SlideShare a Scribd company logo
1 of 28
Download to read offline
Normed Linear Space:-
A Normed Space is a vector space N endowed
with a function(called Norm)
)_(: fieldscalarFN 
Which satisfies the conditions
NyxFxx
yxyx
xx
x




,...4
.3
00.2
0.1

MANIKANTA SATYALA FUNTIONAL ANALYSIS
Properties of Normed Linear Space:-
xx
xx
nn
n
n








yxyx 
xxxx nn 
yxyx
yy
xx
nn
n
n






1.
2.
3.
4.
(i.e.,) Norm is continuous function
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Properties of Normed Linear Space:-
Norm induces a metric on a Normed linear space N
𝑑 ∶ 𝑁 × 𝑁 → 𝑅 𝑏𝑦 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 , 𝑥, 𝑦 ∈ 𝑁.
𝐶𝑙𝑒𝑎𝑟𝑙𝑦 𝑑 𝑥, 𝑦 ≥ 0 𝑎𝑛𝑑 𝑑 𝑥, 𝑦 = 0 ⇔ 𝑥 − 𝑦 = 0 ⇔ 𝑥 = 𝑦
𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 = −( 𝑦 − 𝑥) = 𝑦 − 𝑥 = 𝑑 𝑦, 𝑥 ,
𝑑 𝑥, 𝑧 = 𝑥 − 𝑧 𝑓𝑜𝑟 𝑧 ∈ 𝑁.
𝑑 𝑥, 𝑧 = 𝑥 − 𝑧 = 𝑥 − 𝑦 + 𝑦 − 𝑧
≤ ||𝑥 − 𝑦|| + ||𝑦 − 𝑧|| = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
Note: -
A metric 𝑑 induced by a norm on a normed space 𝑁 satisfies
1.𝑑 𝑥 + 𝑎, 𝑦 + 𝑎 = 𝑑 𝑥, 𝑦
2.𝑑(𝛼𝑥, 𝛼𝑦) = 𝛼 𝑑(𝑥, 𝑦)
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Properties of Normed Linear Space:-
 The metric induced by norm i.e. d(x, y) = ||x − y||,
x, y ∈ N has translational invariant property and
absolute homogeneity property..
 A normed linear space N is said to be complete if
every Cauchy sequence in N is convergent to an
element of N
 If L be a subspace of a normed linear space N then
its closure L is also a subspace of N
MANIKANTA SATYALA FUNTIONAL ANALYSIS
A complete Normed Linear Space is called a
Banach Space.
A Banach Space is a normed linear space which
is complete with respect to a metric induced by
a norm
Banach Space :-
Remark :-
A Normed Linear Space N is said to be Complete
if every Cauchy sequence in N is convergent to
an element of N
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-Examples
1. R is a Banach space
Define by : 𝑅 → 𝑅 𝑏𝑦 𝑥 = 𝑥 .
2. Euclideanspace Rn and unitary space Cn.
They are Banach spaces with norm defined by
𝑥 : 𝜉𝑗
2𝑛
𝑗=1
1/2
= 𝜉1
2 + ⋯+ 𝜉 𝑛
2.
3. Let 1 ≤ 𝑝 ≤ ∞.
𝑳 𝒑
𝒏 denotes the space of all numbers
𝑥 𝑝 = (𝑥1,𝑥2,… , 𝑥 𝑛) 𝑝 = ( 𝑥𝑖
𝑝𝑛
𝑖=1 )1/𝑝
Remark: 𝑥 = 𝑥𝑖
𝑝𝑛
𝑖=1
1/𝑝
look at a closed unit ball in R2
with different norms.
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space
𝒀𝒐𝒖𝒏𝒈’𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚
Let 𝑝 > 1 and set 𝑞 =
𝑝
𝑝 − 1
. For every 𝑎, 𝑏 ∈ 𝐶:
𝑎𝑏 ≤
𝑎 𝑝
𝑝
+
𝑏 𝑞
𝑞
𝑃𝑟𝑜𝑜𝑓:
Note that
1
𝑝
+
1
𝑞
= 1.Since –log is a convexfuction thenfor every 𝛼, 𝛽 > 0:
−log
𝛼
𝑝
+
𝛽
𝑞
≤ −
1
𝑝
log 𝛼 −
1
𝑞
log 𝛽 = − log 𝛼
1
𝑝 𝛽
1
𝑞 .
It follows that:
𝛼
𝑝
+
𝛽
𝑞
≥ 𝛼
1
𝑝 𝛽
1
𝑞.
Setting 𝛼 = 𝑎 𝑝
and β = 𝑏 𝑞
we reoverthe desiredresult
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space
𝑯ö𝒍𝒅𝒆𝒓 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚:
Let 𝑝 > 1 and set 𝑞 =
𝑝
𝑝 − 1
. For every 𝑥, 𝑦 ∈ Cn
𝑥𝑖 𝑦𝑖
𝑛
𝑖=1
≤ 𝑥 𝑝 𝑦 𝑞 .
𝑃𝑟𝑜𝑜𝑓:
Using Young′
s inequality termby term:
𝑥𝑖 𝑦𝑖
𝑛
𝑖=1
𝑥 𝑝 𝑦 𝑞
=
𝑥𝑖
𝑥 𝑝
𝑦𝑖
𝑦 𝑞
𝑛
𝑖=1
≤
1
𝑝
𝑥𝑖
𝑥 𝑝
𝑝𝑛
𝑖=1
+
1
𝑞
𝑦𝑖
𝑦 𝑞
𝑞𝑛
𝑖=1
=
1
𝑝
+
1
𝑞
= 1.
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space
𝑴𝒊𝒏𝒌𝒐𝒘𝒔𝒌𝒊 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚:
Let 𝑝 > 1 . For every 𝑥, 𝑦 ∈ Cn
𝑥 + 𝑦 𝑝 ≤ 𝑥 𝑝 + 𝑦 𝑞 .
𝑃𝑟𝑜𝑜𝑓:
For every 𝑖 ∈ 1,2,…, 𝑛 ,it follows from the triangleinequality that
𝑥𝑖 + 𝑦𝑖
𝑝 = 𝑥𝑖 + 𝑦𝑖 𝑥𝑖 + 𝑦𝑖
𝑝−1 ≤ 𝑥𝑖 𝑥𝑖 + 𝑦𝑖
𝑝−1 + 𝑦𝑖 𝑥𝑖 + 𝑦𝑖
𝑝−1
Summing over 𝑖,and using Holder′ s inequality:
𝑥 + 𝑦 𝑝
𝑝
≤ 𝑥 𝑝 + 𝑦 𝑝 𝑥𝑖 + 𝑦𝑖
𝑞 𝑝−1
𝑛
𝑖=1
1
𝑞
,
where 𝑞 =
𝑝
𝑝 − 1
. Noting that 𝑞 𝑝 − 1 = 𝑝 and
1
𝑞
=
𝑝 − 1
𝑝
:
𝑥 + 𝑦 𝑝
𝑝
≤ 𝑥 𝑝 + 𝑦 𝑝 𝑥 + 𝑦 𝑝
𝑝−1
,
which completesthe proof.
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space
Schwarz inequality :-
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
Theorem: -
Let 𝑀 be a closed linear subspace of a normed linear space 𝑁. If
the norm of a coset 𝑥 + 𝑀 in the Quotient space 𝑁/𝑀 is
defined by 𝑥 + 𝑀 = inf 𝑥 + 𝑚 /𝑚 ∈ 𝑀 then 𝑁/𝑀 is a
normed linear space. Further if 𝑁 is complete then 𝑁/𝑀 is
complete
Remark: 𝑁/𝑀 is Banach if 𝑁 is Banach
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
Proof: -
First we have to show that 𝑁/𝑀 is Linear Space:-
Let 𝑥 + 𝑀, 𝑦 + 𝑀 ∈ 𝑁/𝑀
⟹ 𝑥 + 𝑀 + 𝑦 + 𝑀 = 𝑥 + 𝑦 + 𝑀
⟹ 𝑎 𝑥 + 𝑀 = 𝑎𝑥 + 𝑀 ∀𝑥, 𝑦 ∈ 𝑁 & 𝑎 ∈ 𝐹
Clearly 𝑁/𝑀is a linear space
Define : 𝑁/𝑀 → 𝐹 by 𝑥 + 𝑀 = inf 𝑥 + 𝑚 /𝑚 ∈ 𝑀
Now we show that 𝑁/𝑀 is Normed linear space:-
⟹ Since inf 𝑥+ 𝑚 /𝑚 ∈ 𝑀 ≥ 0.
We have 𝑥 + 𝑀 ≥ 0
⟹ Suppose 𝑥 + 𝑀 = 0 ⟺ inf 𝑥 + 𝑚 /𝑚 ∈ 𝑀 = 0
