𝒏𝜶 + 𝒂𝜶 𝒌"𝟏 𝒂𝜶 † 𝒌"𝟏 e 𝒏𝜶 = 𝒌 𝒌 − 𝟏 𝒂𝜶 𝒌"𝟐 𝒂𝜶 † 𝒌"𝟐 + 𝒌𝒂𝜶 𝒌"𝟐 𝒂𝜶 † 𝒌"𝟐 e 𝒏𝜶 + 𝒂𝜶 𝒌"𝟏 𝒂𝜶 † 𝒌"𝟏 e 𝒏𝜶 = ⋯ … = 𝒌! 𝟎! + D 𝒎?𝟎 𝒌"𝟏 𝒌! (𝒎 + 𝟏)! 𝒂𝜶 𝒎 𝒂𝜶 † 𝒎 e 𝒏𝜶 ⟩ |𝒏𝜶 = 𝟏 𝒏𝜶! (𝒂𝜶 †)𝒏𝜶 ⟩ |𝟎 𝑩 𝒏; 𝒌 = 𝒌! 𝒂𝜶 ⟩ |𝒏𝜶 = 𝒏𝜶 (𝒏𝜶 − 𝟏)! 𝒂𝜶𝒊 † 𝒏𝜶𝒊 E𝟏 ⟩ |𝟎 = 𝒏𝜶 ⟩ |𝒏𝜶 − 𝟏
  • 20. Fock Space and ! 𝒏-representation (8.2.2) Fermions 𝒂𝜶, 𝒂𝜶 † K = 𝒂𝜶𝒂𝜶 † + 𝒂𝜶 †𝒂𝜶 = 𝟏 q 𝒏𝜶 𝒂𝜶 ⟩ |𝒏𝜶 = 𝒂𝜶 †𝒂𝜶𝒂𝜶 ⟩ |𝒏𝜶 = 𝟎 q 𝒏𝜶 𝒂𝜶 † ⟩ |𝒏𝜶 = 𝒂𝜶 †(𝟏 − 𝒂𝜶 †𝒂𝜶) ⟩ |𝒏𝜶 = 𝒂𝜶 † ⟩ |𝒏𝜶 𝒂𝜶 𝟐 = (𝒂𝜶 †)𝟐= 𝟎 (i) 𝒂𝜶 ⟩ |𝒏𝜶 = 𝟎 q 𝒏𝜶 ⟩ |𝒏𝜶 = 𝒏𝜶 ⟩ |𝒏𝜶 = 𝟎 𝒏𝜶 = 𝟎 𝒂𝜶 ⟩ |𝟎 = 𝟎 𝒂𝜶 † ⟩ |𝟎 = 𝑪 ⟩ |𝟏 𝟎 𝒂𝜶𝒂𝜶 † ⟩ |𝟎 = 𝑪 𝟐 𝟏 𝟏 = 𝑪 𝟐 = 𝟏 𝑪 = 𝟏 𝒂𝜶 † ⟩ |𝟎 = ⟩ |𝟏 (𝒂𝜶 †)𝟐 ⟩ |𝟎 = 𝒂𝜶 † ⟩ |𝟏 = 𝟎 (ii) 𝒂𝜶 ⟩ |𝒏𝜶 = 𝑭 ⟩ |𝟎 𝟎 𝒂𝜶𝒂𝜶 † ⟩ |𝟎 = 𝑫 𝟐 𝟏 𝟏 = 𝑫 𝟐 = 𝟏 𝑫 = 𝟏 𝒂𝜶 ⟩ |𝟏 = 𝒂𝜶𝒂𝜶 † ⟩ |𝟎 = 𝟏 − q 𝒏𝜶 ⟩ |𝟎 = ⟩ |𝟎 𝒂𝜶 ⟩ |𝒏𝜶 = 𝟎 or 𝒂𝜶 ⟩ |𝒏𝜶 ∝ ⟩ |𝟎 𝒂𝜶 † ⟩ |𝒏𝜶 = 𝟎 or 𝒂𝜶 † ⟩ |𝒏𝜶 ∝ ⟩ |𝟏 𝒂𝜶 𝟐 ⟩ |𝒏𝜶 = 𝑫𝒂𝜶 ⟩ |𝟎 = 𝟎 𝒂𝜶 ⟩ |𝟎 = 𝟎 𝒂𝜶 † ⟩ |𝟎 = 𝑫 ⟩ |𝟏 𝒂𝜶 † ⟩ |𝟎 = ⟩ |𝟏 𝒂𝜶 † ⟩ |𝟏 = 𝟎 𝒂𝜶 ⟩ |𝟏 = ⟩ |𝟎 𝒏𝜶 = 𝟏, 𝑭 = 𝟏 9 𝒏𝜶 ⟩ |𝒏𝜶 = 𝒏𝜶 ⟩ |𝒏𝜶 , 𝒏𝜶 = 𝟎, 𝟏 ⟩ |𝒏𝜶 = (𝒂𝜶 †)𝒏𝜶 ⟩ |𝟎
  • 21. G 𝒂𝜶 †|𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … = ∑𝒊 𝜹𝜶𝜶𝒊 𝟏 𝒏𝜶𝟏 !𝒏𝜶𝟐 !…𝒏𝜶𝒊 !… (𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝒂𝜶𝟐 † )𝒏𝜶𝟐 … 𝒂𝜶𝒊 † 𝒏𝜶𝒊 *𝟏 … ⟩ |𝟎 = ∑𝒊 𝜹𝜶𝜶𝒊 𝒏𝜶𝒊 *𝟏 𝒏𝜶𝟏 !𝒏𝜶𝟐 !…(𝒏𝜶𝒊 *𝟏)!… (𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝒂𝜶𝟐 † )𝒏𝜶𝟐 … (𝒂𝜶𝒊 † )𝒏𝜶𝒊 *𝟏 … ⟩ |𝟎 = ∑𝒊 𝜹𝜶𝜶𝒊 𝒏𝜶𝒊 + 𝟏 P |𝒏𝜶𝟏 𝒏𝜶𝟐 … (𝒏𝜶𝒊 + 𝟏) … Fock Space and ! 