SlideShare a Scribd company logo
1 of 23
Quantification of DRA in jet fuel
Rotary Evaporation with GPC detection
       Proposed ASTM Method
Overview


 - Pipeline Drag Reducing Additive (DRA)
 - Optimization of Rotary Evaporation with GPC detection
 method
DRA chemistry

Example of polymer chemistry

                                        *          *
                                             n    m




               Monomers                Poly(alphaolefin)
              Linear alpha olefin       Drag Reducing Additive
                                               (DRA)


  DRA molecular weights > 25 million Daltons (n and m >200,000)
Drag reduction mechanism

                                                                 DRA mitigates turbulent burst imposing long
                 DRA                                                  range concerted axial motion


                                                                            Flow
Local flow
 direction

               100
                90
                                                                              Drag reduction can be thought of as a
                                                                                reduction in the frictional factor f
  % Drag        80
                70
 reduction      60
                50
                40
                30
                20
                10
                0
                     0   10   20   30   40   50   60   70   80   90
                               FLO MXC ppm



                              high strain regions
 DRA > 25 million Da          Valves, Pumps, Restrictions                          Sheared DRA 1 to 3 million Da
                                                                                   (not as effective, reinjection)
Fuel pipeline operations


                                                                                    Flow
     Jet fuel                                       No inject.
                                    Interface                       Diesel
 (DRA not allowed)                                   Buffer


         Potential DRA contamination sources                           Risk

1.) Use of drag reducers increases interface size                       Mitigated




          Turbulent Flow                 Laminar Flow
          - Flat velocity profile        - Faster center velocity
          - Low interface volume         - Large interface volume

 2.) Chemical dispersion                                                 No
 3.) Pipeline operational mistakes                                       Yes
 4.) DRA injector leaks                                                  Yes
DRA monitoring industry wide


 Verbal reports of DRA contamination in jet fuel
 DRA impacts jet fuel performance (taken from Stan Seto CRC Report 642)
     Diminishing fuel spray angle and atomization capability @ 8.8 - 32 ppm
     A significant loss in engine start capability @ 8.8 and 32 ppm
 The report concluded that DRA was not acceptable for use in aviation fuel
 The actual safe limit has never been identified
 TF is targeted developing methods with a limit of detection of 50 ppb which is
  considered low level contamination except for highly active contaminants like
  copper
Analytical method background
Principles of Gel Permeation Chromatography (GPC)



Flow
                                                           Jet fuel molecules
                                                           DRA polymer
                                                           Stationary phase
                                                           Mobile phase not shown

                                                     Detector (RI, ELSD ...)

Time   =    0          1         2            3 and so on…

                           Area proportional to concentration

           Detection


                            Elution time

                                Related to molecules size or MW
Rotovap Concentrating
 with GPC Detection
Original proposed method


Sample Prep
                      Rotovap                            Pierce Reacti-therm   Backfill w/THF
  Jet fuel            (130oC)        Concentrated              (120oC)             Filter
                                     DRA sample                                                 Sample for
(W1 ≈ 400g)
                      5-8hr
                                      (W2 ≈ 2g)             Overnight                             GPC

       Inject 200μl
GPC                                                                            divert flow from ELSD
                                          GPC column PL type Mixed D
                                               10μ particle size                  after DRA elutes
                                                                                                       ELSD
                       1                      2                    3
 THF                                                                                  Waste


Data workup                                                                     Concentration of DRA in jet
                                                                                fuel = (Determined PPM) x
                                                                                         (W2/W1)

                              integrated DRA area         Determine PPM


 Can detect to 50 ppb
 Sound method but need something simpler for widespread implementation
Impact of mobile phase

                                                      ~2 ppm DRA samples
Can we use heptane instead of
THF in the proposed method?
                                                  THF
                        Original
                       Proposed
                        Method
            Sample      ~200x
             conc.     (Rotovap)
             GPC        5µ PL
            column     Mixed D
             # of
                          3                       Heptane
           columns
            Mobile     THF 
            phase      Heptane
           Detector     ELSD
           Detection
                       0.05 ppm
             limit


NO, significant loss in ELSD detection sensitivity with heptane
Run Time:        25.0 Minutes                                  Channel Name: ELSD Signal
                                             Sample Set Name: 11_29_10                                      Proc. Chnl. Descr.: ELSD Signal
 Baker Hughes GPC setup
                                                  0.20


                                                                                 SAM PL E INFO RMAT ION
Can we combine rotovap concentration




                                                                                                  FLO_XS
                                0.00

     with Baker Hughes GPC? Sample Name:                       37097                                        Acquired By:        weibo
                                             Sample Type: Unknown                                           Date Acquired:      11/29/2010 8:52:50 PM CST
                                                 -0.20
                   Original                  Vial:             7                                            Acq. Method Set: GPC _Cpntoller_Method Set
                                Baker        Injection #:      1                                            Date Processed: 12/1/2010 9:50:50 AM CST
                  Proposed
                                Hughes       Injection Volume: 200.00 ul                                    Processing Method: flo_quant1
                   method