Since 𝑀 is closed, there certainly exists a sequence < 𝑚 𝑘 > such that
𝑚 𝑘 ⟶ 𝑚 ∀ 𝑘
⟹ 𝑥 + 𝑚 𝑘 ⟶ 𝑥 + 𝑚
⟺ 𝑥 + 𝑀 ∈ 𝑀 ⟺ 𝑥 ∈ 𝑀
⟺ 𝑥 + 𝑀 = 𝑀 = 𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑁/𝑀.
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
⟹ 𝑥 + 𝑀 + 𝑦 + 𝑀
= 𝑥 + 𝑦 + 𝑀
= inf 𝑥 + 𝑦 + 𝑚 /𝑚 ∈ 𝑀
= inf 𝑥 + 𝑦 + 𝑚1 + 𝑚2 /𝑚 = 𝑚1 𝑚2 ∈ 𝑀 .
≤ inf 𝑥 + 𝑚1 𝑦 + 𝑚2 / 𝑚1, 𝑚2 ∈ 𝑀
≤ inf 𝑥 + 𝑚1 / 𝑚1 ∈ 𝑀 + inf 𝑦 + 𝑚2 / 𝑚2 ∈ 𝑀
= 𝑥 + 𝑀 + 𝑦 + 𝑀
⟹ 𝛼 𝑥 + 𝑀 = 𝛼𝑥 + 𝑀
= inf 𝛼𝑥 + 𝑚 /𝑚 ∈ 𝑀
= inf 𝛼 𝑥 + 𝑚/𝛼 /𝑚 ∈ 𝑀
= inf 𝛼 𝑥 +
𝑚
𝛼
/
𝑚
𝛼
∈ 𝑀
= 𝛼 inf 𝑥 + 𝑚1 / 𝑚1 =
𝑚
𝛼
∈ 𝑀
= 𝛼 𝑥 + 𝑀
∴ 𝑁/𝑀 is a normed linear space
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
So it is enough to show that 𝑁/𝑀 is Complete.
⟹ Let 𝑥 𝑛 + 𝑀 be a Cauchy sequence in 𝑁/𝑀.
Choose 𝑦1 ∈ 𝑥1 + 𝑀. & 𝑦2 ∈ 𝑥2 + 𝑀 ∋ 𝑦1 − 𝑦2 <
1
2
Now choose 𝑦3 ∈ 𝑥3 + 𝑀 ∋ 𝑦2 − 𝑦3 <
1
22.
On continue this processes, we get 𝑦𝑛 − 𝑦𝑛+1 <
1
2 𝑛
Suppose 𝑚 < 𝑛 in 𝑁. Then,Consider
𝑦 𝑚 − 𝑦𝑛 = 𝑦 𝑚 − 𝑦 𝑚 +1 + 𝑦 𝑚 +1 − 𝑦 𝑚 +2 + 𝑦 𝑚 +2 + ⋯ + 𝑦 𝑛 −1 − 𝑦𝑛
≤ 𝑦 𝑚 − 𝑦 𝑚 +1 + 𝑦 𝑚 +1 − 𝑦 𝑚 +2 + ⋯ + 𝑦 𝑛−1 − 𝑦𝑛
≤
1
2 𝑚 +
1
2 𝑚 +1 +
1
2 𝑚 +2 + ⋯ +
1
2 𝑛 −1
<
1
2 𝑛−1
⟹ 𝑦𝑛 Converges.
𝑖. 𝑒. , 𝑦𝑛 ⟶ 𝑦(𝑠𝑎𝑦) Since 𝑁 is Complete
Consider 𝑥 𝑛 + 𝑀 − 𝑦 + 𝑀 = 𝑥 𝑛 − 𝑦 + 𝑀 ⟶ 0
⟹ 𝑥 𝑛 + 𝑀 ⟶ 𝑦 + 𝑀
⟹ 𝑁/𝑀 is complete
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
Bounded Linear : -Transformation
Let 𝑁, 𝑁 be two normed linear spaces. A linear transformation
𝑇: 𝑁 → 𝑁 is said to be bounded if 𝑇𝑥 ≤ 𝑀 𝑥 ∀𝑥 ∈ 𝑁 & 𝑀 > 0.
Continuous Linear Transformation: -
A transformation 𝑇 is said to be Continuous if it is continuous as a
mapping of Metric space 𝑁 into a Metric space 𝑁 .
(i.e,) 𝑥 𝑛 → 𝑥 ⟹ 𝑇𝑥 𝑛 → 𝑇𝑥
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
𝑻𝒉𝒆𝒐𝒓𝒆𝒎 ∶ 𝑳𝒆𝒕 𝑻 𝒃𝒆 𝒂 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝑵 𝒊𝒏𝒕𝒐 𝑵.
𝑻𝒉𝒆𝒏 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒂𝒓𝒆 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕
I. 𝑻 𝒊𝒔 𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔
II. 𝑻 𝒊𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒏𝒖𝒐𝒖𝒔 𝒂𝒕 𝒕𝒉𝒆 𝑶𝒓𝒊𝒈𝒊𝒏 𝒊. 𝒆., 𝒙 𝒏 → 𝟎 ⟹ 𝑻𝒙 𝒏 ⟶ 𝟎
III. 𝒕𝒉𝒆𝒓𝒆 𝒆𝒙𝒊𝒕𝒔 𝒂 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝑴 ≥ 𝟎 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝑻𝒙 ≤
𝑴 𝒙 𝒊. 𝒆., 𝑻 𝒊𝒔 𝒃𝒐𝒖𝒏𝒅𝒆𝒅.
IV. 𝑰𝒇 𝑺 =
𝒙 𝒙 ≤ 𝟏 𝒊𝒔 𝒂 𝒄𝒍𝒐𝒔𝒆𝒅 𝒖𝒏𝒊𝒕 𝒃𝒂𝒍𝒍 𝒕𝒉𝒆𝒏 𝒕𝒉𝒆 𝒊𝒎𝒂𝒈𝒆 𝑻 𝑺 𝒊𝒔 𝒃𝒐𝒖𝒏𝒅𝒆𝒅
Proof: for practice
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
𝑹𝒆𝒎𝒂𝒓𝒌
∶ 𝑭𝒐𝒓 𝒕𝒉𝒆 𝒃𝒐𝒖𝒏𝒅𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝑻 𝒇𝒓𝒐𝒎 𝑵 𝒊𝒏𝒕𝒐 𝑵.
𝑻𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒂𝒓𝒆 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕
I. 𝑻 = 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 ≤ 𝟏}
II. 𝑻 = 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 = 𝟏}
III. 𝑻 = 𝐒𝐮𝐩
𝑻𝒙
𝒙
/𝒙 ≠ 𝟎, 𝒙 ∈ 𝑵
IV. 𝑻 = 𝐈𝐧𝐟 𝑴 > 0/ 𝑻 ≤ 𝑴 𝒙 , ∀𝒙 ∈ 𝑵
Proof: for practice
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
𝑻𝒉𝒆𝒐𝒓𝒆𝒎: −
𝑰𝒇 𝑵, 𝑵 𝒂𝒓𝒆 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆𝒔 𝒕𝒉𝒆𝒏 𝑩 𝑵, 𝑵 𝒐𝒇
𝒂𝒍𝒍 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑵 𝒊𝒏𝒕𝒐 𝑵
𝒊𝒔 𝒂 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆 𝒘𝒊𝒕𝒉 𝒓𝒆𝒔𝒑𝒆𝒄𝒕 𝒕𝒐 𝒕𝒉𝒆 𝒑𝒐𝒊𝒏𝒕 𝒘𝒊𝒔𝒆
𝒍𝒊𝒏𝒆𝒂𝒓 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 𝒂𝒏𝒅 𝒃𝒆 𝒏𝒐𝒓𝒎
∥ 𝑻 ∥= 𝐬𝐮𝐩 ∥ 𝑻 𝒙 ∥: ∥ 𝒙 ≤ 𝟏
𝒇𝒖𝒓𝒕𝒉𝒆𝒓 𝒊𝒇 𝑵 𝒊𝒔 𝒃𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆 𝒕𝒉𝒆𝒏 𝑩(𝑵, 𝑵) 𝒊𝒔 𝒂𝒍𝒔𝒐 𝒃𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆 .
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
𝑷𝒓𝒐𝒐𝒇: −
𝑭𝒐𝒓 𝑻, 𝑺 ∈ 𝜷 𝑵, 𝑵 , 𝒂 𝒊𝒔 𝒂 𝒔𝒄𝒂𝒍𝒂𝒓
𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝑻 + 𝒃 = 𝑻𝒙 + 𝒃𝒙 & 𝒂𝑻 𝒙 = 𝒂 𝑻𝒙 ∀𝒙 ∈ 𝑵
𝑪𝒍𝒆𝒂𝒓𝒍𝒚, 𝜷 𝑵, 𝑵 𝒊𝒔 𝒂 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆
𝑶𝒃𝒔𝒆𝒓𝒗𝒆 𝒕𝒉𝒂𝒕 : 𝜷 𝑵, 𝑵 → 𝑭
1. 𝐒𝐢𝐧𝐜𝐞 𝑻𝒙 ≥ 𝟎, 𝐒𝐮𝐩 𝑻𝒙 ≥ 𝟎 ⇒ 𝑻 ≥ 𝟎
2. 𝐒𝐮𝐩𝐩𝐨𝐬𝐞 𝑻 = 𝟎 ⇔ 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 ≤ 𝟏} = 𝟎
⇔ 𝑻𝒙 = 𝟎
⇔ 𝑻𝒙 = 𝟎
⇔ 𝑻 = 𝟎
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
3. 𝑻 + 𝑺 = 𝐒𝐮𝐩{ 𝑻 + 𝑺 (𝒙) / 𝒙 ≤ 𝟏}
= 𝐒𝐮𝐩{ 𝑻𝒙 + 𝑺𝒙 / 𝒙 ≤ 𝟏}
= 𝐒𝐮𝐩{ 𝑻𝒙 + 𝑺𝒙 / 𝒙 ≤ 𝟏}
≤ 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 ≤ 𝟏} + 𝐒𝐮𝐩{ 𝑺𝒙 / 𝒙 ≤ 𝟏}
= 𝑻 + 𝑺
∴ 𝑻 + 𝑺 ≤ 𝑻 + 𝑺 .
4. (𝜶𝑻) = 𝐒𝐮𝐩{ 𝜶𝑻 𝒙 / 𝒙 ≤ 𝟏}
= 𝐒𝐮𝐩{ 𝜶 𝑻𝒙 / 𝒙 ≤ 𝟏}
= 𝐒𝐮𝐩{ 𝜶 𝑻𝒙 / 𝒙 ≤ 𝟏}
= 𝜶 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 ≤ 𝟏}
= 𝜶 𝑻 .
𝑻𝒉𝒖𝒔 𝜷 𝑵, 𝑵 𝒊𝒔 𝒂 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓𝒔𝒑𝒂𝒄𝒆.
𝑵𝒐𝒘 𝒊𝒕 𝒊𝒔 𝒆𝒏𝒐𝒖𝒈𝒉 𝒕𝒐 𝒔𝒐 𝒕𝒉𝒂𝒕 𝑵 𝒊𝒔 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆.( 𝒑𝒓𝒐𝒐𝒇 ∶ −𝒑𝒓𝒂𝒄𝒕𝒊𝒄𝒆 )
