SlideShare a Scribd company logo
1 of 72
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Classical Lamination Theory
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Laminate Behavior
• Modulus Elastis
• The Stacking Position
• Thickness
• Angles of Orientation
• Coefficients of Thermal Expansion
• Coefficients of Moisture Expansion
x
P
P
P
P
z
x
(a)
z
(c)
x
z
M M
(b)
x
M
M
A
P
=
xx
 (4.1)
Strains in a
Gambar 4.2
A beam under (a) axial load, (b) bending moment,
and (c) combined axial and bending moment.
AE
P
=
xx

I
Mz
=
xx



z
=
xx
M
EI
z
+
P
AE
1
=
xx 






















1
z
+
= 0

 z
+
= 0
Types of loads allowed in CLT analysis
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Nx = normal force resultant in the x direction (per unit length)
Ny = normal force resultant in the y direction (per unit length)
Nxy = shear force resultant (per unit length)
Gambar 4.3
Resultant forces and moments on a
laminate.
Gambar 4.3
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Mx = bending moment resultant in the yz plane (per unit length)
My = bending moment resultant in the xz plane (per unit length)
Mxy = twisting moment resultant (per unit length)
Classical Lamination Theory
 Each lamina is orthotropic.
 Each lamina is homogeneous.
 A line straight and perpendicular to the middle surface remains
straight and perpendicular to the middle surface during
deformation. )
0
=
γ
=
γ
( yz
xz .
 The laminate is thin and is loaded only in its plane (plane stress)
)
0
=
τ
=
τ
=
σ
( yz
xz
z .
 Displacements are continuous and small throughout the laminate
|)
h
|
|
w
|
|,
v
|
|,
u
(|  , where h is the laminate thickness.
 Each lamina is elastic.
 No slip occurs between the lamina interfaces.
Gambar 4.4
Cross-Section
after Loading
x
u0
z
z
A


z
A
Mid-Plane
wo
Cross-Section
Before Loading
h/2
h/2
Gambar 4.4
Gambar showing the relationship between displacements through
the thickness of a plate to midplane displacements and curvatures.
Global Strains in a Laminate
















































































y
x
w
y
w
x
w
+ z
x
v
+
y
u
y
v
x
u
=
γ
ε
ε
xy
y
x
0
2
2
0
2
2
0
2
0
0
0
0
2
.
κ
κ
κ
+ z
γ
ε
ε
xy
y
x
xy
y
x





























0
0
0
Gambar 4.5
z
Mid-Plane
Strain Variation Stress Variation
Laminate
Gambar 4.5
Strain and stress variation through the thickness of the laminate.
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Relating Loads to Midplane
Strains/Curvatures
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Types of loads allowed in CLT
analysis
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Nx = normal force resultant in the x direction (per unit length)
Ny = normal force resultant in the y direction (per unit length)
Nxy = shear force resultant (per unit length)
Gambar 4.3
Resultant forces and moments on a
laminate.
x
y
z
Ny
Nx
Nxy
Nyx
(a)
y
x
z
My
Myx
Mxy
Mx
(b)
Mx = bending moment resultant in the yz plane (per unit length)
My = bending moment resultant in the xz plane (per unit length)
Mxy = twisting moment resultant (per unit length)
Types of loads allowed in CLT
analysis
Stacking Sequence
hk-1
hk
hn
h2
h1
h0
Mid-Plane
1
2
3
n
k-1
k
k+1
h3
z
h/2
tk
hn-1
h/2
Gambar 4.6
Coordinate locations of plies in the laminate.
Stresses in a Lamina in a Laminate
k
xy
y
x
k
k
xy
y
x
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
τ
σ
σ




































66
26
16
26
22
12
16
12
11
.
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+ z
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
xy
y
x
k
xy
y
x
k


















































66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
Forces and Stresses
dz,
τ
σ
σ
=
N
N
N
xy
y
x
h/
-h/
xy
y
x

























2
2
dz,
τ
σ
σ
=
xy
y
x
k
h
h
n
k=
k
k-














1
1
Forces & Midplane
Strains/Curvatures
dz
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
N
N
N
xy
y
x
k
h
h
n
k =
xy
y
x
k
k-








































