SlideShare a Scribd company logo
1 of 37
BILANGAN BULAT
Bilangan bulat adalah bilangan yang tidak
mempunyai pecahan desimal.
Misalnya 8, 21, 8765, -34, 0
Misalkan a dan b adalah 2 buah bilangan bulat
dengan syarat a  0. Kita menyatakan
bahwa a habis membagi b jika terdapat
bilangan bulat c sedemikian sehingga b = ac
Notasi : a | b jika b = ac, c Z dan a ≠ 0
SIFAT PEMBAGIAN PADA BILANGAN BULAT.

Dengan kata lain, jika b dibagi dengan a, maka hasil
pembagiannya berupa bilangan bulat.
Kadang-kadang pernyataan
“a habis membagi b” ditulis juga “b kelipatan a”
Contoh :
4 | 12 karena 12 : 4 = 3 atau 12 = 4 x 3
12 : 4 memberi hasil bagi 3 dan sisa 0
Tetapi 4 tidak habis membagi 13 karena 13 : 4 = 3,25
13 : 4 memberi hasil bagi 3 dan sisa 1
TEOREMA EUCLIDEAN
Misalkan m dan n adalah dua buah bilangan
bulat dengan syarat n > 0. Jika m dibagi dengan
n (pembagi) maka terdapat dua buah bilangan
bulat unik q (quotient = hasil bagi) dan r
(remainder = sisa) sedemikian sehingga :
m = nq + r
dengan 0  r <n
q = m div n, r = m mod r
1. 1987 = 97 . 20 + 47
( 1987 div 97 =20 dan 1987 mod 97 = 47 )
2. 24 = 3. 8 + 0
3. -22 = 3 (-8) + 2
Sisa pembagian tidak boleh negatif, jadi contoh ke 3
tidak dapat ditulis :
-22 = 3 (-7) – 1
karena r = -1 tidak memenuhi syarat 0  r < n
m = nq + r
q = m div n,
r = m mod n
Contoh 5.1 :
PEMBAGI BERSAMA TERBESAR
Misalkan a dan b adalah dua buah bilangan bulat tidak nol.
Pembagi bersama terbesar (PBB) dari a dan b adalah
bilangan bulat terbesar d sedemikian sehingga da dan
db. Dalam hal ini dinyatakan PBB (a,b) = d
45 memiliki faktor pembagi 1, 3, 5, 9, 15 dan 45
36 memiliki faktor pembagi 1, 2, 3, 4, 9, 12, 18, dan 36
faktor pembagi bersama dari 45 dan 36 adalah 1, 3, 9
 yang terbesar adalah 9
Sehingga disimpulkan PBB (45, 36) = 9
Sifat-sifat dari pembagi bersama terbesar dinyatakan
dengan teorema-teorema berikut :
Misalkan a, b, dan c adalah bilangan bulat.
a. Jika c adalah PBB dari a dan b, maka c (a + b )
b. Jika c adalah PBB dari a dan b, maka c (a - b )
c. Jika c a , maka c ab
Contoh 5.2 :
PBB dari 45 dan 36 adalah 9.
a) 9 habis membagi 45 + 36 =81, atau 9 | (45 + 36)
b) 9 habis membagi 45 - 36 = 9 , atau 9 | (45 - 36)
c) 9 habis membagi 45x36=1620, atau 9 | (45 x 36)
Misalkan m dan n adalah dua buah bilangan
bulat dengan syarat n > 0 sedemikian sehingga :
m = nq + r , 0  r <n
maka PBB (m,n) = PBB (n,r)
Contoh :
Contoh 5.3 :
Jika 80 dibagi dengan 12 memberi hasil 6 dan sisa 8,
atau 80 = 12.6 + 8. Menurut teorema 5.3
PBB(80, 12) = PBB(12, 8) = 4
Jika 12 dibagi dengan 8 memberi hasil 1 dan sisa 4,
atau 12 = 8.1 + 4
PBB(12, 8) = PBB(8, 4) = 4
Jika 8 dibagi dengan 4 memberi hasil 2 dan sisa 0,
atau 8 = 4.2 + 0. Menurut teorema 5.3
PBB(8, 4) = PBB(4, 0) = 4  4 = 0.0 + 4
Dari runtunan perhitungan di atas, kita memperoleh bahwa
PBB(80, 12) = PBB(12, 8) = PBB(8, 4) = PBB(4, 0) = 4
3. ALGORITMA EUCLIDEAN
1. Jika n = 0, maka
m adalah PBB (m,n);
stop.
Tetapi jika n  0
lanjutkan ke langkah 2.
2. Bagilah m dengan n dan misalkan r adalah sisanya.
3. Ganti nilai m dengan n dan nilai n dengan r, lalu ulang
kembali ke langkah 1.
Contoh 5.4 :
80 = 6.12 + 8
12 = 1.8 + 4
8 = 2. 4 + 0
Sisa pembagian terakhir sebelum 0 adalah 4, maka PBB(80, 12) = 4
Menurut teorema 5.3
PBB dari m dan n adalah sisa terakhir yang tidak nol dari runtunan
pembagian tersebut PBB(80, 12) = 4
sisa terakhir yang tidak nol
Teorema 5.4 :
Misalkan a dan b adalah dua buah bilangan bulat positif, maka
terdapat bilangan bulat m dan n sedemikian sehingga
PBB(a, b) = ma + nb
Misalnya PBB(80, 12) = 4, dan 4 = ( -1 ) . 80 + 7 . 12.
disini m = -1 dan n = 7
Contoh 5.5 :
Nyatakan PBB(312, 70) = 2 sebagai kombinasi lanjar dari 312 dan 70
Terapkan algoritma Euclidean untuk memperoleh PBB(312, 70) = 2
312 = 4.70 + 32 (i)  32 = 312 – 4.70 (vii)
70 = 2.32 + 6 (ii)  6 = 70 – 2.32 (vi)
32 = 5.6 + 2 (iii)  2 = 32 – 5.6 (v)
6 = 3.2 + 0 (iv)
(v) ke (vi)
2 = 32 – 5.(70 – 2.32)
2 = 1.32 – 5.70 + 10.32
2 = 11.32 – 5.70 (vii)
2 = 11.(312 – 4.70) – 5.70 = 11.312 – 49.70
Jadi PBB(312, 70) = 2 = 11.312 – 49.70
m a n b
RELATIF PRIMA
Dua buah bilangan bulat a dan b dikatakan relatif prima
(relatively prime) jika PBB(a, b) = 1
ma + nb = 1
Contoh 5.6 :
Bilangan 20 dan 3 adalah relatif prima karena PBB(20, 3) = 1
2 . 20 + ( -13) . 3 = 1
Bilangan 20 dan 5 tidak relatif prima karena PBB(20, 5) = 5 ≠ 1
sehingga 20 dan 5 tidak dapat dinyatakan dalam m.20+n.5=1
ARITMETIKA MODULO
Misalkan a adalah bilangan bulat dan m adalah bilangan
bulat > 0. Operasi a mod m (dibaca a modulo m)
memberikan sisa jika a dibagi dengan m.