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
𝑻𝒉𝒆𝒐𝒓𝒆𝒎:−𝑳𝒆𝒕 𝑴 𝒃𝒆 𝒂 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒖𝒃𝒔𝒑𝒂𝒄𝒆 𝒐𝒇 𝒂 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆 𝑵,𝒂𝒏𝒅
𝒍𝒆𝒕 𝒇 𝒃𝒆 𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒐𝒏 𝑴 𝑻𝒉𝒆𝒏 𝒇 𝒄𝒂𝒏 𝒃𝒆 𝒆𝒙𝒕𝒆𝒏𝒅𝒆𝒅 𝒕𝒐 𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏
𝒇 𝟎 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒐𝒏 𝒕𝒉𝒆 𝒘𝒉𝒐𝒍𝒆 𝒔𝒑𝒂𝒄𝒆 𝑵 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒇 𝟎 = 𝒇 .
𝑷𝒓𝒐𝒐𝒇:−𝑾𝒆 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒊𝒔 𝒃𝒚 𝒛𝒐𝒓𝒏′
𝒔𝒍𝒆𝒎𝒎𝒂
𝑳𝒆𝒕 𝑷 = {(𝒇 𝝀,𝑴 𝝀)/𝒇 𝝀 𝒊𝒔 𝒂𝒏 𝒆𝒙𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝒐𝒇 𝒇 𝒐𝒏 𝑴 𝝀 ⊇ 𝑴, 𝒇 𝝀 = 𝒇 }
𝑫𝒆𝒇𝒊𝒏𝒆 ≤ 𝒐𝒏 𝑷 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔.
𝒇 𝝀, 𝑴 𝝀 ≤ 𝒇 𝝁, 𝑴 𝝁 ⇔ 𝑴 𝝀 ⊂ 𝑴 𝝁
𝒇 𝝀 𝒙 = 𝒇 𝝁 𝒙 ∀ 𝒙 ∈ 𝑴 𝝀. 𝑪𝒍𝒆𝒂𝒓𝒍𝒚 𝑷 ≠ ∅ 𝒔𝒊𝒏𝒄𝒆 𝒇, 𝑴 ∈ 𝑷, 𝒂𝒍𝒔𝒐 𝑷,≤ 𝒊𝒔 𝒂 𝒄𝒐𝒔𝒆𝒕
𝑳𝒆𝒕 𝑸 = 𝒇𝒊,𝑴𝒊 𝒃𝒆 𝒂 𝒄𝒉𝒂𝒊𝒏 𝒊𝒏 𝑷.
𝑪𝒍𝒆𝒂𝒓𝒍𝒚 ∅, 𝑴𝒊 𝒊𝒔 𝒂𝒏 𝒖𝒑𝒑𝒆𝒓𝒃𝒐𝒖𝒏𝒅 𝒇𝒐𝒓 𝑸. 𝑾𝒉𝒆𝒓𝒆 ∅ 𝒙 = 𝒇𝒊 𝒙 ,∀ 𝒙 ∈ 𝑴𝒊
𝑨𝒍𝒔𝒐 𝒐𝒃𝒔𝒆𝒓𝒗𝒆 𝒕𝒉𝒂𝒕 𝑴𝒊
𝒊
𝒊𝒔 𝒂 𝒔𝒖𝒃𝒔𝒑𝒂𝒄𝒆 𝒐𝒇 𝑵
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
∅ 𝒊𝒔 𝒘𝒆𝒍𝒍 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 − 𝑳𝒆𝒕 𝒙 ∈ 𝑴𝒊 ⟹ 𝒙 ∈ 𝑴𝒊 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆 𝒊
⟹ 𝒙 ∈ 𝑴 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆
𝒊𝒇 𝑴𝒊 𝑴 𝒕𝒉𝒆𝒏 ⟹
∅ 𝒙 𝒇𝒊 𝒙
∅ 𝒙 𝒇 𝒙
⟹ 𝒇𝒊 𝒙 𝒇 𝒙 ⟹ ∅ 𝒊𝒔 𝒘𝒆𝒍𝒍 𝒅𝒆𝒇𝒊𝒏𝒆𝒅
𝑯𝒆𝒏𝒄𝒆 𝒃𝒚 𝒆𝒓𝒐 𝒔 𝒍𝒆𝒎𝒎𝒂 𝑻𝒉𝒆𝒓𝒆 𝒊𝒔 𝒂 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝑭 𝑯 ∋ 𝑭 𝑯 ∈ 𝑷
𝑪𝒍𝒂𝒊𝒎 ∶-𝑯 𝑵
𝑺𝒖𝒑𝒑𝒐𝒔𝒆 𝑯 ≠ 𝑵
𝑯𝒆𝒏𝒄𝒆 𝒃𝒚 𝒂𝒃𝒐𝒗𝒆 𝒍𝒆𝒎𝒎𝒂 𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑭 𝟎 𝒐𝒏 𝑯 𝟎 ∋ 𝑭 𝟎 𝒇
⟹ 𝑭 𝟎 𝑯 𝟎 ∈ 𝑷 𝒕𝒐 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒂𝒍𝒊𝒕𝒚 𝒐𝒇 𝑭 𝑯
𝑯𝒂𝒏𝒄𝒆 𝑯 𝑵
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
𝑪𝑶𝑵𝑺𝑬𝑸𝑼𝑬𝑵𝑪𝑬𝑺 𝑶𝑭 𝑯𝑨𝑯𝑵 − 𝑩𝑨𝑵𝑨𝑪𝑯 𝑻𝑯𝑬𝑶𝑹𝑬𝑴
1. 𝐋𝐞𝐭 𝐍 𝐛𝐞 𝐚 𝐧𝐨𝐫𝐦𝐞𝐝 𝐥𝐢𝐧𝐞𝐚𝐫 𝐬𝐩𝐚𝐜𝐞 𝐚𝐧𝐝 𝟎 ≠ 𝒙 𝟎 ∈ 𝐍 𝐭𝐡𝐞𝐧
𝐚 𝐟𝐮𝐧𝐭𝐢𝐨𝐧𝐚𝐥 𝒇 ∈ 𝐍 ∋ 𝐟 𝒙 𝟎 = 𝒙 𝟎
Remark:- 𝐍 𝒔𝒆𝒑𝒆𝒓𝒂𝒕𝒆𝒔 𝒗𝒆𝒄𝒕𝒐𝒓𝒔 𝒊𝒏 𝐍 𝐢. 𝐞. , 𝒙 ≠ 𝒚 ⇒ 𝒇(𝒙) ≠ 𝒇(𝒚)
2. 𝐋𝐞𝐭 𝐌 𝐛𝐞 𝐭𝐡𝐞 𝐜𝐥𝐨𝐬𝐞𝐝 𝐥𝐢𝐧𝐞𝐫 𝐨𝐟 𝐚 𝐧𝐨𝐫𝐦𝐞𝐝 𝐥𝐢𝐧𝐞𝐫 𝐬𝐩𝐚𝐜𝐞 𝐍 𝐚𝐧𝐝
𝒙 𝟎 ∉ 𝐌. 𝐓𝐡𝐞𝐧 𝐚 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐚𝐥 𝒇 ∈ 𝐍 ∋ 𝐟 𝐌 = 𝟎, 𝒇 𝒙 𝟎 ≠ 𝟎.
Definition:-
𝑨 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝑻 𝒊𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒂𝒏 𝒊𝒔𝒐𝒎𝒆𝒕𝒓𝒚 𝒊𝒇 𝑻𝒙 − 𝑻𝒚 𝒙 − 𝒚
𝐍𝐚𝐭𝐮𝐫𝐚𝐥 𝐞𝐦𝐛𝐞𝐝𝐝𝐢𝐧 𝐨𝐟 𝐍 𝐭𝐨 𝐍
𝑳𝒆𝒕 𝑵 𝒃𝒆 𝒂 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒓 𝒔𝒑𝒂𝒄𝒆,∀ 𝒙 ∈ 𝑵 𝒊𝒏𝒅𝒖𝒄𝒆𝒔 𝒂 𝒇𝒖𝒏𝒕𝒊𝒐𝒏𝒂𝒍 𝑭 𝒙 𝒐𝒏
𝑵 𝒃𝒚 𝑭 𝒙 𝒇 = 𝒇 𝒙 ∀ 𝒇 ∈ 𝑵 ∋ 𝑭 𝒙 = 𝒙 .
𝒇𝒖𝒓𝒕𝒉𝒆𝒓 𝒂 𝒎𝒂𝒑𝒑𝒊𝒏𝒈 𝑱:𝑵 → 𝑵 ∋ 𝑱 𝒙 = 𝑭 𝒙∀ 𝒙 ∈ 𝑵
𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒐𝒏 𝒊𝒔𝒐𝒎𝒆𝒕𝒓𝒊 𝒊𝒔𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎 𝒏𝒐𝒇 𝑵 𝒊𝒏𝒕𝒐 𝑵
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
OPEN MAPPING THEOREM
𝑻𝒉𝒆𝒐𝒓𝒆𝒎:−
𝑳𝒆𝒕 𝑩,𝑩′ 𝒃𝒆 𝑩𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆𝒔 𝒂𝒏𝒅 𝑻 𝒃𝒆 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒕𝒉𝒆𝒏
𝑻 𝒊𝒔 𝒐𝒑𝒆𝒏 𝒎𝒂𝒑𝒑𝒊𝒏𝒈
𝑷𝒓𝒐𝒐𝒇:−
𝑳𝒆𝒕 𝑻 𝑩 → 𝑩 𝒊𝒔 𝒂 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏
𝒔𝒖𝒑𝒑𝒐𝒔𝒆 𝒊𝒔 𝒂𝒏 𝑶𝒑𝒆𝒏𝒔𝒆𝒕 𝒊𝒏 𝑩
𝑪𝒍𝒂𝒊𝒎 − 𝑻 𝒊𝒔 𝒐𝒑𝒆𝒏𝒊𝒏 𝑩
𝑳𝒆𝒕 𝒚 ∈ 𝑻 ⇒ 𝒚 𝑻𝒙 𝒇𝒐𝒓 𝒙 ∈
𝑺𝒊𝒏𝒄𝒆 𝒊𝒔 𝒐𝒑𝒆𝒏 𝒂𝒏 𝒐𝒑𝒆𝒏𝒔𝒑𝒉𝒆𝒓𝒆 𝑺 𝒙 𝒓 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒙 ∈ 𝑺 𝒙 𝒓 ⊂
⇒ 𝒙 ∈ 𝒙 𝑺 𝒓 ⊂ ⇒ 𝑻𝒙 ∈ 𝑻 𝒙 𝑺 𝒓 ⊂ 𝑻 − − − − − − 𝟏
𝒃𝒖𝒕 𝒃𝒚 𝒌𝒏𝒐𝒘𝒏 𝒍𝒆𝒎𝒎𝒂 𝒂𝒏 𝒐𝒑𝒆𝒏 𝒔𝒑𝒉𝒆𝒓𝒆 𝑺 ⊂ 𝑻 𝑺 𝒓
𝑵𝒐𝒘 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓 𝒚 𝑺 ⊂ 𝒚 𝑻 𝑺 𝒓 ⇒ 𝒚 𝑺 ⊂ 𝑻𝒙 𝑻 𝑺 𝒓
⇒ 𝒚 𝑺 ⊂ 𝑻 𝒙 𝑺 𝒓 ⊂ 𝑻 𝑩𝒚 𝟏
⇒ 𝑺 𝒚 ⊂ 𝑻 𝒂𝒏𝒅 𝒚 ∈ 𝑺 𝒚
⇒ 𝑻 𝒊𝒔 𝒐𝒑𝒆𝒏 ⇒ 𝑻 𝒊𝒔 𝒂𝒏 𝒐𝒑𝒆𝒏 𝒎𝒂𝒑𝒑𝒊𝒏𝒈
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Banach Space :-
𝑻𝒉𝒆𝒐𝒓𝒆𝒎 ∶ −
𝑳𝒆𝒕 𝑩 𝑩 𝒃𝒆 𝑩𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆𝒔 𝑻 𝒃𝒆 𝒂 𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝟏 − 𝟏 𝒐𝒏𝒕𝒐
𝑳𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝑩 𝒐𝒏𝒕𝒐 𝑩 𝒕𝒉𝒆𝒏 𝑻 𝒊𝒔 𝑯𝒐𝒎𝒆𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒄
𝑰𝒏𝒑𝒂𝒓𝒕𝒊𝒄𝒖𝒍𝒂𝒓 𝑻 𝟏
𝒊𝒔 𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔
𝑷𝒓𝒐𝒐𝒇 𝒇𝒐𝒓 𝒑𝒓𝒂𝒄𝒕𝒊𝒄𝒆
𝑷𝒓𝒐 𝒆𝒄𝒕𝒊𝒐𝒏 𝒊𝒏 𝑩𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆:−
𝑨 𝒎𝒂𝒑𝒑𝒊𝒏𝒈 𝑬: 𝑩 → 𝑩 𝒊𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒑𝒓𝒐 𝒆𝒄𝒕𝒊𝒐𝒏 𝒊𝒇 𝟏 𝑬 𝟐
= 𝑬 𝒊𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒕
𝟐 𝑬 𝒊𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔
𝑹𝒆𝒎𝒂𝒓𝒌:− 𝟏 𝑨 𝒑𝒓𝒐 𝒆𝒄𝒕𝒊𝒐𝒏 𝑬 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒆𝒔 𝒂 𝒑𝒂𝒊𝒓 𝒐𝒇 𝒔𝒖𝒃𝒔𝒑𝒂𝒄𝒆𝒔 𝑴 𝒂𝒏𝒅 𝑵 ∋
𝑩 = 𝑴⨁𝑵. 𝒘𝒉𝒆𝒓𝒆 𝑴 = {𝑬(𝒙)/𝒙 ∈ 𝑩} 𝒂𝒏𝒅 𝑵 = {𝒙 ∈ 𝑩/𝑬(𝒙) = 𝟎}
𝟐 𝑨𝒏𝒚 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 = 𝒙 + 𝒚, 𝒙 ∈ 𝑴, 𝒚 ∈ 𝑵 𝒊𝒔 𝒖𝒏𝒊𝒒𝒖𝒆.
MANIKANTA SATYALA FUNTIONAL ANALYSIS
Funtional analysis-BANACH SPACE