0
0
0
66
26
16
26
22
12
16
12
11
1 1
z dz
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
xy
y
x
k
h
h
n
k =
k
k



























66
26
16
26
22
12
16
12
11
1 1
Forces & Midplane
Strains/Curvatures

























































0
xy
0
y
0
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
xy
y
x
dz
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
N
N
N
k
1
-
k











































xy
y
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
dz
z
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
k
1
k
Integrating terms
,
h
h
dz = k -
k
h
h
k
k -
)
( 1
1


,
h
h
zdz = k -
k
h
h
k
k -
)
(
2
1 2
1
2
1


Forces & Midplane
Strains/Curvatures






























































κ
κ
κ
B
B
B
B
B
B
B
B
B
+
γ
ε
ε
A
A
A
A
A
A
A
A
A
=
N
N
N
xy
y
x
xy
y
x
xy
y
x
66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
,
,
,
; j =
,
,
, i =
h
-
h
Q
=
A k -
k
k
ij
n
k =
ij 6
2
1
6
2
1
)
(
)]
[( 1
1

6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
Stiffness Matrices
[A] – Extensional stiffness matrix relating the resultant in-
plane forces to the in-plane strains.
[B] – Coupling stiffness matrix coupling the force and
moment terms to the midplane strains and midplane
curvatures.
Stresses in a Lamina in a Laminate
k
xy
y
x
k
k
xy
y
x
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
τ
σ
σ




































66
26
16
26
22
12
16
12
11
.
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+ z
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
xy
y
x
k
xy
y
x
k


















































66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
Moments and Stresses
zdz,
τ
σ
σ
=
M
M
M
xy
y
x
h/
-h/
xy
y
x

























2
2
zdz,
τ
σ
σ
=
xy
y
x
k
h
h
n
k=
k
k-














1
1
Moments & Midplane
Strains/Curvatures
zdz
γ
ε
ε
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
M
M
M
xy
y
x
k
h
h
n
k =
xy
y
x
k
k-










































0
0
0
66
26
16
26
22
12
16
12
11
1 1
dz
z
κ
κ
κ
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
xy
y
x
k
h
h
n
k =
k
k
2
66
26
16
26
22
12
16
12
11
1 1
























































































0
xy
0
y
0
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
xy
y
x
zdz
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
M
M
M
k
1
-
k













































xy
y
x
h
h
66
26
16
26
22
12
16
12
11
k
n
1
=
k
dz
z
Q
Q
Q
Q
Q
Q
Q
Q
Q
+
k
1
k
2






























































κ
κ
κ
D
D
D
D
D
D
D
D
D
+
γ
ε
ε
B
B
B
B
B
B
B
B
B
=
M
M
M
xy
y
x
xy
y
x
xy
y
x
66
26
16
26
22
12
16
12
11
0
0
0
66
26
16
26
22
12
16
12
11
.
,
,
; j =
,
,
i =
h
-
h
Q
=
D k -
k
k
ij
n
k =
ij 6
2
1
6
2
1
),
(
)]
[(
3
1 3
1
3
1

6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
i =
,
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
Stiffness Matrices
[A] – Extensional stiffness matrix relating the resultant in-
plane forces to the in-plane strains.
[B] – Coupling stiffness matrix coupling the force and
moment terms to the midplane strains and midplane
curvatures.
[D] – Bending stiffness matrix relating the resultant
bending moments to the plate curvatures.
Forces, Moments, Midplane Strains,
Midplane Curvatures






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Laminate Analysis Steps
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Forces, Moments, Strains,
Curvatures