                                            LSU
                                                 -0.40
                                             Run Time:         25.0 Minutes                                 Channel Name: ELSD Signal
                              ~5x  ~200x    Sample Set Name: 11_29_10~ 2.5
      Sample       ~200x      (Dry bath 
                                                                                               ppm          DRA sample Signal
                                                                                                            Proc. Chnl. Descr.: ELSD
       conc.      (Rotovap)    Rotovap @
                                  EM)             -0.60
                                                   0.20
       GPC         5µ PL       5μ PL
      column      Mixed D      Mixed C
                                                  -0.80




                                                                                                  FLO_XS
        # of                                       0.00
                     3            2
      columns
       Mobile                                     -1.00
                    THF          THF              -0.20
                                                      0.00       2.00    4.00      6.00    8.00     10.00    12.00 14.00      16.00    18.00     20.00   22.00   24.00
       phase
                                                                                                              Minutes
      Detector     ELSD          ELSD
                                                        SampleName 37097; Vial 7; Injection 1; Channel ELSD Signal; Date Acquired 11/29/2010 8:52:50
                                            LSU




      Detection                                   -0.40 PM CST
                  0.05 ppm      ~1 ppm
        limit
                                                                                   Component Summary Table
No improvement found over original proposed method
                                         -0.60                                  with respect to detection
                                                                                       Name: FLO_XS                                    sensitivity
                                                                 SampleName Inj      Channel      Name      RT   Area Height Amount Units Vial
                                                           1     37097           1 ELSD Signal FLO_XS 10.024 1098        30    7.312 ppm 7
                                                  -0.80
                                                          Mean                                                   1098    30    7.312
Magellan Midstream Partners GPC setup

     Can we combine rotovap
   concentration with MMP GPC?               Original jet fuel sample with 50 ppb DRA
                                                   10.7 ppm after concentrating
                Original     Magellan
               proposed      Midstream
                method        Partners
                           None  ~200x
    Sample       ~200x
                            (Rotovap @
     conc.     (Rotovap)
                                EM)
     GPC        5µ PL        10µ PL
    column     Mixed D       Gel 104 Å
     # of
                  3             1
   columns
    Mobile
                 THF         Heptane
    phase
                                            DRA’s permeating
   Detector     ELSD            RI
   Detection
               0.05 ppm       ~1 ppm       Bigger DRA’s excluded
     limit
                                          Smaller DRA’s permeate
Yes. Results are very encouraging, GPC
simplified enormously!                     DRA’s totally excluded
Simplifications applied to ASTM draft method


             Original   Magellan     ASTM Draft
            proposed    Midstream      Method
             method      Partners    (Basic GPC)

Sample       ~200x        none         ~200x
 conc.       (Roto.)                   (Roto.)     Key to getting down to ppb levels
 GPC         5µ PL      10µ PL Gel   10µ PL Gel
Column      Mixed D       <104 Å       104 Å       1) Requires less columns  less run time
                                                   2) Better separation  no overnight evap.
  # of
columns
               3            1            1         3) Sharper peak  RI detections is viable

 Mobile
              THF        Heptane      Heptane      More acceptable
 Phase

Detector     ELSD           RI           RI        Common GPC detection
Detection
            0.05 ppm     ~1 ppm       0.05 ppm
  limit                                            Maintained 50 ppb detection limit
Ruggedness tests

Sample Prep                                                                            Calibration GPC
                                                                                        DRA in Jet Fuel by
                                                                    direct blend of DRA @ 2, 4, 10, 20, 100ppm in jet fuel
                           Rotovap
    Jet fuel               (130oC)     Concentrated DRA             40000

                                                                    35000                    y = 335.57x
  (W1 ≈ 400g)                              sample                                            R2 = 0.9999
                           5-8hr                                    30000
                                          (W2 ≈ 2g)                 25000




                                                             Area
GPC
                                                                    20000                                                    Area

                             104A                   RI              15000                                                    Linear (Ar

                                                                    10000

                               1                                     5000

                                                                       0
                                                                            0     20    40         60      80     100        120
    Heptane                                                                                    ppm DRA




 Results for 3 Jet fuel samples with 50 ppb DRA                                   Example result (#2)

       Sample                      1         2           3                      S/N > 40
 Initial weight sample        399.36       399.45   398.93
Weight of concentrate          1.59         2.26     2.46
   ppm from GPC                13.1         10.3     7.1
ppb after correcting for
    concentration              52.2        58.3     43.8
Limits to quantifying the minimum DRA concentration


     0.13

                                                         S/N = 13.7
     0.09
                                                         10x noise
RI




     0.05

     0.01
                 Height of high frequency peak to peak noise
     -0.03
             0          1         2           3             4         5        6
                                       Time (minutess)


 GPC column, 10µm particles with 500Å pore size. Sample analyzed contained 2.9 ppm
DRA in jet fuel (after rotovap concentrating a 50 ppb DRA in jet fuel sample)
 Chromatogram example exhibits a DRA signal that satisfies the >10 S/N. After rotovap
concentrating a 400g sample containing 50 ppb DRA the final weight of the concentrate
should be ~ 7g or less (2.9 ppm or greater concentrate) for this GPC apparatus
Tests with different DRA types
      0.15
      0.13
      0.11
      0.09
      0.07
RI