𝒏-representation (8.3) Orthonormal Basis in t 𝑛-representation 𝒏𝜶𝒊 (𝒊 = 𝟏, 𝟐, 𝟑, … ) are the particle numbers in state 𝜶𝒊; 𝒏𝜶𝒊 = 𝟎, 𝟏 for Fermions • |𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … = 𝟏 𝒏𝜶𝟏 ! 𝒏𝜶𝟐 ! … 𝒏𝜶𝒌 ! … (𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝒂𝜶𝟐 † )𝒏𝜶𝟐 … (𝒂𝜶𝒌 † )𝒏𝜶𝒌 … ⟩ |𝟎 P 𝒂𝜶|𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … = ∑𝒊 𝜹𝜶𝜶𝒊 𝒂𝜶𝒊 𝒏𝜶𝟏 !𝒏𝜶𝟐 !…𝒏𝜶𝒊 !… (𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝒂𝜶𝟐 † )𝒏𝜶𝟐 … 𝒂𝜶𝒊 † 𝒏𝜶𝒊 … ⟩ |𝟎 = ∑𝒊 𝜹𝜶𝜶𝒊 𝒏𝜶𝒊 𝒏𝜶𝒊 𝒏𝜶𝟏 !𝒏𝜶𝟐 !…(𝒏𝜶𝒊 8𝟏)!… (𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝒂𝜶𝟐 † )𝒏𝜶𝟐 … 𝒂𝜶𝒊 † 𝒏𝜶𝒊 8𝟏 … ⟩ |𝟎 𝒐𝒓 ∑𝒊 𝜹𝜶𝜶𝒊 𝜹𝟏𝒏𝜶𝒊 𝟏 𝒏𝜶𝟏 !𝒏𝜶𝟐 !…(𝒏𝜶𝒊 8𝟏)!… (𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝒂𝜶𝟐 † )𝒏𝜶𝟐 … 𝒂𝜶𝒊 † 𝒏𝜶𝒊 8𝟏 … ⟩ |𝟎 = S ∑𝒊 𝜹𝜶𝜶𝒊 𝒏𝜶𝒊 P |𝒏𝜶𝟏 𝒏𝜶𝟐 … (𝒏𝜶𝒊 − 𝟏) … , 𝑩𝒐𝒔𝒐𝒏 ∑𝒊 𝜹𝜶𝜶𝒊 𝜹𝟏𝒏𝜶𝒊 P |𝒏𝜶𝟏 𝒏𝜶𝟐 … (𝒏𝜶𝒊 − 𝟏) … , 𝑭𝒆𝒓𝒎𝒊𝒐𝒏 𝒂𝜶𝒊 𝒂𝜶𝒊 † 𝒏𝜶𝒊 = 𝒏𝜶𝒊 𝒂𝜶𝒊 † 𝒏𝜶𝒊 8𝟏 + 𝒂𝜶𝒊 † 𝒏𝜶𝒊 𝒂𝜶𝒊 For 𝑩𝒐𝒔𝒐𝒏 ∑𝑵:𝟎 < ∑𝒏𝜶𝟏 .𝒏𝜶𝟐 .⋯.𝒏𝜶𝒌 .⋯:𝑵 u |𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … v𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … | = ∑𝒏𝜶𝟏 𝒏𝜶𝟐 …𝒏𝜶𝒌 …:𝟎 < u |𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … v𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … | = 𝟏 Completeness in Fock Space: ⟩ |𝜶 ≡ { ⟩ |𝜶𝟏 , ⟩ |𝜶𝟐 , … , ⟩ |𝜶𝒌 , … }
