SlideShare a Scribd company logo
1 of 37
Download to read offline
LINEAR ALGEBRA
BASIS AND DIMENSION
MANIKANTA SATYALA
Department of Mathematics
VSM COLLEGE(A), Ramachandrapuram
Definition : Basis
A basis of a vector space V is an ordered set of linearly
independent (non-zero) vectors that spans V.
Notation: 1 , , nฮฒ ฮฒ
Definition :- Basis
A subset S of a vector space V(F) is said to be the basis of V, if
i) S is linearly independent
ii) The linear span of S is V i.e., L(S)=V
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Example :
2 1
,
4 1
B
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
is a basis for R2
B is L.I. :
2 1 0
4 1 0
a b
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏€ซ ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
โ†’
2 0
4 0
a b
a b
๏€ซ ๏€ฝ
๏€ซ ๏€ฝ
โ†’
0
0
a
b
๏€ฝ
๏€ฝ
B spans R2:
2 1
4 1
x
a b
y
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏€ฝ ๏€ซ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
โ†’
2
4
a b x
a b y
๏€ซ ๏€ฝ
๏€ซ ๏€ฝ
โ†’
๏€จ ๏€ฉ
1
2
2
a y x
b x y
๏€ฝ ๏€ญ
๏€ฝ ๏€ญ
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Example :
1 2
,
1 4
B
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏‚ข ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
is a basis for R2 that differs from B only in order.
Definition : Standard / Natural Basis for Rn
1 0 0
0 1 0
, , ,
0 0 1
n
๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏€ฝ
๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
1 2, , , n๏€ฝ e e e
๏€จ ๏€ฉi ikk
๏ค๏€ฝekth component of ei =
1
0
i k
for
i k
๏€ฝ๏ƒฌ
๏€ฝ ๏ƒญ
๏‚น๏ƒฎ
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰2 ๐‘… ๐‘œ๐‘Ÿ ๐‘…2
๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰3 ๐‘… ๐‘œ๐‘Ÿ ๐‘…3
๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰4 ๐‘… ๐‘œ๐‘Ÿ ๐‘…4
๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰๐‘› ๐‘… ๐‘œ๐‘Ÿ ๐‘… ๐‘›
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Example:
For the function space
๏ป ๏ฝcos sin ,a b a b๏ฑ ๏ฑ๏€ซ ๏ƒŽ
a natural basis is cos , sin๏ฑ ๏ฑ
Another basis is cos sin , 2cos 3sin๏ฑ ๏ฑ ๏ฑ ๏ฑ๏€ญ ๏€ซ
Proof is straightforward.
Example :
For the function space of cubic polynomials P3 ,
a natural basis is 2 3
1, , ,x x x
Other choices can be
3 2
, 3 , 6 , 6x x x
2 2 3
1,1 ,1 ,1x x x x x x๏€ซ ๏€ซ ๏€ซ ๏€ซ ๏€ซ ๏€ซ
Proof is again straightforward.
Rule: Set of L.C.โ€™s of a L.I. set is L.I. if each L.C. contains a different vector.
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Example : Matrices
Find a basis for this subspace of M2๏‚ด2 : 2 0
0
a b
a b c
c
๏ƒฌ ๏ƒผ๏ƒฆ ๏ƒถ๏ƒฏ ๏ƒฏ
๏€ฝ ๏€ซ ๏€ญ ๏€ฝ๏ƒญ ๏ƒฝ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ๏ƒฏ ๏ƒฏ๏ƒฎ ๏ƒพ
2
,
0
b c b
b c
c
๏ƒฌ ๏ƒผ๏€ญ ๏€ซ๏ƒฆ ๏ƒถ๏ƒฏ ๏ƒฏ
๏€ฝ ๏ƒŽ๏ƒญ ๏ƒฝ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ๏ƒฏ ๏ƒฏ๏ƒฎ ๏ƒพ
Solution:
1 1 2 0
,
0 0 1 0
b c b c
๏ƒฌ ๏ƒผ๏€ญ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ๏ƒฏ ๏ƒฏ
๏€ฝ ๏€ซ ๏ƒŽ๏ƒญ ๏ƒฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ๏ƒฏ ๏ƒฏ๏ƒฎ ๏ƒพ
โˆด Basis is
1 1 2 0
,
0 0 1 0
๏€ญ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ
๏ƒง ๏ƒท ๏ƒง ๏ƒท
๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ
( Proof of L.I. is
left as exercise )
Theorem :
In any vector space, a subset is a basis if and only if each vector in the space can be
expressed as a linear combination of elements of the subset in a unique way.
Let i i i i
i i
c d๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ ฮฒv ฮฒ then ๏€จ ๏€ฉi i i
i
c d๏€ญ ๏€ฝ๏ƒฅ ฮฒ 0
โˆด L.I. ๏ƒ› uniqueness
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐Ÿ. ๐…๐ข๐ง๐ข๐ญ๐ž ๐ƒ๐ข๐ฆ๐ž๐ง๐ญ๐ข๐จ๐ง๐š๐ฅ ๐•๐ž๐œ๐ญ๐จ๐ซ ๐ฌ๐ฉ๐š๐œ๐ž
Definition :
A vector space V(F) is said to be finite dimensional if it
has a finite basis
or
A vector space V(F) is said to be finite dimensional if
there is a finite subset S in V such that L(S)=V
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem :-
๐ผ๐‘“ ๐‘‰ ๐น ๐‘–๐‘  ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰
Proof :- Since V F is finite dimentional vector space
By the definition of finite dimentional vector space
there exists a finite set S such that L S = V
Let S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn
Assume that S does not contains 0 vector
If S is L.I., then S is a Basis set of V.
If S is L.D., then there exists a vector ๐›ผ๐‘– โˆˆ S which can be expressed as
linear combination of its preceding vectors
Omitting vector ๐›ผ๐‘– from S
Let S1 = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑiโˆ’1, ฮฑi+1, โ€ฆ , ฮฑn โ‡’ S1 โŠ‚ S
๐ต๐‘ฆ ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š L S1 = L(S)
๐‘๐‘œ๐‘ค ๐ฟ ๐‘† = ๐‘‰ โ‡’ ๐ฟ ๐‘†1 = ๐‘‰
๐ผ๐‘“ ๐‘†1 ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘กโ„Ž๐‘’๐‘› ๐‘†1 ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰.
๐ผ๐‘“ ๐‘†1 ๐‘–๐‘“ ๐‘–๐‘  ๐ฟ. ๐ท. ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘’๐‘‘๐‘–๐‘›๐‘” ๐‘Ž๐‘  ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘’๐‘๐‘ ,
๐‘ค๐‘’ ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘™๐‘’๐‘“๐‘ก ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ž ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘† ๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐ฟ ๐‘† ๐‘˜ = ๐‘‰. ๐ป๐‘’๐‘›๐‘๐‘’ ๐‘† ๐‘˜ ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem :-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm
๐‘Ž ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰. ๐‘‡โ„Ž๐‘’๐‘› ๐‘’๐‘–๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘† ๐‘–๐‘ก๐‘ ๐‘’๐‘™๐‘“ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘œ๐‘Ÿ ๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’
๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
Proof :-
Since V F is finite dimentional vector space, it has a finite basis let it be B
Given S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm a linearly independent subset of V.
Let B = ฮฒ1, ฮฒ2, ฮฒ3, โ€ฆ , ฮฒn
Now consider the set S1 = S โˆช B = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm, ฮฒ1, ฮฒ2, ฮฒ3, โ€ฆ , ฮฒn
๐‘๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐ฟ ๐ต = ๐‘‰
๐ธ๐‘Ž๐‘โ„Ž ๐›ผ ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐›ฝโ€ฒ ๐‘  ๐‘Ž๐‘  ๐ต ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
โ‡’ ๐‘†1 ๐‘–๐‘  ๐ฟ. ๐ท.
๐ป๐‘Ž๐‘›๐‘๐‘’ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘› ๐‘†1 ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“
๐‘–๐‘ก๐‘  ๐‘๐‘Ÿ๐‘’๐‘๐‘’๐‘’๐‘‘๐‘–๐‘›๐‘” ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ.
๐‘‡โ„Ž๐‘–๐‘  ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘๐‘Ž๐‘›๐‘›๐‘œ๐‘ก ๐‘๐‘’ ๐‘Ž๐‘›๐‘ฆ ๐‘œ๐‘“ ๐›ผโ€ฒ ๐‘ , ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘œ ๐‘กโ„Ž๐‘–๐‘  ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘š๐‘ข๐‘ ๐‘ก ๐‘๐‘’ ๐‘ ๐‘œ๐‘š๐‘’ ๐›ฝ๐‘–
L S1 = L S โˆช B = V ๐‘Ž๐‘  L S โˆช B = ๐ฟ ๐‘† โˆช ๐ฟ ๐ต = ๐ฟ ๐‘† โˆช ๐‘‰ = ๐‘‰
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
S2 = S โˆช B = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm, ฮฒ1, ฮฒ2, ฮฒ3, โ€ฆ , ฮฒiโˆ’1, ฮฒ๐‘–+1 โ€ฆ , ฮฒn = S1 โˆ’ ฮฒi
now delete the ฮฒi from S1
๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘›๐‘’๐‘ค ๐‘ ๐‘’๐‘ก
๐‘œ๐‘๐‘ฃ๐‘–๐‘œ๐‘ข๐‘ ๐‘™๐‘ฆ L S2 = L S1 = V.
๐ผ๐‘“ ๐‘†2 ๐‘–๐‘  ๐ฟ. ๐ผ, ๐‘กโ„Ž๐‘’๐‘› ๐‘†2 ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘–๐‘ก ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘†
๐ผ๐‘“ ๐‘†2 ๐‘–๐‘  ๐ฟ. ๐ท. ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘’ ๐‘กโ„Ž๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘‘๐‘ข๐‘Ÿ๐‘’ ๐‘ก๐‘–๐‘™๐‘™ ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘Ž ๐‘ ๐‘’๐‘ก ๐‘† ๐‘˜ โŠ‚ ๐‘† ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘† ๐‘˜ ๐‘–๐‘  ๐ฟ. ๐ผ.
โˆด ๐ฟ ๐‘† ๐‘˜ = ๐ฟ ๐‘† = ๐‘‰
๐‘† ๐‘˜ ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘† ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘–๐‘›๐‘” ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰.
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐๐จ๐ญ๐ž: โˆ’๐Ÿ
Every basis is a spanning set but converse need not true
If S is Basis of V then L S = V
but If L S = V for S โŠ‚ V โ‡ S
๐๐จ๐ญ๐ž: โˆ’2
Let S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn be a basis set of a finite dimesional vector space V F
Then for every ฮฑ โˆˆ V there exists a unique set of scalars ๐š ๐Ÿ, ๐š ๐Ÿ, ๐š ๐Ÿ‘, โ€ฆ , ๐š ๐ง โˆˆ ๐…
such that
๐›‚ = ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐ง ๐›‚ ๐ง
๐›‚ = ๐› ๐Ÿ ๐›‚ ๐Ÿ + ๐› ๐Ÿ ๐›‚ ๐Ÿ + ๐› ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐› ๐ง ๐›‚ ๐ง
If there exists other set of scalars ๐› ๐Ÿ, ๐› ๐Ÿ, ๐› ๐Ÿ‘, โ€ฆ , ๐› ๐ง โˆˆ ๐… such that
then ๐š ๐Ÿ= ๐› ๐Ÿ, ๐š ๐Ÿ = ๐› ๐Ÿ, ๐š ๐Ÿ‘= ๐› ๐Ÿ‘,โ€ฆ, ๐š ๐ง= ๐› ๐ง
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
3. COORDINATES
Definition : Coordinates
Let S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn be a basis set of a finite dimesional vector space V F .
Let ฮฒ โˆˆ V be given by
๐›ƒ = ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š๐ข ๐›‚๐ข + โ‹ฏ + ๐š ๐ง ๐›‚ ๐ง
for ๐š ๐Ÿ, ๐š ๐Ÿ, ๐š ๐Ÿ‘, โ€ฆ , ๐š ๐ง โˆˆ ๐…
then the set ๐š ๐Ÿ, ๐š ๐Ÿ, ๐š ๐Ÿ‘, โ€ฆ , ๐š ๐ง are called the coordinates
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐‘†โ„Ž๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  1,1,2 , 1.2.5 , 5,3,4 ๐‘œ๐‘“ ๐‘…3 ๐‘… ๐‘‘๐‘œ ๐‘›๐‘œ๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘…3 ๐‘…
Example:
Solution:
๐บ๐‘–๐‘ฃ๐‘’๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  1,1,2 , 1.2.5 , 5,3,4 ๐‘œ๐‘“ ๐‘…3 ๐‘…
๐ฟ๐‘’๐‘ก ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘… ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก
๐‘Ž. 1,1,2 + ๐‘. 1.2.5 + ๐‘. 5,3,4 = 0 = (0,0,0)
๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘œ๐‘“ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘–๐‘ 
๐‘‡โ„Ž๐‘’๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก
๐‘Ž + ๐‘ + 5๐‘ = 0
๐‘Ž + 2๐‘ + 3๐‘ = 0
2๐‘Ž + 5๐‘ + 4๐‘ = 0
1 1 5
1 2 3
2 5 4
By reducing the matrix to echelon form
๐‘’๐‘โ„Ž๐‘œ๐‘™๐‘’๐‘› ๐‘“๐‘œ๐‘Ÿ๐‘š
๐‘Ž ๐‘ ๐‘
0 ๐‘‘ ๐‘’
0 0 ๐‘“
๐‘ฅ
๐‘ฆ
๐‘ง
๐‘…1
๐‘…2
๐‘…3
๐‘…3 โ†’ ๐‘…3 โˆ’ 2๐‘…2
1 1 5
1 2 3
0 1 โˆ’2
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐‘…2 โ†’ ๐‘…2 โˆ’ ๐‘…1
1 1 5
0 1 โˆ’2
0 1 โˆ’2
๐‘…3 โ†’ ๐‘…3 โˆ’ ๐‘…2
1 1 5
0 1 โˆ’2
0 0 0
Since there are only 2 non zero rows and 3 unknowns
Hence the given vectors are L.D.
Therefore given vectors donโ€™t form basis
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐๐จ๐ญ๐ž: โˆ’๐Ÿ‘
Given set of vectors are L. I. if
1. In the coefficient matrix
๐‘๐‘œ ๐‘œ๐‘“ ๐‘ˆ๐‘›๐‘˜๐‘›๐‘œ๐‘ค๐‘›๐‘  = ๐‘…๐‘Ž๐‘›๐‘˜ ๐‘œ๐‘“ ๐‘€๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ
Rank of Matrix = No of non โˆ’ zero rows
2. In the systerm of equations all coefficients are zeros
๐‘Ž + ๐‘ + 5๐‘ = 0
๐‘Ž + 2๐‘ + 3๐‘ = 0
2๐‘Ž + 5๐‘ + 4๐‘ = 0
โ‡’ ๐‘Ž = ๐‘ = ๐‘ = 0
Given set of vectors are L. D. if
1. In the coefficient matrix
๐‘๐‘œ ๐‘œ๐‘“ ๐‘ˆ๐‘›๐‘˜๐‘›๐‘œ๐‘ค๐‘›๐‘  โ‰  ๐‘…๐‘Ž๐‘›๐‘˜ ๐‘œ๐‘“ ๐‘€๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ
2. In the systerm of equations all coefficients are zeros
๐‘Ž + ๐‘ + 5๐‘ = 0
๐‘Ž + 2๐‘ + 3๐‘ = 0
2๐‘Ž + 5๐‘ + 4๐‘ = 0
โ‡’ ๐‘Ž, ๐‘, ๐‘ ๐‘›๐‘œ๐‘ก ๐‘Ž๐‘™๐‘™ ๐‘ง๐‘’๐‘Ÿ๐‘œ๐‘ 
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐‘†โ„Ž๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก 1,0,0 , 1,1,0 , 1,1,1 ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐ถ3 ๐ถ .
๐ป๐‘’๐‘›๐‘๐‘’ ๐‘“๐‘–๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  3 + 4๐‘–, 6๐‘–, 3 + 7๐‘– ๐‘–๐‘›๐ถ3 ๐ถ
Solution:
Example:
๐ฟ๐‘’๐‘ก ๐‘† = 1,0,0 , 1,1,0 , 1,1,1
๐ฟ๐‘’๐‘ก ๐‘Ž, ๐‘, ๐‘ โˆˆ C ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก
๐‘Ž. 1,0,0 + ๐‘. 1.1.0 + ๐‘. 1,1,1 = 0 = (0,0,0)
๐ต๐‘ฆ ๐‘ ๐‘œ๐‘™๐‘ฃ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก
๐‘‡โ„Ž๐‘’๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก
๐‘Ž + ๐‘ + ๐‘ = 0
0 + ๐‘ + ๐‘ = 0
0 + 0 + ๐‘ = 0
๐‘ = 0, ๐‘ = 0, ๐‘Ž = 0
โˆด ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘Ž๐‘Ÿ๐‘’ ๐ฟ. ๐ผ.
๐ฟ๐‘’๐‘ก ๐›พ โˆˆ ๐ถ3 ๐›พ = ๐‘ฅ, ๐‘ฆ, ๐‘ง ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐ถ
๐‘๐‘œ๐‘ค ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘. 1,0,0 + ๐‘ž. 1.1.0 + ๐‘Ÿ. 1,1,1 ๐‘“๐‘œ๐‘Ÿ ๐‘, ๐‘ž, ๐‘Ÿ โˆˆ ๐ถ
= ๐‘, 0,0 + ๐‘ž, ๐‘ž, 0 + (๐‘Ÿ, ๐‘Ÿ, ๐‘Ÿ)
= ๐‘ + ๐‘ž + ๐‘Ÿ, ๐‘ž + ๐‘Ÿ, ๐‘Ÿ
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
โ‡’ ๐‘ฅ = ๐‘ + ๐‘ž + ๐‘Ÿ
๐‘ฆ = ๐‘ž + ๐‘Ÿ
๐‘ง = ๐‘Ÿ
โ‡’ ๐‘Ÿ = ๐‘ง
๐‘ž = ๐‘ฆ โˆ’ ๐‘ง
๐‘ = ๐‘ฅ โˆ’ ๐‘ฆ
โˆด ๐›พ = ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘. 1,0,0 + ๐‘ž. 1.1.0 + ๐‘Ÿ. 1,1,1
๐›พ = (๐‘ฅ โˆ’ ๐‘ฆ). 1,0,0 + (๐‘ฆ โˆ’ ๐‘ง). 1.1.0 + ๐‘ง. 1,1,1
= ๐ฟ๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘†
โˆˆ ๐ฟ(๐‘†)
โˆด ๐ถ3 ๐ถ โŠ† ๐ฟ ๐‘† โˆ’โˆ’ โˆ’ (1)
๐ด๐‘  ๐‘† โŠ‚ ๐ถ3 โ‡’ ๐ฟ ๐‘† โŠ‚ ๐ถ3 โˆ’โˆ’ โˆ’ 2
๐‘“๐‘Ÿ๐‘œ๐‘š 1 & 2
๐ถ3 ๐ถ = ๐ฟ ๐‘† & ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ.
โˆด ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐ถ3 ๐ถ
