SlideShare a Scribd company logo
1 of 16
SETS AND RELATIONS BY:SURBHI SAROHA
SYLLABUS
Set Operations
Representations and Properties of Relations
Equivalence Relations
Partially Ordering
SET OPERATIONS
Set operations is a concept similar to fundamental operations on
numbers.
Sets in math deal with a finite collection of objects, be it numbers,
alphabets, or any real-world objects.
Sometimes a necessity arises wherein we need to establish the
relationship between two or more sets.
There comes the concept of set operations.
There are four main set operations which include set union, set
intersection, set complement, and set difference.
THERE ARE FOUR MAIN KINDS OF
SET OPERATIONS WHICH ARE:
Union of sets
Intersection of sets
Complement of a set
Difference between sets/Relative Complement
UNION OF SETS
For two given sets A and B,
A∪B (read as A union B) is the set of distinct elements that belong to
set A and B or both.
The number of elements in A ∪ B is given by
n(A∪B) = n(A) + n(B) − n(A∩B),
where n(X) is the number of elements in set X.
To understand this set operation of the union of sets better, let us
consider an example:
If A = {1, 2, 3, 4} and B = {4, 5, 6, 7}, then the union of A and B is
given by A ∪ B = {1, 2, 3, 4, 5, 6, 7}.
INTERSECTION OF SETS
For two given sets A and B, A∩B (read as A intersection B) is the set of
common elements that belong to set A and B.
The number of elements in A∩B is given by
n(A∩B) = n(A)+n(B)−n(A∪B),
where n(X) is the number of elements in set X.
To understand this set operation of the intersection of sets better, let
us consider an example:
If A = {1, 2, 3, 4} and B = {3, 4, 5, 7}, then the intersection of A and B
is given by A ∩ B = {3, 4}.
SET DIFFERENCE
The set operation difference between sets implies subtracting the
elements from a set which is similar to the concept of the difference
between numbers.
The difference between sets A and B denoted as A − B lists all the
elements that are in set A but not in set B.
To understand this set operation of set difference better, let us
consider an example: If
A = {1, 2, 3, 4} and B = {3, 4, 5, 7}, then the difference between sets
A and B is given by A - B = {1, 2}.
COMPLEMENT OF SETS
The complement of a set A denoted as A′ or Ac (read as A
complement) is defined as the set of all the elements in the given
universal set(U) that are not present in set A.
To understand this set operation of complement of sets better, let us
consider an example:
If U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {1, 2, 3, 4}, then the
complement of set A is given by A' = {5, 6, 7, 8, 9}.
TYPES OF RELATIONS
There are 8 main types of relations which include:
Empty Relation
Universal Relation
Identity Relation
Inverse Relation
Reflexive Relation
Symmetric Relation
Transitive Relation
Equivalence Relation
TYPES OF RELATIONS(CONT….)
Empty Relation
An empty relation (or void relation) is one in which there is no relation
between any elements of a set. For example, if set A = {1, 2, 3} then, one of
the void relations can be R = {x, y} where, |x – y| = 8. For empty relation,
R = φ ⊂ A × A
Universal Relation
A universal (or full relation) is a type of relation in which every element of a
set is related to each other. Consider set A = {a, b, c}. Now one of the
universal relations will be R = {x, y} where, |x – y| ≥ 0. For universal relation,
R = A × A
TYPES OF RELATIONS(CONT….)
Identity Relation
In an identity relation, every element of a set is related to itself only.
For example, in a set A = {a, b, c}, the identity relation will be I = {a,
a}, {b, b}, {c, c}. For identity relation,
I = {(a, a), a ∈ A}
Inverse Relation
Inverse relation is seen when a set has elements which are inverse
pairs of another set. For example if set A = {(a, b), (c, d)}, then inverse
relation will be R-1 = {(b, a), (d, c)}. So, for an inverse relation,
R-1 = {(b, a): (a, b) ∈ R}
TYPES OF RELATIONS(CONT….)
Reflexive Relation
In a reflexive relation, every element maps to itself. For example, consider a set
A = {1, 2,}. Now an example of reflexive relation will be R = {(1, 1), (2, 2), (1, 2),
(2, 1)}. The reflexive relation is given by-
(a, a) ∈ R
Symmetric Relation
In a symmetric relation, if a=b is true then b=a is also true. In other words, a
relation R is symmetric only if (b, a) ∈ R is true when (a,b) ∈ R. An example of
symmetric relation will be R = {(1, 2), (2, 1)} for a set A = {1, 2}. So, for a
symmetric relation,
aRb ⇒ bRa, ∀ a, b ∈ A
.
TYPES OF RELATIONS(CONT….)
Transitive Relation
For transitive relation, if (x, y) ∈ R, (y, z) ∈ R, then (x, z) ∈ R. For a
transitive relation,
aRb and bRc ⇒ aRc ∀ a, b, c ∈ A
Equivalence Relation
If a relation is reflexive, symmetric and transitive at the same time it
is known as an equivalence relation
PARTIALLY ORDERING
Partial Order Relations
A relation R on a set A is called a partial order relation if it satisfies
the following three properties:
Relation R is Reflexive, i.e. aRa ∀ a∈A.
Relation R is Antisymmetric, i.e., aRb and bRa ⟹ a = b.
Relation R is transitive, i.e., aRb and bRc ⟹ aRc.
THANK YOU