  • 22. Fock Space and ! 𝒏-representation (9) Creation and Annihilation Operators as a Basis for Fock Space Operators (9.1) One-body Operator t 𝑛c 𝛼6𝛼7 … 𝛼8 = 𝑎c †𝑎c 𝛼6𝛼7 … 𝛼8 = 𝑎c † ∑2e6 8 𝜉 2q6 𝛿 𝛼 − 𝛼2 𝛼6𝛼7 … t 𝛼2 … 𝛼8 = ∑2e6 8 𝛿 𝛼 − 𝛼2 𝛼6𝛼7 … 𝛼2 … 𝛼8 Assume one-body operator % 𝑈 is diagonal in the orthonormal basis { ⟩ |𝛼 } % 𝑈 ⟩ |𝛼 = 𝑈c ⟩ |𝛼 = 𝛼 % 𝑈 𝛼 ⟩ |𝛼 𝛼', 𝛼+, … , 𝛼( 4 𝑈 𝛽', 𝛽+, … , 𝛽( = a # 𝜉# a !:' ( y @A! 𝛼#@ 𝛽@ 𝛼#! ' 𝑂! 𝛽! = a !:' ( 𝑈-; 𝛼', 𝛼+, … , 𝛼( 4 𝑈 𝛽', 𝛽+, … , 𝛽( = ∑- ∑!:' ( 𝑈- 𝛿 𝛼 − 𝛼! 𝛼', 𝛼+, … , 𝛼(|𝛽', 𝛽+, … , 𝛽( = 𝛼', 𝛼+, … , 𝛼( ∑- ∑!:' ( 𝑈- 𝛿 𝛼 − 𝛼! 𝛽', 𝛽+, … , 𝛽( = 𝛼', 𝛼+, … , 𝛼( ∑- 𝑈- { 𝑛- 𝛽', 𝛽+, … , 𝛽( % 𝑈 = G c 𝑈c t 𝑛c = G c 𝛼 % 𝑈 𝛼 𝑎c †𝑎c 𝑎E ! † = ( ) ! 𝛼 T 𝛼 𝑎! † 𝑎] E ! † = ( ) ! 𝛼 T̀ 𝛼 𝑎! † Diagonal Basis General Basis % 𝑼 = G 𝜶 𝑼𝜶q 𝒏𝜶 = G n 𝜶 G o n 𝜶 ‚ 𝜶 𝑼 ƒ ‚ 𝜶 𝒂n 𝜶 †𝒂o n 𝜶 n 𝜶 𝑼 o n 𝜶 = a - } 𝛼 𝛼 𝑼𝜶 𝛼 ~ } 𝛼 Kinetic Energy Operator ' 𝑇 = − ℏ+ 2𝑚 • 𝑑3𝑥 ' 𝜓† 𝑥 ∇+ ' 𝜓 𝑥 = • 𝑑3𝑝 ' 𝜓† ⃑ 𝑝 ˆ ⃑ 𝑝+ 2𝑚 ' 𝜓 ⃑ 𝑝
  • 23. Fock Space and ! 𝒏-representation (9) Creation and Annihilation Operators as a Basis for Fock Space Operators (9.2) Two-body Operator Assume two-body operator D 𝑉 is diagonal in the orthonormal basis { ⟩ |𝛼 } D 𝑉 ⟩ |𝛼𝛽 = 𝑉cp|𝛼𝛽) = (𝛼𝛽| D 𝑉|𝛼𝛽) |𝛼𝛽) 𝛼', 𝛼+, … , 𝛼( ' 𝑉 𝛽', 𝛽+, … , 𝛽( = a # 𝜉# 1 2 a !AB y @A! @AB 𝛼#@ 𝛽@ 𝛼#!𝛼#B ' 𝑉 𝛽!𝛽B = 1 2 a 'C!ABC( ( ' 𝑉 -;-< {𝛼', 𝛼+, … , 𝛼(|𝛽', 𝛽+, … , 𝛽(} $ % ∑$=<>?=& & E 𝑉 !.!