      0.05                                                                            50 ppb sheared gel
      0.03                                                                            50 ppb sheared dispersed
      0.01                                                                            50 ppb unsheared gel
     -0.01
     -0.03
             0           1        2            3              4   5             6
                                        Time (m inutess)


        Description                             Gel type FLO XS                     Dispersed type FLO MXC
     Sheared/Unsheared                   sheared                  unsheared                  sheared
    Wt. of Sample            396.37g/              396.37g/       396.54g/                   396.29g/
before/after Rotovaping       6.96g                 4.14g          7.74g                      5.14g
     Concentrated DRA        2.9 ppm               4.9 ppm            1.8 ppm                4.3 ppm
          conc.
Calculated conc. DRA         50.9 ppb              51.2 ppb       35.1 ppb                   55.8 ppb
 of Original Sample
                 S/N           13.7                  15.7               5.5                    18.9

      Typical LOQ requires the S/N ratio to be > 10 which is satisfied for sheared DRA (gel and dispersed).
       Unsheared exhibits less sensitivity but is above the level of detection (LOD) which typically requires
       the S/N ratio to be > 2
Tests with different GPC column article pore size
          0.49

          0.39

          0.29
                        w/ 50Å particle pore size
RI (mv)




          0.19          10ppm DRA sheared, gel type in Jet fuel
                          (calibration sample, no rotovaping)
          0.09

          -0.01
                  0     0.5      1       1.5       2      2.5       3        3.5      4       4.5   5
                                                       Time (min)


            Pore size             MW range               Typical materials         PL gel part #     Excluded
                  50Å             up to 2000            Jet fuel molecules         1110-6115
              100Å                up to 4000                                       1110-6120          DRA &
              500Å               500-30,000                                        1110-6125        Sheared DRA
              10^3Å              500-60,000                                        1110-6130          excluded

              10^4Å            10,000-600,000                                      1110-6140
              10^5Å            60,000-2,000,000            Sheared DRA             1110-6150
              10^6Å           600,000-10,000,000           Sheared DRA             1110-6160
                                 ~25,000,000                      DRA

           Results are similar for all pore sizes < 10Å. Tests include 50Å, 500Å and 104Å
Calibration samples vs. concentrated samples

              0.46


              0.36
                                                                                               10.3 ppm after rotovap
                                                                                               50 ppb in Jet fuel
              0.26                                                                             (S/N 41.6)
         RI




                                                                                               10.0 ppm in jet fuel
              0.16                                                                             calibration sample
                                                                                               (S/N 67.9)

              0.06


              -0.04
                      0   0.5   1     1.5    2        2.5         3   3.5    4   4.5       5
                                                 Time (minutes)


                                    Concentration (ppm)               Area       Peak height          S/N

50ppb Concentrated sample                   10.3                      3.65             0.345         41.6

   Calibration sample                       10.0                      3.41             0.340         67.9

 RI DRA signal response is similar
Does Stadis® 450 cause measurement interference?


     0.15
     0.13                                                   Both samples
     0.11                                                 concentrated on a
     0.09
                                                               rotovap
     0.07
RI




                                                               50 ppb sheared gel
     0.05
                                                               5ppm Stadis 450
     0.03
     0.01
     -0.01
     -0.03
             0   1   2      3            4     5   6       7
                           Tim e (m inutess)




  Stadis® 450 MSDS indicates up to 40% trade secret polymer
  No interference observed
Conclusion

 Recent efforts were placed on optimizing the DRA quantification method
  employing rotary evaporation with GPC detection
 TF was successful in making many improvements making the method more
  deployable
 Quantification to 50 ppb appears likely with readily available apparatus and
  acceptable solvents
     Method works with both types of DRA; suspension and gel
     Method works with both sheared and unsheared DRA
        Slightly less sensitive for unsheared
 Proposed ASTM draft method has been prepared

Next steps
 Need to progress to a round robin
 GPC hardware is not limited to the basic apparatus described in the method. All
   GPC configurations where the DRA peak signal/noise is >10 are acceptable to be
   used in the RR
Thanks for your data contribution


  Nagesh Kommareddi    Baker Hughes
  Chuck Haber          Magellan Midstream partners

  Patrick Mollere      Intertek
  Elisa Redfield       Intertek




                    Thank You
Appendix

From PL website




                                2    3    4    5      6   7

   Most mixed columns looks to permeate sheared DRA

More Related Content

What's hot

Pertimbangan pemilihan metode bimbingan klasikal
Pertimbangan pemilihan metode bimbingan klasikalPertimbangan pemilihan metode bimbingan klasikal
Pertimbangan pemilihan metode bimbingan klasikalSunawan Sunawan
 
Materi Presentasi PPT Komunitas belajar 2.pptx
Materi Presentasi PPT Komunitas belajar 2.pptxMateri Presentasi PPT Komunitas belajar 2.pptx
Materi Presentasi PPT Komunitas belajar 2.pptxnursamsi40
 
PPT OPTIMALISASI KOMUNITAS BELAJAR .pptx
PPT  OPTIMALISASI KOMUNITAS BELAJAR .pptxPPT  OPTIMALISASI KOMUNITAS BELAJAR .pptx
PPT OPTIMALISASI KOMUNITAS BELAJAR .pptxAhmadMuzaniMPdI
 
