Successfully reported this slideshow.
American Coatings Conference                       May 7, 2012De-Formulating Complex Polymer Mixtures   by GPC-IR Hyphenat...
OUTLINE Introduction: GPC-IR Technology DiscovIR-LC System & Features GPC-IR to De-Formulate Complex Polymer Mixtures  ...
Hyphenated Technologies &                           Major Applications                    LC-MS                        LC-...
GPC-IR Hyphenated SystemGPC
LC-IR Hyphenated SystemSystem Control      Deposition        Hyphen         GPCData Processing   Microscopic FTIR   Desolv...
Schematic View of LC-IR SystemGPCorHPLC
How is the Solvent Removed?                                 N2 Addition                                                 Cy...
ZnSe Sample Disk    Rotate at tunable speed     15-0.3 mm/min    Unattended overnight runs/10h    The yellow ZnSe disk ...
What is Direct Deposition FTIR?Separated Dot Depositing on Disk   Separated Dots from HPLC-IR   Continuous Polymer Tracks ...
Direct Deposition IR in Action                             10
Features of DiscovIR-LC System Real-Time On-line Detection Microgram Sensitivity All GPC Solvents: e.g. THF, Chloroform...
GPC-IR: Direct Deposition &     Data Processing     ZnSe Disk                              12
OUTLINE Introduction: GPC-IR Technology DiscovIR-LC System & Features GPC-IR to De-Formulate Complex Polymer Mixtures  ...
Case #1: De-Formulate an Adhesive                                        GPC (Size) or IR (Composition)  GPC: Chromatograp...
GPC-IR Data 3D View: De-Formulate                                   the Adhesive Polymer Mixture.05.04      absorbance.03....
GPC-IR De-Formulation                of the Adhesive Polymer MixtureIR Max (Band) Chromatogram at 2929 cm-1            C  ...
GPC-IR Database Search to Identify  Peak A at 10 Min. as EVA PolymerCH2                A2929                  C=O         ...
GPC-IR to Identify Components              C & B by Spectral SubtractionComponent C  ParaffinComponent B
GPC Confirmation of the De-Formulated    Components with Known Stds A, B & C                            B    C            ...
Case #2: To De-Formulate Lubricant                Additives in Motor Oil: GPC-IR 3D View                 SAE 15W-40 Heavy ...
De-Formulation of Motor Oil                           Additive X @ RT 9.2 Min                          Shell Rotella T Hea...
Lubricant De-Formulation of                       Motor Oil Additive Y @ RT 12 Min                         Shell Rotella T...
Summary: Additive De-Formulation in                           Motor Oil Lubricant by GPC-IR De-formulated Polymeric Addit...
Case #3: De-Formulate a Flexible                          Conductive Ink by GPC-IR Silver Ink Paste Filled with Ag Partic...
De-Formulating the Conductive InkGPC-IR Chromatogram Using 2 x GPC Columns             Column: 2 x Jordigel DVB Mixed Bed ...
Stacked IR Spectra of Components A, B, C at Different GPC Times (~ MWD Centers)
Comparison of Max Band Chromatogram                    (Black) & Selected Band Chromatograms                              ...
Commercial IR Database Search (FDM)                 for Polymer A (Red): Polyester SuppliersIndex   %Match      Compound N...
In-House Database Match of Polymer A(Red Spectrum) with Flex Resin (Blue Std)
Commercial IR Database Search (FDM)            for Component B (Blue): PU SupplierIndex   %Match   Compound Name503     88...
Commercial IR Database Search (FDM)            for Component C (Red): Cross-linker SupplierIndex   %Match      Compound Na...
Summary: De-Formulation of                          the Conductive Ink by GPC-IR Identified Polymer Components & their Su...
GPC-IR Applications: Model Cases De-Formulate Complex Polymer Mixtures:  PolyX + Poly(A-B) + Additives  PolyX + PolyY + P...
Summary: GPC-IR to De-Formulate                         Complex Polymer Mixtures GPC-IR is Powerful to De-Formulate Compl...