๐‘๐‘œ๐‘ค ๐‘–๐‘“ ๐‘ฅ, ๐‘ฆ, ๐‘ง = 3 + 4๐‘–, 6๐‘–, 3 + 7๐‘–
๐‘‡โ„Ž๐‘’๐‘› ๐‘ = 3 โˆ’ 2๐‘–, ๐‘ž = โˆ’3 โˆ’ ๐‘– & ๐‘Ÿ = 3 + 7๐‘–
๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘Ž๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ.
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem 3:-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’.
๐‘‡โ„Ž๐‘’๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘ ๐‘’๐‘  ๐‘œ๐‘“ ๐‘‰ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘ 
Proof :- ๐ฟ๐‘’๐‘ก ๐‘† ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘š ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’
๐‘† ๐‘š = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm
๐‘† ๐‘› = ฮฒ1, ฮฒ2, ฮฒ3, โ€ฆ , ฮฒn
๐‘‚๐‘๐‘ฃ๐‘–๐‘œ๐‘ข๐‘ ๐‘™๐‘ฆ ๐‘๐‘œ๐‘กโ„Ž ๐‘† ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘š ๐‘Ž๐‘Ÿ๐‘’ ๐ฟ. ๐ผ. ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก๐‘  ๐‘œ๐‘“ ๐‘‰
๐ต๐‘ฆ ๐ต๐‘Ž๐‘ ๐‘–๐‘  ๐ธ๐‘ฅ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘ค๐‘’๐‘ค ๐‘๐‘Ž๐‘› ๐‘ ๐‘Ž๐‘ฆ ๐‘กโ„Ž๐‘Ž๐‘ก
๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก โ‰ค ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐ต๐‘Ž๐‘ ๐‘–๐‘ 
๐‘– ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘† ๐‘› ๐‘Ž๐‘  ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘š ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰
โ‡’ ๐ฟ ๐‘† ๐‘› = ๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘› ๐‘† ๐‘› = ๐‘›
โ‡’ ๐‘› ๐‘† ๐‘› = ๐‘›
โ‡’ ๐‘› ๐‘† ๐‘š = ๐‘š
โˆด ๐ต๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘† ๐‘š ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘๐‘’ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
โ‡’ ๐‘š โ‰ค ๐‘› โˆ’โˆ’ โˆ’ 1
๐‘–๐‘– ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘† ๐‘š ๐‘Ž๐‘  ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘› ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰
โ‡’ ๐ฟ ๐‘† ๐‘š = ๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘› ๐‘† ๐‘š = ๐‘š
โˆด ๐ต๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘† ๐‘› ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘๐‘’ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
โ‡’ ๐‘› โ‰ค ๐‘š โˆ’โˆ’ โˆ’ 2
๐‘“๐‘Ÿ๐‘œ๐‘š 1 & 2 ๐‘› = ๐‘š
๐‘‡โ„Ž๐‘ข๐‘  ๐‘Ž๐‘›๐‘ฆ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘ ๐‘’๐‘  ๐‘œ๐‘“ ๐‘‰ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘ 
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
4. DIMENSION OF A VECTOR SPACE
Definition : DIMENSION OF A VECTOR SPACE
Let V F be the finite dimensional vector space. The Number of elements
in any basis of V is called the dimension of V and denoted by dim V
๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑ10 ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰(๐น)
For Example :-
๐ท๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘‰ ๐น = dim ๐‘‰ = ๐‘› ๐‘† = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† = 10
๐๐จ๐ญ๐ž: โˆ’๐Ÿ’
๐‘‡โ„Ž๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘›๐‘ข๐‘™๐‘™ ๐‘ ๐‘๐‘Ž๐‘๐‘’ = dim 0 = ๐‘ง๐‘’๐‘Ÿ๐‘œ
๐ผ๐‘“ ๐‘† = 1,0,0 , 0,1,0 , (0,0,1) ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰3(๐น)
๐ท๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“๐‘‰3(๐น) = dim ๐‘‰3(๐น) = ๐‘› ๐‘† = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† = 3
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem 4:-
๐ธ๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› + 1 ๐‘œ๐‘Ÿ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Ž๐‘› ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–๐‘ 
๐ฟ๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก
Proof :-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’., dim ๐‘‰(๐น) = ๐‘›
๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn+1 ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” (๐‘› + 1) ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ 
๐ผ๐‘“ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘กโ„Ž๐‘’๐‘› ๐ต๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š
๐‘† ๐‘–๐‘ก๐‘ ๐‘’๐‘™๐‘“ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘œ๐‘Ÿ ๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
๐น๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก
๐‘‡โ„Ž๐‘’ ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘‰
๐ผ๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’๐‘ ๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘ ๐‘’๐‘  ๐‘† ๐‘ค๐‘–๐‘™๐‘™ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘› ๐‘œ๐‘Ÿ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘› + 1 ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ 
๐ต๐‘ข๐‘ก ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘š๐‘ข๐‘ ๐‘ก โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ .
๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘† ๐‘๐‘Ž๐‘›๐‘›๐‘œ๐‘ก ๐‘๐‘’ ๐‘Ž ๐ฟ. ๐ผ.
๐ป๐‘’๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ท.
๐‘–. ๐‘’., ๐ธ๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› + 1 ๐‘œ๐‘Ÿ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Ž๐‘› ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–๐‘ 
๐ฟ๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem 5:-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘›.
๐‘‡โ„Ž๐‘’๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘‰ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
Proof :-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’., dim ๐‘‰(๐น) = ๐‘›
๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn ๐‘๐‘’ ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘Ž๐‘›๐‘‘ ๐‘› ๐‘† = ๐‘›
๐ผ๐‘“ ๐‘† ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘Ž ๐ต๐‘Ž๐‘ ๐‘–๐‘ 
๐‘กโ„Ž๐‘’๐‘› ๐ต๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š
๐‘† ๐‘–๐‘ก๐‘ ๐‘’๐‘™๐‘“ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘œ๐‘Ÿ ๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
๐ผ๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘ ๐‘ข๐‘โ„Ž ๐‘๐‘Ž๐‘ ๐‘’ ๐‘† ๐‘ค๐‘–๐‘™๐‘™ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘› ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ 
๐ต๐‘ข๐‘ก ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘š๐‘ข๐‘ ๐‘ก โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ .
๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘œ๐‘ข๐‘Ÿ Supposition is wrong
๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘š๐‘ข๐‘ ๐‘ก ๐‘๐‘’ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘ 
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem 6:-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘›.
๐ฟ๐‘’๐‘ก ๐‘† ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐ฟ ๐‘† = ๐‘‰. ๐‘‡โ„Ž๐‘’๐‘› ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰(๐น)
Proof :-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’., dim ๐‘‰(๐น) = ๐‘›
๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘Ž๐‘›๐‘‘ ๐ฟ ๐‘† = ๐‘‰
๐ผ๐‘“ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘  ๐ฟ ๐‘† = ๐‘‰ ๐‘–๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘›, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘† ๐‘๐‘’๐‘๐‘œ๐‘š๐‘’๐‘  ๐ต๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰(๐น)
๐ผ๐‘  ๐‘† ๐‘–๐‘  ๐ฟ. ๐ท. ๐‘ ๐‘’๐‘ก ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐‘Ž ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘† ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘–๐‘›๐‘” ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰(๐น)
๐ผ๐‘› ๐‘ ๐‘ข๐‘โ„Ž ๐‘๐‘Ž๐‘ ๐‘’ ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘™๐‘’๐‘ ๐‘  ๐‘กโ„Ž๐‘Ž๐‘› ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ 
๐ด๐‘  ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘š๐‘ข๐‘ ๐‘ก ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘› ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก๐‘™๐‘ฆ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ 
๐‘†๐‘œ, ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘† ๐‘๐‘Ž๐‘›๐‘›๐‘œ๐‘ก ๐‘๐‘’ ๐ฟ. ๐ท.
๐ป๐‘Ž๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
5. DIMENSION OF A SUBSPACE
Definition : DIMENSION OF A SUBSPACE
Let V F be the finite dimensional vector space and W F be the subspace of V F
The Number of elements in any basis of W F is called the dimension of W
and denoted by dim W
๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑ7 ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š(๐น)
For Example :-
๐ท๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘Š ๐น = dim ๐‘Š = ๐‘› ๐‘† = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† = 7
๐ผ๐‘“ ๐‘† = 1,0,0 , 0,1,0 , (0,0,1) ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š3(๐น)
= dim ๐‘Š3(๐น)= ๐‘› ๐‘† = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† = 3
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem 7:-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘Š ๐‘๐‘’ ๐‘กโ„Ž๐‘’
๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‰. ๐‘‡โ„Ž๐‘’๐‘› ๐‘Š ๐‘–๐‘  ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘ค๐‘–๐‘กโ„Ž dim ๐‘Š โ‰ค ๐‘›.
Proof :-
๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’., dim ๐‘‰(๐น) = ๐‘›
๐‘’๐‘Ž๐‘โ„Ž ๐‘› + 1 ๐‘œ๐‘Ÿ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž๐‘› ๐ฟ๐ท
๐บ๐‘–๐‘ฃ๐‘’๐‘› ๐‘Š ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘’๐‘Ž๐‘โ„Ž ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› + 1 ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Š ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰
๐‘Ž๐‘›๐‘‘ โ„Ž๐‘’๐‘›๐‘๐‘’ ๐ฟ. ๐ท.
๐‘‡โ„Ž๐‘ข๐‘  ๐‘Ž๐‘›๐‘ฆ ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Š ๐‘๐‘Ž๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘› ๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘š๐‘œ๐‘ ๐‘ก ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ .
๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑ ๐‘š ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘™๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ ๐‘ก ๐ฟ. ๐ผ. ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Š, ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘š โ‰ค ๐‘›.
๐‘๐‘œ๐‘ค ๐‘ค๐‘’ ๐‘ โ„Ž๐‘Ž๐‘™๐‘™ ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š.
๐น๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐›ฝ โˆˆ ๐‘Š ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ
๐‘†1 = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑ ๐‘š, ๐›ฝ
๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘™๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ ๐‘ก ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐ฟ๐ผ. ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ , ๐‘†1 ๐‘–๐‘  ๐ฟ. ๐ท.
๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐š ๐Ÿ, ๐š ๐Ÿ, ๐š ๐Ÿ‘, โ€ฆ , ๐š ๐’Ž, ๐’ƒ โˆˆ ๐…, not all Zeros such that
๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž + ๐’ƒ๐œท = ๐ŸŽ
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐ฟ๐‘’๐‘ก ๐‘ = 0, ๐‘กโ„Ž๐‘’๐‘› ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’
๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž + ๐ŸŽ. ๐œท = ๐ŸŽ
๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž = ๐ŸŽ
โ‡’ ๐š ๐Ÿ= ๐ŸŽ, ๐š ๐Ÿ = ๐ŸŽ, ๐š ๐Ÿ‘ = ๐ŸŽ, โ€ฆ , ๐š ๐’Ž = ๐ŸŽ ๐’‚๐’” ๐‘บ ๐’Š๐’” ๐‘ณ. ๐‘ฐ.
๐‘‡โ„Ž๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘†1 ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘  ๐‘Ž ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘›.
๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘ โ‰  0, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐‘โˆ’1 โˆˆ ๐น ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘๐‘โˆ’1 = 1
๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž + ๐’ƒ. ๐œท = ๐ŸŽ
โ‡’ ๐’ƒ. ๐œท = โˆ’ ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž
โ‡’ ๐œท = โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž
โ‡’ ๐œท = (โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐Ÿ)๐›‚ ๐Ÿ + (โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐Ÿ)๐›‚ ๐Ÿ + (โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐Ÿ‘)๐›‚ ๐Ÿ‘ + โ‹ฏ + (โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐’Ž)๐›‚ ๐’Ž
โ‡’ ๐œท = ๐‘ณ๐’Š๐’๐’†๐’“ ๐’„๐’๐’Ž๐’ƒ๐’Š๐’๐’‚๐’•๐’Š๐’๐’ ๐’๐’‡ ๐’†๐’๐’†๐’Ž๐’†๐’๐’•๐’” ๐’๐’‡ ๐‘บ
โ‡’ ๐œท โˆˆ ๐‘ณ(๐‘บ) โ‡’ ๐‘ณ ๐‘บ = ๐‘พ
๐ด๐‘  ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก . ๐ป๐‘Ž๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š
โˆด ๐‘Š ๐‘–๐‘  ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘ค๐‘–๐‘กโ„Ž dim ๐‘Š โ‰ค ๐‘›
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem 8:-
๐ฟ๐‘’๐‘ก ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐‘Š2 ๐‘๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น .
๐‘‡โ„Ž๐‘’๐‘› dim ๐‘Š1 + ๐‘Š2 = dim ๐‘Š1 + dim ๐‘Š2 โˆ’ dim(๐‘Š1 โˆฉ ๐‘Š2 )
Proof :-
๐ฟ๐‘’๐‘ก ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐‘Š2 ๐‘๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น .
๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐‘Š2 ๐‘Ž๐‘Ÿ๐‘’ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘‰,