Materi hakekat manusia dan pengembangannya
Materi hakekat manusia dan pengembangannyaMateri hakekat manusia dan pengembangannya
Materi hakekat manusia dan pengembangannyaMumun Mulyana
 
Contoh RPL
Contoh RPLContoh RPL
Contoh RPLtopanegy
 
Bimbingan dan Konseling di sekolah
Bimbingan dan Konseling di sekolah Bimbingan dan Konseling di sekolah
Bimbingan dan Konseling di sekolah Ratna Widiastuti
 
8 bukti fisik standar penilaian
8 bukti fisik standar penilaian8 bukti fisik standar penilaian
8 bukti fisik standar penilaianGus Fendi
 
KONSEP DASAR PROGRAM BK KOMPREHENSIF
KONSEP DASAR PROGRAM BK KOMPREHENSIFKONSEP DASAR PROGRAM BK KOMPREHENSIF
KONSEP DASAR PROGRAM BK KOMPREHENSIFMuslikahfipunnes
 
Modul 6.4 evaluasi bimbingan dan konseling kelompok
Modul 6.4 evaluasi bimbingan dan konseling kelompokModul 6.4 evaluasi bimbingan dan konseling kelompok
Modul 6.4 evaluasi bimbingan dan konseling kelompokUniversitas Negeri Semarang
 
Jurnal Refleksi Dwi Mingguan Modul 1.1 Filosofi Pemikiran KHD__Dewi Puspitosa...
Jurnal Refleksi Dwi Mingguan Modul 1.1 Filosofi Pemikiran KHD__Dewi Puspitosa...Jurnal Refleksi Dwi Mingguan Modul 1.1 Filosofi Pemikiran KHD__Dewi Puspitosa...
Jurnal Refleksi Dwi Mingguan Modul 1.1 Filosofi Pemikiran KHD__Dewi Puspitosa...DewiPuspitosari1
 
Pengembangan Kurikulum 2013
Pengembangan Kurikulum 2013Pengembangan Kurikulum 2013
Pengembangan Kurikulum 2013Kreshna Aditya
 
Buku model penilaian pencapaian kompetensi peserta didik smp (baru, maret 04)
Buku model penilaian pencapaian kompetensi peserta didik smp (baru, maret 04)Buku model penilaian pencapaian kompetensi peserta didik smp (baru, maret 04)
Buku model penilaian pencapaian kompetensi peserta didik smp (baru, maret 04)Pugar Cristina
 
ANALISIS BUTIR SOAL - TARAF KESUKARAN
ANALISIS BUTIR SOAL - TARAF KESUKARANANALISIS BUTIR SOAL - TARAF KESUKARAN
ANALISIS BUTIR SOAL - TARAF KESUKARANcandraabdillah1
 
BP_Pendampingan Individu.pdf
BP_Pendampingan Individu.pdfBP_Pendampingan Individu.pdf
BP_Pendampingan Individu.pdfRadenMasPalguno1
 
Coaching de emagrecimento livro
Coaching de emagrecimento livroCoaching de emagrecimento livro
Coaching de emagrecimento livroLucas Ribeiro
 
koneksi antar materi 2.1.pptx
koneksi antar materi 2.1.pptxkoneksi antar materi 2.1.pptx
koneksi antar materi 2.1.pptxyusnida5
 

What's hot (20)

Pertimbangan pemilihan metode bimbingan klasikal
Pertimbangan pemilihan metode bimbingan klasikalPertimbangan pemilihan metode bimbingan klasikal
Pertimbangan pemilihan metode bimbingan klasikal
 
Materi Presentasi PPT Komunitas belajar 2.pptx
Materi Presentasi PPT Komunitas belajar 2.pptxMateri Presentasi PPT Komunitas belajar 2.pptx
Materi Presentasi PPT Komunitas belajar 2.pptx
 
PPT OPTIMALISASI KOMUNITAS BELAJAR .pptx
PPT  OPTIMALISASI KOMUNITAS BELAJAR .pptxPPT  OPTIMALISASI KOMUNITAS BELAJAR .pptx
PPT OPTIMALISASI KOMUNITAS BELAJAR .pptx
 
Ruang Kolaborasi
Ruang KolaborasiRuang Kolaborasi
Ruang Kolaborasi
 
Materi hakekat manusia dan pengembangannya
Materi hakekat manusia dan pengembangannyaMateri hakekat manusia dan pengembangannya
Materi hakekat manusia dan pengembangannya
 
Teknik dasar konseling
Teknik dasar konselingTeknik dasar konseling
Teknik dasar konseling
 
Contoh RPL
Contoh RPLContoh RPL
Contoh RPL
 
Bimbingan dan Konseling di sekolah
Bimbingan dan Konseling di sekolah Bimbingan dan Konseling di sekolah
Bimbingan dan Konseling di sekolah
 
8 bukti fisik standar penilaian
8 bukti fisik standar penilaian8 bukti fisik standar penilaian
8 bukti fisik standar penilaian
 