Acknowledgment William Carson Tracy Phillpott  Tom KearneyFrederic PrulliereGeorge GiansantiThank YOU !            36
GPC-IR Application Summary Introduction: GPC-IR Technology & DiscovIR-LC System GPC-IR Applications: Case Studies De-Fo...
Polymer Additive AnalysisHPLC (RP)-IR of Polymer Extract           HPLC Conditions:           Columns: guard+ Eclipse C18 ...
Additive Identification by HPLC-FTIR        Database Searchable
Polymer Additive Analysis                          by LC-IR for PDMS in THFPolyDiMethyl Siloxane is Difficult to be Detect...
Additive Analysis                          LC-IR Application Scope•   Stabilizers: AO, HALS, UV Stabilizers, Anti-hydrolys...
Polymer & Small Molecule Analysis by                       GPC-IR for ABS Plastic w/ No Extraction Step  GPC-IR Chromatogr...
Polymer Additive Analysis                       GPC-IR for ABS Plastic w/ No Extraction StepIR spectra at different elutio...
Hyphenated Techniques to Characterize                                       Copolymers Poly(A-B)         Absorbance       ...
GPC-IR to Characterize Compositional                        Variations of Copolymers Poly(A-B)                            ...
Summary: GPC-IR Applications                              Profile Polymer Compositions = f (Sizes)                        ...
GPC-IR to Characterize MMA Copolymers by                             IR Peak Ratios of Co-Monomer Contributions     Sample...
IR Spectrum Comparison (1800-1300cm-1) of            All 4 Samples at 23.2 Min. (~MWD Center)normalized to carbonyl peak h...
Summary: Characterizing MMA                               Copolymers by GPC-IRSample      S       MAA        BA       MMA ...
Copovidone PVP/VAc Compositional                                                 Drifts from Different Manf. Processes    ...
Deformulating Complex Polymer Mixtures By GPC-IR Technology
Upcoming SlideShare
Loading in …5
×

Deformulating Complex Polymer Mixtures By GPC-IR Technology

1,294 views

Published on

GPC-IR to de-formulate complex polymer mixtures such as adhesives, coatingg, inks, additives to identify polymer components and find their specific raw material suppliers by IR database search. The presentation was given at American Coating Conference 2012 on May 7 in Indy.

  • Be the first to comment

Deformulating Complex Polymer Mixtures By GPC-IR Technology

  1. 1. American Coatings Conference May 7, 2012De-Formulating Complex Polymer Mixtures by GPC-IR Hyphenated Technology Ming Zhou, PhD Director of Applications Engineering Spectra Analysis Instruments, Inc. Marlborough, MA Contact: ZhouM@Spectra-Analysis.com 1
  2. 2. OUTLINE Introduction: GPC-IR Technology DiscovIR-LC System & Features GPC-IR to De-Formulate Complex Polymer Mixtures  Case #1: To De-Formulate a Hot Melt Adhesive  Case #2: To De-Formulate Polymeric Additives in Lubricant Oil  Case #3: To De-Formulate a Conductive Ink Summary 2
  3. 3. Hyphenated Technologies & Major Applications LC-MS LC-IRSeparation Liquid ChromatographyDetection & Mass Infra RedData Analysis Spectroscopy SpectroscopyApplications Small Molecules Copolymer Compositions Proteins Polymer Mixtures Additive Analysis LC = GPC or HPLC
  4. 4. GPC-IR Hyphenated SystemGPC
  5. 5. LC-IR Hyphenated SystemSystem Control Deposition Hyphen GPCData Processing Microscopic FTIR Desolvation or HPLC
  6. 6. Schematic View of LC-IR SystemGPCorHPLC
  7. 7. How is the Solvent Removed? N2 Addition CycloneFrom LC Cyclone Evaporator Evaporator Thermal Nebulization Air Cooled Condenser Patent pending: PCT/US2007/025207 Chilled Condenser Particle Stream to DiscovIR Waste Solvent