Dengan kata lain :
a mod m = r sedemikian sehingga a = mq + r,
dengan 0  r < m
Contoh 5.7 :
Berapa hasil operasi dengan operator modulo :
(i) 23 mod 5 = 3 (karena 23 dibagi 5 memberikan hasil = 4 dan sisa = 3,
atau ditulis 23 = 5.4 + 3)
(ii) 27 mod 3 = 0 (27 = 3.9 + 0)
(iii) 6 mod 8 = 6 (6 = 8.0 + 6)
(iv) 0 mod 12 = 0 (0 = 12.0 + 0)
(v) - 41 mod 9 = 4 (-41 = 9(-5) + 4)
(vi) - 39 mod 13 = 0 (-39 = 13(-3) + 0)
a mod m = r a = mq + r
Kongruen
Jika dua buah bilangan bulat a dan b, mempunyai sisa
yang sama jika dibagi dengan bilangan bulat positif m,
maka a dan b kongruen dalam modulo m, dan
dilambangkan sebagai :
a  b (mod m)
Jika a tidak kongruen dengan b dalam modulus m,
maka ditulis :
a  b (mod m)
/
Contoh :
38 mod 5 = 3 , dan 13 mod 5 = 3
38/5=7 sisa 3 13/5=2 sisa 3
maka :
38  13 ( mod 5)
Contoh 5.8 :
17  2 (mod 3) ( 3 habis membagi 17 – 2 = 15  15 : 3 = 5 )
-7  15 (mod 11) ( 11 habis membagi -7 – 15 = -22  -22 : 11 = -2)
12  2 (mod 7) ( 7 tidak habis membagi 12 – 2 = 10 )
-7  15 (mod 3) ( 3 tidak habis membagi -7 – 15 = -22 )
/
/
Definisi dari kongruen :
Misalkan a dan b adalah bilangan bulat dan
m adalah bilangan > 0 maka a  b (mod m)
jika m habis membagi a - b
Kekongruenan a  b (mod m) dapat pula dituliskan
dalam hubungan a = b + km yang dalam hal ini
sembarang k adalah bilangan bulat.
Contoh 5.9 :
38 ≡ 13 (mod 5) dapat ditulis sebagai 38 = 13 + 5 . 5
17 ≡ 2 (mod 3) dapat ditulis sebagai 17 = 2 + 5 . 3
-7 ≡ 15 (mod 11) dapat ditulis sebagai -7 = 15 + (-2) 11
a b k m
a = b + km
a  b (mod m)
Berdasarkan definisi aritmetika modulo (definisi 5.5), kita dapat menulis
a mod m = r sebagai a ≡ r (mod m)
Contoh 5.10 :
23 mod 5 = 3 dapat ditulis sebagai 23 ≡ 3 (mod 5)
27 mod 3 = 0 dapat ditulis sebagai 27 ≡ 0 (mod 3)
6 mod 8 = 6 dapat ditulis sebagai 6 ≡ 6 (mod 8)
0 mod 12 = 0 dapat ditulis sebagai 0 ≡ 0 (mod 12)
-41 mod 9 = 4 dapat ditulis sebagai -41 ≡ 4 (mod 9)
-39 mod 13 = 0 dapat ditulis sebagai -39 ≡ 0 (mod 13)
Sifat-sifat pengerjaan hitung pada aritmetika modulo,
khususnya perkalian dan penjumlahan,
dinyatakan dalam teorema-teorema berikut :
Misalkan m adalah bilangan bulat positif.
1. Jika a  b (mod m) dan c adalah sembarang
bilangan bulat, maka :
(i) (a + c)  (b + c)(mod m)
(ii) ac  bc (mod m)
(iii) ap  bp (mod m) untuk suatu bilangan
bulat tak negatif p
Contoh 5.11 :
Misal: 17  2 (mod 3) dan 10  4 (mod 3), maka :
17 + 5  2 + 5 (mod 3)  22  7 (mod 3) (teorema 5.5.1(i))
17 . 5  2 . 5 (mod 3)  85  10 (mod 3) (teorema 5.5.1(ii))
17  2 (mod 3)
17/3 = 5 sisa 2
2/3 = 0 sisa 2
22  7 (mod 3)
22/3 = 7 sisa 1
7/3 = 2 sisa 1
85  10 (mod 3)
85/3 = 28 sisa 1
10/3 = 3 sisa 1
mempunyai sisa yang sama
2. Jika a  b (mod m) dan c  d (mod m) , maka :
(i) (a+c)  (b+d) (mod m)
(ii) a c  bd (mod m)
Contoh 5.11 :
Misal: 17  2 (mod 3) dan 10  4 (mod 3), maka :
17 + 10  2 + 4 (mod 3)  27  6 (mod3) (teorema 5.5.2(i))
17 . 10  2 . 4 (mod 3)  170  8 (mod 3) (teorema 5.5.2(ii))
17  2 (mod 3) 10  4 (mod 3)
17  2 (mod 3)
17/3 = 5 sisa 2
2/3 = 0 sisa 2
10  4 (mod 3)
10/3 = 3 sisa 1
4/3 = 1 sisa 1
27  6 (mod 3)
27/3 = 9 sisa 0
6/3 = 2 sisa 0
mempunyai sisa yang sama
Balikan Modulo
( Modulo Invers)
Jika a dan m relatif prima dan m > 1, maka dapat
ditemukan balikan (invers) dari a modulo m.
Balikan dari a modulo m adalah bilangan bulat ā
sedemikian sehingga aā  1 (mod m)
Di dalam aritmetika bilangan riil, inversi (inverse)
dari perkalian adalah pembagian
Misalnya inversi dari 4 adalah 1/4
Contoh 5.12 :
Tentukan inversi dari 4 (mod 9), 17 (mod 7), dan 18 (mod 10)
a m
PBB(4, 9) = 1, maka inversi dari 4 (mod 9) ada.
9 = 2.4 + 1
-2 . 4 + 1.9 = 1  p.a + q.m = 1
Dari persamaan terakhir ini kita peroleh -2 adalah inversi dari 4 modulo 9
-2.4  1 (mod 9)  9 habis membagi ( -2x4 ) -1 = -9
(a)
(b)
a m
PBB(17, 7) = 1, maka inversi dari 17 (mod 7) ada.
17 = 2.7 + 3 (i) 3 = 17 – 2.7 (v)
7 = 2.3 + 1 (ii) 1 = 7 – 2.3 (iv)
3 = 3.1 + 0 (iii)
(v) ke (iv) 1 = 7 – 2.(17 – 2.7) = 1.7 – 2.17 + 4.7 = 5.7 – 2.17
atau -2 . 17 + 5 . 7 = 1  p.a + q.m = 1
Dari persamaan terakhir ini kita peroleh -2 adalah inversi dari 17 modulo 7
-2.17  1 (mod 7)  7 habis membagi (-2.17) -1 = -35.
Karena PBB(18, 10) = 2 ≠ 1, maka inversi dari 18 (mod 10) tidak ada.
(c)
Kekongruenan Linear/lanjar
Kekongruenan linear adalah kongruen yang berbentuk : ax  b (mod m)
Dengan m adalah bilangan bulat positif, a dan b sembarang bilangan
bulat, dan x adalah peubah.
Bentuk kongruen linear berarti menentukan nilai-nilai x, yang memenuhi
kokongruenan tersebut.
ax  b (mod m) dapat ditulis dalam hubungan ax = b + km
yang dapat disusun menjadi :
a
km
b
x