๐‘Š1 + ๐‘Š2 ๐‘Ž๐‘›๐‘‘ ๐‘Š1 โˆฉ ๐‘Š2 ๐‘Ž๐‘Ÿ๐‘’ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘‰
๐ฟ๐‘’๐‘ก dim(๐‘Š1 โˆฉ ๐‘Š2 ) = ๐‘˜ ๐‘Ž๐‘›๐‘‘
๐‘† = ๐›พ1, ๐›พ2, ๐›พ3, โ€ฆ , ๐›พ ๐‘˜ ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š1 โˆฉ ๐‘Š2
๐‘๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘† โŠ† ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐‘† โŠ† ๐‘Š2
๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘† โŠ† ๐‘Š1 ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š
๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š1
๐ต1 = ๐›พ1, ๐›พ2, ๐›พ3, โ€ฆ , ๐›พ ๐‘˜, ๐›ผ1, ๐›ผ2, โ€ฆ , ๐›ผ ๐‘š
๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘† โŠ† ๐‘Š2 ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š
๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š2
๐ต2 = ๐›พ1, ๐›พ2, ๐›พ3, โ€ฆ , ๐›พ ๐‘˜, ๐›ฝ1, ๐›ฝ2, โ€ฆ , ๐›ฝ ๐‘›
โ‡’ dim ๐‘Š1 = ๐‘˜ + ๐‘š
โ‡’ dim ๐‘Š2 = ๐‘˜ + ๐‘›
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
โˆด dim ๐‘Š1 + dim ๐‘Š2 โˆ’ dim ๐‘Š1 โˆฉ ๐‘Š2
๐ด๐‘  dim(๐‘Š1 โˆฉ ๐‘Š2 ) = ๐‘˜ , dim ๐‘Š1 = ๐‘˜ + ๐‘š ๐‘Ž๐‘›๐‘‘ dim ๐‘Š2 = ๐‘˜ + ๐‘›
= ๐‘˜ + ๐‘š + ๐‘˜ + ๐‘› โˆ’ ๐‘˜ = ๐‘˜ + ๐‘š + ๐‘›
๐‘๐‘œ๐‘ค ๐‘ค๐‘’ ๐‘ โ„Ž๐‘Ž๐‘™๐‘™ ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก
๐‘†โ€ฒ = ๐›พ1, ๐›พ2, ๐›พ3, โ€ฆ , ๐›พ ๐‘˜, ๐›ผ1, ๐›ผ2, โ€ฆ , ๐›ผ ๐‘š, ๐›ฝ1, ๐›ฝ2, โ€ฆ , ๐›ฝ ๐‘› = ๐ต1 โˆช ๐ต2 ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š1 + ๐‘Š2
๐‘Ž๐‘›๐‘‘ โ„Ž๐‘Ž๐‘›๐‘๐‘’ dim ๐‘Š1 + ๐‘Š2 = ๐‘˜ + m + ๐‘›
๐ข ๐“๐จ ๐ฉ๐ซ๐จ๐ฏ๐ž ๐ญ๐ก๐š๐ญ ๐’โ€ฒ ๐ข๐ฌ ๐‹. ๐ˆ.
๐‘๐‘œ๐‘ค
๐‘1 ๐›พ2 + ๐‘2 ๐›พ2 + โ‹ฏ + ๐‘ ๐‘˜ ๐›พ ๐‘˜ + ๐‘Ž1 ๐›ผ1 + ๐‘Ž2 ๐›ผ2 + โ‹ฏ + ๐‘Ž ๐‘š ๐›ผ ๐‘š + ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› = 0
โ€ฆ . . . (๐ผ)
โ‡’ ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› = โˆ’ ๐‘1 ๐›พ2 + ๐‘2 ๐›พ2 + โ‹ฏ + ๐‘ ๐‘˜ ๐›พ ๐‘˜ + ๐‘Ž1 ๐›ผ1 + ๐‘Ž2 ๐›ผ2 + โ‹ฏ + ๐‘Ž ๐‘š ๐›ผ ๐‘š
= ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต1
โˆˆ ๐‘Š1
โ‡’ ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› โˆˆ ๐‘Š1 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ 1
โ‡’ 0๐›พ2 + 0๐›พ2 + โ‹ฏ + 0๐›พ ๐‘˜ + ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘›
= ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“๐ต2
๐ด๐‘”๐‘Ž๐‘–๐‘›
โ‡’ ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› โˆˆ ๐‘Š2 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ 2
๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› โˆˆ ๐‘Š1 โˆฉ ๐‘Š2
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘๐‘ฆ 1 ๐‘Ž๐‘›๐‘‘ (2)
๐‘Ž๐‘  ๐‘Š1 โˆฉ ๐‘Š2 = ๐ฟ ๐‘† ,
๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘ 
๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† ๐‘œ๐‘“๐‘Š1 โˆฉ ๐‘Š2
๐ฟ๐‘’๐‘ก ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› = ๐‘‘1 ๐›พ2 + ๐‘‘2 ๐›พ2 + โ‹ฏ + ๐‘‘ ๐‘˜ ๐›พ ๐‘˜
๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› โˆ’ ๐‘‘1 ๐›พ2 โˆ’ ๐‘‘2 ๐›พ2 โˆ’ โ‹ฏ โˆ’ ๐‘‘ ๐‘˜ ๐›พ ๐‘˜ = 0
๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต2 = 0
โ‡’ ๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘› = 0, ๐‘‘1 = 0, ๐‘‘2 = 0, โ€ฆ , ๐‘‘ ๐‘˜ = 0
๐‘†๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’๐‘ ๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’๐‘  ๐‘–๐‘› (๐ผ)
๐‘1 ๐›พ2 + ๐‘2 ๐›พ2 + โ‹ฏ + ๐‘ ๐‘˜ ๐›พ ๐‘˜ + ๐‘Ž1 ๐›ผ1 + ๐‘Ž2 ๐›ผ2 + โ‹ฏ + ๐‘Ž ๐‘š ๐›ผ ๐‘š = 0
๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต1 = 0
๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘˜ = 0, ๐‘Ž1 = 0, ๐‘Ž2 = 0, โ€ฆ , ๐‘Ž ๐‘š = 0
๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐ผ ๐‘–๐‘š๐‘๐‘™๐‘–๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก
๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘˜ = 0, ๐‘Ž1 = 0, ๐‘Ž2 = 0, โ€ฆ , ๐‘Ž ๐‘š = 0, ๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘› = 0
โˆด ๐‘†โ€ฒ ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก.
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐ข๐ข ๐“๐จ ๐ฉ๐ซ๐จ๐ฏ๐ž ๐‹ ๐’โ€ฒ = ๐–๐Ÿ + ๐–๐Ÿ
๐ธ๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘†โ€ฒ ๐‘–๐‘  ๐‘Ž ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘Š1 + ๐‘Š2 ๐‘–. ๐‘’., ๐‘†โ€ฒ โŠ‚ ๐‘Š1 + ๐‘Š2
โˆด ๐ฟ ๐‘†โ€ฒ โŠ† ๐‘Š1 + ๐‘Š2
๐‘™๐‘’๐‘ก ๐›ฟ โˆˆ ๐‘Š1 + ๐‘Š2.
โˆด ๐›ฟ = ๐›ผ + ๐›ฝ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐›ผ โˆˆ ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐›ฝ โˆˆ ๐‘Š2.
๐›ฟ = ๐‘™. ๐‘ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต1 + ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต2 .
= ๐‘™. ๐‘ ๐‘œ๐‘“ ๐›พโ€ฒ ๐‘  ๐‘Ž๐‘›๐‘‘ ๐›ผโ€ฒ ๐‘  + ๐‘™. ๐‘. ๐‘œ๐‘“ ๐›พโ€ฒ ๐‘  ๐‘Ž๐‘›๐‘‘ ๐›ฝโ€ฒ ๐‘  .
= ๐‘™. ๐‘ ๐‘œ๐‘“ ๐›พโ€ฒ ๐‘ , ๐›ผโ€ฒ ๐‘  ๐‘Ž๐‘›๐‘‘ ๐›ฝโ€ฒ ๐‘ 
= ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘†โ€ฒ
โˆˆ ๐ฟ ๐‘†โ€ฒ
โˆด ๐›ฟ โˆˆ ๐ฟ(๐‘†โ€ฒ) โ‡’ ๐‘Š1 + ๐‘Š2 โŠ† ๐ฟ ๐‘†โ€ฒ
โˆด L Sโ€ฒ = W1 + W2
๐ป๐‘’๐‘›๐‘๐‘’ ๐‘†โ€ฒ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ W1 + W2
โˆด dim ๐‘Š1 + ๐‘Š2 = ๐‘˜ + ๐‘š + ๐‘›
๐ป๐‘’๐‘›๐‘๐‘’ dim ๐‘Š1 + ๐‘Š2 = dim ๐‘Š1 + dim ๐‘Š2 โˆ’ dim(๐‘Š1 โˆฉ ๐‘Š2 )
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
6. QUOTIENT SPACE
6.1 COSET
๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘Ž ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น , ๐‘กโ„Ž๐‘’๐‘› ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ
๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐›ผ โˆˆ ๐‘‰, ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก
๐‘Š + ๐›ผ = {๐‘ฅ + ๐›ผ / ๐‘ฅ โˆˆ ๐‘Š}
๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘…๐‘–๐‘”โ„Ž๐‘ก ๐ถ๐‘œ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘› ๐‘‰, ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐›ผ
๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘Ž ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น , ๐‘กโ„Ž๐‘’๐‘› ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ
๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐›ผ โˆˆ ๐‘‰, ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก
๐›ผ + ๐‘Š = {๐›ผ + ๐‘ฅ / ๐‘ฅ โˆˆ ๐‘Š}
๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘กโ„Ž๐‘’ ๐ฟ๐‘’๐‘“๐‘ก ๐ถ๐‘œ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘› ๐‘‰, ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐›ผ
๐‘†๐‘–๐‘š๐‘–๐‘™๐‘Ž๐‘Ÿ๐‘™๐‘ฆ
Note:- ๐‘–๐‘“ ๐‘‰, + ๐‘–๐‘  ๐‘Ž ๐‘Ž๐‘๐‘’๐‘™๐‘–๐‘Ž๐‘› ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘ ๐‘œ๐‘“ ๐‘ ๐‘ข๐‘๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘ ๐‘Š, + , ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘ฆ
๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ
๐‘ฅ + ๐›ผ = ๐›ผ + ๐‘ฅ โˆ€ ๐‘ฅ โˆˆ ๐‘Š ๐‘Ž๐‘›๐‘‘ ๐›ผ โˆˆ ๐‘‰
โ‡’ ๐‘Š + ๐›ผ = ๐›ผ + ๐‘Š
๐ป๐‘’๐‘›๐‘๐‘’ ๐‘Š + ๐›ผ ๐‘–๐‘  ๐‘ ๐‘–๐‘š๐‘๐‘™๐‘ฆ ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘๐‘œ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘› ๐‘‰, ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐›ผ
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
COSET PROPERTIES
1. for 0 โˆˆ V, 0 + W = W
โˆด W is itself a coset in V, generated by 0
2. for ๐‘ฅ โˆˆ W, ๐‘ฅ + W = W
โˆด Coset ๐‘ฅ + W = Coset W
4. if ฮฑ + W and ฮฒ + W are two cosets of W in V then
๐›ผ + ๐‘Š = ๐›ฝ + ๐‘Š โ‡” ๐›ผ โˆ’ ๐›ฝ โˆˆ ๐‘Š
3. any two cosets of W in V are either identical or disjoint
๐‘–. ๐‘’. , ๐ธ๐‘–๐‘กโ„Ž๐‘’๐‘Ÿ ๐›ผ + ๐‘Š = ๐›ฝ + ๐‘Š, ๐‘œ๐‘Ÿ ๐›ผ + ๐‘Š โˆฉ ๐›ฝ + ๐‘Š โ‰  ฯ•
6. QUOTIENT SPACE
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
6.2 QUOTIENT SET
6. QUOTIENT SPACE
๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘†๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‰ ๐น . ๐‘‡โ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Ž๐‘™๐‘™ ๐‘๐‘œ๐‘ ๐‘’๐‘ก๐‘  ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘› ๐‘‰ ๐‘‘๐‘’๐‘›๐‘œ๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ
๐‘‰
๐‘Š
= ๐‘Š + ๐›ผ , โˆ€๐›ผ โˆˆ ๐‘‰
๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘„๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘’๐‘ก
๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘†๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‰ ๐น . ๐‘‡โ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘„๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘’๐‘ก
๐‘‰
๐‘Š
๐‘–๐‘  ๐‘ ๐‘Ž๐‘–๐‘‘ ๐‘ก๐‘œ ๐‘๐‘’ ๐‘„๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘๐‘Ž๐‘๐‘’
๐‘–๐‘“ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ž๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘’๐‘ก ๐‘–๐‘  ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘Ž ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘ฃ๐‘’๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘“๐‘–๐‘’๐‘™๐‘‘ ๐น
๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘‰๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘Ž๐‘‘๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘Š + ๐›ผ + ๐‘Š + ๐›ฝ = ๐‘Š + ๐›ผ + ๐›ฝ โˆ€ ๐›ผ, ๐›ฝ โˆˆ ๐‘‰ ๐‘Ž๐‘›๐‘‘
๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘‰๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘–๐‘๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž ๐‘Š + ๐›ผ = ๐‘Š + ๐‘Ž๐›ผ
๐‘๐‘œ๐‘ก๐‘’: โˆ’ ๐ผ๐‘› ๐‘„๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘Š + 0 ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘‘๐‘‘๐‘–๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘–๐‘‘๐‘’๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ ๐‘–๐‘›
๐‘‰
๐‘Š
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
Theorem 9:-
๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น , ๐‘กโ„Ž๐‘’๐‘›
๐๐ข๐ฆ
๐‘ฝ
๐‘พ
= ๐๐ข๐ฆ ๐‘ฝ โˆ’ ๐๐ข๐ฆ ๐‘พ .
Proof :-
๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘‰ ๐‘–๐‘  ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™, ๐‘Š ๐‘–๐‘  ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™.
๐ฟ๐‘’๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐ต = ๐›ผ1, ๐›ผ2, โ€ฆ , ๐›ผ ๐‘› ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š
โˆด dim ๐‘Š = ๐‘›
๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐ต ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘–๐‘ก ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰. ๐ฟ๐‘’๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก
๐‘† = ๐›ผ1, ๐›ผ2, โ€ฆ , ๐›ผ ๐‘›, ๐›ฝ1, ๐›ฝ2, โ€ฆ , ๐›ฝ ๐‘š ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
โˆด dim ๐‘‰ = ๐‘› + ๐‘š
โˆด dim ๐‘‰ โˆ’ dim ๐‘Š = (๐‘› + ๐‘š) โˆ’ ๐‘› = ๐‘š
๐‘๐‘œ๐‘ค ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘ก๐‘œ ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘†โ€ฒ = ๐‘Š + ๐›ฝ1, ๐‘Š + ๐›ฝ2, โ€ฆ , ๐‘Š + ๐›ฝ ๐‘š ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“
๐‘‰
๐‘Š
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐ข ๐“๐จ ๐๐ซ๐จ๐ฏ๐ž ๐’โ€ฒ ๐ข๐ฌ ๐‹. ๐ˆ.
๐‘‡โ„Ž๐‘’ ๐‘ง๐‘’๐‘Ÿ๐‘œ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“
๐‘‰
๐‘Š
๐‘–๐‘  ๐‘Š.
๐‘๐‘œ๐‘ค ๐‘1 ๐‘Š + ๐›ฝ1 + ๐‘2 ๐‘Š + ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐‘Š + ๐›ฝ ๐‘š = ๐‘Š
โŸน ๐‘Š + ๐‘1 ๐›ฝ1 + ๐‘Š + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘Š + ๐‘ ๐‘š ๐›ฝ ๐‘š = ๐‘Š
โŸน ๐‘Š + ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐›ฝ ๐‘š = ๐‘Š
โŸน ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐›ฝ ๐‘š โˆˆ ๐‘Š
๐ต๐‘ข๐‘ก ๐‘Ž๐‘›๐‘ฆ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘  ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต.
๐ฟ๐‘’๐‘ก ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐›ฝ ๐‘š = ๐‘Ž1 ๐›ผ1 + ๐‘Ž2 ๐›ผ2 + โ‹ฏ + ๐‘Ž ๐‘› ๐›ผ ๐‘›
โŸน ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐›ฝ ๐‘š โˆ’ ๐‘Ž1 ๐›ผ1 โˆ’ ๐‘Ž2 ๐›ผ2 โˆ’ โ‹ฏ โˆ’ ๐‘Ž ๐‘› ๐›ผ ๐‘› = 0
โŸน ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘† = 0
๐‘Ž1 = 0, ๐‘Ž2 = 0, โ€ฆ , ๐‘Ž ๐‘› = 0, ๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘š = 0
โŸน ๐‘‡โ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘†โ€ฒ ๐‘–๐‘  ๐ฟ. ๐ผ.
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
๐ข๐ข ๐“๐จ ๐๐ซ๐จ๐ฏ๐ž ๐‹ ๐’โ€ฒ =
๐•
๐–
.
๐ด๐‘  ๐‘†โ€ฒ โŠ‚
๐‘‰
๐‘Š
โ‡’ ๐ฟ(๐‘†โ€ฒ) โŠ†
๐‘‰
๐‘Š
(๐Ÿ)
๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ , ๐‘“๐‘œ๐‘Ÿ ๐›ผ โˆˆ ๐‘‰ ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘†
๐‘–. ๐‘’.,
๐›ผ = ๐‘1 ๐›ผ1 + ๐‘2 ๐›ผ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ผ ๐‘› + ๐‘‘1 ๐›ฝ1 + ๐‘‘2 ๐›ฝ2 + โ‹ฏ + ๐‘‘ ๐‘š ๐›ฝ ๐‘š
= ๐›พ + ๐‘‘1 ๐›ฝ1 + ๐‘‘2 ๐›ฝ2 + โ‹ฏ + ๐‘‘ ๐‘š ๐›ฝ ๐‘š
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐›พ = ๐‘1 ๐›ผ1 + ๐‘2 ๐›ผ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ผ ๐‘›
๐›พ = (๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต)
โ‡’ ๐›พ โˆˆ ๐‘Š
๐‘“๐‘œ๐‘Ÿ ๐›ผ โˆˆ ๐‘‰, ๐‘Š + ๐›ผ โˆˆ
๐‘‰
๐‘Š
๐‘Š + ๐›ผ = ๐‘Š + ๐›พ + ๐‘‘1 ๐›ฝ1 + ๐‘‘2 ๐›ฝ2 + โ‹ฏ + ๐‘‘ ๐‘š ๐›ฝ ๐‘š
= ๐‘Š + ๐‘‘1 ๐›ฝ1 + ๐‘‘2 ๐›ฝ2 + โ‹ฏ + ๐‘‘ ๐‘š ๐›ฝ ๐‘š
โ‡” ๐‘Š = ๐‘Š + ๐›พ
= ๐‘‘1(๐‘Š + ๐›ฝ1) + ๐‘‘2(๐‘Š + ๐›ฝ2) + โ‹ฏ + ๐‘‘ ๐‘š ๐‘Š + ๐›ฝ ๐‘š
= (๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘†โ€ฒ)
โ‡’
๐‘‰
๐‘Š
โŠ† ๐ฟ(๐‘†โ€ฒ)
โ‡’ ๐‘Š + ๐›ผ โˆˆ ๐ฟ ๐‘†โ€ฒ
(๐Ÿ)
โˆด ๐ฟ ๐‘†โ€ฒ =
๐‘‰
๐‘Š
๐‘–. ๐‘’., ๐‘†โ€ฒ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“
๐‘‰
๐‘Š
. โˆด dim
๐‘‰
๐‘Š
= ๐‘š = dim ๐‘‰ โˆ’ dim ๐‘Š .
MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS

More Related Content

What's hot

Sequences and Series
Sequences and SeriesSequences and Series
Sequences and Seriessujathavvv
ย 
Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical inductionKriti Varshney
ย 
Sets and relations
Sets and relationsSets and relations
Sets and relationsSURBHI SAROHA
ย 
Chapter 4 Cyclic Groups
Chapter 4 Cyclic GroupsChapter 4 Cyclic Groups
Chapter 4 Cyclic GroupsTony Cervera Jr.
ย 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectorsRakib Hossain
ย 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebraNaliniSPatil
ย 
Matrices ppt
Matrices pptMatrices ppt
Matrices pptaakashray33
ย 
Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relationsnszakir
ย 
Langrange Interpolation Polynomials
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation PolynomialsSohaib H. Khan
ย 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
ย 
Cyclic group- group theory
Cyclic group- group theoryCyclic group- group theory
Cyclic group- group theoryAyush Agrawal
ย 
Complex function
Complex functionComplex function
Complex functionShrey Patel
ย 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptDrazzer_Dhruv
ย 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalharshid panchal
ย 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
ย 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and EigenvectorsVinod Srivastava
ย 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equationssaahil kshatriya
ย 

What's hot (20)

Sequences and Series
Sequences and SeriesSequences and Series
Sequences and Series
ย 
Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical induction
ย 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
ย 
Sets and relations
Sets and relationsSets and relations
Sets and relations
ย 
Chapter 4 Cyclic Groups
Chapter 4 Cyclic GroupsChapter 4 Cyclic Groups
Chapter 4 Cyclic Groups
ย 
Rank of a matrix
Rank of a matrixRank of a matrix
Rank of a matrix
ย 
Linear dependence & independence vectors
Linear dependence & independence vectorsLinear dependence & independence vectors
Linear dependence & independence vectors
ย 
Group abstract algebra
Group  abstract algebraGroup  abstract algebra
Group abstract algebra
ย 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
ย 
Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relations
ย 
Langrange Interpolation Polynomials
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation Polynomials
ย 
Vector space
Vector spaceVector space
Vector space
ย 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
ย 
Cyclic group- group theory
Cyclic group- group theoryCyclic group- group theory
Cyclic group- group theory
ย 
Complex function
Complex functionComplex function
Complex function
ย 
Matrices and System of Linear Equations ppt
Matrices and System of Linear Equations pptMatrices and System of Linear Equations ppt
Matrices and System of Linear Equations ppt
ย 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ย 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
ย 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
ย 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
ย 

Similar to Linear algebra-Basis & Dimension

Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLambitDontPosts
ย 
DISCRIMINANT.pptx
DISCRIMINANT.pptxDISCRIMINANT.pptx
DISCRIMINANT.pptxamadapaulo
ย 
Vectors and Matrices: basis and dimension
Vectors and Matrices: basis and dimensionVectors and Matrices: basis and dimension
Vectors and Matrices: basis and dimensionMarry Chriselle Raรฑola
ย 
Rational function 11
Rational function 11Rational function 11
Rational function 11AjayQuines
ย 
SETS PPT-XI.pptx
SETS PPT-XI.pptxSETS PPT-XI.pptx
SETS PPT-XI.pptxTamannaNayak5
ย 
Poissonโ€™s and Laplaceโ€™s Equation
Poissonโ€™s and Laplaceโ€™s EquationPoissonโ€™s and Laplaceโ€™s Equation
Poissonโ€™s and Laplaceโ€™s EquationAbhishek Choksi
ย 
A
AA
AAmimul c
ย 
Unidad 3 tarea 3 grupo208046_379
Unidad 3 tarea 3 grupo208046_379Unidad 3 tarea 3 grupo208046_379
Unidad 3 tarea 3 grupo208046_379LAURAXIMENAMONTESEST
ย 
Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)Ahmad Gomaa
ย 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
ย 
Serie de fourier
Serie de fourierSerie de fourier
Serie de fourierJenny D.
ย 
Operation on Matrices.pptx
Operation on Matrices.pptxOperation on Matrices.pptx
Operation on Matrices.pptxTsheringTashi23
ย 
Chpt 2-sets v.3
Chpt 2-sets v.3Chpt 2-sets v.3
Chpt 2-sets v.3ShahidAkbar22
ย 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptxShivakumar B N
ย 

Similar to Linear algebra-Basis & Dimension (20)

Linear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependencyLinear Combination of vectors, Span and dependency
Linear Combination of vectors, Span and dependency
ย 
lec8.ppt
lec8.pptlec8.ppt
lec8.ppt
ย 
Calculas
CalculasCalculas
Calculas
ย 
DISCRIMINANT.pptx
DISCRIMINANT.pptxDISCRIMINANT.pptx
DISCRIMINANT.pptx
ย 
Vektor part 2
Vektor part 2Vektor part 2
Vektor part 2
ย 
Vectors and Matrices: basis and dimension
Vectors and Matrices: basis and dimensionVectors and Matrices: basis and dimension
Vectors and Matrices: basis and dimension
ย 
Rational function 11
Rational function 11Rational function 11
Rational function 11
ย 
SETS PPT-XI.pptx
SETS PPT-XI.pptxSETS PPT-XI.pptx
SETS PPT-XI.pptx
ย 
Math
MathMath
Math
ย 
Poissonโ€™s and Laplaceโ€™s Equation
Poissonโ€™s and Laplaceโ€™s EquationPoissonโ€™s and Laplaceโ€™s Equation
Poissonโ€™s and Laplaceโ€™s Equation
ย 
A
AA
A
ย 
Unidad 3 tarea 3 grupo208046_379
Unidad 3 tarea 3 grupo208046_379Unidad 3 tarea 3 grupo208046_379
Unidad 3 tarea 3 grupo208046_379
ย 
Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)Estimation Theory Class (Summary and Revision)
Estimation Theory Class (Summary and Revision)
ย 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
ย 
Serie de fourier
Serie de fourierSerie de fourier
Serie de fourier
ย 
Operation on Matrices.pptx
Operation on Matrices.pptxOperation on Matrices.pptx
Operation on Matrices.pptx
ย 
Chpt 2-sets v.3
Chpt 2-sets v.3Chpt 2-sets v.3
Chpt 2-sets v.3
ย 
maths 12th.pdf
maths 12th.pdfmaths 12th.pdf
maths 12th.pdf
ย 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
ย 
4898850.ppt
4898850.ppt4898850.ppt
4898850.ppt
ย 