Layanan bk di sekolah dasar
Layanan bk di sekolah dasarLayanan bk di sekolah dasar
Layanan bk di sekolah dasar
 
modul 1.1.a.5.2 pptx
modul 1.1.a.5.2 pptxmodul 1.1.a.5.2 pptx
modul 1.1.a.5.2 pptx
 
KONSEP DASAR PROGRAM BK KOMPREHENSIF
KONSEP DASAR PROGRAM BK KOMPREHENSIFKONSEP DASAR PROGRAM BK KOMPREHENSIF
KONSEP DASAR PROGRAM BK KOMPREHENSIF
 
Modul 6.4 evaluasi bimbingan dan konseling kelompok
Modul 6.4 evaluasi bimbingan dan konseling kelompokModul 6.4 evaluasi bimbingan dan konseling kelompok
Modul 6.4 evaluasi bimbingan dan konseling kelompok
 
Jurnal Refleksi Dwi Mingguan Modul 1.1 Filosofi Pemikiran KHD__Dewi Puspitosa...
Jurnal Refleksi Dwi Mingguan Modul 1.1 Filosofi Pemikiran KHD__Dewi Puspitosa...Jurnal Refleksi Dwi Mingguan Modul 1.1 Filosofi Pemikiran KHD__Dewi Puspitosa...
Jurnal Refleksi Dwi Mingguan Modul 1.1 Filosofi Pemikiran KHD__Dewi Puspitosa...
 
Pengembangan Kurikulum 2013
Pengembangan Kurikulum 2013Pengembangan Kurikulum 2013
Pengembangan Kurikulum 2013
 
Buku model penilaian pencapaian kompetensi peserta didik smp (baru, maret 04)
Buku model penilaian pencapaian kompetensi peserta didik smp (baru, maret 04)Buku model penilaian pencapaian kompetensi peserta didik smp (baru, maret 04)
Buku model penilaian pencapaian kompetensi peserta didik smp (baru, maret 04)
 
ANALISIS BUTIR SOAL - TARAF KESUKARAN
ANALISIS BUTIR SOAL - TARAF KESUKARANANALISIS BUTIR SOAL - TARAF KESUKARAN
ANALISIS BUTIR SOAL - TARAF KESUKARAN
 
BP_Pendampingan Individu.pdf
BP_Pendampingan Individu.pdfBP_Pendampingan Individu.pdf
BP_Pendampingan Individu.pdf
 
Coaching de emagrecimento livro
Coaching de emagrecimento livroCoaching de emagrecimento livro
Coaching de emagrecimento livro
 
koneksi antar materi 2.1.pptx
koneksi antar materi 2.1.pptxkoneksi antar materi 2.1.pptx
koneksi antar materi 2.1.pptx
 

Similar to ASTM D7872-13

Kps Environment 2 D3 D Wind Profiling
Kps Environment 2 D3 D Wind ProfilingKps Environment 2 D3 D Wind Profiling
Kps Environment 2 D3 D Wind ProfilingSailreddragon
 
Ink jet rheology and processing-Monash 2009
Ink jet rheology and processing-Monash 2009Ink jet rheology and processing-Monash 2009
Ink jet rheology and processing-Monash 2009malcolmmackley
 
Master thesispresentation
Master thesispresentationMaster thesispresentation
Master thesispresentationMatthew Urffer
 
Rfconnext Pmtl Ddr Applications
Rfconnext Pmtl Ddr ApplicationsRfconnext Pmtl Ddr Applications
Rfconnext Pmtl Ddr Applicationsrfconnex
 
BPI 2011 Workshop R2 As Presented
BPI 2011 Workshop R2 As PresentedBPI 2011 Workshop R2 As Presented
BPI 2011 Workshop R2 As PresentedKen Clapp
 
LC-IR For Polymer &amp; Excipient Analysis EAS2009-11-16-2009
LC-IR For Polymer &amp; Excipient Analysis  EAS2009-11-16-2009LC-IR For Polymer &amp; Excipient Analysis  EAS2009-11-16-2009
LC-IR For Polymer &amp; Excipient Analysis EAS2009-11-16-2009mzhou45
 
Wuwnet 09 parrish
Wuwnet 09 parrishWuwnet 09 parrish
Wuwnet 09 parrishkenjo138
 
Radar fundamentals
Radar fundamentalsRadar fundamentals
Radar fundamentalsHossam Zein
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radarAmit Rastogi
 
Deformulating Complex Polymer Mixtures By GPC-IR Technology
Deformulating Complex Polymer Mixtures By GPC-IR TechnologyDeformulating Complex Polymer Mixtures By GPC-IR Technology
Deformulating Complex Polymer Mixtures By GPC-IR Technologymzhou45
 
Cable Infrastructure Evolution
Cable Infrastructure EvolutionCable Infrastructure Evolution
Cable Infrastructure EvolutionXiaolin Lu
 
Analisis de harinas dumas
Analisis de harinas dumasAnalisis de harinas dumas
Analisis de harinas dumasEDGARDO QUINDE
 
A CMOS 79GHz PMCW radar SOC
A CMOS 79GHz PMCW radar SOCA CMOS 79GHz PMCW radar SOC
A CMOS 79GHz PMCW radar SOCDr. Jianying Guo
 