 a
km
b
x


Contoh 5.13 :
Tentukan solusi dari 4 x ≡ 3 (mod 9)
Kekongruenan 4 x ≡ 3 (mod 9) ekivalen dengan menemukan k dan x
bilangan bulat sedemikian sehingga
a
km
b
x

 3 + k . 9
4
=
k = 1  x = 3
k = 5  x = 12
k = -3  x = -6
k = -7  x = -15
Jadi nilai-nilai x yang memenuhi 4 x ≡ 3 (mod 9)
adalah 3, 12, …. dan -6, -15, ….
BILANGAN PRIMA
Bilangan bulat positif yang lebih besar dari 1 yang hanya habis
dibagi oleh 1 dan dirinya sendiri.
2, 3, 5, 7, 11, 13, ……..
Definisi 5.7 :
Bilangan bulat positif p (p>1) disebut bilangan prima jika pembaginya
hanya 1 dan p
Bilangan selain bilangan prima disebut bilangan komposit.
 20 dapat dibagi oleh 2, 4, 5, dan 10, selain 1 dan 20 sendiri.
Teorema Fundamental Aritmetik
Setiap bilangan bulat positif yang lebih besar atau sama
dengan 2 dapat dinyatakan sebagai perkalian satu atau
lebih bilangan prima.
Misal :
9 = 3 x 3 ( 2 buah faktor prima)
100 = 2 x 2 x 5 x 5 ( 4 buah faktor prima)
13 = 13 X 1 ( 1 buah faktor prima)
Faktor Prima dari n selalu lebih kecil
atau sama dengan n
Misalkan a adalah faktor prima dari n,
dengan 1 < a < n, maka a habis membagi n dengan
hasil bagi b sedemikian sehingga n = ab.
Nilai a dan b haruslah  n agar :
ab >n . n = n
Contoh 5.15 :
Tunjukkan apakah 171 dan 199 merupakan bilangan
prima atau komposit ?
(i) √ 171 = 13,077. Bilangan prima yang ≤ √ 171 adalah
2, 3, 5, 7, 11, 13. Karena 171 habis dibagi 3,
maka 171 adalah bilangan komposit.
(ii) √ 199 = 14,107. Bilangan prima yang ≤ √ 199 adalah
2, 3, 5, 7, 11, 13. Karena 199 tidak habis dibagi 2, 3, 5, 7, 11, 13
maka 199 adalah bilangan prima.
Temukan semua faktor prima dari 1617.
Contoh 5.16 :
Bagilah 1617 berturut-turut dengan barisan bilangan prima, mulai dari
2, 3, 5, 7, ….
2 tidak habis membagi 1617
3 habis membagi 1617, yaitu 1617/3 = 539
Selanjutnya, bagilah 539 dengan bilangan prima berturut-turut,
dimulai dari 3, 5, 7, ..
3 tidak habis membagi 539
5 tidak habis membagi 539
7 habis membagi 539, yaitu 539/7 = 77
Selanjutnya, bagilah 77 dengan bilangan prima berturut-turut,
dimulai dari 7, 11, …
7 habis membagi 77, yaitu 77/7 = 11
Karena 11 adalah bilangan prima, maka pencarian faktor prima dari 1617 dihentikan.
Jadi, faktor prima dari 1617 adalah 3, 7, 7 dan 11, yaitu 1617 = 3 x 7 x 7 x 11.

More Related Content

What's hot

Geometri analitik bidang lingkaran
Geometri analitik bidang  lingkaran Geometri analitik bidang  lingkaran
Geometri analitik bidang lingkaran barian11
 
Matematika Diskrit - 07 teori bilangan - 02
Matematika Diskrit - 07 teori bilangan - 02Matematika Diskrit - 07 teori bilangan - 02
Matematika Diskrit - 07 teori bilangan - 02KuliahKita
 
Matematika Diskrit kombinatorial
Matematika Diskrit  kombinatorialMatematika Diskrit  kombinatorial
Matematika Diskrit kombinatorialSiti Khotijah
 
Rangkuman materi isometri lanjutan
Rangkuman materi isometri lanjutanRangkuman materi isometri lanjutan
Rangkuman materi isometri lanjutanNia Matus
 
Modul 7 persamaan diophantine
Modul 7   persamaan diophantineModul 7   persamaan diophantine
Modul 7 persamaan diophantineAcika Karunila
 
Supremum dan infimum
Supremum dan infimum  Supremum dan infimum
Supremum dan infimum Rossi Fauzi
 
Sistem bilangan bulat (ma kul teori bilangan)
Sistem bilangan bulat (ma kul teori bilangan)Sistem bilangan bulat (ma kul teori bilangan)
Sistem bilangan bulat (ma kul teori bilangan)Ig Fandy Jayanto
 
Bab 4.-integral-lipat-dua1 2
Bab 4.-integral-lipat-dua1 2Bab 4.-integral-lipat-dua1 2
Bab 4.-integral-lipat-dua1 2Dayga_Hatsu
 
Logika Perguruan Tinggi: Bab 4 Metoda Deduksi
Logika Perguruan Tinggi:  Bab 4 Metoda DeduksiLogika Perguruan Tinggi:  Bab 4 Metoda Deduksi
Logika Perguruan Tinggi: Bab 4 Metoda Deduksimiftahulive
 
Sifat sifat Determinan
Sifat sifat DeterminanSifat sifat Determinan
Sifat sifat Determinanbagus222
 

What's hot (20)

Geometri analitik bidang lingkaran
Geometri analitik bidang  lingkaran Geometri analitik bidang  lingkaran
Geometri analitik bidang lingkaran
 
Hiperboloida
HiperboloidaHiperboloida
Hiperboloida
 
Matematika Diskrit - 07 teori bilangan - 02
Matematika Diskrit - 07 teori bilangan - 02Matematika Diskrit - 07 teori bilangan - 02
Matematika Diskrit - 07 teori bilangan - 02
 