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Steps
1. Find the value of the reduced stiffness matrix [Q] for each ply using its four
elastic moduli, E1, E2, v12, G12 in Equation (2.93).
2. Find the value of the transformed reduced stiffness matrix ]
Q
[ for each ply
using the [Q] matrix calculated in Step 1 and the angle of the ply in Equation
(2.104) or Equations (2.137) and (2.138).
3. Knowing the thickness, tk of each ply, find the coordinate of the top and
bottom surface, hi, i = 1, . . . . . . . , n of each ply using Equation (4.20).
4. Use the ]
Q
[ matrices from Step 2 and the location of each ply from Step 3 to
find the three stiffness matrices [A], [B] and [D] from Equation (4.28).
5. Substitute the stiffness matrix values found in Step 4 and the applied forces
and moments in Equation (4.29).
Steps
6. Solve the six simultaneous Equations (4.29) to find the mid-plane strains and
curvatures.
7. Knowing the location of each ply, find the global strains in each ply using
Equation (4.16).
8. For finding the global stresses, use the stress-strain Equation (2.103).
9. For finding the local strains, use the transformation Equation (2.99).
10. For finding the local stresses, use the transformation Equation (2.94).
Step 1: Analysis Procedures for Laminate
Step 1: Find the reduced stiffness matrix [Q] for each ply
ν
ν
-
E
=
Q
12
21
1
11
1 ν
ν
E
ν
=
Q
12
21
2
12
12
1 
ν
ν
E
=
Q
12
21
2
22
1  G
=
Q 12
66
Step 2: Analysis Procedures for Laminate
c
s
Q
+
Q
+
s
Q
+
c
Q
=
Q
2
2
66
12
4
22
4
11
11
)
2
(
2
)
(
)
4
( 4
4
12
2
2
66
22
11
12 s
+
c
Q
+
c
s
Q
Q
+
Q
=
Q 
c
s
Q
Q
Q
s
c
Q
Q
Q
=
Q
3
66
12
22
3
66
12
11
16
)
2
(
)
2
( 




c
s
Q
+
Q
+
c
Q
+
s
Q
=
Q
2
2
66
12
4
22
4
11
22
)
2
(
2
s
c
Q
Q
Q
cs
Q
Q
Q
=
Q
3
66
12
22
3
66
12
11
26
)
2
(
)
2
( 




)
(
)
2
2
( 4
4
66
2
2
66
12
22
11
66 c
+
s
Q
+
c
s
Q
Q
Q
+
Q
=
Q 

Step 2: Find the transformed stiffness matrix [Q] using the
reduced stiffness matrix [Q] and the angle of the ply.
Step 3: Analysis Procedures for Laminates
Step 3: Find the coordinate of the top and bottom surface of
each ply.
hk-1
hk
hn
h2
h1
h0
Mid-Plane
1
2
3
n
k-1
k
k+1
h3
z
h/2
tk
hn-1
h/2
Gambar 4.6
Coordinate locations of plies in the laminate.
Step 4: Analysis Procedures for Laminates
Step 4: Find three stiffness matrices [A], [B], and [D]
6
2
1
6
2
1
)
(
)]
[( 1
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
A k -
k
k
ij
n
k =
ij 
6
2
1
6
2
1
)
(
)]
[(
2
1 2
1
2
1
,
,
; j =
,
,
, i =
h
-
h
Q
=
B k -
k
k
ij
n
k =
ij 
6
2
1
6
2
1
),
(
)]
[(
3
1 3
1
3
1
,
,
; j =
,
,
i =
h
-
h
Q
=
D k -
k
k
ij
n
k =
ij 
Step 5: Analysis Procedure for Laminates
Step 5: Substitute the three stiffness matrices [A], [B], and [D]
and the applied forces and moments.






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Step 6: Analysis Procedures for Laminates
Step 6: Solve the six simultaneous equations to find the
midplane strains and curvatures.






































































κ
κ
κ
γ
ε
ε
D
D
D
B
B
B
D
D
D
B
B
B
D
D
D
B
B
B
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
=
M
M
M
N
N
N
xy
y
x
xy
y
x
xy
y
x
xy
y
x
0
0
0
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
66
26
16
66
26
16
26
22
12
26
22
12
16
12
11
16
12
11
Step 7: Analysis Procedures for Laminates
Step 7: Find the global strains in each ply.



















































xy
y
x
0
xy
0
y
0
x
xy
y
x
z
+
=
Step 8: Analysis Procedure for Laminates
Step 8: Find the global stresses using the stress-strain
equation.












































xy
y
x
66
26
16
26
22
12
16
12
11
xy
y
x
Q
Q
Q
Q
Q
Q
Q
Q
Q
=
Analysis Procedures for Laminated Composites
Step 9: Find the local strains using the transformation equation.

