/ is the sum over all distinct pairs of particles in the state |𝛼$, 𝛼%, … , 𝛼&} D 𝑃cp = t 𝑛c t 𝑛p − 𝛿cp t 𝑛c count pairs of particles D 𝑃cp = 𝑎c †𝑎c𝑎p †𝑎p − 𝛿cp𝑎c †𝑎c = 𝑎c †(𝛿cp + 𝜉𝑎p †𝑎c)𝑎p − 𝛿cp𝑎c †𝑎c = 𝑎c †𝜉𝑎p †𝑎c𝑎p = 𝑎c †𝑎p †𝑎p𝑎c 𝑎-, 𝑎8 † = 𝑎-𝑎8 † − 𝜉𝑎8 †𝑎- = 𝛿-8 𝑎- †, 𝑎8 † 1D = 𝑎-, 𝑎8 1D = 0 𝜉 = B +1, 𝐵𝑜𝑠𝑜𝑛𝑠 −1. 𝐹𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
  • 24. Fock Space and ! 𝒏-representation E 𝑃!^ = [ 𝑛! [ 𝑛^ − 𝛿!^ [ 𝑛! = 𝑎! †𝑎^ †𝑎^𝑎! E 𝑃!^ 𝛼$𝛼% … 𝛼& = ([ 𝑛! [ 𝑛^ − 𝛿!^ [ 𝑛!) 𝛼$𝛼% … 𝛼& = [∑<,?B$ & 𝛿 𝛼 − 𝛼< 𝛿 𝛽 − 𝛼< − ∑@B$ & 𝛿!^𝛿( ) 𝛼 − 𝛼@ ] 𝛼$𝛼% … 𝛼& 1 2 a 'C!ABC( ( ' 𝑉 -;-< = 1 2 [a - a 8 𝑉-8 a !,B:' ( 𝛿 𝛼 − 𝛼! 𝛿 𝛽 − 𝛼! − a - a 8 𝑉-8 a @:' ( 𝛿-8𝛿 𝛼 − 𝛼@ ] 𝛼', 𝛼+, … , 𝛼( ' 𝑉 𝛽', 𝛽+, … , 𝛽( = ' + ∑'C!ABC( ( ' 𝑉 -;-< {𝛼', 𝛼+, … , 𝛼(|𝛽', 𝛽+, … , 𝛽(} = ' + ∑-8 𝑉-8 [∑!,B:' ( 𝛿 𝛼 − 𝛼! 𝛿 𝛽 − 𝛼! − ∑@:' ( 𝛿-8𝛿 𝛼 − 𝛼@ ] {𝛼', 𝛼+, … , 𝛼(|𝛽', 𝛽+, … , 𝛽(} = 𝛼', 𝛼+, … , 𝛼( ' + ∑-8 𝑉-8 ' 𝑃-8 𝛽', 𝛽+, … , 𝛽( N 𝑽 = 𝟏 𝟐 , 𝜶𝜷 𝑽𝜶𝜷 N 𝑷𝜶𝜷 = 𝟏 𝟐 , 𝜶𝜷 (𝜶𝜷|N 𝑽|𝜶𝜷)𝒂𝜶 †𝒂𝜷 †𝒂𝜷𝒂𝜶 𝑎E ! † = ( ) ! 𝛼 T 𝛼 𝑎! † 𝑎] E ! † = ( ) ! 𝛼 T̀ 𝛼 𝑎! † Diagonal Basis General Basis N 𝑽 = 𝟏 𝟐 , E !] 𝜷] ] 𝜷] E ! ( k 𝛼ƒ 𝜷|N 𝑽| l k 𝛼ƒ ƒ 𝜷)𝒂E ! † 𝒂] 𝜷 † 𝒂o o 𝜷 𝒂o n c = 𝟏 𝟒 , E !] 𝜷] E !] ] 𝜷 { k 𝛼ƒ 𝜷 N 𝑽 l k 𝛼ƒ ƒ 𝜷}𝒂E ! † 𝒂] 𝜷 † 𝒂o o 𝜷 𝒂o n c 𝑎-, 𝑎8 1D = 0 N 𝑽 = 𝟏 𝟐 c 𝑑3𝑥𝑑3𝑦𝑣(𝑥 − 𝑦) % 𝜓† 𝑥 % 𝜓† 𝑦 % 𝜓 𝑦 % 𝜓 𝑥 (9.3) n-body Operator N 𝑹 = 𝟏 𝒏! , 𝝀𝟏𝝀𝟐…𝝀𝒏;𝝁𝟏𝝁𝟐…𝝁𝒏 𝝀𝟏𝝀𝟐 … 𝝀𝒏 N 𝑽 𝝁𝟏𝝁𝟐 … 𝝁𝒏 𝒂𝝀𝟏 † … 𝒂𝝀𝒏 † 𝒂𝝁𝒏 … 𝒂𝝁𝟏