More Related Content

What's hot

Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical inductionKriti Varshney
 
Conditional probability
Conditional probabilityConditional probability
Conditional probabilitysuncil0071
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanDr. Nirav Vyas
 
Random Experiment, Sample Space, Events
Random Experiment, Sample Space, EventsRandom Experiment, Sample Space, Events
Random Experiment, Sample Space, EventsSandeep Patel
 
Inequalities
InequalitiesInequalities
Inequalitiessusoigto
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsJaydev Kishnani
 
Permutation and combination
Permutation and combinationPermutation and combination
Permutation and combinationSadia Zareen
 
CMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of FunctionsCMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of Functionsallyn joy calcaben
 
Expressions & Formulas (Algebra 2)
Expressions & Formulas (Algebra 2)Expressions & Formulas (Algebra 2)
Expressions & Formulas (Algebra 2)rfant
 
Solving Inequalities (Algebra 2)
Solving Inequalities (Algebra 2)Solving Inequalities (Algebra 2)
Solving Inequalities (Algebra 2)rfant
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace2461998
 
Lesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationLesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationJonathan Templin
 
Logarithms
LogarithmsLogarithms
Logarithmssiking26
 
Eigenvalues and eigenvectors
Eigenvalues and eigenvectorsEigenvalues and eigenvectors
Eigenvalues and eigenvectorsiraq
 
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTINTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTJAYDEV PATEL
 
Numerical differentiation
Numerical differentiationNumerical differentiation
Numerical differentiationandrushow
 

What's hot (20)

Principle of mathematical induction
Principle of mathematical inductionPrinciple of mathematical induction
Principle of mathematical induction
 
Conditional probability
Conditional probabilityConditional probability
Conditional probability
 
Arithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic MeanArithmetic Mean, Geometric Mean, Harmonic Mean
Arithmetic Mean, Geometric Mean, Harmonic Mean
 
Random Experiment, Sample Space, Events
Random Experiment, Sample Space, EventsRandom Experiment, Sample Space, Events
Random Experiment, Sample Space, Events
 
Inequalities
InequalitiesInequalities
Inequalities
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Permutation and combination
Permutation and combinationPermutation and combination
Permutation and combination
 
CMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of FunctionsCMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of Functions
 
Expressions & Formulas (Algebra 2)
Expressions & Formulas (Algebra 2)Expressions & Formulas (Algebra 2)
Expressions & Formulas (Algebra 2)
 
Solving Inequalities (Algebra 2)
Solving Inequalities (Algebra 2)Solving Inequalities (Algebra 2)
Solving Inequalities (Algebra 2)
 
Curve Fitting
Curve FittingCurve Fitting
Curve Fitting
 
vector space and subspace
vector space and subspacevector space and subspace
vector space and subspace
 
Determinants
DeterminantsDeterminants
Determinants
 
Lesson 3 - matrix multiplication
Lesson 3 - matrix multiplicationLesson 3 - matrix multiplication
Lesson 3 - matrix multiplication
 
Unit4
Unit4Unit4
Unit4
 
Logarithms
LogarithmsLogarithms
Logarithms
 
Eigenvalues and eigenvectors
Eigenvalues and eigenvectorsEigenvalues and eigenvectors
Eigenvalues and eigenvectors
 
Curve fitting
Curve fitting Curve fitting
Curve fitting
 
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TESTINTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
INTEGRAL TEST, COMPARISON TEST, RATIO TEST AND ROOT TEST
 
Numerical differentiation
Numerical differentiationNumerical differentiation
Numerical differentiation
 

Similar to Funtional analysis-BANACH SPACE

function power point presentation for class 11 and 12 for jee
function power point presentation for class 11 and 12 for jeefunction power point presentation for class 11 and 12 for jee
function power point presentation for class 11 and 12 for jeeMohanSonawane
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationIJERA Editor
 
SUEC 高中 Adv Maths (Trigo Function Part 3)
SUEC 高中 Adv Maths (Trigo Function Part 3)SUEC 高中 Adv Maths (Trigo Function Part 3)
SUEC 高中 Adv Maths (Trigo Function Part 3)tungwc
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
 
Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx
Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptxDomain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx
Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptxNeomyAngelaLeono1
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
Testdjhdhddjjdjdjdjdjdjdjjdjdjffhfhfhfjfudh
TestdjhdhddjjdjdjdjdjdjdjjdjdjffhfhfhfjfudhTestdjhdhddjjdjdjdjdjdjdjjdjdjffhfhfhfjfudh
Testdjhdhddjjdjdjdjdjdjdjjdjdjffhfhfhfjfudhankitlakhiwal
 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Asafak Husain
 
Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptxjorgejvc777
 
Stochastic optimal control &amp; rl
Stochastic optimal control &amp; rlStochastic optimal control &amp; rl
Stochastic optimal control &amp; rlChoiJinwon3
 