More from Manikanta satyala

Liner algebra-vector space-2 Algebra of Subspaces
Liner algebra-vector space-2 Algebra of SubspacesLiner algebra-vector space-2 Algebra of Subspaces
Liner algebra-vector space-2 Algebra of SubspacesManikanta satyala
ย 
Google forms, quiz preparation with google forms
Google forms, quiz preparation with google formsGoogle forms, quiz preparation with google forms
Google forms, quiz preparation with google formsManikanta satyala
ย 
Student guidelines in google classroom
Student guidelines in google classroom Student guidelines in google classroom
Student guidelines in google classroom Manikanta satyala
ย 
Funtional analysis-BANACH SPACE
Funtional analysis-BANACH SPACEFuntional analysis-BANACH SPACE
Funtional analysis-BANACH SPACEManikanta satyala
ย 
Euler's and picard's
Euler's and picard'sEuler's and picard's
Euler's and picard'sManikanta satyala
ย 
Numerical analysis interpolation-III
Numerical analysis  interpolation-IIINumerical analysis  interpolation-III
Numerical analysis interpolation-IIIManikanta satyala
ย 
Graph theory in network system
Graph theory in network systemGraph theory in network system
Graph theory in network systemManikanta satyala
ย 
Graph theory and its applications
Graph theory and its applicationsGraph theory and its applications
Graph theory and its applicationsManikanta satyala
ย 

More from Manikanta satyala (8)

Liner algebra-vector space-2 Algebra of Subspaces
Liner algebra-vector space-2 Algebra of SubspacesLiner algebra-vector space-2 Algebra of Subspaces
Liner algebra-vector space-2 Algebra of Subspaces
ย 
Google forms, quiz preparation with google forms
Google forms, quiz preparation with google formsGoogle forms, quiz preparation with google forms
Google forms, quiz preparation with google forms
ย 
Student guidelines in google classroom
Student guidelines in google classroom Student guidelines in google classroom
Student guidelines in google classroom
ย 
Funtional analysis-BANACH SPACE
Funtional analysis-BANACH SPACEFuntional analysis-BANACH SPACE
Funtional analysis-BANACH SPACE
ย 
Euler's and picard's
Euler's and picard'sEuler's and picard's
Euler's and picard's
ย 
Numerical analysis interpolation-III
Numerical analysis  interpolation-IIINumerical analysis  interpolation-III
Numerical analysis interpolation-III
ย 
Graph theory in network system
Graph theory in network systemGraph theory in network system
Graph theory in network system
ย 
Graph theory and its applications
Graph theory and its applicationsGraph theory and its applications
Graph theory and its applications
ย 

Recently uploaded

Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
ย 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
ย 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
ย 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
ย 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
ย 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
ย 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
ย 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
ย 

Recently uploaded (20)

Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
ย 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
ย 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
ย 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
ย 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
ย 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
ย 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ย 
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
ย 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
ย 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
ย 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
ย 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
ย 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
ย 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
ย 