γ
ε
ε
R
T
R
=
γ
ε
ε
xy
y
x
1
12
2
1
]
[
]
[
]
[










2
0
0
0
1
0
0
0
1
]
[ =
R












s
-
c
sc
-sc
sc
-
c
s
sc
s
c
=
T
2
2
2
2
2
2
2
2
]
[
)
cos(
=
c
)
sin(
=
s
Step 10: Analysis Procedures for Laminates
Step 10: Find the local stresses using the transformation
equation.

























τ
σ
σ
T
=
xy
y
x
12
2
1
1
]
[



















s
c
sc
sc
sc
c
s
sc
s
c
=
T
2
2
2
2
2
2
1
2
2
]
[
)
cos(
=
c
)
sin(

s
END
Pendahuluan Material Komposit
BAB 4 Macromechanical Analysis of a Laminate
Laminate Analysis: Example
Qomarul Hadi, ST,MT
Teknik Mesin
Universitas Sriwijaya
Sumber Bacaan
Mechanics of Composite Materials by Kaw
Laminate Stacking Sequence
Fiber Direction

x
z
y
Gambar 4.1
Schematic of a lamina
Problem
A [0/30/-45] Graphite/Epoxy
laminate is subjected to a load of
Nx = Ny = 1000 N/m. Use the
unidirectional properties from
Table 2.1 of Graphite/Epoxy.
Assume each lamina has a
thickness of 5 mm. Find
a) the three stiffness matrices [A],
[B] and [D] for a three ply [0/30/-
45] Graphite/Epoxy laminate.
b) mid-plane strains and
curvatures.
c) global and local stresses on top
surface of 300 ply.
d) percentage of load Nx taken by
each ply.
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7
Thickness and coordinate locations
of the three-ply laminate.
Solution
A) The reduced stiffness matrix for the Oo Graphite/Epoxy ply
is
0
Pa
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
[Q] 9










Pa
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
]
Q
[ 9
0










Pa
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
=
]
Q
[ 9
30










Pa
)
10
(
46.59
42.87
-
42.87
-
42.87
-
56.66
42.32
42.87
-
42.32
56.66
=
]
Q
[ 9
45
-










Matrices Qbar Untuk Laminas
The total thickness of the laminate is
h = (0.005)(3) = 0.015 m.
h0=-0.0075 m
h1=-0.0025 m
h2=0.0025 m
h3=0.0075 m
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Coordinates of top & bottom of
plies
Gambar 4.7
Thickness and coordinate locations
of the three-ply laminate.
Calculating [A] matrix
(-0.0075)]
-
[(-0.0025)
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.8
=
[A] 9










(-0.0025)]
-
[0.0025
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
+ 9










0.0025]
-
[0.0075
)
10
(
46.59
42.87
-
42.87
-
42.87
-
56.66
42.32
42.87
-
42.32
56.66
+ 9










)
h
-
h
(
]
Q
[
=
A 1
-
k
k
k
ij
3
1
=
k
ij 
)
(
]
[ 1
3
1
h
-
h
Q
=
A k -
k
k
ij
k =
ij 
The [A] matrix
m
-
Pa
)
4.525(10
)
1.141(10
)
5.663(10
)
1.141(10
)
4.533(10
)
3.884(10
)
5.663(10
)
3.884(10
)
1.739(10
=
[A]
8
8
7
8
8
8
7
8
9












Calculating the [B] Matrix
)
h
-
h
(
]
Q
[
2
1
=
B
2
1
-
k
2
k
k
ij
3
1
=
k
ij 
)]
)
(-0.0075
-
)
[(-0.0025
)
10
(
7.17
0
0
0
10.35
2.897
0
2.897
181.2
2
1
=
[B] 2
2
9










 
)
(-0.0025
-
)
(0.0025
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
2
1
+ 2
2
9










]
)
(0.0025
-
)
[(0.0075
)
10
(
46.59
42.87
42.87
42.87
56.66
42.32
42.87
42.32
56.66
2
1
+ 2
2
9














The [B] Matrix
     
     
     
2
5
6
6
6
6
5
6
5
6
10
855
9
10
072
1
10
072
1
10
072
1
10
158
1
10
855
9
10
072
1
10
855
9
10
129
3
m
Pa
.
.
.
.
.
.
.
.
.
[B] = 