  • 25. Coherent States: Eigenstates of 𝑎! 𝑎-, 𝑎8 † 1D = 𝑎-𝑎8 † − 𝜉𝑎8 †𝑎- = 𝛿-8 Assume 𝑎c † ⟩ |𝜑 = 𝜑 ⟩ |𝜑 , normalized ⟩ |𝜑 ≠ 0 𝜑 𝑎c𝑎c † 𝜑 = |𝜑|7 = 𝜑 1 + 𝜉𝑎c † 𝑎c 𝜑 = 1 + 𝜉 𝜑 𝑎c † 𝑎c 𝜑 = 1 + 𝜉[ 𝜑 7 + || ⟩ |𝜑 Œ||7] 𝜑 𝑎c † 𝜑 = 𝜑 𝜑 𝑎c 𝜑 = 𝜑∗ 𝑎c ⟩ |𝜑 = 𝜑∗ ⟩ |𝜑 + ⟩ |𝜑 Œ For Fermions, 𝑎c † 𝑎c † ⟩ |𝜑 = 𝜑7 ⟩ |𝜑 = 0 𝜑 = 0 𝑎c † ⟩ |𝜑 = 0 ⟨𝜑 ⟩ |𝜑 Œ = 0 (1) Fermions, |𝜑|7 = 1 − [ 𝜑 7 + || ⟩ |𝜑 Œ||7] | ⟩ |𝜑 Œ||7 = 1 (2) Bosons, |𝜑|7 = 1 + [ 𝜑 7 + || ⟩ |𝜑 Œ||7] 0 = 1 + || ⟩ |𝜑 Œ||7 Impossible ! ⟩ |𝜙 = G Se• j G cT,cU,…,cV 𝜙cT,cU,…,ck ⟩ |𝛼6𝛼7 … 𝛼S e 𝑎! † |𝜙 ∝ ⟩ |𝜙 ⟩ 𝑎!|𝜙 ∝ ⟩ |𝜙
  • 26. Coherent States: Bosons (0) 𝑎0 ⟩ |𝜙 = 𝜙0 ⟩ |𝜙 𝑎c, 𝑎p qŽ = 0 𝑎0, 𝑎S hi ⟩ |𝜙 = 𝑎0𝑎S − 𝜉𝑎S𝑎0 ⟩ |𝜙 = 𝜙S𝜙0 ⟩ |𝜙 − 𝜉𝜙0𝜙S ⟩ |𝜙 = 0 (2) ⟩ |𝝓 = 𝒆∑𝜶 𝝓𝜶𝒂𝜶 † ⟩ |𝟎 a 𝒏𝜶𝟏 𝒏𝜶𝟐 …𝒏𝜶𝒌 …:𝟎 u |𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … v𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … | = 𝟏 ⟩ |𝜙 = ) A0!A0"…A0. …B` R |𝑛!! 𝑛!" … 𝑛!. … 𝑛!! 𝑛!" … 𝑛!. … 𝜙 = ) A0!A0"…A0. …B` e 𝜙A0!A0"…A0. …|𝑛!! 𝑛!" … 𝑛!. … 𝜙-; ⟩ |𝜙 = a F=/F=>…F=; …:G 𝜙F=/F=>…F=; …𝑎-; u |𝑛-/ 𝑛-> … 𝑛-; … 𝝓𝜶𝒊 𝝓𝒏𝜶𝟏 𝒏𝜶𝟐 …𝒏𝜶𝒊 q𝟏… = 𝝓𝒏𝜶𝟏 𝒏𝜶𝟐 …𝒏𝜶𝒊 … 𝒏𝜶𝒊 , 𝒏𝜶𝒊 = 𝟏, 𝟐, 𝟑, … = a F=/F=>…F=; …:G 𝜙F=/F=>…F=; … 𝒏𝜶𝒊 u |𝑛-/ 𝑛-> … (𝑛-; − 1) … 𝜙F=/F=>…F=; … = 𝜙-; 𝒏𝜶𝒊 𝜙F=/F=>…F=; 1'… = 𝜙-; 𝒏𝜶𝒊 𝜙-; 𝒏𝜶𝒊 − 𝟏 𝜙F=/F=>…F=; 1+… = ⋯ = 𝜙-; F=; 𝒏𝜶𝒊 ! 𝜙F=/F=>…G… 𝝓𝒏𝜶𝟏 𝒏𝜶𝟐 …𝒏𝜶𝒊 … = 𝝓𝜶𝟏 𝒏𝜶𝟏 𝒏𝜶𝟏 ! 𝝓𝜶𝟐 𝒏𝜶𝟐 𝒏𝜶𝟐 ! … 𝝓𝜶𝒊 𝒏𝜶𝒊 𝒏𝜶𝒊 ! Set 𝝓𝟎𝟎…𝟎… = 𝟎 𝝓 = 𝟏 (1) 𝜙0, 𝜙S hi = 0