Logika dasr
Logika dasrLogika dasr
Logika dasr
 
Matematika Diskrit kombinatorial
Matematika Diskrit  kombinatorialMatematika Diskrit  kombinatorial
Matematika Diskrit kombinatorial
 
Rangkuman materi isometri lanjutan
Rangkuman materi isometri lanjutanRangkuman materi isometri lanjutan
Rangkuman materi isometri lanjutan
 
Modul 7 persamaan diophantine
Modul 7   persamaan diophantineModul 7   persamaan diophantine
Modul 7 persamaan diophantine
 
Prinsip Inklusi Eksklusi
Prinsip Inklusi EksklusiPrinsip Inklusi Eksklusi
Prinsip Inklusi Eksklusi
 
Teori bilangan
Teori bilanganTeori bilangan
Teori bilangan
 
Teori Bilangan Pertemuan ke 6
Teori Bilangan Pertemuan ke 6Teori Bilangan Pertemuan ke 6
Teori Bilangan Pertemuan ke 6
 
Supremum dan infimum
Supremum dan infimum  Supremum dan infimum
Supremum dan infimum
 
Grup siklik
Grup siklikGrup siklik
Grup siklik
 
Sistem bilangan bulat (ma kul teori bilangan)
Sistem bilangan bulat (ma kul teori bilangan)Sistem bilangan bulat (ma kul teori bilangan)
Sistem bilangan bulat (ma kul teori bilangan)
 
Bab 4.-integral-lipat-dua1 2
Bab 4.-integral-lipat-dua1 2Bab 4.-integral-lipat-dua1 2
Bab 4.-integral-lipat-dua1 2
 
Ring Polonomial
Ring PolonomialRing Polonomial
Ring Polonomial
 
Pengantar Teori Peluang
Pengantar Teori PeluangPengantar Teori Peluang
Pengantar Teori Peluang
 
Pembuktian dalam matematika
Pembuktian dalam matematikaPembuktian dalam matematika
Pembuktian dalam matematika
 
Logika Perguruan Tinggi: Bab 4 Metoda Deduksi
Logika Perguruan Tinggi:  Bab 4 Metoda DeduksiLogika Perguruan Tinggi:  Bab 4 Metoda Deduksi
Logika Perguruan Tinggi: Bab 4 Metoda Deduksi
 
Aplikasi matriks
Aplikasi matriksAplikasi matriks
Aplikasi matriks
 
Sifat sifat Determinan
Sifat sifat DeterminanSifat sifat Determinan
Sifat sifat Determinan
 

Similar to Teori Bilangan Bulat.pptx.ppt

Teori Bilangan Bulat.pptx
Teori Bilangan Bulat.pptxTeori Bilangan Bulat.pptx
Teori Bilangan Bulat.pptxLiaCangera1
 
Teori Bilangan Kekongruenan pada bilangan
Teori Bilangan Kekongruenan pada bilanganTeori Bilangan Kekongruenan pada bilangan
Teori Bilangan Kekongruenan pada bilangansunarsih3fmipa2023
 
06-2. Teori Bilangan.pdf
06-2. Teori Bilangan.pdf06-2. Teori Bilangan.pdf
06-2. Teori Bilangan.pdfOrangOrang4
 
Defenisi dan sifat kekongruenan Teobil
Defenisi dan sifat kekongruenan TeobilDefenisi dan sifat kekongruenan Teobil
Defenisi dan sifat kekongruenan TeobilNailul Hasibuan
 
Bab I teori bilangan
Bab I teori bilanganBab I teori bilangan
Bab I teori bilanganHaryono Yono
 
Matematika Diskrit - 07 teori bilangan - 04
Matematika Diskrit - 07 teori bilangan - 04Matematika Diskrit - 07 teori bilangan - 04
Matematika Diskrit - 07 teori bilangan - 04KuliahKita
 
Teori bilangan bab ii
Teori bilangan bab iiTeori bilangan bab ii
Teori bilangan bab iiSeptian Amri
 
bilangan bulat (Meidytha puti sabrina)
bilangan bulat (Meidytha puti sabrina)bilangan bulat (Meidytha puti sabrina)
bilangan bulat (Meidytha puti sabrina)MuhammadAgusridho
 
Mtk Modul 3.2.pptx
Mtk Modul 3.2.pptxMtk Modul 3.2.pptx
Mtk Modul 3.2.pptxnamfyoid
 

Similar to Teori Bilangan Bulat.pptx.ppt (20)

Bilangan bulat
Bilangan bulatBilangan bulat
Bilangan bulat
 
Teori Bilangan Bulat.pptx
Teori Bilangan Bulat.pptxTeori Bilangan Bulat.pptx
Teori Bilangan Bulat.pptx
 
4.-Teori-Bilangan.ppt
4.-Teori-Bilangan.ppt4.-Teori-Bilangan.ppt
4.-Teori-Bilangan.ppt
 
Teori Bilangan Kekongruenan pada bilangan
Teori Bilangan Kekongruenan pada bilanganTeori Bilangan Kekongruenan pada bilangan
Teori Bilangan Kekongruenan pada bilangan
 
KONGRUENSI.pdf
KONGRUENSI.pdfKONGRUENSI.pdf
KONGRUENSI.pdf
 
Teori bilangan
Teori bilanganTeori bilangan
Teori bilangan
 
06-2. Teori Bilangan.pdf
06-2. Teori Bilangan.pdf06-2. Teori Bilangan.pdf
06-2. Teori Bilangan.pdf
 
Defenisi dan sifat kekongruenan Teobil
Defenisi dan sifat kekongruenan TeobilDefenisi dan sifat kekongruenan Teobil
Defenisi dan sifat kekongruenan Teobil
 
Kekongruenan teobil
Kekongruenan teobilKekongruenan teobil
Kekongruenan teobil
 
Teori Bilangan bagian 1.pptx
Teori Bilangan bagian 1.pptxTeori Bilangan bagian 1.pptx
Teori Bilangan bagian 1.pptx
 
KETERBAGIAN (bagian 1).pptx
KETERBAGIAN (bagian 1).pptxKETERBAGIAN (bagian 1).pptx
KETERBAGIAN (bagian 1).pptx
 
Bab I teori bilangan
Bab I teori bilanganBab I teori bilangan
Bab I teori bilangan
 
Ppt heppi pryitno
Ppt heppi pryitnoPpt heppi pryitno
Ppt heppi pryitno
 
Matematika Diskrit - 07 teori bilangan - 04
Matematika Diskrit - 07 teori bilangan - 04Matematika Diskrit - 07 teori bilangan - 04
Matematika Diskrit - 07 teori bilangan - 04
 
Teori bilangan bab ii
Teori bilangan bab iiTeori bilangan bab ii
Teori bilangan bab ii
 
Keterbagian
KeterbagianKeterbagian
Keterbagian
 
Soal osn
Soal osnSoal osn
Soal osn
 
bilangan bulat (Meidytha puti sabrina)
bilangan bulat (Meidytha puti sabrina)bilangan bulat (Meidytha puti sabrina)
bilangan bulat (Meidytha puti sabrina)
 