Linear algebra-Basis & Dimension

  • 1. LINEAR ALGEBRA BASIS AND DIMENSION MANIKANTA SATYALA Department of Mathematics VSM COLLEGE(A), Ramachandrapuram
  • 2. Definition : Basis A basis of a vector space V is an ordered set of linearly independent (non-zero) vectors that spans V. Notation: 1 , , nฮฒ ฮฒ Definition :- Basis A subset S of a vector space V(F) is said to be the basis of V, if i) S is linearly independent ii) The linear span of S is V i.e., L(S)=V MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
  • 3. Example : 2 1 , 4 1 B ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ is a basis for R2 B is L.I. : 2 1 0 4 1 0 a b ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏€ซ ๏€ฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ โ†’ 2 0 4 0 a b a b ๏€ซ ๏€ฝ ๏€ซ ๏€ฝ โ†’ 0 0 a b ๏€ฝ ๏€ฝ B spans R2: 2 1 4 1 x a b y ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏€ฝ ๏€ซ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ โ†’ 2 4 a b x a b y ๏€ซ ๏€ฝ ๏€ซ ๏€ฝ โ†’ ๏€จ ๏€ฉ 1 2 2 a y x b x y ๏€ฝ ๏€ญ ๏€ฝ ๏€ญ MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
  • 4. Example : 1 2 , 1 4 B ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏‚ข ๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ is a basis for R2 that differs from B only in order. Definition : Standard / Natural Basis for Rn 1 0 0 0 1 0 , , , 0 0 1 n ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท๏€ฝ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ 1 2, , , n๏€ฝ e e e ๏€จ ๏€ฉi ikk ๏ค๏€ฝekth component of ei = 1 0 i k for i k ๏€ฝ๏ƒฌ ๏€ฝ ๏ƒญ ๏‚น๏ƒฎ MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
  • 5. ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰2 ๐‘… ๐‘œ๐‘Ÿ ๐‘…2 ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰3 ๐‘… ๐‘œ๐‘Ÿ ๐‘…3 ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰4 ๐‘… ๐‘œ๐‘Ÿ ๐‘…4 ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘๐‘Ž๐‘Ÿ๐‘‘ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰๐‘› ๐‘… ๐‘œ๐‘Ÿ ๐‘… ๐‘› MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
  • 6. Example: For the function space ๏ป ๏ฝcos sin ,a b a b๏ฑ ๏ฑ๏€ซ ๏ƒŽ a natural basis is cos , sin๏ฑ ๏ฑ Another basis is cos sin , 2cos 3sin๏ฑ ๏ฑ ๏ฑ ๏ฑ๏€ญ ๏€ซ Proof is straightforward. Example : For the function space of cubic polynomials P3 , a natural basis is 2 3 1, , ,x x x Other choices can be 3 2 , 3 , 6 , 6x x x 2 2 3 1,1 ,1 ,1x x x x x x๏€ซ ๏€ซ ๏€ซ ๏€ซ ๏€ซ ๏€ซ Proof is again straightforward. Rule: Set of L.C.โ€™s of a L.I. set is L.I. if each L.C. contains a different vector. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
  • 7. Example : Matrices Find a basis for this subspace of M2๏‚ด2 : 2 0 0 a b a b c c ๏ƒฌ ๏ƒผ๏ƒฆ ๏ƒถ๏ƒฏ ๏ƒฏ ๏€ฝ ๏€ซ ๏€ญ ๏€ฝ๏ƒญ ๏ƒฝ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ๏ƒฏ ๏ƒฏ๏ƒฎ ๏ƒพ 2 , 0 b c b b c c ๏ƒฌ ๏ƒผ๏€ญ ๏€ซ๏ƒฆ ๏ƒถ๏ƒฏ ๏ƒฏ ๏€ฝ ๏ƒŽ๏ƒญ ๏ƒฝ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ๏ƒฏ ๏ƒฏ๏ƒฎ ๏ƒพ Solution: 1 1 2 0 , 0 0 1 0 b c b c ๏ƒฌ ๏ƒผ๏€ญ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ๏ƒฏ ๏ƒฏ ๏€ฝ ๏€ซ ๏ƒŽ๏ƒญ ๏ƒฝ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ๏ƒฏ ๏ƒฏ๏ƒฎ ๏ƒพ โˆด Basis is 1 1 2 0 , 0 0 1 0 ๏€ญ๏ƒฆ ๏ƒถ ๏ƒฆ ๏ƒถ ๏ƒง ๏ƒท ๏ƒง ๏ƒท ๏ƒจ ๏ƒธ ๏ƒจ ๏ƒธ ( Proof of L.I. is left as exercise ) Theorem : In any vector space, a subset is a basis if and only if each vector in the space can be expressed as a linear combination of elements of the subset in a unique way. Let i i i i i i c d๏€ฝ ๏€ฝ๏ƒฅ ๏ƒฅ ฮฒv ฮฒ then ๏€จ ๏€ฉi i i i c d๏€ญ ๏€ฝ๏ƒฅ ฮฒ 0 โˆด L.I. ๏ƒ› uniqueness MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
  • 8. ๐Ÿ. ๐…๐ข๐ง๐ข๐ญ๐ž ๐ƒ๐ข๐ฆ๐ž๐ง๐ญ๐ข๐จ๐ง๐š๐ฅ ๐•๐ž๐œ๐ญ๐จ๐ซ ๐ฌ๐ฉ๐š๐œ๐ž Definition : A vector space V(F) is said to be finite dimensional if it has a finite basis or A vector space V(F) is said to be finite dimensional if there is a finite subset S in V such that L(S)=V MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
  • 9. Theorem :- ๐ผ๐‘“ ๐‘‰ ๐น ๐‘–๐‘  ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰ Proof :- Since V F is finite dimentional vector space By the definition of finite dimentional vector space there exists a finite set S such that L S = V Let S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn Assume that S does not contains 0 vector If S is L.I., then S is a Basis set of V. If S is L.D., then there exists a vector ๐›ผ๐‘– โˆˆ S which can be expressed as linear combination of its preceding vectors Omitting vector ๐›ผ๐‘– from S Let S1 = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑiโˆ’1, ฮฑi+1, โ€ฆ , ฮฑn โ‡’ S1 โŠ‚ S ๐ต๐‘ฆ ๐‘˜๐‘›๐‘œ๐‘ค๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š L S1 = L(S) ๐‘๐‘œ๐‘ค ๐ฟ ๐‘† = ๐‘‰ โ‡’ ๐ฟ ๐‘†1 = ๐‘‰ ๐ผ๐‘“ ๐‘†1 ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘กโ„Ž๐‘’๐‘› ๐‘†1 ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰. ๐ผ๐‘“ ๐‘†1 ๐‘–๐‘“ ๐‘–๐‘  ๐ฟ. ๐ท. ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘’๐‘‘๐‘–๐‘›๐‘” ๐‘Ž๐‘  ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘ ๐‘ก๐‘’๐‘๐‘ , ๐‘ค๐‘’ ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘™๐‘’๐‘“๐‘ก ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ž ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘† ๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐ฟ ๐‘† ๐‘˜ = ๐‘‰. ๐ป๐‘’๐‘›๐‘๐‘’ ๐‘† ๐‘˜ ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS
  • 10. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS Theorem :- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘Ž๐‘›๐‘‘ S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm ๐‘Ž ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰. ๐‘‡โ„Ž๐‘’๐‘› ๐‘’๐‘–๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘† ๐‘–๐‘ก๐‘ ๐‘’๐‘™๐‘“ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘œ๐‘Ÿ ๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ Proof :- Since V F is finite dimentional vector space, it has a finite basis let it be B Given S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm a linearly independent subset of V. Let B = ฮฒ1, ฮฒ2, ฮฒ3, โ€ฆ , ฮฒn Now consider the set S1 = S โˆช B = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm, ฮฒ1, ฮฒ2, ฮฒ3, โ€ฆ , ฮฒn ๐‘๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐ฟ ๐ต = ๐‘‰ ๐ธ๐‘Ž๐‘โ„Ž ๐›ผ ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐›ฝโ€ฒ ๐‘  ๐‘Ž๐‘  ๐ต ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ โ‡’ ๐‘†1 ๐‘–๐‘  ๐ฟ. ๐ท. ๐ป๐‘Ž๐‘›๐‘๐‘’ ๐‘ ๐‘œ๐‘š๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘› ๐‘†1 ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘–๐‘ก๐‘  ๐‘๐‘Ÿ๐‘’๐‘๐‘’๐‘’๐‘‘๐‘–๐‘›๐‘” ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ. ๐‘‡โ„Ž๐‘–๐‘  ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘๐‘Ž๐‘›๐‘›๐‘œ๐‘ก ๐‘๐‘’ ๐‘Ž๐‘›๐‘ฆ ๐‘œ๐‘“ ๐›ผโ€ฒ ๐‘ , ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘œ ๐‘กโ„Ž๐‘–๐‘  ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘š๐‘ข๐‘ ๐‘ก ๐‘๐‘’ ๐‘ ๐‘œ๐‘š๐‘’ ๐›ฝ๐‘– L S1 = L S โˆช B = V ๐‘Ž๐‘  L S โˆช B = ๐ฟ ๐‘† โˆช ๐ฟ ๐ต = ๐ฟ ๐‘† โˆช ๐‘‰ = ๐‘‰
  • 11. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS S2 = S โˆช B = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm, ฮฒ1, ฮฒ2, ฮฒ3, โ€ฆ , ฮฒiโˆ’1, ฮฒ๐‘–+1 โ€ฆ , ฮฒn = S1 โˆ’ ฮฒi now delete the ฮฒi from S1 ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘›๐‘’๐‘ค ๐‘ ๐‘’๐‘ก ๐‘œ๐‘๐‘ฃ๐‘–๐‘œ๐‘ข๐‘ ๐‘™๐‘ฆ L S2 = L S1 = V. ๐ผ๐‘“ ๐‘†2 ๐‘–๐‘  ๐ฟ. ๐ผ, ๐‘กโ„Ž๐‘’๐‘› ๐‘†2 ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘–๐‘ก ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘† ๐ผ๐‘“ ๐‘†2 ๐‘–๐‘  ๐ฟ. ๐ท. ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘ข๐‘’ ๐‘กโ„Ž๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘‘๐‘ข๐‘Ÿ๐‘’ ๐‘ก๐‘–๐‘™๐‘™ ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘Ž ๐‘ ๐‘’๐‘ก ๐‘† ๐‘˜ โŠ‚ ๐‘† ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘† ๐‘˜ ๐‘–๐‘  ๐ฟ. ๐ผ. โˆด ๐ฟ ๐‘† ๐‘˜ = ๐ฟ ๐‘† = ๐‘‰ ๐‘† ๐‘˜ ๐‘ค๐‘–๐‘™๐‘™ ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘† ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘–๐‘›๐‘” ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰.
  • 12. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐๐จ๐ญ๐ž: โˆ’๐Ÿ Every basis is a spanning set but converse need not true If S is Basis of V then L S = V but If L S = V for S โŠ‚ V โ‡ S ๐๐จ๐ญ๐ž: โˆ’2 Let S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn be a basis set of a finite dimesional vector space V F Then for every ฮฑ โˆˆ V there exists a unique set of scalars ๐š ๐Ÿ, ๐š ๐Ÿ, ๐š ๐Ÿ‘, โ€ฆ , ๐š ๐ง โˆˆ ๐… such that ๐›‚ = ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐ง ๐›‚ ๐ง ๐›‚ = ๐› ๐Ÿ ๐›‚ ๐Ÿ + ๐› ๐Ÿ ๐›‚ ๐Ÿ + ๐› ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐› ๐ง ๐›‚ ๐ง If there exists other set of scalars ๐› ๐Ÿ, ๐› ๐Ÿ, ๐› ๐Ÿ‘, โ€ฆ , ๐› ๐ง โˆˆ ๐… such that then ๐š ๐Ÿ= ๐› ๐Ÿ, ๐š ๐Ÿ = ๐› ๐Ÿ, ๐š ๐Ÿ‘= ๐› ๐Ÿ‘,โ€ฆ, ๐š ๐ง= ๐› ๐ง
  • 13. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS 3. COORDINATES Definition : Coordinates Let S = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn be a basis set of a finite dimesional vector space V F . Let ฮฒ โˆˆ V be given by ๐›ƒ = ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š๐ข ๐›‚๐ข + โ‹ฏ + ๐š ๐ง ๐›‚ ๐ง for ๐š ๐Ÿ, ๐š ๐Ÿ, ๐š ๐Ÿ‘, โ€ฆ , ๐š ๐ง โˆˆ ๐… then the set ๐š ๐Ÿ, ๐š ๐Ÿ, ๐š ๐Ÿ‘, โ€ฆ , ๐š ๐ง are called the coordinates
  • 14. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐‘†โ„Ž๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  1,1,2 , 1.2.5 , 5,3,4 ๐‘œ๐‘“ ๐‘…3 ๐‘… ๐‘‘๐‘œ ๐‘›๐‘œ๐‘ก ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘…3 ๐‘… Example: Solution: ๐บ๐‘–๐‘ฃ๐‘’๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  1,1,2 , 1.2.5 , 5,3,4 ๐‘œ๐‘“ ๐‘…3 ๐‘… ๐ฟ๐‘’๐‘ก ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘… ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘Ž. 1,1,2 + ๐‘. 1.2.5 + ๐‘. 5,3,4 = 0 = (0,0,0) ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘œ๐‘“ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐‘–๐‘  ๐‘‡โ„Ž๐‘’๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘Ž + ๐‘ + 5๐‘ = 0 ๐‘Ž + 2๐‘ + 3๐‘ = 0 2๐‘Ž + 5๐‘ + 4๐‘ = 0 1 1 5 1 2 3 2 5 4 By reducing the matrix to echelon form ๐‘’๐‘โ„Ž๐‘œ๐‘™๐‘’๐‘› ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘ ๐‘ 0 ๐‘‘ ๐‘’ 0 0 ๐‘“ ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘…1 ๐‘…2 ๐‘…3 ๐‘…3 โ†’ ๐‘…3 โˆ’ 2๐‘…2 1 1 5 1 2 3 0 1 โˆ’2
  • 15. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐‘…2 โ†’ ๐‘…2 โˆ’ ๐‘…1 1 1 5 0 1 โˆ’2 0 1 โˆ’2 ๐‘…3 โ†’ ๐‘…3 โˆ’ ๐‘…2 1 1 5 0 1 โˆ’2 0 0 0 Since there are only 2 non zero rows and 3 unknowns Hence the given vectors are L.D. Therefore given vectors donโ€™t form basis
  • 16. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐๐จ๐ญ๐ž: โˆ’๐Ÿ‘ Given set of vectors are L. I. if 1. In the coefficient matrix ๐‘๐‘œ ๐‘œ๐‘“ ๐‘ˆ๐‘›๐‘˜๐‘›๐‘œ๐‘ค๐‘›๐‘  = ๐‘…๐‘Ž๐‘›๐‘˜ ๐‘œ๐‘“ ๐‘€๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ Rank of Matrix = No of non โˆ’ zero rows 2. In the systerm of equations all coefficients are zeros ๐‘Ž + ๐‘ + 5๐‘ = 0 ๐‘Ž + 2๐‘ + 3๐‘ = 0 2๐‘Ž + 5๐‘ + 4๐‘ = 0 โ‡’ ๐‘Ž = ๐‘ = ๐‘ = 0 Given set of vectors are L. D. if 1. In the coefficient matrix ๐‘๐‘œ ๐‘œ๐‘“ ๐‘ˆ๐‘›๐‘˜๐‘›๐‘œ๐‘ค๐‘›๐‘  โ‰  ๐‘…๐‘Ž๐‘›๐‘˜ ๐‘œ๐‘“ ๐‘€๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ 2. In the systerm of equations all coefficients are zeros ๐‘Ž + ๐‘ + 5๐‘ = 0 ๐‘Ž + 2๐‘ + 3๐‘ = 0 2๐‘Ž + 5๐‘ + 4๐‘ = 0 โ‡’ ๐‘Ž, ๐‘, ๐‘ ๐‘›๐‘œ๐‘ก ๐‘Ž๐‘™๐‘™ ๐‘ง๐‘’๐‘Ÿ๐‘œ๐‘ 
  • 17. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐‘†โ„Ž๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก 1,0,0 , 1,1,0 , 1,1,1 ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐ถ3 ๐ถ . ๐ป๐‘’๐‘›๐‘๐‘’ ๐‘“๐‘–๐‘›๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  3 + 4๐‘–, 6๐‘–, 3 + 7๐‘– ๐‘–๐‘›๐ถ3 ๐ถ Solution: Example: ๐ฟ๐‘’๐‘ก ๐‘† = 1,0,0 , 1,1,0 , 1,1,1 ๐ฟ๐‘’๐‘ก ๐‘Ž, ๐‘, ๐‘ โˆˆ C ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘Ž. 1,0,0 + ๐‘. 1.1.0 + ๐‘. 1,1,1 = 0 = (0,0,0) ๐ต๐‘ฆ ๐‘ ๐‘œ๐‘™๐‘ฃ๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘‡โ„Ž๐‘’๐‘› ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘Ž + ๐‘ + ๐‘ = 0 0 + ๐‘ + ๐‘ = 0 0 + 0 + ๐‘ = 0 ๐‘ = 0, ๐‘ = 0, ๐‘Ž = 0 โˆด ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘Ž๐‘Ÿ๐‘’ ๐ฟ. ๐ผ. ๐ฟ๐‘’๐‘ก ๐›พ โˆˆ ๐ถ3 ๐›พ = ๐‘ฅ, ๐‘ฆ, ๐‘ง ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐ถ ๐‘๐‘œ๐‘ค ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘. 1,0,0 + ๐‘ž. 1.1.0 + ๐‘Ÿ. 1,1,1 ๐‘“๐‘œ๐‘Ÿ ๐‘, ๐‘ž, ๐‘Ÿ โˆˆ ๐ถ = ๐‘, 0,0 + ๐‘ž, ๐‘ž, 0 + (๐‘Ÿ, ๐‘Ÿ, ๐‘Ÿ) = ๐‘ + ๐‘ž + ๐‘Ÿ, ๐‘ž + ๐‘Ÿ, ๐‘Ÿ
  • 18. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS โ‡’ ๐‘ฅ = ๐‘ + ๐‘ž + ๐‘Ÿ ๐‘ฆ = ๐‘ž + ๐‘Ÿ ๐‘ง = ๐‘Ÿ โ‡’ ๐‘Ÿ = ๐‘ง ๐‘ž = ๐‘ฆ โˆ’ ๐‘ง ๐‘ = ๐‘ฅ โˆ’ ๐‘ฆ โˆด ๐›พ = ๐‘ฅ, ๐‘ฆ, ๐‘ง = ๐‘. 1,0,0 + ๐‘ž. 1.1.0 + ๐‘Ÿ. 1,1,1 ๐›พ = (๐‘ฅ โˆ’ ๐‘ฆ). 1,0,0 + (๐‘ฆ โˆ’ ๐‘ง). 1.1.0 + ๐‘ง. 1,1,1 = ๐ฟ๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘† โˆˆ ๐ฟ(๐‘†) โˆด ๐ถ3 ๐ถ โŠ† ๐ฟ ๐‘† โˆ’โˆ’ โˆ’ (1) ๐ด๐‘  ๐‘† โŠ‚ ๐ถ3 โ‡’ ๐ฟ ๐‘† โŠ‚ ๐ถ3 โˆ’โˆ’ โˆ’ 2 ๐‘“๐‘Ÿ๐‘œ๐‘š 1 & 2 ๐ถ3 ๐ถ = ๐ฟ ๐‘† & ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ. โˆด ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐ถ3 ๐ถ ๐‘๐‘œ๐‘ค ๐‘–๐‘“ ๐‘ฅ, ๐‘ฆ, ๐‘ง = 3 + 4๐‘–, 6๐‘–, 3 + 7๐‘– ๐‘‡โ„Ž๐‘’๐‘› ๐‘ = 3 โˆ’ 2๐‘–, ๐‘ž = โˆ’3 โˆ’ ๐‘– & ๐‘Ÿ = 3 + 7๐‘– ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘Ž๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ.