  • 27. Coherent States: Bosons ⟩ |𝝓 = ) A0!A0"…A0. …B` 𝝓𝜶𝟏 𝒏𝜶𝟏 𝒏𝜶𝟏 ! 𝝓𝜶𝟐 𝒏𝜶𝟐 𝒏𝜶𝟐 ! … 𝝓𝜶𝒊 𝒏𝜶𝒊 𝒏𝜶𝒊 ! R |𝑛!! 𝑛!" … 𝑛!. … l |𝒏𝜶𝟏 𝒏𝜶𝟐 … 𝒏𝜶𝒌 … = 𝟏 𝒏𝜶𝟏 ! 𝒏𝜶𝟐 ! … 𝒏𝜶𝒌 ! … (𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝒂𝜶𝟐 † )𝒏𝜶𝟐 … (𝒂𝜶𝒌 † )𝒏𝜶𝒌 … ⟩ |𝟎 = ) A0!A0"…A0. …B` 𝝓𝜶𝟏 𝒏𝜶𝟏 𝒏𝜶𝟏 ! 𝝓𝜶𝟐 𝒏𝜶𝟐 𝒏𝜶𝟐 ! … 𝝓𝜶𝒊 𝒏𝜶𝒊 𝒏𝜶𝒊 ! 𝟏 𝒏𝜶𝟏 ! 𝒏𝜶𝟐 ! … 𝒏𝜶𝒊 ! … (𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝒂𝜶𝟐 † )𝒏𝜶𝟐 … (𝒂𝜶𝒊 † )𝒏𝜶𝒊 … ⟩ |𝟎 = ) A0!A0"…A0. …B` 𝟏 𝒏𝜶𝟏 ! 𝒏𝜶𝟐 ! … 𝒏𝜶𝒊 ! … (𝜙!! 𝒂𝜶𝟏 † )𝒏𝜶𝟏 (𝜙!" 𝒂𝜶𝟐 † )𝒏𝜶𝟐 … (𝜙!. 𝒂𝜶𝒊 † )𝒏𝜶𝒊 … ⟩ |𝟎 = 𝑒a0!𝒂𝜶𝟏 † 𝑒a0"𝒂𝜶𝟐 † … 𝑒a0. 𝒂𝜶𝒊 † … ⟩ |𝟎 = 𝒆∑𝜶 𝝓𝜶𝒂𝜶 † ⟩ |𝟎 𝜙0, 𝜙G " = 0 ⟩ |𝜶 ≡ { ⟩ |𝜶𝟏 , ⟩ |𝜶𝟐 , … , ⟩ |𝜶𝒌 , … } ⟨𝝓| = ⟨0|𝒆∑𝜶 𝝓𝜶 ∗ c0 𝑎- ⟩ |𝜙 = 𝜙- ⟩ |𝜙 ⟨𝝓|𝒂𝜶 † = ⟨𝝓| 𝝓𝜶 ∗ 𝒂𝜶 † ⟩ |𝝓 = 𝒂𝜶 †𝒆 ∑𝜶- 𝝓𝜶-𝒂𝜶- † ⟩ |𝟎 = 𝝏 𝝏𝝓𝜶 ⟩ |𝝓 ⟨𝝓|𝑎- = ⟨0|𝒆 ∑𝜶- 𝝓𝜶- ∗ L𝜶- 𝑎- = 𝝏 𝝏𝝓𝜶 ∗ ⟨𝝓| 𝝓 𝝓" = 𝒆∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 - 𝑛-/ 𝑛-> … 𝑛-; … 𝑛′-/ 𝑛′-> … 𝑛′-; … = 𝛿F=/F"=/ 𝛿F=>F"=> … 𝛿F=; F"=;
  • 28. Coherent States: Bosons (3) Completeness/Closure Relation c d 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆q ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 ⟩ |𝝓 ⟨𝝓| = 𝟏 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 = 𝒅(𝑹𝒆𝝓𝜶)𝒅(𝑰𝒎𝝓𝜶) 𝝅 (3.1) Directly Integrate the l.h.s (3.2) Schur’s lemma: if an operator commutes with all 𝑎c and 𝑎c † , then it is proportional to the unit operator in Fock Space 𝒂𝜶, ⟩ |𝝓 ⟨𝝓| = 𝑎- ⟩ |𝜙 ⟨𝜙| − ⟩ |𝜙 ⟨𝜙|𝑎- = (𝝓𝜶 − 𝝏 𝝏𝝓𝜶 ∗ ) ⟩ |𝝓 ⟨𝝓| 𝑎- ⟩ |𝜙 = 𝜙- ⟩ |𝜙 ⟨𝝓|𝑎- = 𝝏 𝝏𝝓𝜶 ∗ ⟨𝝓| 𝒂𝜷, • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 ⟩ |𝝓 ⟨𝝓| = • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 (𝝓𝜷 − 𝝏 𝝏𝝓𝜷 ∗ ) ⟩ |𝝓 ⟨𝝓| = • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 𝝓𝜷 ⟩ |𝝓 ⟨𝝓| − • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝝏 𝝏𝝓𝜷 ∗ 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 ⟩ |𝝓 ⟨𝝓| + 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶𝝓𝜷 ⟩ |𝝓 ⟨𝝓| = 𝟎 𝑎8 † , • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 ⟩ |𝝓 ⟨𝝓| = 𝟎 • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 𝟎 𝝓 𝝓 𝟎 = • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 = 𝟏 Set 𝝓𝟎𝟎…𝟎… = 𝟎 𝝓 = 𝟏 • 𝒅𝒙𝒆1𝒙𝟐 = 𝝅
  • 29. Coherent States: Bosons (4) 𝝓 –representation/Holomorphic representation Trace of operators: 𝑻𝒓4 𝑨 = • a 𝝀 𝝀 4 𝑨 𝝀 = • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 • a 𝝀 𝝀 𝝓 𝝓 4 𝑨 𝝀 ( ) 𝝀 ⟩ |𝝀 ⟨𝝀| = 1 = • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 • a 𝝀 𝝓 4 𝑨 𝝀 𝝀 𝝓 = • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 𝝓 4 𝑨 𝝓 States: ⟩ |𝝍 = • y 𝜶 𝒅𝝓𝜶 ∗ 𝒅𝝓𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 ⟩ |𝝓 𝝓 𝝍 Holomorphic function 𝝍(𝝓∗ ) = 𝝓 𝝍 𝝍 𝝓∗ = 𝝓 𝝍 = • y 𝜶 𝒅𝝓′𝜶 ∗ 𝒅𝝓′𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓"𝜶 ∗ 𝝓"𝜶 𝝓 𝝓′ 𝝓′ 𝝍 = • y 𝜶 𝒅𝝓′𝜶 ∗ 𝒅𝝓′𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶 𝝓"𝜶 ∗ 𝝓"𝜶 