More Related Content

What's hot (20)

Chapter 2: Relations
Chapter 2: RelationsChapter 2: Relations
Chapter 2: Relations
 
Sets PowerPoint Presentation
Sets PowerPoint PresentationSets PowerPoint Presentation
Sets PowerPoint Presentation
 
Properties of relations
Properties of relationsProperties of relations
Properties of relations
 
Relations
RelationsRelations
Relations
 
Discrete mathematic
Discrete mathematicDiscrete mathematic
Discrete mathematic
 
Sets in Maths (Complete Topic)
Sets in Maths (Complete Topic)Sets in Maths (Complete Topic)
Sets in Maths (Complete Topic)
 
Set Theory Presentation
Set Theory PresentationSet Theory Presentation
Set Theory Presentation
 
Set Theory
Set TheorySet Theory
Set Theory
 
Set Theory
Set TheorySet Theory
Set Theory
 
SET THEORY
SET THEORYSET THEORY
SET THEORY
 
SETS
SETSSETS
SETS
 
Algebraic structures
Algebraic structuresAlgebraic structures
Algebraic structures
 
Relations
RelationsRelations
Relations
 
Introduction to sets
Introduction to setsIntroduction to sets
Introduction to sets
 
1. sets and basic notations
1. sets and basic notations1. sets and basic notations
1. sets and basic notations
 
Final maths presentation on sets
Final maths presentation on setsFinal maths presentation on sets
Final maths presentation on sets
 
Venn Diagram
Venn DiagramVenn Diagram
Venn Diagram
 
Matrices & Determinants
Matrices & DeterminantsMatrices & Determinants
Matrices & Determinants
 
Operations on sets
Operations on setsOperations on sets
Operations on sets
 
Matrix.
Matrix.Matrix.
Matrix.
 

Similar to Sets and relations

Relational Algebra (1).pptx
Relational Algebra (1).pptxRelational Algebra (1).pptx
Relational Algebra (1).pptxSarowarSuman
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Himanshu Dua
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Himanshu Dua
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Himanshu Dua
 
Set Theory - Unit -II (Mathematical Foundation Of Computer Science).pptx
Set Theory - Unit -II (Mathematical Foundation  Of  Computer Science).pptxSet Theory - Unit -II (Mathematical Foundation  Of  Computer Science).pptx
Set Theory - Unit -II (Mathematical Foundation Of Computer Science).pptxKalirajMariappan
 
Relation and function
Relation and functionRelation and function
Relation and functionAadityaGera
 
POWERPOINT (SETS & FUNCTIONS).pdf
POWERPOINT (SETS & FUNCTIONS).pdfPOWERPOINT (SETS & FUNCTIONS).pdf
POWERPOINT (SETS & FUNCTIONS).pdfMaryAnnBatac1
 
Week 5 ( basic concept of relation )
Week 5 ( basic concept of relation )Week 5 ( basic concept of relation )
Week 5 ( basic concept of relation )OliverBaltazar2
 
Mathematics JEE quick revision notes pdf
Mathematics JEE quick revision notes pdfMathematics JEE quick revision notes pdf
Mathematics JEE quick revision notes pdfgowhiksankar54
 
basics of autometa theory for beginner .
basics of autometa theory for beginner .basics of autometa theory for beginner .
basics of autometa theory for beginner .NivaTripathy1
 
Discrete mathematics OR Structure
Discrete mathematics OR Structure Discrete mathematics OR Structure
Discrete mathematics OR Structure Abdullah Jan
 
Partial-Orderings in Discrete Mathematics
 Partial-Orderings in Discrete Mathematics Partial-Orderings in Discrete Mathematics
Partial-Orderings in Discrete MathematicsMeghaj Mallick
 