  8. 8. ZnSe Sample Disk  Rotate at tunable speed 15-0.3 mm/min  Unattended overnight runs/10h  The yellow ZnSe disk is under vacuum without moisture or CO2 interference  Disk Temp: - 50C ~ 100C  Transmission IR analysis is done on the solid deposit.  Re-usable after solvent cleaning  Mid-IR transparent 8
  9. 9. What is Direct Deposition FTIR?Separated Dot Depositing on Disk Separated Dots from HPLC-IR Continuous Polymer Tracks (GPC-IR)
  10. 10. Direct Deposition IR in Action 10
  11. 11. Features of DiscovIR-LC System Real-Time On-line Detection Microgram Sensitivity All GPC Solvents: e.g. THF, Chloroform, DMF, TCB, HFIP, … All HPLC Solvents, Gradients & Volatile Buffers • e.g. Water, ACN, Methanol, THF, DMSO … High Quality Solid Phase Transmission IR Spectra Fully Automated Operation: No More Manual Fractionation Multi-Sample Processing: 10 Hr ZnSe Disk Time
  12. 12. GPC-IR: Direct Deposition & Data Processing ZnSe Disk 12
  13. 13. OUTLINE Introduction: GPC-IR Technology DiscovIR-LC System & Features GPC-IR to De-Formulate Complex Polymer Mixtures  Case #1: To De-Formulate a Hot Melt Adhesive  Case #2: To De-Formulate Polymeric Additives in Lubricant Oil  Case #3: To De-Formulate a Conductive Ink Summary 14
  14. 14. Case #1: De-Formulate an Adhesive GPC (Size) or IR (Composition) GPC: Chromatographic IR: Fingerprinting Separation of Components of Chemical Compositions• Provides size distribution (MWD). • Unambiguous identification only• No identification of species. practical for single species.• Additives not identified. • Compounded IR spectra for mixtures • Composition drift not determined. Hot-melt adhesive (Mixture) Hot-melt adhesive (Mixture) GPC only: 2 or 3 peaks ? IR only: Compounded spectra .04 C .2 .03 B? .15 .02 .1 A .05 .01 0 0 2 4 6 8 10 12 14 4000 3500 3000 2500 2000 1500 1000
  15. 15. GPC-IR Data 3D View: De-Formulate the Adhesive Polymer Mixture.05.04 absorbance.03.02 14 13 12.01 11GPC 10 Elution 9 0 Time, min 8 4000 3500 3000 2500 2000 1500 1000 IR Wavenumber, cm-1 1724
  16. 16. GPC-IR De-Formulation of the Adhesive Polymer MixtureIR Max (Band) Chromatogram at 2929 cm-1 C B? AIR Band Chromatogram at 1724 cm-1
  17. 17. GPC-IR Database Search to Identify Peak A at 10 Min. as EVA PolymerCH2 A2929 C=O 1724
  18. 18. GPC-IR to Identify Components C & B by Spectral SubtractionComponent C ParaffinComponent B
  19. 19. GPC Confirmation of the De-Formulated Components with Known Stds A, B & C B C AABC
  20. 20. Case #2: To De-Formulate Lubricant Additives in Motor Oil: GPC-IR 3D View SAE 15W-40 Heavy Duty Oil in THF Low MW Mineral Oil (~85%) Diverted after 12.2 min Additive Y 12 Additive X 11 10 Elution 9 Time 8 (Min. & MW)3500 3000 2500 2000 1500 1000 Wavenumber, cm-1
  21. 21. De-Formulation of Motor Oil Additive X @ RT 9.2 Min Shell Rotella T Heavy Duty 15W-40 9.2 minute eluant4000 3500 3000 2500 2000 1500 1000 wavenumber, cm-1 IR Database Search: Styrene-Acrylate Copolymer
  22. 22. Lubricant De-Formulation of Motor Oil Additive Y @ RT 12 Min Shell Rotella T Heavy Duty 15W-40 12 minute eluant4000 3500 3000 2500 2000 1500 1000 wavenumber, cm-1 IR database Search: Polyisobutenyl Succinimide (PIBS)