  • 19. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS Theorem 3:- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’. ๐‘‡โ„Ž๐‘’๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘ ๐‘’๐‘  ๐‘œ๐‘“ ๐‘‰ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  Proof :- ๐ฟ๐‘’๐‘ก ๐‘† ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘š ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘† ๐‘š = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑm ๐‘† ๐‘› = ฮฒ1, ฮฒ2, ฮฒ3, โ€ฆ , ฮฒn ๐‘‚๐‘๐‘ฃ๐‘–๐‘œ๐‘ข๐‘ ๐‘™๐‘ฆ ๐‘๐‘œ๐‘กโ„Ž ๐‘† ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘š ๐‘Ž๐‘Ÿ๐‘’ ๐ฟ. ๐ผ. ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก๐‘  ๐‘œ๐‘“ ๐‘‰ ๐ต๐‘ฆ ๐ต๐‘Ž๐‘ ๐‘–๐‘  ๐ธ๐‘ฅ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘ค๐‘’๐‘ค ๐‘๐‘Ž๐‘› ๐‘ ๐‘Ž๐‘ฆ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก โ‰ค ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐ต๐‘Ž๐‘ ๐‘–๐‘  ๐‘– ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘† ๐‘› ๐‘Ž๐‘  ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘š ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰ โ‡’ ๐ฟ ๐‘† ๐‘› = ๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘› ๐‘† ๐‘› = ๐‘› โ‡’ ๐‘› ๐‘† ๐‘› = ๐‘› โ‡’ ๐‘› ๐‘† ๐‘š = ๐‘š โˆด ๐ต๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘† ๐‘š ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘๐‘’ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ โ‡’ ๐‘š โ‰ค ๐‘› โˆ’โˆ’ โˆ’ 1 ๐‘–๐‘– ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘† ๐‘š ๐‘Ž๐‘  ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘› ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰ โ‡’ ๐ฟ ๐‘† ๐‘š = ๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘› ๐‘† ๐‘š = ๐‘š โˆด ๐ต๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘† ๐‘› ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘๐‘’ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ โ‡’ ๐‘› โ‰ค ๐‘š โˆ’โˆ’ โˆ’ 2 ๐‘“๐‘Ÿ๐‘œ๐‘š 1 & 2 ๐‘› = ๐‘š ๐‘‡โ„Ž๐‘ข๐‘  ๐‘Ž๐‘›๐‘ฆ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘ ๐‘’๐‘  ๐‘œ๐‘“ ๐‘‰ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘ 
  • 20. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS 4. DIMENSION OF A VECTOR SPACE Definition : DIMENSION OF A VECTOR SPACE Let V F be the finite dimensional vector space. The Number of elements in any basis of V is called the dimension of V and denoted by dim V ๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑ10 ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰(๐น) For Example :- ๐ท๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘‰ ๐น = dim ๐‘‰ = ๐‘› ๐‘† = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† = 10 ๐๐จ๐ญ๐ž: โˆ’๐Ÿ’ ๐‘‡โ„Ž๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘›๐‘ข๐‘™๐‘™ ๐‘ ๐‘๐‘Ž๐‘๐‘’ = dim 0 = ๐‘ง๐‘’๐‘Ÿ๐‘œ ๐ผ๐‘“ ๐‘† = 1,0,0 , 0,1,0 , (0,0,1) ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰3(๐น) ๐ท๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“๐‘‰3(๐น) = dim ๐‘‰3(๐น) = ๐‘› ๐‘† = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† = 3
  • 21. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS Theorem 4:- ๐ธ๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› + 1 ๐‘œ๐‘Ÿ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Ž๐‘› ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–๐‘  ๐ฟ๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก Proof :- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’., dim ๐‘‰(๐น) = ๐‘› ๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn+1 ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” (๐‘› + 1) ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐ผ๐‘“ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘กโ„Ž๐‘’๐‘› ๐ต๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘† ๐‘–๐‘ก๐‘ ๐‘’๐‘™๐‘“ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘œ๐‘Ÿ ๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐น๐‘Ÿ๐‘œ๐‘š ๐‘กโ„Ž๐‘’ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘‡โ„Ž๐‘’ ๐‘๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘‰ ๐ผ๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’๐‘ ๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘๐‘Ž๐‘ ๐‘’๐‘  ๐‘† ๐‘ค๐‘–๐‘™๐‘™ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘› ๐‘œ๐‘Ÿ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™ ๐‘ก๐‘œ ๐‘› + 1 ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐ต๐‘ข๐‘ก ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘š๐‘ข๐‘ ๐‘ก โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ . ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘† ๐‘๐‘Ž๐‘›๐‘›๐‘œ๐‘ก ๐‘๐‘’ ๐‘Ž ๐ฟ. ๐ผ. ๐ป๐‘’๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ท. ๐‘–. ๐‘’., ๐ธ๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› + 1 ๐‘œ๐‘Ÿ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Ž๐‘› ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–๐‘  ๐ฟ๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก
  • 22. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS Theorem 5:- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘›. ๐‘‡โ„Ž๐‘’๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘–๐‘›๐‘‘๐‘’๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘ก ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘‰ ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ Proof :- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’., dim ๐‘‰(๐น) = ๐‘› ๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn ๐‘๐‘’ ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘Ž๐‘›๐‘‘ ๐‘› ๐‘† = ๐‘› ๐ผ๐‘“ ๐‘† ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘Ž ๐ต๐‘Ž๐‘ ๐‘–๐‘  ๐‘กโ„Ž๐‘’๐‘› ๐ต๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘† ๐‘–๐‘ก๐‘ ๐‘’๐‘™๐‘“ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘œ๐‘Ÿ ๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐ผ๐‘› ๐‘Ž๐‘›๐‘ฆ ๐‘ ๐‘ข๐‘โ„Ž ๐‘๐‘Ž๐‘ ๐‘’ ๐‘† ๐‘ค๐‘–๐‘™๐‘™ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘› ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐ต๐‘ข๐‘ก ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘š๐‘ข๐‘ ๐‘ก โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ . ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘œ๐‘ข๐‘Ÿ Supposition is wrong ๐‘Ž๐‘›๐‘‘ ๐‘† ๐‘š๐‘ข๐‘ ๐‘ก ๐‘๐‘’ ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘ 
  • 23. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS Theorem 6:- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘›. ๐ฟ๐‘’๐‘ก ๐‘† ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐ฟ ๐‘† = ๐‘‰. ๐‘‡โ„Ž๐‘’๐‘› ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰(๐น) Proof :- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’., dim ๐‘‰(๐น) = ๐‘› ๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑn ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘Ž๐‘›๐‘‘ ๐ฟ ๐‘† = ๐‘‰ ๐ผ๐‘“ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘Ž๐‘  ๐ฟ ๐‘† = ๐‘‰ ๐‘–๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘›, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘† ๐‘๐‘’๐‘๐‘œ๐‘š๐‘’๐‘  ๐ต๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰(๐น) ๐ผ๐‘  ๐‘† ๐‘–๐‘  ๐ฟ. ๐ท. ๐‘ ๐‘’๐‘ก ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐‘Ž ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘† ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘–๐‘›๐‘” ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰(๐น) ๐ผ๐‘› ๐‘ ๐‘ข๐‘โ„Ž ๐‘๐‘Ž๐‘ ๐‘’ ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘™๐‘’๐‘ ๐‘  ๐‘กโ„Ž๐‘Ž๐‘› ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐ด๐‘  ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘š๐‘ข๐‘ ๐‘ก ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘› ๐‘’๐‘ฅ๐‘Ž๐‘๐‘ก๐‘™๐‘ฆ ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘†๐‘œ, ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘† ๐‘๐‘Ž๐‘›๐‘›๐‘œ๐‘ก ๐‘๐‘’ ๐ฟ. ๐ท. ๐ป๐‘Ž๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰
  • 24. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS 5. DIMENSION OF A SUBSPACE Definition : DIMENSION OF A SUBSPACE Let V F be the finite dimensional vector space and W F be the subspace of V F The Number of elements in any basis of W F is called the dimension of W and denoted by dim W ๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑ7 ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š(๐น) For Example :- ๐ท๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘Š ๐น = dim ๐‘Š = ๐‘› ๐‘† = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† = 7 ๐ผ๐‘“ ๐‘† = 1,0,0 , 0,1,0 , (0,0,1) ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š3(๐น) = dim ๐‘Š3(๐น)= ๐‘› ๐‘† = ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘–๐‘› ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† = 3
  • 25. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS Theorem 7:- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘› ๐‘Ž๐‘›๐‘‘ ๐‘Š ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‰. ๐‘‡โ„Ž๐‘’๐‘› ๐‘Š ๐‘–๐‘  ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘ค๐‘–๐‘กโ„Ž dim ๐‘Š โ‰ค ๐‘›. Proof :- ๐ฟ๐‘’๐‘ก ๐‘‰ ๐น ๐‘๐‘’ ๐‘Ž ๐‘› ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’., dim ๐‘‰(๐น) = ๐‘› ๐‘’๐‘Ž๐‘โ„Ž ๐‘› + 1 ๐‘œ๐‘Ÿ ๐‘š๐‘œ๐‘Ÿ๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž๐‘› ๐ฟ๐ท ๐บ๐‘–๐‘ฃ๐‘’๐‘› ๐‘Š ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‰ ๐น ๐‘’๐‘Ž๐‘โ„Ž ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘› + 1 ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Š ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘‰ ๐‘Ž๐‘›๐‘‘ โ„Ž๐‘’๐‘›๐‘๐‘’ ๐ฟ. ๐ท. ๐‘‡โ„Ž๐‘ข๐‘  ๐‘Ž๐‘›๐‘ฆ ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘Š ๐‘๐‘Ž๐‘› ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘› ๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘š๐‘œ๐‘ ๐‘ก ๐‘› ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ . ๐ฟ๐‘’๐‘ก ๐‘† = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑ ๐‘š ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘™๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ ๐‘ก ๐ฟ. ๐ผ. ๐‘ ๐‘ข๐‘๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Š, ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘š โ‰ค ๐‘›. ๐‘๐‘œ๐‘ค ๐‘ค๐‘’ ๐‘ โ„Ž๐‘Ž๐‘™๐‘™ ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š. ๐น๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐›ฝ โˆˆ ๐‘Š ๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘‘๐‘’๐‘Ÿ ๐‘†1 = ฮฑ1, ฮฑ2, ฮฑ3, โ€ฆ , ฮฑ ๐‘š, ๐›ฝ ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘™๐‘Ž๐‘Ÿ๐‘”๐‘’๐‘ ๐‘ก ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐ฟ๐ผ. ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘ , ๐‘†1 ๐‘–๐‘  ๐ฟ. ๐ท. ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐š ๐Ÿ, ๐š ๐Ÿ, ๐š ๐Ÿ‘, โ€ฆ , ๐š ๐’Ž, ๐’ƒ โˆˆ ๐…, not all Zeros such that ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž + ๐’ƒ๐œท = ๐ŸŽ
  • 26. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐ฟ๐‘’๐‘ก ๐‘ = 0, ๐‘กโ„Ž๐‘’๐‘› ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž + ๐ŸŽ. ๐œท = ๐ŸŽ ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž = ๐ŸŽ โ‡’ ๐š ๐Ÿ= ๐ŸŽ, ๐š ๐Ÿ = ๐ŸŽ, ๐š ๐Ÿ‘ = ๐ŸŽ, โ€ฆ , ๐š ๐’Ž = ๐ŸŽ ๐’‚๐’” ๐‘บ ๐’Š๐’” ๐‘ณ. ๐‘ฐ. ๐‘‡โ„Ž๐‘–๐‘  ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘†1 ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘  ๐‘Ž ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘Ž๐‘‘๐‘–๐‘๐‘ก๐‘–๐‘œ๐‘›. ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘ โ‰  0, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก๐‘  ๐‘โˆ’1 โˆˆ ๐น ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘๐‘โˆ’1 = 1 ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž + ๐’ƒ. ๐œท = ๐ŸŽ โ‡’ ๐’ƒ. ๐œท = โˆ’ ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž โ‡’ ๐œท = โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ ๐›‚ ๐Ÿ + ๐š ๐Ÿ‘ ๐›‚ ๐Ÿ‘ + โ‹ฏ + ๐š ๐’Ž ๐›‚ ๐’Ž โ‡’ ๐œท = (โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐Ÿ)๐›‚ ๐Ÿ + (โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐Ÿ)๐›‚ ๐Ÿ + (โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐Ÿ‘)๐›‚ ๐Ÿ‘ + โ‹ฏ + (โˆ’๐’ƒโˆ’๐Ÿ ๐š ๐’Ž)๐›‚ ๐’Ž โ‡’ ๐œท = ๐‘ณ๐’Š๐’๐’†๐’“ ๐’„๐’๐’Ž๐’ƒ๐’Š๐’๐’‚๐’•๐’Š๐’๐’ ๐’๐’‡ ๐’†๐’๐’†๐’Ž๐’†๐’๐’•๐’” ๐’๐’‡ ๐‘บ โ‡’ ๐œท โˆˆ ๐‘ณ(๐‘บ) โ‡’ ๐‘ณ ๐‘บ = ๐‘พ ๐ด๐‘  ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก . ๐ป๐‘Ž๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š โˆด ๐‘Š ๐‘–๐‘  ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘ค๐‘–๐‘กโ„Ž dim ๐‘Š โ‰ค ๐‘›