Power point for Theory of computation and detail
Power point for Theory of computation and detailPower point for Theory of computation and detail
Power point for Theory of computation and detailNivaTripathy1
 
Sets functions-sequences-exercises
Sets functions-sequences-exercisesSets functions-sequences-exercises
Sets functions-sequences-exercisesRoshayu Mohamad
 

Similar to Sets and relations (20)

G-1-SETS.pdf
G-1-SETS.pdfG-1-SETS.pdf
G-1-SETS.pdf
 
Relational Algebra (1).pptx
Relational Algebra (1).pptxRelational Algebra (1).pptx
Relational Algebra (1).pptx
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)
 
Set Theory - Unit -II (Mathematical Foundation Of Computer Science).pptx
Set Theory - Unit -II (Mathematical Foundation  Of  Computer Science).pptxSet Theory - Unit -II (Mathematical Foundation  Of  Computer Science).pptx
Set Theory - Unit -II (Mathematical Foundation Of Computer Science).pptx
 
Relation and function
Relation and functionRelation and function
Relation and function
 
Lemh101
Lemh101Lemh101
Lemh101
 
POWERPOINT (SETS & FUNCTIONS).pdf
POWERPOINT (SETS & FUNCTIONS).pdfPOWERPOINT (SETS & FUNCTIONS).pdf
POWERPOINT (SETS & FUNCTIONS).pdf
 
Relation and function_xii
Relation and function_xiiRelation and function_xii
Relation and function_xii
 
Week 5 ( basic concept of relation )
Week 5 ( basic concept of relation )Week 5 ( basic concept of relation )
Week 5 ( basic concept of relation )
 
Mathematics JEE quick revision notes pdf
Mathematics JEE quick revision notes pdfMathematics JEE quick revision notes pdf
Mathematics JEE quick revision notes pdf
 
Per5 relasi
Per5 relasiPer5 relasi
Per5 relasi
 
basics of autometa theory for beginner .
basics of autometa theory for beginner .basics of autometa theory for beginner .
basics of autometa theory for beginner .
 
Discrete mathematics OR Structure
Discrete mathematics OR Structure Discrete mathematics OR Structure
Discrete mathematics OR Structure
 
24 partial-orderings
24 partial-orderings24 partial-orderings
24 partial-orderings
 
Partial-Orderings in Discrete Mathematics
 Partial-Orderings in Discrete Mathematics Partial-Orderings in Discrete Mathematics
Partial-Orderings in Discrete Mathematics
 
Power point for Theory of computation and detail
Power point for Theory of computation and detailPower point for Theory of computation and detail
Power point for Theory of computation and detail
 
Module week 1 Q1
Module week 1 Q1Module week 1 Q1
Module week 1 Q1
 
Sets functions-sequences-exercises
Sets functions-sequences-exercisesSets functions-sequences-exercises
Sets functions-sequences-exercises
 

More from SURBHI SAROHA

Cloud Computing (Infrastructure as a Service)UNIT 2
Cloud Computing (Infrastructure as a Service)UNIT 2Cloud Computing (Infrastructure as a Service)UNIT 2
Cloud Computing (Infrastructure as a Service)UNIT 2SURBHI SAROHA
 
Management Information System(Unit 2).pptx
Management Information System(Unit 2).pptxManagement Information System(Unit 2).pptx
Management Information System(Unit 2).pptxSURBHI SAROHA
 
Searching in Data Structure(Linear search and Binary search)
Searching in Data Structure(Linear search and Binary search)Searching in Data Structure(Linear search and Binary search)
Searching in Data Structure(Linear search and Binary search)SURBHI SAROHA
 
Management Information System(UNIT 1).pptx
Management Information System(UNIT 1).pptxManagement Information System(UNIT 1).pptx
Management Information System(UNIT 1).pptxSURBHI SAROHA
 
Introduction to Cloud Computing(UNIT 1).pptx
Introduction to Cloud Computing(UNIT 1).pptxIntroduction to Cloud Computing(UNIT 1).pptx
Introduction to Cloud Computing(UNIT 1).pptxSURBHI SAROHA
 
Keys in dbms(UNIT 2)
Keys in dbms(UNIT 2)Keys in dbms(UNIT 2)
Keys in dbms(UNIT 2)SURBHI SAROHA
 
Database Management System(UNIT 1)
Database Management System(UNIT 1)Database Management System(UNIT 1)
Database Management System(UNIT 1)SURBHI SAROHA
 