  23. 23. Summary: Additive De-Formulation in Motor Oil Lubricant by GPC-IR De-formulated Polymeric Additives X & Y in Motor Oil Lubricant Additive X @ Retention Time 9.2 Min • Narrow MW Distribution ~ Average 600K (GPC) • Styrene-Acrylate Copolymer (IR Database Search) • Viscosity Index Improver • No Comonomer Compositional Drift Stable [700cm-1/1735cm-1] Band Ratio Additive Y @ Retention Time 10-12 Min • Broad MW Range: 8-30K (GPC) • Polyisobutenyl Succinimide (PIBS) (IR Database Search) • A Dispersant to Disperse Metal Particles • Small Comonomer Compositional Drift [dimethyl (1367 cm-1) / imide (1700 cm-1)] Ratio Change < 10% Polymer Degradation Study • To Detect Oxidized Intermediates • Oil Change Schedule
  24. 24. Case #3: De-Formulate a Flexible Conductive Ink by GPC-IR Silver Ink Paste Filled with Ag Particles (~80% Wt) • Designed to screen print flexible circuitry / membrane switch • Extremely flexible after curing at 150oC for 30 min. • Very conductive even under 20x folding / crease tests (ASTM F1683) Sample Preparation • Ink paste was dissolved in THF and the decant was filtered with 0.45 mm PTFE filter before GPC injection with ~0.5% polymer conc. GPC Settings • LC system: Agilent 1200 • GPC Column: 2 x Jordigel DVB Mixed Bed, 25 cm X 10 mm ID • Mobile Phase: THF at 1.0 ml/min Flow Rate • Injection Volume: 60 ml IR Detection • DiscovIR-LC® solvent-removing direct-deposition solid phase FTIR • Cyclone Temperature: 130oC • Condenser Temperature: 15oC • ZnSe Disk Temperature: -10oC
  25. 25. De-Formulating the Conductive InkGPC-IR Chromatogram Using 2 x GPC Columns Column: 2 x Jordigel DVB Mixed Bed Mobile Phase: THF at 1.0 ml/min. Sample Conc.:~5 mg/ml in THF Injection Volume: 60 μl IR Detector Res.: 8 cm-1 ZnSe Disk Temp.: -10oC Cyclone Temp.: 130oC Condenser Temp.: 15oC Disk Speed: 12 mm/min B C
  26. 26. Stacked IR Spectra of Components A, B, C at Different GPC Times (~ MWD Centers)
  27. 27. Comparison of Max Band Chromatogram (Black) & Selected Band Chromatograms Band 1690 cm-1Max BandDefault Band 1510 cm-1 A Band 730 cm-1 B C Elution Time (Min.)
  28. 28. Commercial IR Database Search (FDM) for Polymer A (Red): Polyester SuppliersIndex %Match Compound Name Library434 96.63 Amoco Resin PE-350 Coatings Technology450 95.96 Dynapol LH-812 Coatings Technology467 95.65 Vitel VPE-222F Coatings Technology443 95.06 Dynapol L-411 Coatings Technology466 94.45 Vitel PE-200 Coatings Technology
  29. 29. In-House Database Match of Polymer A(Red Spectrum) with Flex Resin (Blue Std)
  30. 30. Commercial IR Database Search (FDM) for Component B (Blue): PU SupplierIndex %Match Compound Name503 88.13 Spensol L-53  UROTUF L-53949 87.51 Polyester Polyol 0305424 87.33 Polycaprolactone944 87.29 Polyester Polyol 0200212 86.86 UCAR Cyracure UVR-6351
  31. 31. Commercial IR Database Search (FDM) for Component C (Red): Cross-linker SupplierIndex %Match Compound Name834 92.47 Desmodur LS-2800, CAS# 93919-05-2, MW 7663249 65.30 Caffeine; 1,3,7-Trimethylxanthine9302 64.76 Monophenylbutazone615 62.15 Betulinic acid; 3-Hydroxylup-20(29)-en-28-oic acid860 62.05 Spenlite M-27
  32. 32. Summary: De-Formulation of the Conductive Ink by GPC-IR Identified Polymer Components & their Suppliers in the Silver Ink Paste Polymer A • High MW and Broad MW Distribution (GPC) • Aliphatic Polyester Resin (IR Database Search) • IR Spectrum Match with a Known Standard Resin (Pure) • Very Flexible Polymer with Strong Adhesion on Kapton & Mylar Polymer B • Medium MW and Narrow MW Distribution (GPC) • Aliphatic PUD: Spensol L-53 (IR Database Search) • Very Elastomeric and Highly Flexible Component C • Low MW Additive (GPC) • Desmodur LC-2800 (IR Database Search) • Latent Cross-linking Agent: Ketoxime Blocked HDI Trimer • De-blocking at 130-150oC  Tri-functional HDI Trimer for Cross-linking C+B + A during Curing (150oC / 30 min) • De-blocked C Cross-linking with Polymer B • Interpenetrating with Polymer A