Calculating the [D] matrix
)
h
-
h
(
]
Q
[
3
1
=
D
3
1
-
k
3
k
k
ij
3
1
=
k
ij 
 
3
3
9
)
0075
0
(
)
0025
0
(
)
10
(
17
7
0
0
0
35
10
897
2
0
897
2
8
181
3
1
.
.
.
.
.
.
.
[D] = 












 
3
3
9
)
0025
0
(
)
0025
0
(
)
10
(
74
36
05
20
19
54
05
20
65
23
46
32
19
54
46
32
4
109
3
1
.
.
.
.
.
.
.
.
.
.
.
+ 











 
3
3
9
)
0025
0
)
0075
0
(
)
10
(
59
46
87
42
87
42
87
42
66
56
32
42
87
42
32
42
66
56
3
1
.
- (
.
.
.
.
.
.
.
.
.
.
+














The [D] matrix
     
     
     
3
3
3
3
3
3
3
3
3
4
m
-
Pa
10
7.663
10
5.596
10
5.240
10
5.596
10
9.320
10
6.461
10
5.240
10
6.461
10
3.343
=
[D]














B) Since the applied load is Nx = Ny = 1000 N/m, the mid-
plane strains and curvatures can be found by solving the
following set of simultaneous linear equations






































































κ
κ
κ
γ
ε
ε
)
(
.
)
(
.
-
)
(
.
-
)
(
.
)
(
.
-
)
(
.
-
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
-
)
(
.
)
(
.
-
)
.
)
(
.
-
)
(
.
)
(
.
)
(
.
-
)
(
.
)
.
)
(
.
-
)
(
.
)
(
.
-
)
(
.
)
(
.
)
.
=
xy
y
x
xy
y
x
0
0
0
3
3
3
5
6
6
3
3
3
6
6
5
3
3
4
6
5
6
5
6
6
8
8
7
6
6
5
8
8
8
6
5
6
7
8
9
10
663
7
10
596
5
10
240
5
10
855
9
10
072
1
10
072
1
10
596
5
10
320
9
10
461
6
10
072
1
10
158
1
10
855
9
10
240
5
10
461
6
10
343
3
10
072
1
10
855
9
10
129
3
10
855
9
10
072
1
10
072
1
10
525
4
10
141
1
10
(
663
5
10
072
1
10
158
1
10
855
9
10
141
1
10
533
4
10
(
884
3
10
072
1
10
855
9
10
129
3
10
663
5
10
884
3
10
(
739
1
0
0
0
0
1000
1000
Setting up the 6x6 matrix
Mid-plane strains and
curvatures
/m
.
.
.
m/m
.
.
.
=
κ
κ
κ
γ
ε
ε
xy
y
x
xy
y
x
1
)
10
(
101
4
)
10
(
285
3
)
10
(
971
2
)
10
(
598
7
)
10
(
492
3
)
10
(
123
3
4
4
5
7
6
7
0
0
0


























































C) The strains and stresses at the top surface of the 300 ply are found
as follows. The top surface of the 300 ply is located at z = h1 = -
0.0025 m.




































)
(
.
)
(
.
-
)
(
.
)
.
+ (-
)
(
.
-
)
(
.
)
(
.
=
γ
ε
ε
-
-
-
-
-
-
xy
y
x
, top
10
101
4
10
285
3
10
971
2
0025
0
10
598
7
10
492
3
10
123
3
4
4
5
7
6
7
300
m/m
)
(
.
-
)
(
.
)
(
.
=
-
-
-












10
785
1
10
313
4
10
380
2
6
6
7
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7 Thickness and coordinate locations of the three-ply laminate.
Global strains (m/m)
 xy
Ply # Position εx εy
1 (00) Top
Middle
Bottom
8.944 (10-8)
1.637 (10-7)
2.380 (10-7)
5.955 (10-6)
5.134 (10-6)
4.313 (10-6)
-3.836 (10-6)
-2.811 (10-6)
-1.785 (10-6)
2 (300) Top
Middle
Bottom
2.380 (10-7)
3.123 (10-7)
3.866 (10-7)
4.313 (10-6)
3.492 (10-6)
2.670 (10-6)
-1.785 (10-6)
-7.598 (10-7)
2.655 (10-7)
3(-450) Top
Middle
Bottom
3.866 (10-7)
4.609 (10-7)
5.352 (10-7)
2.670 (10-6)
1.849 (10-6)
1.028 (10-6)
2.655 (10-7)
1.291 (10-6)
2.316 (10-6)


