LOW,MEDIUM,HIGH_Doppler_MTI.pptx
LOW,MEDIUM,HIGH_Doppler_MTI.pptxLOW,MEDIUM,HIGH_Doppler_MTI.pptx
LOW,MEDIUM,HIGH_Doppler_MTI.pptxFirstknightPhyo
 
radar technology and operation process.pptx
radar technology and operation process.pptxradar technology and operation process.pptx
radar technology and operation process.pptxMugabo4
 

Similar to ASTM D7872-13 (20)

Kps Environment 2 D3 D Wind Profiling
Kps Environment 2 D3 D Wind ProfilingKps Environment 2 D3 D Wind Profiling
Kps Environment 2 D3 D Wind Profiling
 
MPR portugal 2007
MPR portugal 2007MPR portugal 2007
MPR portugal 2007
 
Ink jet rheology and processing-Monash 2009
Ink jet rheology and processing-Monash 2009Ink jet rheology and processing-Monash 2009
Ink jet rheology and processing-Monash 2009
 
Acrobat document
Acrobat documentAcrobat document
Acrobat document
 
Ax26326329
Ax26326329Ax26326329
Ax26326329
 
Dr. Wiley - PRI Analysis and Deinterleaving
Dr. Wiley - PRI Analysis and DeinterleavingDr. Wiley - PRI Analysis and Deinterleaving
Dr. Wiley - PRI Analysis and Deinterleaving
 
About byFlow R&D
About byFlow R&DAbout byFlow R&D
About byFlow R&D
 
Master thesispresentation
Master thesispresentationMaster thesispresentation
Master thesispresentation
 
Rfconnext Pmtl Ddr Applications
Rfconnext Pmtl Ddr ApplicationsRfconnext Pmtl Ddr Applications
Rfconnext Pmtl Ddr Applications
 
BPI 2011 Workshop R2 As Presented
BPI 2011 Workshop R2 As PresentedBPI 2011 Workshop R2 As Presented
BPI 2011 Workshop R2 As Presented
 
LC-IR For Polymer &amp; Excipient Analysis EAS2009-11-16-2009
LC-IR For Polymer &amp; Excipient Analysis  EAS2009-11-16-2009LC-IR For Polymer &amp; Excipient Analysis  EAS2009-11-16-2009
LC-IR For Polymer &amp; Excipient Analysis EAS2009-11-16-2009
 
Wuwnet 09 parrish
Wuwnet 09 parrishWuwnet 09 parrish
Wuwnet 09 parrish
 
Radar fundamentals
Radar fundamentalsRadar fundamentals
Radar fundamentals
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radar
 
Deformulating Complex Polymer Mixtures By GPC-IR Technology
Deformulating Complex Polymer Mixtures By GPC-IR TechnologyDeformulating Complex Polymer Mixtures By GPC-IR Technology
Deformulating Complex Polymer Mixtures By GPC-IR Technology
 
Cable Infrastructure Evolution
Cable Infrastructure EvolutionCable Infrastructure Evolution
Cable Infrastructure Evolution
 
Analisis de harinas dumas
Analisis de harinas dumasAnalisis de harinas dumas
Analisis de harinas dumas
 
A CMOS 79GHz PMCW radar SOC
A CMOS 79GHz PMCW radar SOCA CMOS 79GHz PMCW radar SOC
A CMOS 79GHz PMCW radar SOC
 
LOW,MEDIUM,HIGH_Doppler_MTI.pptx
LOW,MEDIUM,HIGH_Doppler_MTI.pptxLOW,MEDIUM,HIGH_Doppler_MTI.pptx
LOW,MEDIUM,HIGH_Doppler_MTI.pptx
 
radar technology and operation process.pptx
radar technology and operation process.pptxradar technology and operation process.pptx
radar technology and operation process.pptx
 