  33. 33. GPC-IR Applications: Model Cases De-Formulate Complex Polymer Mixtures: PolyX + Poly(A-B) + Additives PolyX + PolyY + Poly(A-B-C) + Additives Characterize Copolymer Compositions across MWD: Poly(A-B), Poly(A-B-C), Poly(A-B-C-D), … Polymer Blend Ratio Analysis across MWD: PolyX + PolyY Polymer Additive Analysis by HPLC-IR: Add. (SM or PolyX) Analyze Polymer Changes: Degradation or Modification 34
  34. 34. Summary: GPC-IR to De-Formulate Complex Polymer Mixtures GPC-IR is Powerful to De-Formulate Complex Polymer Systems  Identify Polymer Components by IR Database Search  Find Specific Raw Material Supplier or the 2nd Supplier  Compatible with Commercial IR Libraries & In-house IR Database Applicable to Coatings, Adhesives, Inks, Sealants, Elastomers, Plastics, Rubbers, Composites, Biopolymers, Drug Formula, … Useful for Competitive Analysis / IP Protection For Problem Solving / Trouble Shooting / Contamination Analysis Get the Powerful Tool before Your COMPETITORS Get it ! 35
  35. 35. Acknowledgment William Carson Tracy Phillpott Tom KearneyFrederic PrulliereGeorge GiansantiThank YOU ! 36
  36. 36. GPC-IR Application Summary Introduction: GPC-IR Technology & DiscovIR-LC System GPC-IR Applications: Case Studies De-Formulate Complex Polymer Mixtures: Adhesive, Ink, Lubricant Additives, PP/EP/EB, PVP/HPC/HPMC Excipient Characterize Copolymer Composition Variations across MWD: SBR, SEBS, PVP/VAc, PMMA/BA/MAA/S/DAAM Polymer Degradation Analysis: HPMCAS, PEA/MAA, PEG Polymer Blend Ratio Analysis across MWD: EVA/PBMA Polymer Additive Analysis by HPLC-IR: Antioxidants, PDMS HT GPC-IR to Analyze Polyolefin Branching: EP, EB, EH, EO 37 Copolymerization Process Control: Poly(A-B-C)
  37. 37. Polymer Additive AnalysisHPLC (RP)-IR of Polymer Extract HPLC Conditions: Columns: guard+ Eclipse C18 50mm x 46mm 5um Mobile phase: Grad. 75-100% AcN (5min)-100%AcN(5min) in Water, 1ml/min DiscovIR Conditions: Nebulizer 2.2W, Carrier gas 400cc, Disk Speed 3mm/min, Disk Temp. -10ºC, Pressure Chamber: 6.58 torr Condenser (single) temp. 10ºC, Cyclone temperature: 200ºC
  38. 38. Additive Identification by HPLC-FTIR Database Searchable
  39. 39. Polymer Additive Analysis by LC-IR for PDMS in THFPolyDiMethyl Siloxane is Difficult to be Detected by UV or RI. IR is an Universal Detector for Organics
  40. 40. Additive Analysis LC-IR Application Scope• Stabilizers: AO, HALS, UV Stabilizers, Anti-hydrolysis• Surfactants: Polymeric silicones, Foaming Agents• Flexibilizer: Toughners• Thickeners: Dispersants• Colorants: Polymeric• Curing Agents: Crosslinkers• Processing Aids: Mold Release Agents, Lubricants• Biocides: Anti-foul Agents• Anti-Static Agents• Anti-Flammable Agents• Anti-Caking / Settling Agents• Corrosion Inhibitors• Catalysts• Plasticizers• Contaminants, Leachables, Impurities, By-Products 41
  41. 41. Polymer & Small Molecule Analysis by GPC-IR for ABS Plastic w/ No Extraction Step GPC-IR Chromatogram (Blue) for ABS Sample and Ratio Plot of Nitrile/Styrene (2240 cm-1/1495 cm-1).Polymers Identification Small Molecules Compositional Additives Variations Impurities Degradants
  42. 42. Polymer Additive Analysis GPC-IR for ABS Plastic w/ No Extraction StepIR spectra at different elution times across the low MW peak of the SECanalysis of ABS. Spectra indicate presence of multiple components.