)
10
1.785(
-
)
10
4.313(
)
10
2.380(
)
10
(
36.74
20.05
54.19
20.05
23.65
32.46
54.19
32.46
109.4
=
τ
σ
σ
6
-
6
-
-7
9
xy
y
x
top
,
300
Pa
)
10
3.381(
)
10
7.391(
)
10
6.930(
=
4
4
4












Global stresses in 30o
ply
Global stresses (Pa)
Ply # Position σx σy τxy
1 (00) Top
Middle
Bottom
3.351 (104)
4.464 (104)
5.577 (104)
6.188 (104)
5.359 (104)
4.531 (104)
-2.750 (104)
-2.015 (104)
-1.280 (104)
2 (300) Top
Middle
Bottom
6.930 (104)
1.063 (105)
1.434 (105)
7.391 (104)
7.747 (104)
8.102 (104)
3.381 (104)
5.903 (104)
8.426 (104)
3 (-450) Top
Middle
Bottom
1.235 (105)
4.903 (104)
-2.547 (104)
1.563 (105)
6.894 (104)
-1.840 (104)
-1.187 (105)
-3.888 (104)
4.091 (104)
The local strains and local stress as in the 300 ply at the
top surface are found using transformation equations as


































2
)/
10
1.785(
-
)
10
4.313(
)
10
2.380(
0.5000
0.4330
0.4330
-
0.8660
-
0.7500
0.2500
0.8660
0.2500
0.7500
=
/2
γ
ε
ε
6
-
6
-
-7
12
2
1
m/m
.
.
.
=
γ
ε
ε
-
-
-
























)
10
(
636
2
)
10
(
067
4
)
10
(
837
4
6
6
7
12
2
1
Local strains (m/m)
Ply # Position ε1 ε2 γ12
1 (00) Top
Middle
Bottom
8.944 (10-8)
1.637 (10-7)
2.380 (10-7)
5.955(10-6)
5.134(10-6)
4.313(10-6)
-3.836(10-6)
-2.811(10-6)
-1.785(10-6)
2 (300) Top
Middle
Bottom
4.837(10-7)
7.781(10-7)
1.073(10-6)
4.067(10-6)
3.026(10-6)
1.985(10-6)
2.636(10-6)
2.374(10-6)
2.111(10-6)
3 (-450) Top
Middle
Bottom
1.396(10-6)
5.096(10-7)
-3.766(10-7)
1.661(10-6)
1.800(10-6)
1.940(10-6)
-2.284(10-6)
-1.388(10-6)
-4.928(10-7)


































)
10
3.381(
)
10
7.391(
)
10
6.930(
0.5000
0.4330
0.4330
-
.8660
-
0.7500
0.2500
.8660
0.2500
0.7500
=
τ
σ
σ
4
4
4
12
2
1
Pa
)
10
1.890(
)
10
4.348(
)
10
9.973(
=
4
4
4












Local stresses in 30o
ply
Local stresses (Pa)
Ply # Position σ1 σ2 τ12
1 (00) Top
Middle
Bottom
3.351 (104)
4.464 (104)
5.577 (104)
6.188 (104)
5.359(104)
4.531 (104)
-2.750 (104)
-2.015 (104)
-1.280 (104)
2 (300) Top
Middle
Bottom
9.973 (104)
1.502 (105)
2.007 (105)
4.348 (104)
3.356 (104)
2.364 (104)
1.890 (104)
1.702 (104)
1.513 (104)
3 (-450) Top
Middle
Bottom
2.586 (105)
9.786 (104)
-6.285 (104)
2.123 (104)
2.010 (104)
1.898 (104)
-1.638 (104)
-9.954 (103)
-3.533 (103)
D) Portion of load taken by each ply
Portion of load Nx taken by 00 ply = 4.464(104)(5)(10-3) = 223.2 N/m
Portion of load Nx taken by 300 ply = 1.063(105)(5)(10-3) = 531.5 N/m
Portion of load Nx taken by -450 ply = 4.903(104)(5)(10-3) = 245.2 N/m
The sum total of the loads shared by each ply is 1000 N/m, (223.2 +
531.5 + 245.2) which is the applied load in the x-direction, Nx.
0o
30o
-45o
5mm
5mm
5mm
z = -2.5mm
z = 2.5mm
z = 7.5mm
z
z = -7.5mm
Gambar 4.7
Thickness and coordinate locations of the three-ply laminate.
Percentage of load Nx taken by 00 ply
Percentage of load Nx taken by 300 ply
Percentage of load Nx taken by -450 ply
%
22.32
=
100
1000
223.2