Mtk Modul 3.2.pptx
Mtk Modul 3.2.pptxMtk Modul 3.2.pptx
Mtk Modul 3.2.pptx
 
Smart solution
Smart solutionSmart solution
Smart solution
 

Recently uploaded

Hiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
HiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaaHiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
Hiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaafarmasipejatentimur
 
tugas karya ilmiah 1 universitas terbuka pembelajaran
tugas karya ilmiah 1 universitas terbuka pembelajarantugas karya ilmiah 1 universitas terbuka pembelajaran
tugas karya ilmiah 1 universitas terbuka pembelajarankeicapmaniez
 
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..ikayogakinasih12
 
MAKALAH KELOMPOK 7 ADMINISTRASI LAYANAN KHUSUS.pdf
MAKALAH KELOMPOK 7 ADMINISTRASI LAYANAN KHUSUS.pdfMAKALAH KELOMPOK 7 ADMINISTRASI LAYANAN KHUSUS.pdf
MAKALAH KELOMPOK 7 ADMINISTRASI LAYANAN KHUSUS.pdfChananMfd
 
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..ikayogakinasih12
 
Membuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docxMembuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docxNurindahSetyawati1
 
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CModul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CAbdiera
 
Paparan Refleksi Lokakarya program sekolah penggerak.pptx
Paparan Refleksi Lokakarya program sekolah penggerak.pptxPaparan Refleksi Lokakarya program sekolah penggerak.pptx
Paparan Refleksi Lokakarya program sekolah penggerak.pptxIgitNuryana13
 
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxRefleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxIrfanAudah1
 
Dasar-Dasar Sakramen dalam gereja katolik
Dasar-Dasar Sakramen dalam gereja katolikDasar-Dasar Sakramen dalam gereja katolik
Dasar-Dasar Sakramen dalam gereja katolikThomasAntonWibowo
 
PPT AKUNTANSI KEUANGAN MENENGAH DUA.pptx
PPT AKUNTANSI KEUANGAN MENENGAH DUA.pptxPPT AKUNTANSI KEUANGAN MENENGAH DUA.pptx
PPT AKUNTANSI KEUANGAN MENENGAH DUA.pptxssuser8905b3
 
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdfsdn3jatiblora
 
PPT PENELITIAN TINDAKAN KELAS MODUL 5.pptx
PPT PENELITIAN TINDAKAN KELAS MODUL 5.pptxPPT PENELITIAN TINDAKAN KELAS MODUL 5.pptx
PPT PENELITIAN TINDAKAN KELAS MODUL 5.pptxSaefAhmad
 
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)MustahalMustahal
 
Sosialisasi PPDB SulSel tahun 2024 di Sulawesi Selatan
Sosialisasi PPDB SulSel tahun 2024 di Sulawesi SelatanSosialisasi PPDB SulSel tahun 2024 di Sulawesi Selatan
Sosialisasi PPDB SulSel tahun 2024 di Sulawesi Selatanssuser963292
 
UT PGSD PDGK4103 MODUL 2 STRUKTUR TUBUH Pada Makhluk Hidup
UT PGSD PDGK4103 MODUL 2 STRUKTUR TUBUH Pada Makhluk HidupUT PGSD PDGK4103 MODUL 2 STRUKTUR TUBUH Pada Makhluk Hidup
UT PGSD PDGK4103 MODUL 2 STRUKTUR TUBUH Pada Makhluk Hidupfamela161
 
MODUL 1 Pembelajaran Kelas Rangkap-compressed.pdf
MODUL 1 Pembelajaran Kelas Rangkap-compressed.pdfMODUL 1 Pembelajaran Kelas Rangkap-compressed.pdf
MODUL 1 Pembelajaran Kelas Rangkap-compressed.pdfNurulHikmah50658
 
Materi Sosiologi Kelas X Bab 1. Ragam Gejala Sosial dalam Masyarakat (Kurikul...
Materi Sosiologi Kelas X Bab 1. Ragam Gejala Sosial dalam Masyarakat (Kurikul...Materi Sosiologi Kelas X Bab 1. Ragam Gejala Sosial dalam Masyarakat (Kurikul...
Materi Sosiologi Kelas X Bab 1. Ragam Gejala Sosial dalam Masyarakat (Kurikul...asepsaefudin2009
 
CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7IwanSumantri7
 
Materi IPAS Kelas 1 SD Bab 3. Hidup Sehat.pptx
Materi IPAS Kelas 1 SD Bab 3. Hidup Sehat.pptxMateri IPAS Kelas 1 SD Bab 3. Hidup Sehat.pptx
Materi IPAS Kelas 1 SD Bab 3. Hidup Sehat.pptxmuhammadkausar1201
 

Recently uploaded (20)

Hiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
HiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaaHiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
Hiperlipidemiaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
tugas karya ilmiah 1 universitas terbuka pembelajaran
tugas karya ilmiah 1 universitas terbuka pembelajarantugas karya ilmiah 1 universitas terbuka pembelajaran
tugas karya ilmiah 1 universitas terbuka pembelajaran
 
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
 
MAKALAH KELOMPOK 7 ADMINISTRASI LAYANAN KHUSUS.pdf
MAKALAH KELOMPOK 7 ADMINISTRASI LAYANAN KHUSUS.pdfMAKALAH KELOMPOK 7 ADMINISTRASI LAYANAN KHUSUS.pdf
MAKALAH KELOMPOK 7 ADMINISTRASI LAYANAN KHUSUS.pdf
 
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
 
Membuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docxMembuat Komik Digital Berisi Kritik Sosial.docx
Membuat Komik Digital Berisi Kritik Sosial.docx
 
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase CModul Ajar Pendidikan Pancasila Kelas 5 Fase C
Modul Ajar Pendidikan Pancasila Kelas 5 Fase C
 
Paparan Refleksi Lokakarya program sekolah penggerak.pptx
Paparan Refleksi Lokakarya program sekolah penggerak.pptxPaparan Refleksi Lokakarya program sekolah penggerak.pptx
Paparan Refleksi Lokakarya program sekolah penggerak.pptx
 
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptxRefleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
Refleksi Mandiri Modul 1.3 - KANVAS BAGJA.pptx.pptx
 
Dasar-Dasar Sakramen dalam gereja katolik
Dasar-Dasar Sakramen dalam gereja katolikDasar-Dasar Sakramen dalam gereja katolik
Dasar-Dasar Sakramen dalam gereja katolik
 
PPT AKUNTANSI KEUANGAN MENENGAH DUA.pptx
PPT AKUNTANSI KEUANGAN MENENGAH DUA.pptxPPT AKUNTANSI KEUANGAN MENENGAH DUA.pptx
PPT AKUNTANSI KEUANGAN MENENGAH DUA.pptx
 