ASTM D7872-13

  • 1. Quantification of DRA in jet fuel Rotary Evaporation with GPC detection Proposed ASTM Method
  • 2. Overview - Pipeline Drag Reducing Additive (DRA) - Optimization of Rotary Evaporation with GPC detection method
  • 3. DRA chemistry Example of polymer chemistry * * n m Monomers Poly(alphaolefin) Linear alpha olefin Drag Reducing Additive (DRA)  DRA molecular weights > 25 million Daltons (n and m >200,000)
  • 4. Drag reduction mechanism DRA mitigates turbulent burst imposing long DRA range concerted axial motion Flow Local flow direction 100 90 Drag reduction can be thought of as a reduction in the frictional factor f % Drag 80 70 reduction 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 FLO MXC ppm high strain regions DRA > 25 million Da Valves, Pumps, Restrictions Sheared DRA 1 to 3 million Da (not as effective, reinjection)
  • 5. Fuel pipeline operations Flow Jet fuel No inject. Interface Diesel (DRA not allowed) Buffer Potential DRA contamination sources Risk 1.) Use of drag reducers increases interface size Mitigated Turbulent Flow Laminar Flow - Flat velocity profile - Faster center velocity - Low interface volume - Large interface volume 2.) Chemical dispersion No 3.) Pipeline operational mistakes Yes 4.) DRA injector leaks Yes
  • 6. DRA monitoring industry wide  Verbal reports of DRA contamination in jet fuel  DRA impacts jet fuel performance (taken from Stan Seto CRC Report 642)  Diminishing fuel spray angle and atomization capability @ 8.8 - 32 ppm  A significant loss in engine start capability @ 8.8 and 32 ppm  The report concluded that DRA was not acceptable for use in aviation fuel  The actual safe limit has never been identified  TF is targeted developing methods with a limit of detection of 50 ppb which is considered low level contamination except for highly active contaminants like copper
  • 8. Principles of Gel Permeation Chromatography (GPC) Flow Jet fuel molecules DRA polymer Stationary phase Mobile phase not shown Detector (RI, ELSD ...) Time = 0 1 2 3 and so on… Area proportional to concentration Detection Elution time Related to molecules size or MW
  • 10. Original proposed method Sample Prep Rotovap Pierce Reacti-therm Backfill w/THF Jet fuel (130oC) Concentrated (120oC) Filter DRA sample Sample for (W1 ≈ 400g) 5-8hr (W2 ≈ 2g) Overnight GPC Inject 200μl GPC divert flow from ELSD GPC column PL type Mixed D 10μ particle size after DRA elutes ELSD 1 2 3 THF Waste Data workup Concentration of DRA in jet fuel = (Determined PPM) x (W2/W1) integrated DRA area Determine PPM  Can detect to 50 ppb  Sound method but need something simpler for widespread implementation
  • 11. Impact of mobile phase ~2 ppm DRA samples Can we use heptane instead of THF in the proposed method? THF Original Proposed Method Sample ~200x conc. (Rotovap) GPC 5µ PL column Mixed D # of 3 Heptane columns Mobile THF  phase Heptane Detector ELSD Detection 0.05 ppm limit NO, significant loss in ELSD detection sensitivity with heptane
  • 12. Run Time: 25.0 Minutes Channel Name: ELSD Signal Sample Set Name: 11_29_10 Proc. Chnl. Descr.: ELSD Signal Baker Hughes GPC setup 0.20 SAM PL E INFO RMAT ION Can we combine rotovap concentration FLO_XS 0.00 with Baker Hughes GPC? Sample Name: 37097 Acquired By: weibo Sample Type: Unknown Date Acquired: 11/29/2010 8:52:50 PM CST -0.20 Original Vial: 7 Acq. Method Set: GPC _Cpntoller_Method Set Baker Injection #: 1 Date Processed: 12/1/2010 9:50:50 AM CST Proposed Hughes Injection Volume: 200.00 ul Processing Method: flo_quant1 method LSU -0.40 Run Time: 25.0 Minutes Channel Name: ELSD Signal ~5x  ~200x Sample Set Name: 11_29_10~ 2.5 Sample ~200x (Dry bath  ppm DRA sample Signal Proc. Chnl. Descr.: ELSD conc. (Rotovap) Rotovap @ EM) -0.60 0.20 GPC 5µ PL 5μ PL column Mixed D Mixed C -0.80 FLO_XS # of 0.00 3 2 columns Mobile -1.00 THF THF -0.20 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 phase Minutes Detector ELSD ELSD SampleName 37097; Vial 7; Injection 1; Channel ELSD Signal; Date Acquired 11/29/2010 8:52:50 LSU Detection -0.40 PM CST 0.05 ppm ~1 ppm limit Component Summary Table No improvement found over original proposed method -0.60 with respect to detection Name: FLO_XS sensitivity SampleName Inj Channel Name RT Area Height Amount Units Vial 1 37097 1 ELSD Signal FLO_XS 10.024 1098 30 7.312 ppm 7 -0.80 Mean 1098 30 7.312
  • 13. Magellan Midstream Partners GPC setup Can we combine rotovap concentration with MMP GPC? Original jet fuel sample with 50 ppb DRA 10.7 ppm after concentrating Original Magellan proposed Midstream method Partners None  ~200x Sample ~200x (Rotovap @ conc. (Rotovap) EM) GPC 5µ PL 10µ PL column Mixed D Gel 104 Å # of 3 1 columns Mobile THF Heptane phase DRA’s permeating Detector ELSD RI Detection 0.05 ppm ~1 ppm Bigger DRA’s excluded limit Smaller DRA’s permeate Yes. Results are very encouraging, GPC simplified enormously! DRA’s totally excluded