Rational function 11
Rational function 11Rational function 11
Rational function 11AjayQuines
 
Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivationHassaan Saleem
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
 
Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementationJongsu "Liam" Kim
 
Coursera 2week
Coursera  2weekCoursera  2week
Coursera 2weekcsl9496
 

Similar to Funtional analysis-BANACH SPACE (20)

function power point presentation for class 11 and 12 for jee
function power point presentation for class 11 and 12 for jeefunction power point presentation for class 11 and 12 for jee
function power point presentation for class 11 and 12 for jee
 
Euler's and picard's
Euler's and picard'sEuler's and picard's
Euler's and picard's
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
 
SUEC 高中 Adv Maths (Trigo Function Part 3)
SUEC 高中 Adv Maths (Trigo Function Part 3)SUEC 高中 Adv Maths (Trigo Function Part 3)
SUEC 高中 Adv Maths (Trigo Function Part 3)
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 
CPP.pptx
CPP.pptxCPP.pptx
CPP.pptx
 
Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx
Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptxDomain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx
Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
Testdjhdhddjjdjdjdjdjdjdjjdjdjffhfhfhfjfudh
TestdjhdhddjjdjdjdjdjdjdjjdjdjffhfhfhfjfudhTestdjhdhddjjdjdjdjdjdjdjjdjdjffhfhfhfjfudh
Testdjhdhddjjdjdjdjdjdjdjjdjdjffhfhfhfjfudh
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Restricted boltzmann machine
Restricted boltzmann machineRestricted boltzmann machine
Restricted boltzmann machine
 
Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]Mathematics of nyquist plot [autosaved] [autosaved]
Mathematics of nyquist plot [autosaved] [autosaved]
 
Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptx
 
Stochastic optimal control &amp; rl
Stochastic optimal control &amp; rlStochastic optimal control &amp; rl
Stochastic optimal control &amp; rl
 
Rational function 11
Rational function 11Rational function 11
Rational function 11
 
Relativity
RelativityRelativity
Relativity
 
Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivation
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementation
 
Coursera 2week
Coursera  2weekCoursera  2week
Coursera 2week
 

More from Manikanta satyala

Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & DimensionManikanta satyala
 
Liner algebra-vector space-2 Algebra of Subspaces
Liner algebra-vector space-2 Algebra of SubspacesLiner algebra-vector space-2 Algebra of Subspaces
Liner algebra-vector space-2 Algebra of SubspacesManikanta satyala
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace Manikanta satyala
 
Google forms, quiz preparation with google forms
Google forms, quiz preparation with google formsGoogle forms, quiz preparation with google forms
Google forms, quiz preparation with google formsManikanta satyala
 
Student guidelines in google classroom
Student guidelines in google classroom Student guidelines in google classroom
Student guidelines in google classroom Manikanta satyala
 
Numerical analysis interpolation-III
Numerical analysis  interpolation-IIINumerical analysis  interpolation-III
Numerical analysis interpolation-IIIManikanta satyala
 
Graph theory in network system
Graph theory in network systemGraph theory in network system
Graph theory in network systemManikanta satyala
 
Graph theory and its applications
Graph theory and its applicationsGraph theory and its applications
Graph theory and its applicationsManikanta satyala
 

More from Manikanta satyala (8)

Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Liner algebra-vector space-2 Algebra of Subspaces
Liner algebra-vector space-2 Algebra of SubspacesLiner algebra-vector space-2 Algebra of Subspaces
Liner algebra-vector space-2 Algebra of Subspaces
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
Google forms, quiz preparation with google forms
Google forms, quiz preparation with google formsGoogle forms, quiz preparation with google forms
Google forms, quiz preparation with google forms
 
Student guidelines in google classroom
Student guidelines in google classroom Student guidelines in google classroom
Student guidelines in google classroom
 
Numerical analysis interpolation-III
Numerical analysis  interpolation-IIINumerical analysis  interpolation-III
Numerical analysis interpolation-III
 
Graph theory in network system
Graph theory in network systemGraph theory in network system
Graph theory in network system
 
Graph theory and its applications
Graph theory and its applicationsGraph theory and its applications
Graph theory and its applications
 

Recently uploaded

Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 

Recently uploaded (20)

Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

Funtional analysis-BANACH SPACE

  • 1.
  • 2. Normed Linear Space:- A Normed Space is a vector space N endowed with a function(called Norm) )_(: fieldscalarFN  Which satisfies the conditions NyxFxx yxyx xx x     ,...4 .3 00.2 0.1  MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 3. Properties of Normed Linear Space:- xx xx nn n n         yxyx  xxxx nn  yxyx yy xx nn n n       1. 2. 3. 4. (i.e.,) Norm is continuous function MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 4. Properties of Normed Linear Space:- Norm induces a metric on a Normed linear space N 𝑑 ∶ 𝑁 × 𝑁 → 𝑅 𝑏𝑦 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 , 𝑥, 𝑦 ∈ 𝑁. 𝐶𝑙𝑒𝑎𝑟𝑙𝑦 𝑑 𝑥, 𝑦 ≥ 0 𝑎𝑛𝑑 𝑑 𝑥, 𝑦 = 0 ⇔ 𝑥 − 𝑦 = 0 ⇔ 𝑥 = 𝑦 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 = −( 𝑦 − 𝑥) = 𝑦 − 𝑥 = 𝑑 𝑦, 𝑥 , 𝑑 𝑥, 𝑧 = 𝑥 − 𝑧 𝑓𝑜𝑟 𝑧 ∈ 𝑁. 𝑑 𝑥, 𝑧 = 𝑥 − 𝑧 = 𝑥 − 𝑦 + 𝑦 − 𝑧 ≤ ||𝑥 − 𝑦|| + ||𝑦 − 𝑧|| = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) Note: - A metric 𝑑 induced by a norm on a normed space 𝑁 satisfies 1.𝑑 𝑥 + 𝑎, 𝑦 + 𝑎 = 𝑑 𝑥, 𝑦 2.𝑑(𝛼𝑥, 𝛼𝑦) = 𝛼 𝑑(𝑥, 𝑦) MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 5. Properties of Normed Linear Space:-  The metric induced by norm i.e. d(x, y) = ||x − y||, x, y ∈ N has translational invariant property and absolute homogeneity property..  A normed linear space N is said to be complete if every Cauchy sequence in N is convergent to an element of N  If L be a subspace of a normed linear space N then its closure L is also a subspace of N MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 6. A complete Normed Linear Space is called a Banach Space. A Banach Space is a normed linear space which is complete with respect to a metric induced by a norm Banach Space :- Remark :- A Normed Linear Space N is said to be Complete if every Cauchy sequence in N is convergent to an element of N MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 7. Banach Space :-Examples 1. R is a Banach space Define by : 𝑅 → 𝑅 𝑏𝑦 𝑥 = 𝑥 . 2. Euclideanspace Rn and unitary space Cn. They are Banach spaces with norm defined by 𝑥 : 𝜉𝑗 2𝑛 𝑗=1 1/2 = 𝜉1 2 + ⋯+ 𝜉 𝑛 2. 3. Let 1 ≤ 𝑝 ≤ ∞. 𝑳 𝒑 𝒏 denotes the space of all numbers 𝑥 𝑝 = (𝑥1,𝑥2,… , 𝑥 𝑛) 𝑝 = ( 𝑥𝑖 𝑝𝑛 𝑖=1 )1/𝑝 Remark: 𝑥 = 𝑥𝑖 𝑝𝑛 𝑖=1 1/𝑝 look at a closed unit ball in R2 with different norms. MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 8. Banach Space 𝒀𝒐𝒖𝒏𝒈’𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 Let 𝑝 > 1 and set 𝑞 = 𝑝 𝑝 − 1 . For every 𝑎, 𝑏 ∈ 𝐶: 𝑎𝑏 ≤ 𝑎 𝑝 𝑝 + 𝑏 𝑞 𝑞 𝑃𝑟𝑜𝑜𝑓: Note that 1 𝑝 + 1 𝑞 = 1.Since –log is a convexfuction thenfor every 𝛼, 𝛽 > 0: −log 𝛼 𝑝 + 𝛽 𝑞 ≤ − 1 𝑝 log 𝛼 − 1 𝑞 log 𝛽 = − log 𝛼 1 𝑝 𝛽 1 𝑞 . It follows that: 𝛼 𝑝 + 𝛽 𝑞 ≥ 𝛼 1 𝑝 𝛽 1 𝑞. Setting 𝛼 = 𝑎 𝑝 and β = 𝑏 𝑞 we reoverthe desiredresult MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 9. Banach Space 𝑯ö𝒍𝒅𝒆𝒓 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚: Let 𝑝 > 1 and set 𝑞 = 𝑝 𝑝 − 1 . For every 𝑥, 𝑦 ∈ Cn 𝑥𝑖 𝑦𝑖 𝑛 𝑖=1 ≤ 𝑥 𝑝 𝑦 𝑞 . 𝑃𝑟𝑜𝑜𝑓: Using Young′ s inequality termby term: 𝑥𝑖 𝑦𝑖 𝑛 𝑖=1 𝑥 𝑝 𝑦 𝑞 = 𝑥𝑖 𝑥 𝑝 𝑦𝑖 𝑦 𝑞 𝑛 𝑖=1 ≤ 1 𝑝 𝑥𝑖 𝑥 𝑝 𝑝𝑛 𝑖=1 + 1 𝑞 𝑦𝑖 𝑦 𝑞 𝑞𝑛 𝑖=1 = 1 𝑝 + 1 𝑞 = 1. MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 10. Banach Space 𝑴𝒊𝒏𝒌𝒐𝒘𝒔𝒌𝒊 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚: Let 𝑝 > 1 . For every 𝑥, 𝑦 ∈ Cn 𝑥 + 𝑦 𝑝 ≤ 𝑥 𝑝 + 𝑦 𝑞 . 𝑃𝑟𝑜𝑜𝑓: For every 𝑖 ∈ 1,2,…, 𝑛 ,it follows from the triangleinequality that 𝑥𝑖 + 𝑦𝑖 𝑝 = 𝑥𝑖 + 𝑦𝑖 𝑥𝑖 + 𝑦𝑖 𝑝−1 ≤ 𝑥𝑖 𝑥𝑖 + 𝑦𝑖 𝑝−1 + 𝑦𝑖 𝑥𝑖 + 𝑦𝑖 𝑝−1 Summing over 𝑖,and using Holder′ s inequality: 𝑥 + 𝑦 𝑝 𝑝 ≤ 𝑥 𝑝 + 𝑦 𝑝 𝑥𝑖 + 𝑦𝑖 𝑞 𝑝−1 𝑛 𝑖=1 1 𝑞 , where 𝑞 = 𝑝 𝑝 − 1 . Noting that 𝑞 𝑝 − 1 = 𝑝 and 1 𝑞 = 𝑝 − 1 𝑝 : 𝑥 + 𝑦 𝑝 𝑝 ≤ 𝑥 𝑝 + 𝑦 𝑝 𝑥 + 𝑦 𝑝 𝑝−1 , which completesthe proof. MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 11. Banach Space Schwarz inequality :- MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 12. Banach Space MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 13. Banach Space :- Theorem: - Let 𝑀 be a closed linear subspace of a normed linear space 𝑁. If the norm of a coset 𝑥 + 𝑀 in the Quotient space 𝑁/𝑀 is defined by 𝑥 + 𝑀 = inf 𝑥 + 𝑚 /𝑚 ∈ 𝑀 then 𝑁/𝑀 is a normed linear space. Further if 𝑁 is complete then 𝑁/𝑀 is complete Remark: 𝑁/𝑀 is Banach if 𝑁 is Banach MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 14. Banach Space :- Proof: - First we have to show that 𝑁/𝑀 is Linear Space:- Let 𝑥 + 𝑀, 𝑦 + 𝑀 ∈ 𝑁/𝑀 ⟹ 𝑥 + 𝑀 + 𝑦 + 𝑀 = 𝑥 + 𝑦 + 𝑀 ⟹ 𝑎 𝑥 + 𝑀 = 𝑎𝑥 + 𝑀 ∀𝑥, 𝑦 ∈ 𝑁 & 𝑎 ∈ 𝐹 Clearly 𝑁/𝑀is a linear space Define : 𝑁/𝑀 → 𝐹 by 𝑥 + 𝑀 = inf 𝑥 + 𝑚 /𝑚 ∈ 𝑀 Now we