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
 
PPT PENELITIAN TINDAKAN KELAS MODUL 5.pptx
PPT PENELITIAN TINDAKAN KELAS MODUL 5.pptxPPT PENELITIAN TINDAKAN KELAS MODUL 5.pptx
PPT PENELITIAN TINDAKAN KELAS MODUL 5.pptx
 
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)
Prakarsa Perubahan ATAP (Awal - Tantangan - Aksi - Perubahan)
 
Sosialisasi PPDB SulSel tahun 2024 di Sulawesi Selatan
Sosialisasi PPDB SulSel tahun 2024 di Sulawesi SelatanSosialisasi PPDB SulSel tahun 2024 di Sulawesi Selatan
Sosialisasi PPDB SulSel tahun 2024 di Sulawesi Selatan
 
UT PGSD PDGK4103 MODUL 2 STRUKTUR TUBUH Pada Makhluk Hidup
UT PGSD PDGK4103 MODUL 2 STRUKTUR TUBUH Pada Makhluk HidupUT PGSD PDGK4103 MODUL 2 STRUKTUR TUBUH Pada Makhluk Hidup
UT PGSD PDGK4103 MODUL 2 STRUKTUR TUBUH Pada Makhluk Hidup
 
MODUL 1 Pembelajaran Kelas Rangkap-compressed.pdf
MODUL 1 Pembelajaran Kelas Rangkap-compressed.pdfMODUL 1 Pembelajaran Kelas Rangkap-compressed.pdf
MODUL 1 Pembelajaran Kelas Rangkap-compressed.pdf
 
Materi Sosiologi Kelas X Bab 1. Ragam Gejala Sosial dalam Masyarakat (Kurikul...
Materi Sosiologi Kelas X Bab 1. Ragam Gejala Sosial dalam Masyarakat (Kurikul...Materi Sosiologi Kelas X Bab 1. Ragam Gejala Sosial dalam Masyarakat (Kurikul...
Materi Sosiologi Kelas X Bab 1. Ragam Gejala Sosial dalam Masyarakat (Kurikul...
 
CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7CAPACITY BUILDING Materi Saat di Lokakarya 7
CAPACITY BUILDING Materi Saat di Lokakarya 7
 
Materi IPAS Kelas 1 SD Bab 3. Hidup Sehat.pptx
Materi IPAS Kelas 1 SD Bab 3. Hidup Sehat.pptxMateri IPAS Kelas 1 SD Bab 3. Hidup Sehat.pptx
Materi IPAS Kelas 1 SD Bab 3. Hidup Sehat.pptx
 