  43. 43. Hyphenated Techniques to Characterize Copolymers Poly(A-B) Absorbance GPC/SEC A/B composition molar mass ratio high MW low MW SEC Time Composition Hyphenated (Coupling) Techniques Analysis: IR polymer chains LC—NMR: Fractionation (Batching) NMR LC-MS: for Low MW Portion comonomer A MS 2D LC: HPLC x SEC; IPC x SECHPLC GPC-IR comonomer B 44
  44. 44. GPC-IR to Characterize Compositional Variations of Copolymers Poly(A-B) IR Spectra A BAbsorbance A/B compositionmolar mass ratio high MW low MW GPC Time polymer chains comonomer A comonomer B 45
  45. 45. Summary: GPC-IR Applications Profile Polymer Compositions = f (Sizes) Cross Linking Break Down IR Spectra B A A/B Ratio Absorbance High MW Low MW GPC Elution Time Map out Copolymer Compositions (A/B Ratio) across MWD (Sizes) Study Lot-to-Lot or Supplier-to-Supplier Variations Characterize Polymer Degradation from Processing:  Loss of functional group (Reduced A/B) 46  Cross-linking ( Higher MW)  Break down ( Lower MW) & Detect low MW degradant De-Formulate Complex Polymer Mixtures
  46. 46. GPC-IR to Characterize MMA Copolymers by IR Peak Ratios of Co-Monomer Contributions Sample S MAA BA MMA DAAM Ratios A 5% 12.5% 10% 60% 12.5% A/E, S/E DAAM / E B 15% 10% 75% Acid/Ester C 25% 15% 10% 50% A/E, S/E D (50:50 Acid/Ester B/C Mix) 12.5% 15% 10% 62.5% S/EsterCo-Monomers: S MAA BA MMA DAAM CH3 C =O 1734 1700 1536 704 1734 1605 2 1366 right peak CH3 of doublet Peak Ratios: 704/1734 1700/1734 Total Ester 1734 Base 1536/1734, 1366/1734 E = Total (MMA+BA) 1536/1366 (Ratio Check)
  47. 47. IR Spectrum Comparison (1800-1300cm-1) of All 4 Samples at 23.2 Min. (~MWD Center)normalized to carbonyl peak height: Ester (Total MMA + BA)1734 Sample A: Black Sample B: Blue Sample C: Violet Sample D: Green COOH 1700 DAAM Styrene 1366 1605 DAAM 1536
  48. 48. Summary: Characterizing MMA Copolymers by GPC-IRSample S MAA BA MMA DAAM RESULTS (Acid) (Ester) (Ester) Ratios across MWD A 5% 12.5% 10% 60% 12.5% Stable S/E Ratio A/E Small Drift DAAM/E Small Drift B 15% 10% 75% S/Ester = 0 Acid/Ester Drifting DAAM/Ester =0 C 25% 15% 10% 50% Stable S/E Ratio A/E Small Drift DAAM/Ester =0D (50:50 S/Ester DriftingB/C Mix) 12.5% 15% 10% 62.5% Acid/Ester Drifting DAAM/Ester =0 49
  49. 49. Copovidone PVP/VAc Compositional Drifts from Different Manf. Processes .6 Copovidone: sample A 50 sample B .5 % acetate comonomer sample C 45 .4 Molecular Weightmax. IR absorbance Distribution Comonomer Composition .3 Distribution 40 Bulk 40% VAc .2 35 .1 0 30 Molecular Weight 106 105 104 103 102 Copovidone A gave clear tablets while Copovidone C led to cloudy ones.

×