show that 𝑁/𝑀 is Normed linear space:- ⟹ Since inf 𝑥+ 𝑚 /𝑚 ∈ 𝑀 ≥ 0. We have 𝑥 + 𝑀 ≥ 0 ⟹ Suppose 𝑥 + 𝑀 = 0 ⟺ inf 𝑥 + 𝑚 /𝑚 ∈ 𝑀 = 0 Since 𝑀 is closed, there certainly exists a sequence < 𝑚 𝑘 > such that 𝑚 𝑘 ⟶ 𝑚 ∀ 𝑘 ⟹ 𝑥 + 𝑚 𝑘 ⟶ 𝑥 + 𝑚 ⟺ 𝑥 + 𝑀 ∈ 𝑀 ⟺ 𝑥 ∈ 𝑀 ⟺ 𝑥 + 𝑀 = 𝑀 = 𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑁/𝑀. MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 15. Banach Space :- ⟹ 𝑥 + 𝑀 + 𝑦 + 𝑀 = 𝑥 + 𝑦 + 𝑀 = inf 𝑥 + 𝑦 + 𝑚 /𝑚 ∈ 𝑀 = inf 𝑥 + 𝑦 + 𝑚1 + 𝑚2 /𝑚 = 𝑚1 𝑚2 ∈ 𝑀 . ≤ inf 𝑥 + 𝑚1 𝑦 + 𝑚2 / 𝑚1, 𝑚2 ∈ 𝑀 ≤ inf 𝑥 + 𝑚1 / 𝑚1 ∈ 𝑀 + inf 𝑦 + 𝑚2 / 𝑚2 ∈ 𝑀 = 𝑥 + 𝑀 + 𝑦 + 𝑀 ⟹ 𝛼 𝑥 + 𝑀 = 𝛼𝑥 + 𝑀 = inf 𝛼𝑥 + 𝑚 /𝑚 ∈ 𝑀 = inf 𝛼 𝑥 + 𝑚/𝛼 /𝑚 ∈ 𝑀 = inf 𝛼 𝑥 + 𝑚 𝛼 / 𝑚 𝛼 ∈ 𝑀 = 𝛼 inf 𝑥 + 𝑚1 / 𝑚1 = 𝑚 𝛼 ∈ 𝑀 = 𝛼 𝑥 + 𝑀 ∴ 𝑁/𝑀 is a normed linear space MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 16. Banach Space :- So it is enough to show that 𝑁/𝑀 is Complete. ⟹ Let 𝑥 𝑛 + 𝑀 be a Cauchy sequence in 𝑁/𝑀. Choose 𝑦1 ∈ 𝑥1 + 𝑀. & 𝑦2 ∈ 𝑥2 + 𝑀 ∋ 𝑦1 − 𝑦2 < 1 2 Now choose 𝑦3 ∈ 𝑥3 + 𝑀 ∋ 𝑦2 − 𝑦3 < 1 22. On continue this processes, we get 𝑦𝑛 − 𝑦𝑛+1 < 1 2 𝑛 Suppose 𝑚 < 𝑛 in 𝑁. Then,Consider 𝑦 𝑚 − 𝑦𝑛 = 𝑦 𝑚 − 𝑦 𝑚 +1 + 𝑦 𝑚 +1 − 𝑦 𝑚 +2 + 𝑦 𝑚 +2 + ⋯ + 𝑦 𝑛 −1 − 𝑦𝑛 ≤ 𝑦 𝑚 − 𝑦 𝑚 +1 + 𝑦 𝑚 +1 − 𝑦 𝑚 +2 + ⋯ + 𝑦 𝑛−1 − 𝑦𝑛 ≤ 1 2 𝑚 + 1 2 𝑚 +1 + 1 2 𝑚 +2 + ⋯ + 1 2 𝑛 −1 < 1 2 𝑛−1 ⟹ 𝑦𝑛 Converges. 𝑖. 𝑒. , 𝑦𝑛 ⟶ 𝑦(𝑠𝑎𝑦) Since 𝑁 is Complete Consider 𝑥 𝑛 + 𝑀 − 𝑦 + 𝑀 = 𝑥 𝑛 − 𝑦 + 𝑀 ⟶ 0 ⟹ 𝑥 𝑛 + 𝑀 ⟶ 𝑦 + 𝑀 ⟹ 𝑁/𝑀 is complete MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 17. Banach Space :- Bounded Linear : -Transformation Let 𝑁, 𝑁 be two normed linear spaces. A linear transformation 𝑇: 𝑁 → 𝑁 is said to be bounded if 𝑇𝑥 ≤ 𝑀 𝑥 ∀𝑥 ∈ 𝑁 & 𝑀 > 0. Continuous Linear Transformation: - A transformation 𝑇 is said to be Continuous if it is continuous as a mapping of Metric space 𝑁 into a Metric space 𝑁 . (i.e,) 𝑥 𝑛 → 𝑥 ⟹ 𝑇𝑥 𝑛 → 𝑇𝑥 MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 18. Banach Space :- 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 ∶ 𝑳𝒆𝒕 𝑻 𝒃𝒆 𝒂 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝑵 𝒊𝒏𝒕𝒐 𝑵. 𝑻𝒉𝒆𝒏 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒂𝒓𝒆 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 I. 𝑻 𝒊𝒔 𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 II. 𝑻 𝒊𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒏𝒖𝒐𝒖𝒔 𝒂𝒕 𝒕𝒉𝒆 𝑶𝒓𝒊𝒈𝒊𝒏 𝒊. 𝒆., 𝒙 𝒏 → 𝟎 ⟹ 𝑻𝒙 𝒏 ⟶ 𝟎 III. 𝒕𝒉𝒆𝒓𝒆 𝒆𝒙𝒊𝒕𝒔 𝒂 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝑴 ≥ 𝟎 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝑻𝒙 ≤ 𝑴 𝒙 𝒊. 𝒆., 𝑻 𝒊𝒔 𝒃𝒐𝒖𝒏𝒅𝒆𝒅. IV. 𝑰𝒇 𝑺 = 𝒙 𝒙 ≤ 𝟏 𝒊𝒔 𝒂 𝒄𝒍𝒐𝒔𝒆𝒅 𝒖𝒏𝒊𝒕 𝒃𝒂𝒍𝒍 𝒕𝒉𝒆𝒏 𝒕𝒉𝒆 𝒊𝒎𝒂𝒈𝒆 𝑻 𝑺 𝒊𝒔 𝒃𝒐𝒖𝒏𝒅𝒆𝒅 Proof: for practice MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 19. Banach Space :- 𝑹𝒆𝒎𝒂𝒓𝒌 ∶ 𝑭𝒐𝒓 𝒕𝒉𝒆 𝒃𝒐𝒖𝒏𝒅𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝑻 𝒇𝒓𝒐𝒎 𝑵 𝒊𝒏𝒕𝒐 𝑵. 𝑻𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒂𝒓𝒆 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 I. 𝑻 = 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 ≤ 𝟏} II. 𝑻 = 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 = 𝟏} III. 𝑻 = 𝐒𝐮𝐩 𝑻𝒙 𝒙 /𝒙 ≠ 𝟎, 𝒙 ∈ 𝑵 IV. 𝑻 = 𝐈𝐧𝐟 𝑴 > 0/ 𝑻 ≤ 𝑴 𝒙 , ∀𝒙 ∈ 𝑵 Proof: for practice MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 20. Banach Space :- 𝑻𝒉𝒆𝒐𝒓𝒆𝒎: − 𝑰𝒇 𝑵, 𝑵 𝒂𝒓𝒆 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆𝒔 𝒕𝒉𝒆𝒏 𝑩 𝑵, 𝑵 𝒐𝒇 𝒂𝒍𝒍 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒐𝒇 𝑵 𝒊𝒏𝒕𝒐 𝑵 𝒊𝒔 𝒂 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆 𝒘𝒊𝒕𝒉 𝒓𝒆𝒔𝒑𝒆𝒄𝒕 𝒕𝒐 𝒕𝒉𝒆 𝒑𝒐𝒊𝒏𝒕 𝒘𝒊𝒔𝒆 𝒍𝒊𝒏𝒆𝒂𝒓 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒔 𝒂𝒏𝒅 𝒃𝒆 𝒏𝒐𝒓𝒎 ∥ 𝑻 ∥= 𝐬𝐮𝐩 ∥ 𝑻 𝒙 ∥: ∥ 𝒙 ≤ 𝟏 𝒇𝒖𝒓𝒕𝒉𝒆𝒓 𝒊𝒇 𝑵 𝒊𝒔 𝒃𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆 𝒕𝒉𝒆𝒏 𝑩(𝑵, 𝑵) 𝒊𝒔 𝒂𝒍𝒔𝒐 𝒃𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆 . MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 21. Banach Space :- 𝑷𝒓𝒐𝒐𝒇: − 𝑭𝒐𝒓 𝑻, 𝑺 ∈ 𝜷 𝑵, 𝑵 , 𝒂 𝒊𝒔 𝒂 𝒔𝒄𝒂𝒍𝒂𝒓 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝑻 + 𝒃 = 𝑻𝒙 + 𝒃𝒙 & 𝒂𝑻 𝒙 = 𝒂 𝑻𝒙 ∀𝒙 ∈ 𝑵 𝑪𝒍𝒆𝒂𝒓𝒍𝒚, 𝜷 𝑵, 𝑵 𝒊𝒔 𝒂 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆 𝑶𝒃𝒔𝒆𝒓𝒗𝒆 𝒕𝒉𝒂𝒕 : 𝜷 𝑵, 𝑵 → 𝑭 1. 𝐒𝐢𝐧𝐜𝐞 𝑻𝒙 ≥ 𝟎, 𝐒𝐮𝐩 𝑻𝒙 ≥ 𝟎 ⇒ 𝑻 ≥ 𝟎 2. 𝐒𝐮𝐩𝐩𝐨𝐬𝐞 𝑻 = 𝟎 ⇔ 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 ≤ 𝟏} = 𝟎 ⇔ 𝑻𝒙 = 𝟎 ⇔ 𝑻𝒙 = 𝟎 ⇔ 𝑻 = 𝟎 MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 22. Banach Space :- 3. 𝑻 + 𝑺 = 𝐒𝐮𝐩{ 𝑻 + 𝑺 (𝒙) / 𝒙 ≤ 𝟏} = 𝐒𝐮𝐩{ 𝑻𝒙 + 𝑺𝒙 / 𝒙 ≤ 𝟏} = 𝐒𝐮𝐩{ 𝑻𝒙 + 𝑺𝒙 / 𝒙 ≤ 𝟏} ≤ 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 ≤ 𝟏} + 𝐒𝐮𝐩{ 𝑺𝒙 / 𝒙 ≤ 𝟏} = 𝑻 + 𝑺 ∴ 𝑻 + 𝑺 ≤ 𝑻 + 𝑺 . 4. (𝜶𝑻) = 𝐒𝐮𝐩{ 𝜶𝑻 𝒙 / 𝒙 ≤ 𝟏} = 𝐒𝐮𝐩{ 𝜶 𝑻𝒙 / 𝒙 ≤ 𝟏} = 𝐒𝐮𝐩{ 𝜶 𝑻𝒙 / 𝒙 ≤ 𝟏} = 𝜶 𝐒𝐮𝐩{ 𝑻𝒙 / 𝒙 ≤ 𝟏} = 𝜶 𝑻 . 𝑻𝒉𝒖𝒔 𝜷 𝑵, 𝑵 𝒊𝒔 𝒂 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓𝒔𝒑𝒂𝒄𝒆. 