Teori Bilangan Bulat.pptx.ppt

  • 1. BILANGAN BULAT Bilangan bulat adalah bilangan yang tidak mempunyai pecahan desimal. Misalnya 8, 21, 8765, -34, 0
  • 2. Misalkan a dan b adalah 2 buah bilangan bulat dengan syarat a  0. Kita menyatakan bahwa a habis membagi b jika terdapat bilangan bulat c sedemikian sehingga b = ac Notasi : a | b jika b = ac, c Z dan a ≠ 0 SIFAT PEMBAGIAN PADA BILANGAN BULAT. 
  • 3. Dengan kata lain, jika b dibagi dengan a, maka hasil pembagiannya berupa bilangan bulat. Kadang-kadang pernyataan “a habis membagi b” ditulis juga “b kelipatan a” Contoh : 4 | 12 karena 12 : 4 = 3 atau 12 = 4 x 3 12 : 4 memberi hasil bagi 3 dan sisa 0 Tetapi 4 tidak habis membagi 13 karena 13 : 4 = 3,25 13 : 4 memberi hasil bagi 3 dan sisa 1
  • 4. TEOREMA EUCLIDEAN Misalkan m dan n adalah dua buah bilangan bulat dengan syarat n > 0. Jika m dibagi dengan n (pembagi) maka terdapat dua buah bilangan bulat unik q (quotient = hasil bagi) dan r (remainder = sisa) sedemikian sehingga : m = nq + r dengan 0  r <n q = m div n, r = m mod r
  • 5. 1. 1987 = 97 . 20 + 47 ( 1987 div 97 =20 dan 1987 mod 97 = 47 ) 2. 24 = 3. 8 + 0 3. -22 = 3 (-8) + 2 Sisa pembagian tidak boleh negatif, jadi contoh ke 3 tidak dapat ditulis : -22 = 3 (-7) – 1 karena r = -1 tidak memenuhi syarat 0  r < n m = nq + r q = m div n, r = m mod n Contoh 5.1 :
  • 6. PEMBAGI BERSAMA TERBESAR Misalkan a dan b adalah dua buah bilangan bulat tidak nol. Pembagi bersama terbesar (PBB) dari a dan b adalah bilangan bulat terbesar d sedemikian sehingga da dan db. Dalam hal ini dinyatakan PBB (a,b) = d 45 memiliki faktor pembagi 1, 3, 5, 9, 15 dan 45 36 memiliki faktor pembagi 1, 2, 3, 4, 9, 12, 18, dan 36 faktor pembagi bersama dari 45 dan 36 adalah 1, 3, 9  yang terbesar adalah 9 Sehingga disimpulkan PBB (45, 36) = 9
  • 7. Sifat-sifat dari pembagi bersama terbesar dinyatakan dengan teorema-teorema berikut : Misalkan a, b, dan c adalah bilangan bulat. a. Jika c adalah PBB dari a dan b, maka c (a + b ) b. Jika c adalah PBB dari a dan b, maka c (a - b ) c. Jika c a , maka c ab Contoh 5.2 : PBB dari 45 dan 36 adalah 9. a) 9 habis membagi 45 + 36 =81, atau 9 | (45 + 36) b) 9 habis membagi 45 - 36 = 9 , atau 9 | (45 - 36) c) 9 habis membagi 45x36=1620, atau 9 | (45 x 36)
  • 8. Misalkan m dan n adalah dua buah bilangan bulat dengan syarat n > 0 sedemikian sehingga : m = nq + r , 0  r <n maka PBB (m,n) = PBB (n,r) Contoh :
  • 9. Contoh 5.3 : Jika 80 dibagi dengan 12 memberi hasil 6 dan sisa 8, atau 80 = 12.6 + 8. Menurut teorema 5.3 PBB(80, 12) = PBB(12, 8) = 4 Jika 12 dibagi dengan 8 memberi hasil 1 dan sisa 4, atau 12 = 8.1 + 4 PBB(12, 8) = PBB(8, 4) = 4 Jika 8 dibagi dengan 4 memberi hasil 2 dan sisa 0, atau 8 = 4.2 + 0. Menurut teorema 5.3 PBB(8, 4) = PBB(4, 0) = 4  4 = 0.0 + 4 Dari runtunan perhitungan di atas, kita memperoleh bahwa PBB(80, 12) = PBB(12, 8) = PBB(8, 4) = PBB(4, 0) = 4
  • 10. 3. ALGORITMA EUCLIDEAN 1. Jika n = 0, maka m adalah PBB (m,n); stop. Tetapi jika n  0 lanjutkan ke langkah 2. 2. Bagilah m dengan n dan misalkan r adalah sisanya. 3. Ganti nilai m dengan n dan nilai n dengan r, lalu ulang kembali ke langkah 1.
  • 11. Contoh 5.4 : 80 = 6.12 + 8 12 = 1.8 + 4 8 = 2. 4 + 0 Sisa pembagian terakhir sebelum 0 adalah 4, maka PBB(80, 12) = 4 Menurut teorema 5.3 PBB dari m dan n adalah sisa terakhir yang tidak nol dari runtunan pembagian tersebut PBB(80, 12) = 4 sisa terakhir yang tidak nol
  • 12. Teorema 5.4 : Misalkan a dan b adalah dua buah bilangan bulat positif, maka terdapat bilangan bulat m dan n sedemikian sehingga PBB(a, b) = ma + nb Misalnya PBB(80, 12) = 4, dan 4 = ( -1 ) . 80 + 7 . 12. disini m = -1 dan n = 7
  • 13. Contoh 5.5 : Nyatakan PBB(312, 70) = 2 sebagai kombinasi lanjar dari 312 dan 70 Terapkan algoritma Euclidean untuk memperoleh PBB(312, 70) = 2 312 = 4.70 + 32 (i)  32 = 312 – 4.70 (vii) 70 = 2.32 + 6 (ii)  6 = 70 – 2.32 (vi) 32 = 5.6 + 2 (iii)  2 = 32 – 5.6 (v) 6 = 3.2 + 0 (iv) (v) ke (vi) 2 = 32 – 5.(70 – 2.32) 2 = 1.32 – 5.70 + 10.32 2 = 11.32 – 5.70 (vii) 2 = 11.(312 – 4.70) – 5.70 = 11.312 – 49.70 Jadi PBB(312, 70) = 2 = 11.312 – 49.70 m a n b
  • 14. RELATIF PRIMA Dua buah bilangan bulat a dan b dikatakan relatif prima (relatively prime) jika PBB(a, b) = 1 ma + nb = 1 Contoh 5.6 : Bilangan 20 dan 3 adalah relatif prima karena PBB(20, 3) = 1 2 . 20 + ( -13) . 3 = 1 Bilangan 20 dan 5 tidak relatif prima karena PBB(20, 5) = 5 ≠ 1 sehingga 20 dan 5 tidak dapat dinyatakan dalam m.20+n.5=1
  • 15. ARITMETIKA MODULO Misalkan a adalah bilangan bulat dan m adalah bilangan bulat > 0. Operasi a mod m (dibaca a modulo m) memberikan sisa jika a dibagi dengan m. Dengan kata lain : a mod m = r sedemikian sehingga a = mq + r, dengan 0  r < m
  • 16. Contoh 5.7 : Berapa hasil operasi dengan operator modulo : (i) 23 mod 5 = 3 (karena 23 dibagi 5 memberikan hasil = 4 dan sisa = 3, atau ditulis 23 = 5.4 + 3) (ii) 27 mod 3 = 0 (27 = 3.9 + 0) (iii) 6 mod 8 = 6 (6 = 8.0 + 6) (iv) 0 mod 12 = 0 (0 = 12.0 + 0) (v) - 41 mod 9 = 4 (-41 = 9(-5) + 4) (vi) - 39 mod 13 = 0 (-39 = 13(-3) + 0) a mod m = r a = mq + r
  • 17. Kongruen Jika dua buah bilangan bulat a dan b, mempunyai sisa yang sama jika dibagi dengan bilangan bulat positif m, maka a dan b kongruen dalam modulo m, dan dilambangkan sebagai : a  b (mod m) Jika a tidak kongruen dengan b dalam modulus m, maka ditulis : a  b (mod m) /
  • 18. Contoh : 38 mod 5 = 3 , dan 13 mod 5 = 3 38/5=7 sisa 3 13/5=2 sisa 3 maka : 38  13 ( mod 5)
  • 19. Contoh 5.8 : 17  2 (mod 3) ( 3 habis membagi 17 – 2 = 15  15 : 3 = 5 ) -7  15 (mod 11) ( 11 habis membagi -7 – 15 = -22  -22 : 11 = -2) 12  2 (mod 7) ( 7 tidak habis membagi 12 – 2 = 10 ) -7  15 (mod 3) ( 3 tidak habis membagi -7 – 15 = -22 ) / / Definisi dari kongruen : Misalkan a dan b adalah bilangan bulat dan m adalah bilangan > 0 maka a  b (mod m) jika m habis membagi a - b