  • 27. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS Theorem 8:- ๐ฟ๐‘’๐‘ก ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐‘Š2 ๐‘๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น . ๐‘‡โ„Ž๐‘’๐‘› dim ๐‘Š1 + ๐‘Š2 = dim ๐‘Š1 + dim ๐‘Š2 โˆ’ dim(๐‘Š1 โˆฉ ๐‘Š2 ) Proof :- ๐ฟ๐‘’๐‘ก ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐‘Š2 ๐‘๐‘’ ๐‘ก๐‘ค๐‘œ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น . ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐‘Š2 ๐‘Ž๐‘Ÿ๐‘’ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘‰, ๐‘Š1 + ๐‘Š2 ๐‘Ž๐‘›๐‘‘ ๐‘Š1 โˆฉ ๐‘Š2 ๐‘Ž๐‘Ÿ๐‘’ ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’๐‘  ๐‘œ๐‘“ ๐‘‰ ๐ฟ๐‘’๐‘ก dim(๐‘Š1 โˆฉ ๐‘Š2 ) = ๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐‘† = ๐›พ1, ๐›พ2, ๐›พ3, โ€ฆ , ๐›พ ๐‘˜ ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š1 โˆฉ ๐‘Š2 ๐‘๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘™๐‘ฆ ๐‘† โŠ† ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐‘† โŠ† ๐‘Š2 ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘† โŠ† ๐‘Š1 ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š1 ๐ต1 = ๐›พ1, ๐›พ2, ๐›พ3, โ€ฆ , ๐›พ ๐‘˜, ๐›ผ1, ๐›ผ2, โ€ฆ , ๐›ผ ๐‘š ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘† โŠ† ๐‘Š2 ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘ฆ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘› ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š ๐‘† ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š2 ๐ต2 = ๐›พ1, ๐›พ2, ๐›พ3, โ€ฆ , ๐›พ ๐‘˜, ๐›ฝ1, ๐›ฝ2, โ€ฆ , ๐›ฝ ๐‘› โ‡’ dim ๐‘Š1 = ๐‘˜ + ๐‘š โ‡’ dim ๐‘Š2 = ๐‘˜ + ๐‘›
  • 28. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS โˆด dim ๐‘Š1 + dim ๐‘Š2 โˆ’ dim ๐‘Š1 โˆฉ ๐‘Š2 ๐ด๐‘  dim(๐‘Š1 โˆฉ ๐‘Š2 ) = ๐‘˜ , dim ๐‘Š1 = ๐‘˜ + ๐‘š ๐‘Ž๐‘›๐‘‘ dim ๐‘Š2 = ๐‘˜ + ๐‘› = ๐‘˜ + ๐‘š + ๐‘˜ + ๐‘› โˆ’ ๐‘˜ = ๐‘˜ + ๐‘š + ๐‘› ๐‘๐‘œ๐‘ค ๐‘ค๐‘’ ๐‘ โ„Ž๐‘Ž๐‘™๐‘™ ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘†โ€ฒ = ๐›พ1, ๐›พ2, ๐›พ3, โ€ฆ , ๐›พ ๐‘˜, ๐›ผ1, ๐›ผ2, โ€ฆ , ๐›ผ ๐‘š, ๐›ฝ1, ๐›ฝ2, โ€ฆ , ๐›ฝ ๐‘› = ๐ต1 โˆช ๐ต2 ๐‘–๐‘  ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š1 + ๐‘Š2 ๐‘Ž๐‘›๐‘‘ โ„Ž๐‘Ž๐‘›๐‘๐‘’ dim ๐‘Š1 + ๐‘Š2 = ๐‘˜ + m + ๐‘› ๐ข ๐“๐จ ๐ฉ๐ซ๐จ๐ฏ๐ž ๐ญ๐ก๐š๐ญ ๐’โ€ฒ ๐ข๐ฌ ๐‹. ๐ˆ. ๐‘๐‘œ๐‘ค ๐‘1 ๐›พ2 + ๐‘2 ๐›พ2 + โ‹ฏ + ๐‘ ๐‘˜ ๐›พ ๐‘˜ + ๐‘Ž1 ๐›ผ1 + ๐‘Ž2 ๐›ผ2 + โ‹ฏ + ๐‘Ž ๐‘š ๐›ผ ๐‘š + ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› = 0 โ€ฆ . . . (๐ผ) โ‡’ ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› = โˆ’ ๐‘1 ๐›พ2 + ๐‘2 ๐›พ2 + โ‹ฏ + ๐‘ ๐‘˜ ๐›พ ๐‘˜ + ๐‘Ž1 ๐›ผ1 + ๐‘Ž2 ๐›ผ2 + โ‹ฏ + ๐‘Ž ๐‘š ๐›ผ ๐‘š = ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต1 โˆˆ ๐‘Š1 โ‡’ ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› โˆˆ ๐‘Š1 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ 1 โ‡’ 0๐›พ2 + 0๐›พ2 + โ‹ฏ + 0๐›พ ๐‘˜ + ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› = ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“๐ต2 ๐ด๐‘”๐‘Ž๐‘–๐‘› โ‡’ ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› โˆˆ ๐‘Š2 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ 2
  • 29. ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› โˆˆ ๐‘Š1 โˆฉ ๐‘Š2 MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘๐‘ฆ 1 ๐‘Ž๐‘›๐‘‘ (2) ๐‘Ž๐‘  ๐‘Š1 โˆฉ ๐‘Š2 = ๐ฟ ๐‘† , ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘† ๐‘œ๐‘“๐‘Š1 โˆฉ ๐‘Š2 ๐ฟ๐‘’๐‘ก ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› = ๐‘‘1 ๐›พ2 + ๐‘‘2 ๐›พ2 + โ‹ฏ + ๐‘‘ ๐‘˜ ๐›พ ๐‘˜ ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ฝ ๐‘› โˆ’ ๐‘‘1 ๐›พ2 โˆ’ ๐‘‘2 ๐›พ2 โˆ’ โ‹ฏ โˆ’ ๐‘‘ ๐‘˜ ๐›พ ๐‘˜ = 0 ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต2 = 0 โ‡’ ๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘› = 0, ๐‘‘1 = 0, ๐‘‘2 = 0, โ€ฆ , ๐‘‘ ๐‘˜ = 0 ๐‘†๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’๐‘ ๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’๐‘  ๐‘–๐‘› (๐ผ) ๐‘1 ๐›พ2 + ๐‘2 ๐›พ2 + โ‹ฏ + ๐‘ ๐‘˜ ๐›พ ๐‘˜ + ๐‘Ž1 ๐›ผ1 + ๐‘Ž2 ๐›ผ2 + โ‹ฏ + ๐‘Ž ๐‘š ๐›ผ ๐‘š = 0 ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘๐‘œ๐‘š๐‘๐‘–๐‘›๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต1 = 0 ๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘˜ = 0, ๐‘Ž1 = 0, ๐‘Ž2 = 0, โ€ฆ , ๐‘Ž ๐‘š = 0 ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐ผ ๐‘–๐‘š๐‘๐‘™๐‘–๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘˜ = 0, ๐‘Ž1 = 0, ๐‘Ž2 = 0, โ€ฆ , ๐‘Ž ๐‘š = 0, ๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘› = 0 โˆด ๐‘†โ€ฒ ๐‘–๐‘  ๐ฟ. ๐ผ ๐‘ ๐‘’๐‘ก.
  • 30. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐ข๐ข ๐“๐จ ๐ฉ๐ซ๐จ๐ฏ๐ž ๐‹ ๐’โ€ฒ = ๐–๐Ÿ + ๐–๐Ÿ ๐ธ๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘†โ€ฒ ๐‘–๐‘  ๐‘Ž ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘Š1 + ๐‘Š2 ๐‘–. ๐‘’., ๐‘†โ€ฒ โŠ‚ ๐‘Š1 + ๐‘Š2 โˆด ๐ฟ ๐‘†โ€ฒ โŠ† ๐‘Š1 + ๐‘Š2 ๐‘™๐‘’๐‘ก ๐›ฟ โˆˆ ๐‘Š1 + ๐‘Š2. โˆด ๐›ฟ = ๐›ผ + ๐›ฝ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐›ผ โˆˆ ๐‘Š1 ๐‘Ž๐‘›๐‘‘ ๐›ฝ โˆˆ ๐‘Š2. ๐›ฟ = ๐‘™. ๐‘ ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต1 + ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต2 . = ๐‘™. ๐‘ ๐‘œ๐‘“ ๐›พโ€ฒ ๐‘  ๐‘Ž๐‘›๐‘‘ ๐›ผโ€ฒ ๐‘  + ๐‘™. ๐‘. ๐‘œ๐‘“ ๐›พโ€ฒ ๐‘  ๐‘Ž๐‘›๐‘‘ ๐›ฝโ€ฒ ๐‘  . = ๐‘™. ๐‘ ๐‘œ๐‘“ ๐›พโ€ฒ ๐‘ , ๐›ผโ€ฒ ๐‘  ๐‘Ž๐‘›๐‘‘ ๐›ฝโ€ฒ ๐‘  = ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘†โ€ฒ โˆˆ ๐ฟ ๐‘†โ€ฒ โˆด ๐›ฟ โˆˆ ๐ฟ(๐‘†โ€ฒ) โ‡’ ๐‘Š1 + ๐‘Š2 โŠ† ๐ฟ ๐‘†โ€ฒ โˆด L Sโ€ฒ = W1 + W2 ๐ป๐‘’๐‘›๐‘๐‘’ ๐‘†โ€ฒ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ W1 + W2 โˆด dim ๐‘Š1 + ๐‘Š2 = ๐‘˜ + ๐‘š + ๐‘› ๐ป๐‘’๐‘›๐‘๐‘’ dim ๐‘Š1 + ๐‘Š2 = dim ๐‘Š1 + dim ๐‘Š2 โˆ’ dim(๐‘Š1 โˆฉ ๐‘Š2 )
  • 31. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS 6. QUOTIENT SPACE 6.1 COSET ๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘Ž ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น , ๐‘กโ„Ž๐‘’๐‘› ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐›ผ โˆˆ ๐‘‰, ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘Š + ๐›ผ = {๐‘ฅ + ๐›ผ / ๐‘ฅ โˆˆ ๐‘Š} ๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘กโ„Ž๐‘’ ๐‘…๐‘–๐‘”โ„Ž๐‘ก ๐ถ๐‘œ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘› ๐‘‰, ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐›ผ ๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘Ž ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น , ๐‘กโ„Ž๐‘’๐‘› ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก ๐›ผ โˆˆ ๐‘‰, ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐›ผ + ๐‘Š = {๐›ผ + ๐‘ฅ / ๐‘ฅ โˆˆ ๐‘Š} ๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘กโ„Ž๐‘’ ๐ฟ๐‘’๐‘“๐‘ก ๐ถ๐‘œ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘› ๐‘‰, ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐›ผ ๐‘†๐‘–๐‘š๐‘–๐‘™๐‘Ž๐‘Ÿ๐‘™๐‘ฆ Note:- ๐‘–๐‘“ ๐‘‰, + ๐‘–๐‘  ๐‘Ž ๐‘Ž๐‘๐‘’๐‘™๐‘–๐‘Ž๐‘› ๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘ ๐‘œ๐‘“ ๐‘ ๐‘ข๐‘๐‘”๐‘Ÿ๐‘œ๐‘ข๐‘ ๐‘Š, + , ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘ฆ ๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘Ÿ๐‘ก๐‘ฆ ๐‘ฅ + ๐›ผ = ๐›ผ + ๐‘ฅ โˆ€ ๐‘ฅ โˆˆ ๐‘Š ๐‘Ž๐‘›๐‘‘ ๐›ผ โˆˆ ๐‘‰ โ‡’ ๐‘Š + ๐›ผ = ๐›ผ + ๐‘Š ๐ป๐‘’๐‘›๐‘๐‘’ ๐‘Š + ๐›ผ ๐‘–๐‘  ๐‘ ๐‘–๐‘š๐‘๐‘™๐‘ฆ ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘๐‘œ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘› ๐‘‰, ๐‘”๐‘’๐‘›๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐›ผ
  • 32. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS COSET PROPERTIES 1. for 0 โˆˆ V, 0 + W = W โˆด W is itself a coset in V, generated by 0 2. for ๐‘ฅ โˆˆ W, ๐‘ฅ + W = W โˆด Coset ๐‘ฅ + W = Coset W 4. if ฮฑ + W and ฮฒ + W are two cosets of W in V then ๐›ผ + ๐‘Š = ๐›ฝ + ๐‘Š โ‡” ๐›ผ โˆ’ ๐›ฝ โˆˆ ๐‘Š 3. any two cosets of W in V are either identical or disjoint ๐‘–. ๐‘’. , ๐ธ๐‘–๐‘กโ„Ž๐‘’๐‘Ÿ ๐›ผ + ๐‘Š = ๐›ฝ + ๐‘Š, ๐‘œ๐‘Ÿ ๐›ผ + ๐‘Š โˆฉ ๐›ฝ + ๐‘Š โ‰  ฯ• 6. QUOTIENT SPACE
  • 33. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS 6.2 QUOTIENT SET 6. QUOTIENT SPACE ๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘†๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‰ ๐น . ๐‘‡โ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘œ๐‘“ ๐‘Ž๐‘™๐‘™ ๐‘๐‘œ๐‘ ๐‘’๐‘ก๐‘  ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘› ๐‘‰ ๐‘‘๐‘’๐‘›๐‘œ๐‘ก๐‘’๐‘‘ ๐‘๐‘ฆ ๐‘‰ ๐‘Š = ๐‘Š + ๐›ผ , โˆ€๐›ผ โˆˆ ๐‘‰ ๐‘–๐‘  ๐‘๐‘Ž๐‘™๐‘™๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘„๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘’๐‘ก ๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘†๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘‰ ๐น . ๐‘‡โ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘„๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘’๐‘ก ๐‘‰ ๐‘Š ๐‘–๐‘  ๐‘ ๐‘Ž๐‘–๐‘‘ ๐‘ก๐‘œ ๐‘๐‘’ ๐‘„๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘–๐‘“ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘ž๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘’๐‘ก ๐‘–๐‘  ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘Ž ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘ฃ๐‘’๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘“๐‘–๐‘’๐‘™๐‘‘ ๐น ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘‰๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘Ž๐‘‘๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘Š + ๐›ผ + ๐‘Š + ๐›ฝ = ๐‘Š + ๐›ผ + ๐›ฝ โˆ€ ๐›ผ, ๐›ฝ โˆˆ ๐‘‰ ๐‘Ž๐‘›๐‘‘ ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘‰๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘–๐‘๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž ๐‘Š + ๐›ผ = ๐‘Š + ๐‘Ž๐›ผ ๐‘๐‘œ๐‘ก๐‘’: โˆ’ ๐ผ๐‘› ๐‘„๐‘ข๐‘œ๐‘ก๐‘–๐‘’๐‘›๐‘ก ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘Š + 0 ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘‘๐‘‘๐‘–๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘–๐‘‘๐‘’๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ ๐‘–๐‘› ๐‘‰ ๐‘Š
  • 34. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS Theorem 9:- ๐ฟ๐‘’๐‘ก ๐‘Š ๐‘๐‘’ ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘Ž ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘‰ ๐น , ๐‘กโ„Ž๐‘’๐‘› ๐๐ข๐ฆ ๐‘ฝ ๐‘พ = ๐๐ข๐ฆ ๐‘ฝ โˆ’ ๐๐ข๐ฆ ๐‘พ . Proof :- ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘‰ ๐‘–๐‘  ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™, ๐‘Š ๐‘–๐‘  ๐‘Ž๐‘™๐‘ ๐‘œ ๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘’ ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ก๐‘–๐‘œ๐‘›๐‘Ž๐‘™. ๐ฟ๐‘’๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐ต = ๐›ผ1, ๐›ผ2, โ€ฆ , ๐›ผ ๐‘› ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘Š โˆด dim ๐‘Š = ๐‘› ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐ต ๐‘–๐‘  ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘–๐‘ก ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘ก๐‘’๐‘›๐‘‘๐‘’๐‘‘ ๐‘ก๐‘œ ๐‘“๐‘œ๐‘Ÿ๐‘š ๐‘Ž ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰. ๐ฟ๐‘’๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘† = ๐›ผ1, ๐›ผ2, โ€ฆ , ๐›ผ ๐‘›, ๐›ฝ1, ๐›ฝ2, โ€ฆ , ๐›ฝ ๐‘š ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ โˆด dim ๐‘‰ = ๐‘› + ๐‘š โˆด dim ๐‘‰ โˆ’ dim ๐‘Š = (๐‘› + ๐‘š) โˆ’ ๐‘› = ๐‘š ๐‘๐‘œ๐‘ค ๐‘ค๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’ ๐‘ก๐‘œ ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘’ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘†โ€ฒ = ๐‘Š + ๐›ฝ1, ๐‘Š + ๐›ฝ2, โ€ฆ , ๐‘Š + ๐›ฝ ๐‘š ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘Š
  • 35. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐ข ๐“๐จ ๐๐ซ๐จ๐ฏ๐ž ๐’โ€ฒ ๐ข๐ฌ ๐‹. ๐ˆ. ๐‘‡โ„Ž๐‘’ ๐‘ง๐‘’๐‘Ÿ๐‘œ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘‰ ๐‘Š ๐‘–๐‘  ๐‘Š. ๐‘๐‘œ๐‘ค ๐‘1 ๐‘Š + ๐›ฝ1 + ๐‘2 ๐‘Š + ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐‘Š + ๐›ฝ ๐‘š = ๐‘Š โŸน ๐‘Š + ๐‘1 ๐›ฝ1 + ๐‘Š + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘Š + ๐‘ ๐‘š ๐›ฝ ๐‘š = ๐‘Š โŸน ๐‘Š + ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐›ฝ ๐‘š = ๐‘Š โŸน ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐›ฝ ๐‘š โˆˆ ๐‘Š ๐ต๐‘ข๐‘ก ๐‘Ž๐‘›๐‘ฆ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘Š ๐‘–๐‘  ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต. ๐ฟ๐‘’๐‘ก ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐›ฝ ๐‘š = ๐‘Ž1 ๐›ผ1 + ๐‘Ž2 ๐›ผ2 + โ‹ฏ + ๐‘Ž ๐‘› ๐›ผ ๐‘› โŸน ๐‘1 ๐›ฝ1 + ๐‘2 ๐›ฝ2 + โ‹ฏ + ๐‘ ๐‘š ๐›ฝ ๐‘š โˆ’ ๐‘Ž1 ๐›ผ1 โˆ’ ๐‘Ž2 ๐›ผ2 โˆ’ โ‹ฏ โˆ’ ๐‘Ž ๐‘› ๐›ผ ๐‘› = 0 โŸน ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ฟ. ๐ผ. ๐‘ ๐‘’๐‘ก ๐‘† = 0 ๐‘Ž1 = 0, ๐‘Ž2 = 0, โ€ฆ , ๐‘Ž ๐‘› = 0, ๐‘1 = 0, ๐‘2 = 0, โ€ฆ , ๐‘ ๐‘š = 0 โŸน ๐‘‡โ„Ž๐‘’ ๐‘ ๐‘’๐‘ก ๐‘†โ€ฒ ๐‘–๐‘  ๐ฟ. ๐ผ.
  • 36. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS ๐ข๐ข ๐“๐จ ๐๐ซ๐จ๐ฏ๐ž ๐‹ ๐’โ€ฒ = ๐• ๐– . ๐ด๐‘  ๐‘†โ€ฒ โŠ‚ ๐‘‰ ๐‘Š โ‡’ ๐ฟ(๐‘†โ€ฒ) โŠ† ๐‘‰ ๐‘Š (๐Ÿ) ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘† ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ , ๐‘“๐‘œ๐‘Ÿ ๐›ผ โˆˆ ๐‘‰ ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘’๐‘‘ ๐‘Ž๐‘  ๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘† ๐‘–. ๐‘’., ๐›ผ = ๐‘1 ๐›ผ1 + ๐‘2 ๐›ผ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ผ ๐‘› + ๐‘‘1 ๐›ฝ1 + ๐‘‘2 ๐›ฝ2 + โ‹ฏ + ๐‘‘ ๐‘š ๐›ฝ ๐‘š = ๐›พ + ๐‘‘1 ๐›ฝ1 + ๐‘‘2 ๐›ฝ2 + โ‹ฏ + ๐‘‘ ๐‘š ๐›ฝ ๐‘š ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐›พ = ๐‘1 ๐›ผ1 + ๐‘2 ๐›ผ2 + โ‹ฏ + ๐‘ ๐‘› ๐›ผ ๐‘› ๐›พ = (๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐ต) โ‡’ ๐›พ โˆˆ ๐‘Š ๐‘“๐‘œ๐‘Ÿ ๐›ผ โˆˆ ๐‘‰, ๐‘Š + ๐›ผ โˆˆ ๐‘‰ ๐‘Š ๐‘Š + ๐›ผ = ๐‘Š + ๐›พ + ๐‘‘1 ๐›ฝ1 + ๐‘‘2 ๐›ฝ2 + โ‹ฏ + ๐‘‘ ๐‘š ๐›ฝ ๐‘š = ๐‘Š + ๐‘‘1 ๐›ฝ1 + ๐‘‘2 ๐›ฝ2 + โ‹ฏ + ๐‘‘ ๐‘š ๐›ฝ ๐‘š โ‡” ๐‘Š = ๐‘Š + ๐›พ = ๐‘‘1(๐‘Š + ๐›ฝ1) + ๐‘‘2(๐‘Š + ๐›ฝ2) + โ‹ฏ + ๐‘‘ ๐‘š ๐‘Š + ๐›ฝ ๐‘š = (๐‘™. ๐‘. ๐‘œ๐‘“ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘  ๐‘œ๐‘“ ๐‘†โ€ฒ) โ‡’ ๐‘‰ ๐‘Š โŠ† ๐ฟ(๐‘†โ€ฒ) โ‡’ ๐‘Š + ๐›ผ โˆˆ ๐ฟ ๐‘†โ€ฒ (๐Ÿ) โˆด ๐ฟ ๐‘†โ€ฒ = ๐‘‰ ๐‘Š ๐‘–. ๐‘’., ๐‘†โ€ฒ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ ๐‘–๐‘  ๐‘œ๐‘“ ๐‘‰ ๐‘Š . โˆด dim ๐‘‰ ๐‘Š = ๐‘š = dim ๐‘‰ โˆ’ dim ๐‘Š .
  • 37. MANIKANTA SATYALA || LINEAR ALGBRA || BASIS AND DIMENSIONS