𝒆∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 - 𝝍 𝝓"∗ 𝝓 𝝓" = 𝒆∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 - = • y 𝜶 𝒅𝝓′𝜶 ∗ 𝒅𝝓′𝜶 𝟐𝒊𝝅 𝒆1 ∑𝜶(𝝓- 𝜶 ∗ 1𝝓𝜶 ∗ )𝝓"𝜶 𝝍 𝝓"∗ Particle number in a coherent state | 𝑛cT 𝑛cU … 𝑛cp … 𝜙 |7 = d c |𝝓𝜶|𝟐 𝒏𝜶! Poisson distribution with |𝝓𝜶|𝟐 as mean value
  • 30. Coherent States: Bosons ⟨𝝓|𝑎- = 𝝏 𝝏𝝓𝜶 ∗ ⟨𝝓| ⟨𝝓|𝒂𝜶 † = ⟨𝝓| 𝝓𝜶 ∗ Operators: 𝝓 𝑎- 𝝍 = 𝝏 𝝏𝝓𝜶 ∗ 𝝓 𝝍 = 𝝏 𝝏𝝓𝜶 ∗ 𝝍(𝝓∗) 𝝓 𝒂𝜶 † 𝝍 = 𝝓𝜶 ∗ 𝝓 𝝍 = 𝝓𝜶 ∗ 𝝍(𝝓∗ ) 𝒂𝜶 = 𝝏 𝝏𝝓𝜶 ∗ 𝒂𝜶 † = 𝝓𝜶 ∗ 𝑎-, 𝑎8 † 1 = 𝑎-𝑎8 † − 𝑎8 †𝑎- = 𝛿-8 𝑎- †, 𝑎8 † 1 = 𝑎-, 𝑎8 1 = 0 𝝓𝜶 ∗ , 𝝓𝜷 ∗ 1 = 𝝏 𝝏𝝓𝜶 ∗ , 𝝏 𝝏𝝓𝜷 ∗ 1 = 𝟎 𝝏 𝝏𝝓𝜶 ∗ , 𝝓𝜷 ∗ 1 = 𝜹𝜶𝜷 4 𝐻 ⟩ |𝝍 = 𝑯 𝒂𝜶 †, 𝑎- ⟩ |𝝍 = 𝑬 ⟩ |𝝍 Schr ̈ odinger Equation 𝑯 𝝓𝜶 ∗ , 𝝏 𝝏𝝓𝜶 ∗ 𝝍 𝝓∗ = 𝑬𝝍(𝝓∗ ) a 𝜶,𝜷 𝑻𝜶𝜷𝝓𝜶 ∗ 𝝏 𝝏𝝓𝜶 ∗ + 𝟏 𝟐 a 𝜶,𝜷,𝜸,𝜹 (𝜶𝜷|𝒗|𝜸𝜹)𝝓𝜶 ∗ 𝝓𝜷 ∗ 𝝏 𝝏𝝓𝜹 ∗ 𝝏 𝝏𝝓𝜸 ∗ 𝝍 𝝓∗ = 𝑬𝝍(𝝓∗) 4 𝐻 = ' 𝑇 + ' 𝑉 Matrix Elements of Normal-ordered Operators 𝝓 𝐴(𝒂𝜶 †, 𝑎-) 𝝓" = 𝐴(𝝓𝜶 ∗ , 𝝓′𝜶)𝒆∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 - 𝝓 𝝓" = 𝒆∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 - Two-body Operators 𝝓 r 𝑽 𝝓f = 𝟏 𝟐 ∑ghij(𝝀𝝁|r 𝑽|𝜈𝜌) 𝝓 𝒂𝝀 † 𝒂𝝁 † 𝒂j𝒂i 𝝓f = 𝟏 𝟐 ∑ghij(𝝀𝝁|r 𝑽|𝜈𝜌)𝝓𝝀 ∗ 𝝓𝝁 ∗ 𝝓j f 𝝓i f 𝒆∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 6 The distribution of particle numbers Q 𝑁 = 𝝓 S 𝑁 𝝓 𝝓 𝝓 = ∑𝜶 𝝓 𝒂𝜶 †𝒂𝜶 𝝓 𝝓 𝝓 = U 𝜶 𝝓𝜶 ∗ 𝝓𝜶 4 𝑵 = a 𝜶 © 𝒏𝜶 = a 𝜶 𝒂𝜶 †𝒂𝜶 Variance 𝜎& = 𝝓 S 𝑁𝟐 𝝓 𝝓 𝝓 − Q 𝑁& = ∑𝜶 𝝓𝜶 ∗ 𝝓𝜶 = Q 𝑁 lim S (→< 𝜎 ® 𝑁 = lim S (→< 1 ® 𝑁 = 0