𝑵𝒐𝒘 𝒊𝒕 𝒊𝒔 𝒆𝒏𝒐𝒖𝒈𝒉 𝒕𝒐 𝒔𝒐 𝒕𝒉𝒂𝒕 𝑵 𝒊𝒔 𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆.( 𝒑𝒓𝒐𝒐𝒇 ∶ −𝒑𝒓𝒂𝒄𝒕𝒊𝒄𝒆 ) MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 23. Banach Space :- 𝑻𝒉𝒆𝒐𝒓𝒆𝒎:−𝑳𝒆𝒕 𝑴 𝒃𝒆 𝒂 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒖𝒃𝒔𝒑𝒂𝒄𝒆 𝒐𝒇 𝒂 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒂𝒓 𝒔𝒑𝒂𝒄𝒆 𝑵,𝒂𝒏𝒅 𝒍𝒆𝒕 𝒇 𝒃𝒆 𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒐𝒏 𝑴 𝑻𝒉𝒆𝒏 𝒇 𝒄𝒂𝒏 𝒃𝒆 𝒆𝒙𝒕𝒆𝒏𝒅𝒆𝒅 𝒕𝒐 𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒇 𝟎 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒐𝒏 𝒕𝒉𝒆 𝒘𝒉𝒐𝒍𝒆 𝒔𝒑𝒂𝒄𝒆 𝑵 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒇 𝟎 = 𝒇 . 𝑷𝒓𝒐𝒐𝒇:−𝑾𝒆 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒊𝒔 𝒃𝒚 𝒛𝒐𝒓𝒏′ 𝒔𝒍𝒆𝒎𝒎𝒂 𝑳𝒆𝒕 𝑷 = {(𝒇 𝝀,𝑴 𝝀)/𝒇 𝝀 𝒊𝒔 𝒂𝒏 𝒆𝒙𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝒐𝒇 𝒇 𝒐𝒏 𝑴 𝝀 ⊇ 𝑴, 𝒇 𝝀 = 𝒇 } 𝑫𝒆𝒇𝒊𝒏𝒆 ≤ 𝒐𝒏 𝑷 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔. 𝒇 𝝀, 𝑴 𝝀 ≤ 𝒇 𝝁, 𝑴 𝝁 ⇔ 𝑴 𝝀 ⊂ 𝑴 𝝁 𝒇 𝝀 𝒙 = 𝒇 𝝁 𝒙 ∀ 𝒙 ∈ 𝑴 𝝀. 𝑪𝒍𝒆𝒂𝒓𝒍𝒚 𝑷 ≠ ∅ 𝒔𝒊𝒏𝒄𝒆 𝒇, 𝑴 ∈ 𝑷, 𝒂𝒍𝒔𝒐 𝑷,≤ 𝒊𝒔 𝒂 𝒄𝒐𝒔𝒆𝒕 𝑳𝒆𝒕 𝑸 = 𝒇𝒊,𝑴𝒊 𝒃𝒆 𝒂 𝒄𝒉𝒂𝒊𝒏 𝒊𝒏 𝑷. 𝑪𝒍𝒆𝒂𝒓𝒍𝒚 ∅, 𝑴𝒊 𝒊𝒔 𝒂𝒏 𝒖𝒑𝒑𝒆𝒓𝒃𝒐𝒖𝒏𝒅 𝒇𝒐𝒓 𝑸. 𝑾𝒉𝒆𝒓𝒆 ∅ 𝒙 = 𝒇𝒊 𝒙 ,∀ 𝒙 ∈ 𝑴𝒊 𝑨𝒍𝒔𝒐 𝒐𝒃𝒔𝒆𝒓𝒗𝒆 𝒕𝒉𝒂𝒕 𝑴𝒊 𝒊 𝒊𝒔 𝒂 𝒔𝒖𝒃𝒔𝒑𝒂𝒄𝒆 𝒐𝒇 𝑵 MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 24. Banach Space :- ∅ 𝒊𝒔 𝒘𝒆𝒍𝒍 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 − 𝑳𝒆𝒕 𝒙 ∈ 𝑴𝒊 ⟹ 𝒙 ∈ 𝑴𝒊 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆 𝒊 ⟹ 𝒙 ∈ 𝑴 𝒇𝒐𝒓 𝒔𝒐𝒎𝒆 𝒊𝒇 𝑴𝒊 𝑴 𝒕𝒉𝒆𝒏 ⟹ ∅ 𝒙 𝒇𝒊 𝒙 ∅ 𝒙 𝒇 𝒙 ⟹ 𝒇𝒊 𝒙 𝒇 𝒙 ⟹ ∅ 𝒊𝒔 𝒘𝒆𝒍𝒍 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝑯𝒆𝒏𝒄𝒆 𝒃𝒚 𝒆𝒓𝒐 𝒔 𝒍𝒆𝒎𝒎𝒂 𝑻𝒉𝒆𝒓𝒆 𝒊𝒔 𝒂 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝑭 𝑯 ∋ 𝑭 𝑯 ∈ 𝑷 𝑪𝒍𝒂𝒊𝒎 ∶-𝑯 𝑵 𝑺𝒖𝒑𝒑𝒐𝒔𝒆 𝑯 ≠ 𝑵 𝑯𝒆𝒏𝒄𝒆 𝒃𝒚 𝒂𝒃𝒐𝒗𝒆 𝒍𝒆𝒎𝒎𝒂 𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑭 𝟎 𝒐𝒏 𝑯 𝟎 ∋ 𝑭 𝟎 𝒇 ⟹ 𝑭 𝟎 𝑯 𝟎 ∈ 𝑷 𝒕𝒐 𝒕𝒉𝒆 𝒎𝒂𝒙𝒊𝒎𝒂𝒍𝒊𝒕𝒚 𝒐𝒇 𝑭 𝑯 𝑯𝒂𝒏𝒄𝒆 𝑯 𝑵 MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 25. Banach Space :- 𝑪𝑶𝑵𝑺𝑬𝑸𝑼𝑬𝑵𝑪𝑬𝑺 𝑶𝑭 𝑯𝑨𝑯𝑵 − 𝑩𝑨𝑵𝑨𝑪𝑯 𝑻𝑯𝑬𝑶𝑹𝑬𝑴 1. 𝐋𝐞𝐭 𝐍 𝐛𝐞 𝐚 𝐧𝐨𝐫𝐦𝐞𝐝 𝐥𝐢𝐧𝐞𝐚𝐫 𝐬𝐩𝐚𝐜𝐞 𝐚𝐧𝐝 𝟎 ≠ 𝒙 𝟎 ∈ 𝐍 𝐭𝐡𝐞𝐧 𝐚 𝐟𝐮𝐧𝐭𝐢𝐨𝐧𝐚𝐥 𝒇 ∈ 𝐍 ∋ 𝐟 𝒙 𝟎 = 𝒙 𝟎 Remark:- 𝐍 𝒔𝒆𝒑𝒆𝒓𝒂𝒕𝒆𝒔 𝒗𝒆𝒄𝒕𝒐𝒓𝒔 𝒊𝒏 𝐍 𝐢. 𝐞. , 𝒙 ≠ 𝒚 ⇒ 𝒇(𝒙) ≠ 𝒇(𝒚) 2. 𝐋𝐞𝐭 𝐌 𝐛𝐞 𝐭𝐡𝐞 𝐜𝐥𝐨𝐬𝐞𝐝 𝐥𝐢𝐧𝐞𝐫 𝐨𝐟 𝐚 𝐧𝐨𝐫𝐦𝐞𝐝 𝐥𝐢𝐧𝐞𝐫 𝐬𝐩𝐚𝐜𝐞 𝐍 𝐚𝐧𝐝 𝒙 𝟎 ∉ 𝐌. 𝐓𝐡𝐞𝐧 𝐚 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐚𝐥 𝒇 ∈ 𝐍 ∋ 𝐟 𝐌 = 𝟎, 𝒇 𝒙 𝟎 ≠ 𝟎. Definition:- 𝑨 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝑻 𝒊𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒂𝒏 𝒊𝒔𝒐𝒎𝒆𝒕𝒓𝒚 𝒊𝒇 𝑻𝒙 − 𝑻𝒚 𝒙 − 𝒚 𝐍𝐚𝐭𝐮𝐫𝐚𝐥 𝐞𝐦𝐛𝐞𝐝𝐝𝐢𝐧 𝐨𝐟 𝐍 𝐭𝐨 𝐍 𝑳𝒆𝒕 𝑵 𝒃𝒆 𝒂 𝒏𝒐𝒓𝒎𝒆𝒅 𝒍𝒊𝒏𝒆𝒓 𝒔𝒑𝒂𝒄𝒆,∀ 𝒙 ∈ 𝑵 𝒊𝒏𝒅𝒖𝒄𝒆𝒔 𝒂 𝒇𝒖𝒏𝒕𝒊𝒐𝒏𝒂𝒍 𝑭 𝒙 𝒐𝒏 𝑵 𝒃𝒚 𝑭 𝒙 𝒇 = 𝒇 𝒙 ∀ 𝒇 ∈ 𝑵 ∋ 𝑭 𝒙 = 𝒙 . 𝒇𝒖𝒓𝒕𝒉𝒆𝒓 𝒂 𝒎𝒂𝒑𝒑𝒊𝒏𝒈 𝑱:𝑵 → 𝑵 ∋ 𝑱 𝒙 = 𝑭 𝒙∀ 𝒙 ∈ 𝑵 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒐𝒏 𝒊𝒔𝒐𝒎𝒆𝒕𝒓𝒊 𝒊𝒔𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎 𝒏𝒐𝒇 𝑵 𝒊𝒏𝒕𝒐 𝑵 MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 26. Banach Space :- OPEN MAPPING THEOREM 𝑻𝒉𝒆𝒐𝒓𝒆𝒎:− 𝑳𝒆𝒕 𝑩,𝑩′ 𝒃𝒆 𝑩𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆𝒔 𝒂𝒏𝒅 𝑻 𝒃𝒆 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒕𝒉𝒆𝒏 𝑻 𝒊𝒔 𝒐𝒑𝒆𝒏 𝒎𝒂𝒑𝒑𝒊𝒏𝒈 𝑷𝒓𝒐𝒐𝒇:− 𝑳𝒆𝒕 𝑻 𝑩 → 𝑩 𝒊𝒔 𝒂 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒍𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒔𝒖𝒑𝒑𝒐𝒔𝒆 𝒊𝒔 𝒂𝒏 𝑶𝒑𝒆𝒏𝒔𝒆𝒕 𝒊𝒏 𝑩 𝑪𝒍𝒂𝒊𝒎 − 𝑻 𝒊𝒔 𝒐𝒑𝒆𝒏𝒊𝒏 𝑩 𝑳𝒆𝒕 𝒚 ∈ 𝑻 ⇒ 𝒚 𝑻𝒙 𝒇𝒐𝒓 𝒙 ∈ 𝑺𝒊𝒏𝒄𝒆 𝒊𝒔 𝒐𝒑𝒆𝒏 𝒂𝒏 𝒐𝒑𝒆𝒏𝒔𝒑𝒉𝒆𝒓𝒆 𝑺 𝒙 𝒓 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒙 ∈ 𝑺 𝒙 𝒓 ⊂ ⇒ 𝒙 ∈ 𝒙 𝑺 𝒓 ⊂ ⇒ 𝑻𝒙 ∈ 𝑻 𝒙 𝑺 𝒓 ⊂ 𝑻 − − − − − − 𝟏 𝒃𝒖𝒕 𝒃𝒚 𝒌𝒏𝒐𝒘𝒏 𝒍𝒆𝒎𝒎𝒂 𝒂𝒏 𝒐𝒑𝒆𝒏 𝒔𝒑𝒉𝒆𝒓𝒆 𝑺 ⊂ 𝑻 𝑺 𝒓 𝑵𝒐𝒘 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓 𝒚 𝑺 ⊂ 𝒚 𝑻 𝑺 𝒓 ⇒ 𝒚 𝑺 ⊂ 𝑻𝒙 𝑻 𝑺 𝒓 ⇒ 𝒚 𝑺 ⊂ 𝑻 𝒙 𝑺 𝒓 ⊂ 𝑻 𝑩𝒚 𝟏 ⇒ 𝑺 𝒚 ⊂ 𝑻 𝒂𝒏𝒅 𝒚 ∈ 𝑺 𝒚 ⇒ 𝑻 𝒊𝒔 𝒐𝒑𝒆𝒏 ⇒ 𝑻 𝒊𝒔 𝒂𝒏 𝒐𝒑𝒆𝒏 𝒎𝒂𝒑𝒑𝒊𝒏𝒈 MANIKANTA SATYALA FUNTIONAL ANALYSIS
  • 27. Banach Space :- 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 ∶ − 𝑳𝒆𝒕 𝑩 𝑩 𝒃𝒆 𝑩𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆𝒔 𝑻 𝒃𝒆 𝒂 𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝟏 − 𝟏 𝒐𝒏𝒕𝒐 𝑳𝒊𝒏𝒆𝒂𝒓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝑩 𝒐𝒏𝒕𝒐 𝑩 𝒕𝒉𝒆𝒏 𝑻 𝒊𝒔 𝑯𝒐𝒎𝒆𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒄 𝑰𝒏𝒑𝒂𝒓𝒕𝒊𝒄𝒖𝒍𝒂𝒓 𝑻 𝟏 𝒊𝒔 𝑪𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝑷𝒓𝒐𝒐𝒇 𝒇𝒐𝒓 𝒑𝒓𝒂𝒄𝒕𝒊𝒄𝒆 𝑷𝒓𝒐 𝒆𝒄𝒕𝒊𝒐𝒏 𝒊𝒏 𝑩𝒂𝒏𝒂𝒄𝒉 𝒔𝒑𝒂𝒄𝒆:− 𝑨 𝒎𝒂𝒑𝒑𝒊𝒏𝒈 𝑬: 𝑩 → 𝑩 𝒊𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒑𝒓𝒐 𝒆𝒄𝒕𝒊𝒐𝒏 𝒊𝒇 𝟏 𝑬 𝟐 = 𝑬 𝒊𝒅𝒆𝒎𝒑𝒐𝒕𝒆𝒏𝒕 𝟐 𝑬 𝒊𝒔 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝑹𝒆𝒎𝒂𝒓𝒌:− 𝟏 𝑨 𝒑𝒓𝒐 𝒆𝒄𝒕𝒊𝒐𝒏 𝑬 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒆𝒔 𝒂 𝒑𝒂𝒊𝒓 𝒐𝒇 𝒔𝒖𝒃𝒔𝒑𝒂𝒄𝒆𝒔 𝑴 𝒂𝒏𝒅 𝑵 ∋ 𝑩 = 𝑴⨁𝑵. 𝒘𝒉𝒆𝒓𝒆 𝑴 = {𝑬(𝒙)/𝒙 ∈ 𝑩} 𝒂𝒏𝒅 𝑵 = {𝒙 ∈ 𝑩/𝑬(𝒙) = 𝟎} 𝟐 𝑨𝒏𝒚 𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏 = 𝒙 + 𝒚, 𝒙 ∈ 𝑴, 𝒚 ∈ 𝑵 𝒊𝒔 𝒖𝒏𝒊𝒒𝒖𝒆. MANIKANTA SATYALA FUNTIONAL ANALYSIS