%
53.15
=
100
1000
531.5


%
24.52
=
100
1000
245.2


END

More Related Content

What's hot

Composite Failure Presentation
Composite Failure PresentationComposite Failure Presentation
Composite Failure Presentationjwaldr01
 
Composite materials
Composite materialsComposite materials
Composite materialsKrishna Gali
 
METAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEMETAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEkedarisantosh
 
Axisymmetric
Axisymmetric Axisymmetric
Axisymmetric Raj Kumar
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
Micromechanics of Composite Materials
Micromechanics of Composite MaterialsMicromechanics of Composite Materials
Micromechanics of Composite MaterialsMohammad Tawfik
 
Fibre reinforced composites 3
Fibre reinforced composites 3Fibre reinforced composites 3
Fibre reinforced composites 3Naga Muruga
 
Composites and it's manufacturing
Composites and it's manufacturingComposites and it's manufacturing
Composites and it's manufacturingHarsh Joshi
 
Composite Materials Used in Aerospace Industry
Composite Materials Used in Aerospace IndustryComposite Materials Used in Aerospace Industry
Composite Materials Used in Aerospace IndustrySazzad Hossain
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix compositesHiep Tran
 
Basics and statics of particles unit i - GE6253 PPT
Basics and statics of particles   unit i - GE6253 PPTBasics and statics of particles   unit i - GE6253 PPT
Basics and statics of particles unit i - GE6253 PPTTHANGA KASI RAJAN S
 
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation NAVEEN UTHANDI
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2propaul
 
Applications of composite materials in automobile
Applications of composite materials in automobileApplications of composite materials in automobile
Applications of composite materials in automobileSazzad Hossain
 

What's hot (20)

Composite introduction
Composite introductionComposite introduction
Composite introduction
 
Composite Failure Presentation
Composite Failure PresentationComposite Failure Presentation
Composite Failure Presentation
 
Composite materials
Composite materialsComposite materials
Composite materials
 
METAL MATRIX COMPOSITE
METAL MATRIX COMPOSITEMETAL MATRIX COMPOSITE
METAL MATRIX COMPOSITE
 
Axisymmetric
Axisymmetric Axisymmetric
Axisymmetric
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
 
Micromechanics of Composite Materials
Micromechanics of Composite MaterialsMicromechanics of Composite Materials
Micromechanics of Composite Materials
 
Fibre reinforced composites 3
Fibre reinforced composites 3Fibre reinforced composites 3
Fibre reinforced composites 3
 
Composites and it's manufacturing
Composites and it's manufacturingComposites and it's manufacturing
Composites and it's manufacturing
 
Composite Materials Used in Aerospace Industry
Composite Materials Used in Aerospace IndustryComposite Materials Used in Aerospace Industry
Composite Materials Used in Aerospace Industry
 
Wear of polymers
Wear of polymersWear of polymers
Wear of polymers
 
Composite Materials
Composite MaterialsComposite Materials
Composite Materials
 
Ceramics matrix composites
Ceramics matrix compositesCeramics matrix composites
Ceramics matrix composites
 
Fracture Mechanics & Failure Analysis: Lecture Fatigue
Fracture Mechanics & Failure Analysis: Lecture FatigueFracture Mechanics & Failure Analysis: Lecture Fatigue
Fracture Mechanics & Failure Analysis: Lecture Fatigue
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix composites
 
Basics and statics of particles unit i - GE6253 PPT
Basics and statics of particles   unit i - GE6253 PPTBasics and statics of particles   unit i - GE6253 PPT
Basics and statics of particles unit i - GE6253 PPT
 
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
 
Textile composite testing
Textile composite testingTextile composite testing
Textile composite testing
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2
 