  • 20. Kekongruenan a  b (mod m) dapat pula dituliskan dalam hubungan a = b + km yang dalam hal ini sembarang k adalah bilangan bulat.
  • 21. Contoh 5.9 : 38 ≡ 13 (mod 5) dapat ditulis sebagai 38 = 13 + 5 . 5 17 ≡ 2 (mod 3) dapat ditulis sebagai 17 = 2 + 5 . 3 -7 ≡ 15 (mod 11) dapat ditulis sebagai -7 = 15 + (-2) 11 a b k m a = b + km a  b (mod m)
  • 22. Berdasarkan definisi aritmetika modulo (definisi 5.5), kita dapat menulis a mod m = r sebagai a ≡ r (mod m) Contoh 5.10 : 23 mod 5 = 3 dapat ditulis sebagai 23 ≡ 3 (mod 5) 27 mod 3 = 0 dapat ditulis sebagai 27 ≡ 0 (mod 3) 6 mod 8 = 6 dapat ditulis sebagai 6 ≡ 6 (mod 8) 0 mod 12 = 0 dapat ditulis sebagai 0 ≡ 0 (mod 12) -41 mod 9 = 4 dapat ditulis sebagai -41 ≡ 4 (mod 9) -39 mod 13 = 0 dapat ditulis sebagai -39 ≡ 0 (mod 13)
  • 23. Sifat-sifat pengerjaan hitung pada aritmetika modulo, khususnya perkalian dan penjumlahan, dinyatakan dalam teorema-teorema berikut :
  • 24. Misalkan m adalah bilangan bulat positif. 1. Jika a  b (mod m) dan c adalah sembarang bilangan bulat, maka : (i) (a + c)  (b + c)(mod m) (ii) ac  bc (mod m) (iii) ap  bp (mod m) untuk suatu bilangan bulat tak negatif p Contoh 5.11 : Misal: 17  2 (mod 3) dan 10  4 (mod 3), maka : 17 + 5  2 + 5 (mod 3)  22  7 (mod 3) (teorema 5.5.1(i)) 17 . 5  2 . 5 (mod 3)  85  10 (mod 3) (teorema 5.5.1(ii))
  • 25. 17  2 (mod 3) 17/3 = 5 sisa 2 2/3 = 0 sisa 2 22  7 (mod 3) 22/3 = 7 sisa 1 7/3 = 2 sisa 1 85  10 (mod 3) 85/3 = 28 sisa 1 10/3 = 3 sisa 1 mempunyai sisa yang sama
  • 26. 2. Jika a  b (mod m) dan c  d (mod m) , maka : (i) (a+c)  (b+d) (mod m) (ii) a c  bd (mod m) Contoh 5.11 : Misal: 17  2 (mod 3) dan 10  4 (mod 3), maka : 17 + 10  2 + 4 (mod 3)  27  6 (mod3) (teorema 5.5.2(i)) 17 . 10  2 . 4 (mod 3)  170  8 (mod 3) (teorema 5.5.2(ii))
  • 27. 17  2 (mod 3) 10  4 (mod 3) 17  2 (mod 3) 17/3 = 5 sisa 2 2/3 = 0 sisa 2 10  4 (mod 3) 10/3 = 3 sisa 1 4/3 = 1 sisa 1 27  6 (mod 3) 27/3 = 9 sisa 0 6/3 = 2 sisa 0 mempunyai sisa yang sama
  • 28. Balikan Modulo ( Modulo Invers) Jika a dan m relatif prima dan m > 1, maka dapat ditemukan balikan (invers) dari a modulo m. Balikan dari a modulo m adalah bilangan bulat ā sedemikian sehingga aā  1 (mod m) Di dalam aritmetika bilangan riil, inversi (inverse) dari perkalian adalah pembagian Misalnya inversi dari 4 adalah 1/4
  • 29. Contoh 5.12 : Tentukan inversi dari 4 (mod 9), 17 (mod 7), dan 18 (mod 10) a m PBB(4, 9) = 1, maka inversi dari 4 (mod 9) ada. 9 = 2.4 + 1 -2 . 4 + 1.9 = 1  p.a + q.m = 1 Dari persamaan terakhir ini kita peroleh -2 adalah inversi dari 4 modulo 9 -2.4  1 (mod 9)  9 habis membagi ( -2x4 ) -1 = -9 (a)
  • 30. (b) a m PBB(17, 7) = 1, maka inversi dari 17 (mod 7) ada. 17 = 2.7 + 3 (i) 3 = 17 – 2.7 (v) 7 = 2.3 + 1 (ii) 1 = 7 – 2.3 (iv) 3 = 3.1 + 0 (iii) (v) ke (iv) 1 = 7 – 2.(17 – 2.7) = 1.7 – 2.17 + 4.7 = 5.7 – 2.17 atau -2 . 17 + 5 . 7 = 1  p.a + q.m = 1 Dari persamaan terakhir ini kita peroleh -2 adalah inversi dari 17 modulo 7 -2.17  1 (mod 7)  7 habis membagi (-2.17) -1 = -35. Karena PBB(18, 10) = 2 ≠ 1, maka inversi dari 18 (mod 10) tidak ada. (c)
  • 31. Kekongruenan Linear/lanjar Kekongruenan linear adalah kongruen yang berbentuk : ax  b (mod m) Dengan m adalah bilangan bulat positif, a dan b sembarang bilangan bulat, dan x adalah peubah. Bentuk kongruen linear berarti menentukan nilai-nilai x, yang memenuhi kokongruenan tersebut. ax  b (mod m) dapat ditulis dalam hubungan ax = b + km yang dapat disusun menjadi : a km b x   a km b x  
  • 32. Contoh 5.13 : Tentukan solusi dari 4 x ≡ 3 (mod 9) Kekongruenan 4 x ≡ 3 (mod 9) ekivalen dengan menemukan k dan x bilangan bulat sedemikian sehingga a km b x   3 + k . 9 4 = k = 1  x = 3 k = 5  x = 12 k = -3  x = -6 k = -7  x = -15 Jadi nilai-nilai x yang memenuhi 4 x ≡ 3 (mod 9) adalah 3, 12, …. dan -6, -15, ….
  • 33. BILANGAN PRIMA Bilangan bulat positif yang lebih besar dari 1 yang hanya habis dibagi oleh 1 dan dirinya sendiri. 2, 3, 5, 7, 11, 13, …….. Definisi 5.7 : Bilangan bulat positif p (p>1) disebut bilangan prima jika pembaginya hanya 1 dan p Bilangan selain bilangan prima disebut bilangan komposit.  20 dapat dibagi oleh 2, 4, 5, dan 10, selain 1 dan 20 sendiri.
  • 34. Teorema Fundamental Aritmetik Setiap bilangan bulat positif yang lebih besar atau sama dengan 2 dapat dinyatakan sebagai perkalian satu atau lebih bilangan prima. Misal : 9 = 3 x 3 ( 2 buah faktor prima) 100 = 2 x 2 x 5 x 5 ( 4 buah faktor prima) 13 = 13 X 1 ( 1 buah faktor prima)
  • 35. Faktor Prima dari n selalu lebih kecil atau sama dengan n Misalkan a adalah faktor prima dari n, dengan 1 < a < n, maka a habis membagi n dengan hasil bagi b sedemikian sehingga n = ab. Nilai a dan b haruslah  n agar : ab >n . n = n Contoh 5.15 : Tunjukkan apakah 171 dan 199 merupakan bilangan prima atau komposit ?
  • 36. (i) √ 171 = 13,077. Bilangan prima yang ≤ √ 171 adalah 2, 3, 5, 7, 11, 13. Karena 171 habis dibagi 3, maka 171 adalah bilangan komposit. (ii) √ 199 = 14,107. Bilangan prima yang ≤ √ 199 adalah 2, 3, 5, 7, 11, 13. Karena 199 tidak habis dibagi 2, 3, 5, 7, 11, 13 maka 199 adalah bilangan prima.
  • 37. Temukan semua faktor prima dari 1617. Contoh 5.16 : Bagilah 1617 berturut-turut dengan barisan bilangan prima, mulai dari 2, 3, 5, 7, …. 2 tidak habis membagi 1617 3 habis membagi 1617, yaitu 1617/3 = 539 Selanjutnya, bagilah 539 dengan bilangan prima berturut-turut, dimulai dari 3, 5, 7, .. 3 tidak habis membagi 539 5 tidak habis membagi 539 7 habis membagi 539, yaitu 539/7 = 77 Selanjutnya, bagilah 77 dengan bilangan prima berturut-turut, dimulai dari 7, 11, … 7 habis membagi 77, yaitu 77/7 = 11 Karena 11 adalah bilangan prima, maka pencarian faktor prima dari 1617 dihentikan. Jadi, faktor prima dari 1617 adalah 3, 7, 7 dan 11, yaitu 1617 = 3 x 7 x 7 x 11.