  • 14. Simplifications applied to ASTM draft method Original Magellan ASTM Draft proposed Midstream Method method Partners (Basic GPC) Sample ~200x none ~200x conc. (Roto.) (Roto.) Key to getting down to ppb levels GPC 5µ PL 10µ PL Gel 10µ PL Gel Column Mixed D <104 Å 104 Å 1) Requires less columns  less run time 2) Better separation  no overnight evap. # of columns 3 1 1 3) Sharper peak  RI detections is viable Mobile THF Heptane Heptane More acceptable Phase Detector ELSD RI RI Common GPC detection Detection 0.05 ppm ~1 ppm 0.05 ppm limit Maintained 50 ppb detection limit
  • 15. Ruggedness tests Sample Prep Calibration GPC DRA in Jet Fuel by direct blend of DRA @ 2, 4, 10, 20, 100ppm in jet fuel Rotovap Jet fuel (130oC) Concentrated DRA 40000 35000 y = 335.57x (W1 ≈ 400g) sample R2 = 0.9999 5-8hr 30000 (W2 ≈ 2g) 25000 Area GPC 20000 Area 104A RI 15000 Linear (Ar 10000 1 5000 0 0 20 40 60 80 100 120 Heptane ppm DRA Results for 3 Jet fuel samples with 50 ppb DRA Example result (#2) Sample 1 2 3 S/N > 40 Initial weight sample 399.36 399.45 398.93 Weight of concentrate 1.59 2.26 2.46 ppm from GPC 13.1 10.3 7.1 ppb after correcting for concentration 52.2 58.3 43.8
  • 16. Limits to quantifying the minimum DRA concentration 0.13 S/N = 13.7 0.09 10x noise RI 0.05 0.01 Height of high frequency peak to peak noise -0.03 0 1 2 3 4 5 6 Time (minutess)  GPC column, 10µm particles with 500Å pore size. Sample analyzed contained 2.9 ppm DRA in jet fuel (after rotovap concentrating a 50 ppb DRA in jet fuel sample)  Chromatogram example exhibits a DRA signal that satisfies the >10 S/N. After rotovap concentrating a 400g sample containing 50 ppb DRA the final weight of the concentrate should be ~ 7g or less (2.9 ppm or greater concentrate) for this GPC apparatus
  • 17. Tests with different DRA types 0.15 0.13 0.11 0.09 0.07 RI 0.05 50 ppb sheared gel 0.03 50 ppb sheared dispersed 0.01 50 ppb unsheared gel -0.01 -0.03 0 1 2 3 4 5 6 Time (m inutess) Description Gel type FLO XS Dispersed type FLO MXC Sheared/Unsheared sheared unsheared sheared Wt. of Sample 396.37g/ 396.37g/ 396.54g/ 396.29g/ before/after Rotovaping 6.96g 4.14g 7.74g 5.14g Concentrated DRA 2.9 ppm 4.9 ppm 1.8 ppm 4.3 ppm conc. Calculated conc. DRA 50.9 ppb 51.2 ppb 35.1 ppb 55.8 ppb of Original Sample S/N 13.7 15.7 5.5 18.9  Typical LOQ requires the S/N ratio to be > 10 which is satisfied for sheared DRA (gel and dispersed). Unsheared exhibits less sensitivity but is above the level of detection (LOD) which typically requires the S/N ratio to be > 2
  • 18. Tests with different GPC column article pore size 0.49 0.39 0.29 w/ 50Å particle pore size RI (mv) 0.19 10ppm DRA sheared, gel type in Jet fuel (calibration sample, no rotovaping) 0.09 -0.01 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (min) Pore size MW range Typical materials PL gel part # Excluded 50Å up to 2000 Jet fuel molecules 1110-6115 100Å up to 4000 1110-6120 DRA & 500Å 500-30,000 1110-6125 Sheared DRA 10^3Å 500-60,000 1110-6130 excluded 10^4Å 10,000-600,000 1110-6140 10^5Å 60,000-2,000,000 Sheared DRA 1110-6150 10^6Å 600,000-10,000,000 Sheared DRA 1110-6160 ~25,000,000 DRA  Results are similar for all pore sizes < 10Å. Tests include 50Å, 500Å and 104Å
  • 19. Calibration samples vs. concentrated samples 0.46 0.36 10.3 ppm after rotovap 50 ppb in Jet fuel 0.26 (S/N 41.6) RI 10.0 ppm in jet fuel 0.16 calibration sample (S/N 67.9) 0.06 -0.04 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time (minutes) Concentration (ppm) Area Peak height S/N 50ppb Concentrated sample 10.3 3.65 0.345 41.6 Calibration sample 10.0 3.41 0.340 67.9  RI DRA signal response is similar
  • 20. Does Stadis® 450 cause measurement interference? 0.15 0.13 Both samples 0.11 concentrated on a 0.09 rotovap 0.07 RI 50 ppb sheared gel 0.05 5ppm Stadis 450 0.03 0.01 -0.01 -0.03 0 1 2 3 4 5 6 7 Tim e (m inutess)  Stadis® 450 MSDS indicates up to 40% trade secret polymer  No interference observed
  • 21. Conclusion  Recent efforts were placed on optimizing the DRA quantification method employing rotary evaporation with GPC detection  TF was successful in making many improvements making the method more deployable  Quantification to 50 ppb appears likely with readily available apparatus and acceptable solvents  Method works with both types of DRA; suspension and gel  Method works with both sheared and unsheared DRA  Slightly less sensitive for unsheared  Proposed ASTM draft method has been prepared Next steps  Need to progress to a round robin  GPC hardware is not limited to the basic apparatus described in the method. All GPC configurations where the DRA peak signal/noise is >10 are acceptable to be used in the RR
  • 22. Thanks for your data contribution Nagesh Kommareddi Baker Hughes Chuck Haber Magellan Midstream partners Patrick Mollere Intertek Elisa Redfield Intertek Thank You
  • 23. Appendix From PL website 2 3 4 5 6 7 Most mixed columns looks to permeate sheared DRA