Object-Oriented Programming with Java UNIT 1
Object-Oriented Programming with Java UNIT 1Object-Oriented Programming with Java UNIT 1
Object-Oriented Programming with Java UNIT 1SURBHI SAROHA
 
Database Management System(UNIT 1)
Database Management System(UNIT 1)Database Management System(UNIT 1)
Database Management System(UNIT 1)SURBHI SAROHA
 

More from SURBHI SAROHA (20)

Cloud Computing (Infrastructure as a Service)UNIT 2
Cloud Computing (Infrastructure as a Service)UNIT 2Cloud Computing (Infrastructure as a Service)UNIT 2
Cloud Computing (Infrastructure as a Service)UNIT 2
 
Management Information System(Unit 2).pptx
Management Information System(Unit 2).pptxManagement Information System(Unit 2).pptx
Management Information System(Unit 2).pptx
 
Searching in Data Structure(Linear search and Binary search)
Searching in Data Structure(Linear search and Binary search)Searching in Data Structure(Linear search and Binary search)
Searching in Data Structure(Linear search and Binary search)
 
Management Information System(UNIT 1).pptx
Management Information System(UNIT 1).pptxManagement Information System(UNIT 1).pptx
Management Information System(UNIT 1).pptx
 
Introduction to Cloud Computing(UNIT 1).pptx
Introduction to Cloud Computing(UNIT 1).pptxIntroduction to Cloud Computing(UNIT 1).pptx
Introduction to Cloud Computing(UNIT 1).pptx
 
JAVA (UNIT 5)
JAVA (UNIT 5)JAVA (UNIT 5)
JAVA (UNIT 5)
 
DBMS (UNIT 5)
DBMS (UNIT 5)DBMS (UNIT 5)
DBMS (UNIT 5)
 
DBMS UNIT 4
DBMS UNIT 4DBMS UNIT 4
DBMS UNIT 4
 
JAVA(UNIT 4)
JAVA(UNIT 4)JAVA(UNIT 4)
JAVA(UNIT 4)
 
OOPs & C++(UNIT 5)
OOPs & C++(UNIT 5)OOPs & C++(UNIT 5)
OOPs & C++(UNIT 5)
 
OOPS & C++(UNIT 4)
OOPS & C++(UNIT 4)OOPS & C++(UNIT 4)
OOPS & C++(UNIT 4)
 
DBMS UNIT 3
DBMS UNIT 3DBMS UNIT 3
DBMS UNIT 3
 
JAVA (UNIT 3)
JAVA (UNIT 3)JAVA (UNIT 3)
JAVA (UNIT 3)
 
Keys in dbms(UNIT 2)
Keys in dbms(UNIT 2)Keys in dbms(UNIT 2)
Keys in dbms(UNIT 2)
 
DBMS (UNIT 2)
DBMS (UNIT 2)DBMS (UNIT 2)
DBMS (UNIT 2)
 
JAVA UNIT 2
JAVA UNIT 2JAVA UNIT 2
JAVA UNIT 2
 
Database Management System(UNIT 1)
Database Management System(UNIT 1)Database Management System(UNIT 1)
Database Management System(UNIT 1)
 
Object-Oriented Programming with Java UNIT 1
Object-Oriented Programming with Java UNIT 1Object-Oriented Programming with Java UNIT 1
Object-Oriented Programming with Java UNIT 1
 
Database Management System(UNIT 1)
Database Management System(UNIT 1)Database Management System(UNIT 1)
Database Management System(UNIT 1)
 
OOPs & C++ UNIT 3
OOPs & C++ UNIT 3OOPs & C++ UNIT 3
OOPs & C++ UNIT 3
 

Recently uploaded

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Recently uploaded (20)

