This document provides an overview of self-organizing maps (SOM) as an unsupervised learning technique. It discusses the principles of self-organization including self-amplification, competition, and cooperation. The Willshaw-von der Malsburg model and Kohonen feature maps are presented as two approaches to building topographic maps through self-organization. The Kohonen SOM learning algorithm is described as involving competition between neurons to determine a winning neuron, cooperation between neighboring neurons, and adaptive changes to synaptic weights based on Hebbian learning principles.