Applications of composite materials in automobile
Applications of composite materials in automobileApplications of composite materials in automobile
Applications of composite materials in automobile
 

Similar to Classical Lamination Theory

stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdfShikhaSingla15
 
PPT on laminated composite
PPT  on laminated compositePPT  on laminated composite
PPT on laminated compositesmghumare
 
Question Paper Nov-Dec-2018.pdf
Question Paper Nov-Dec-2018.pdfQuestion Paper Nov-Dec-2018.pdf
Question Paper Nov-Dec-2018.pdfVICTORYSUBIKSHI
 
IJSRED-V2I3P46
IJSRED-V2I3P46IJSRED-V2I3P46
IJSRED-V2I3P46IJSRED
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femOsama Mohammed Elmardi Suleiman
 
Serr calculation
Serr calculationSerr calculation
Serr calculationvlpham
 
Neet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biologyNeet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biologypravallikadodda
 
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTTRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTP singh
 
Moment of Inertia by Prof. Malay Badodariya
Moment of Inertia by Prof. Malay BadodariyaMoment of Inertia by Prof. Malay Badodariya
Moment of Inertia by Prof. Malay BadodariyaMalay Badodariya
 
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...Samirsinh Parmar
 
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag TheoryEffect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag TheoryIDES Editor
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxSahilDhanvijay2
 
Paper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelPaper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelRam Mohan
 
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...IJERA Editor
 
Non-Linear Analysis of Steel Frames Subjected To Seismic Force
Non-Linear Analysis of Steel Frames Subjected To Seismic ForceNon-Linear Analysis of Steel Frames Subjected To Seismic Force
Non-Linear Analysis of Steel Frames Subjected To Seismic ForceIJERA Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 

Similar to Classical Lamination Theory (20)

stress strain dispalcement.pdf
stress strain dispalcement.pdfstress strain dispalcement.pdf
stress strain dispalcement.pdf
 
PPT on laminated composite
PPT  on laminated compositePPT  on laminated composite
PPT on laminated composite
 
Question Paper Nov-Dec-2018.pdf
Question Paper Nov-Dec-2018.pdfQuestion Paper Nov-Dec-2018.pdf
Question Paper Nov-Dec-2018.pdf
 
Beams
BeamsBeams
Beams
 
IJSRED-V2I3P46
IJSRED-V2I3P46IJSRED-V2I3P46
IJSRED-V2I3P46
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
 
Serr calculation
Serr calculationSerr calculation
Serr calculation
 
Ijtra1501104
Ijtra1501104Ijtra1501104
Ijtra1501104
 
Neet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biologyNeet full syllabus test paper physics chemistry biology
Neet full syllabus test paper physics chemistry biology
 
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDTTRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
TRANSIENT ANALYSIS OF PIEZOLAMINATED COMPOSITE PLATES USING HSDT
 
Stability
StabilityStability
Stability
 
Moment of Inertia by Prof. Malay Badodariya
Moment of Inertia by Prof. Malay BadodariyaMoment of Inertia by Prof. Malay Badodariya
Moment of Inertia by Prof. Malay Badodariya
 
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
A COMPARATIVE STUDY OF VARIOUS METHODS TO EVALUATE IMPEDANCE FUNCTION FOR SHA...
 
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag TheoryEffect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
Effect of Piezoelectric Layer on Beam Parameters using Zigzag Theory
 
20320140503027
2032014050302720320140503027
20320140503027
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptx
 
Paper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanelPaper_Sound-LineConstraints_CompositePanel
Paper_Sound-LineConstraints_CompositePanel
 
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
Torsional-Distortional Performance of Multi-Cell Trapezoidal Box Girder with ...
 
Non-Linear Analysis of Steel Frames Subjected To Seismic Force
Non-Linear Analysis of Steel Frames Subjected To Seismic ForceNon-Linear Analysis of Steel Frames Subjected To Seismic Force
Non-Linear Analysis of Steel Frames Subjected To Seismic Force
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 

Recently uploaded

Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdfKamal Acharya
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...ppkakm
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsmeharikiros2
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementDr. Deepak Mudgal
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...josephjonse
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)ChandrakantDivate1
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 

Recently uploaded (20)

Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 

Classical Lamination Theory