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 

Sets and relations

  • 1. SETS AND RELATIONS BY:SURBHI SAROHA
  • 2. SYLLABUS Set Operations Representations and Properties of Relations Equivalence Relations Partially Ordering
  • 3. SET OPERATIONS Set operations is a concept similar to fundamental operations on numbers. Sets in math deal with a finite collection of objects, be it numbers, alphabets, or any real-world objects. Sometimes a necessity arises wherein we need to establish the relationship between two or more sets. There comes the concept of set operations. There are four main set operations which include set union, set intersection, set complement, and set difference.
  • 4. THERE ARE FOUR MAIN KINDS OF SET OPERATIONS WHICH ARE: Union of sets Intersection of sets Complement of a set Difference between sets/Relative Complement
  • 5. UNION OF SETS For two given sets A and B, A∪B (read as A union B) is the set of distinct elements that belong to set A and B or both. The number of elements in A ∪ B is given by n(A∪B) = n(A) + n(B) − n(A∩B), where n(X) is the number of elements in set X. To understand this set operation of the union of sets better, let us consider an example: If A = {1, 2, 3, 4} and B = {4, 5, 6, 7}, then the union of A and B is given by A ∪ B = {1, 2, 3, 4, 5, 6, 7}.
  • 6. INTERSECTION OF SETS For two given sets A and B, A∩B (read as A intersection B) is the set of common elements that belong to set A and B. The number of elements in A∩B is given by n(A∩B) = n(A)+n(B)−n(A∪B), where n(X) is the number of elements in set X. To understand this set operation of the intersection of sets better, let us consider an example: If A = {1, 2, 3, 4} and B = {3, 4, 5, 7}, then the intersection of A and B is given by A ∩ B = {3, 4}.
  • 7. SET DIFFERENCE The set operation difference between sets implies subtracting the elements from a set which is similar to the concept of the difference between numbers. The difference between sets A and B denoted as A − B lists all the elements that are in set A but not in set B. To understand this set operation of set difference better, let us consider an example: If A = {1, 2, 3, 4} and B = {3, 4, 5, 7}, then the difference between sets A and B is given by A - B = {1, 2}.
  • 8. COMPLEMENT OF SETS The complement of a set A denoted as A′ or Ac (read as A complement) is defined as the set of all the elements in the given universal set(U) that are not present in set A. To understand this set operation of complement of sets better, let us consider an example: If U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {1, 2, 3, 4}, then the complement of set A is given by A' = {5, 6, 7, 8, 9}.
  • 9.
  • 10. TYPES OF RELATIONS There are 8 main types of relations which include: Empty Relation Universal Relation Identity Relation Inverse Relation Reflexive Relation Symmetric Relation Transitive Relation Equivalence Relation
  • 11. TYPES OF RELATIONS(CONT….) Empty Relation An empty relation (or void relation) is one in which there is no relation between any elements of a set. For example, if set A = {1, 2, 3} then, one of the void relations can be R = {x, y} where, |x – y| = 8. For empty relation, R = φ ⊂ A × A Universal Relation A universal (or full relation) is a type of relation in which every element of a set is related to each other. Consider set A = {a, b, c}. Now one of the universal relations will be R = {x, y} where, |x – y| ≥ 0. For universal relation, R = A × A
  • 12. TYPES OF RELATIONS(CONT….) Identity Relation In an identity relation, every element of a set is related to itself only. For example, in a set A = {a, b, c}, the identity relation will be I = {a, a}, {b, b}, {c, c}. For identity relation, I = {(a, a), a ∈ A} Inverse Relation Inverse relation is seen when a set has elements which are inverse pairs of another set. For example if set A = {(a, b), (c, d)}, then inverse relation will be R-1 = {(b, a), (d, c)}. So, for an inverse relation, R-1 = {(b, a): (a, b) ∈ R}
  • 13. TYPES OF RELATIONS(CONT….) Reflexive Relation In a reflexive relation, every element maps to itself. For example, consider a set A = {1, 2,}. Now an example of reflexive relation will be R = {(1, 1), (2, 2), (1, 2), (2, 1)}. The reflexive relation is given by- (a, a) ∈ R Symmetric Relation In a symmetric relation, if a=b is true then b=a is also true. In other words, a relation R is symmetric only if (b, a) ∈ R is true when (a,b) ∈ R. An example of symmetric relation will be R = {(1, 2), (2, 1)} for a set A = {1, 2}. So, for a symmetric relation, aRb ⇒ bRa, ∀ a, b ∈ A .
  • 14. TYPES OF RELATIONS(CONT….) Transitive Relation For transitive relation, if (x, y) ∈ R, (y, z) ∈ R, then (x, z) ∈ R. For a transitive relation, aRb and bRc ⇒ aRc ∀ a, b, c ∈ A Equivalence Relation If a relation is reflexive, symmetric and transitive at the same time it is known as an equivalence relation
  • 15. PARTIALLY ORDERING Partial Order Relations A relation R on a set A is called a partial order relation if it satisfies the following three properties: Relation R is Reflexive, i.e. aRa ∀ a∈A. Relation R is Antisymmetric, i.e., aRb and bRa ⟹ a = b. Relation R is transitive, i.e., aRb and bRc ⟹ aRc.