SlideShare a Scribd company logo
1 of 14
Download to read offline
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Group	
  Leader	
  Report	
  
Julianne	
  Rutenbeck	
  
CHEN	
  3130-­‐004	
  
Dr.	
  Wendy	
  Young	
  
02/10/2015	
  
	
   	
  
  2	
  
Table	
  of	
  Contents
Objectives	
  	
  ….………………………………………………………………………………………………………………	
  3
Apparatus	
  and	
  Equipment	
  	
  ………………………………………………………………………………………….	
  4	
  
Process	
  Flow	
  Diagram	
  	
  ………………………..………………………………………………………………….	
  4
Operating	
  Instructions	
  	
  ……………………………………………………………………………………………….	
  5
Start	
  up	
  	
  ………….…………………………………………………………………………………………………….	
  	
  5	
  
Calibrations	
  	
  ………………………………………………………………………………………………......................	
  5
Data	
  Collection	
  	
  ………………………..………………………………………………………………….....................	
  6	
  
Shut	
  Down	
  	
  …………………………………………………………………………………………………………...	
  	
  6	
  
Safety	
  	
  …………………………………………………………………………………………………………………..	
  6
Calculations	
  …………………………………………………………………………………………………....................	
  7
Calculation	
  Flowcharts	
  …..………………………………………………………………………………………	
  7	
  
Error	
  Analysis	
  ……………………………………………………………………………………………………………	
  9
Bibliography	
  	
  …………………………………………………………………………………………………………...	
  	
  10
Appendices	
  	
  ……………………………………………………………………………………………………………...	
  11
Appendix	
  I:	
  Table	
  of	
  Nomenclature	
  and	
  Physical	
  Properties	
  ……………………………………...	
  11
Appendix	
  II:	
  Instrument	
  Specifications	
  	
  	
  ……………………………………………………………............	
  12
Appendix	
  III:	
  Specified	
  flow	
  rates	
  to	
  be	
  studied…………………………………………………………..	
  12	
  
Appendix	
  IV:	
  Pipe	
  Specifications	
  ………………………………………………………………………………..	
  13
Appendix	
  V:	
  Example	
  Moody	
  Diagram	
  	
  ……………………………………………………………………...	
  14	
  
	
   	
  
  3	
  
Objectives	
  
This	
  experiment	
  will	
  investigate	
  how	
  physical	
  parameters	
  affect	
  the	
  pressure	
  drop	
  
in	
   pipes.	
   The	
   pressure	
   drop	
   in	
   straight	
   pipes	
   over	
   a	
   given	
   length	
   will	
   be	
   measured	
   for	
  
various	
  pipe	
  diameters	
  and	
  volumetric	
  flow	
  rates.	
  With	
  these	
  data,	
  an	
  experimental	
  moody	
  
chart	
   will	
   be	
   created	
   and	
   compared	
   to	
   typical	
   versions.	
   A	
   typical	
   moody	
   chart	
   plots	
   the	
  
Reynolds	
  number	
  –	
  a	
  dimensionless	
  parameter	
  used	
  to	
  characterize	
  fluid	
  flow	
  –	
  versus	
  the	
  
friction	
  factor,	
  at	
  various	
  values	
  of	
  the	
  relative	
  roughness	
  (ϵ/D),	
  which	
  is	
  characteristic	
  of	
  
the	
  piping	
  material	
  (Refer	
  to	
  Appendix	
  V	
  for	
  an	
  example	
  Moody	
  chart).	
  The	
  plot	
  created	
  
from	
  this	
  experiment	
  will	
  have	
  only	
  one	
  value	
  of	
  the	
  roughness	
  factor	
  and	
  therefore	
  the	
  
relative	
   roughness	
   will	
   depend	
   only	
   on	
   the	
   pipe	
   diameter.	
   The	
   Reynolds	
   number	
   and	
  
friction	
  factor	
  can	
  both	
  be	
  calculated	
  from	
  properties	
  of	
  the	
  fluid	
  and	
  knowledge	
  of	
  the	
  flow	
  
rate,	
  pipe	
  diameter,	
  and	
  the	
  pressure	
  change	
  over	
  a	
  given	
  length	
  of	
  tube	
  (equations	
  5,	
  8;	
  see	
  
Calculations,	
  Flow	
  Chart	
  II,	
  pg.	
  8).	
  Flow	
  rate	
  and	
  diameter	
  will	
  be	
  varied	
  and	
  the	
  pressure	
  
drop	
  for	
  each	
  combination	
  will	
  be	
  recorded.	
  	
  
Pressure	
   changes	
   through	
   a	
   number	
   of	
   flow	
   components	
   will	
   also	
   be	
   observed.	
  
Similar	
  to	
  the	
  method	
  used	
  for	
  straight	
  pipes,	
  the	
  pressure	
  drop	
  around	
  the	
  components	
  
will	
  be	
  measured	
  as	
  a	
  function	
  of	
  flow	
  rate.	
  These	
  components	
  consist	
  of	
  a	
  ball	
  valve	
  (H),	
  a	
  
bonnet	
  valve	
  (G),	
  a	
  90o	
  bend	
  (K),	
  a	
  venturi	
  meter	
  (I),	
  and	
  an	
  orifice	
  meter	
  (J,	
  see	
  Figure	
  1,	
  
pg.	
  4).	
  Once	
  the	
  data	
  have	
  been	
  obtained,	
  a	
  plot	
  will	
  be	
  created	
  for	
  each	
  of	
  the	
  two	
  valves	
  
and	
   the	
   bend,	
   showing	
   equivalent	
   length	
   versus	
   the	
   Reynolds	
   number.	
   The	
   equivalent	
  
length	
  is	
  an	
  effective	
  distance,	
  equivalent	
  to	
  the	
  length	
  of	
  straight	
  pipe	
  that	
  would	
  cause	
  the	
  
same	
   change	
   in	
   pressure	
   at	
   the	
   given	
   flow	
   rate	
   and	
   diameter;	
   it	
   can	
   be	
   calculated	
   from	
  
these	
   three	
   parameters	
   (equation	
   10,	
   Calculation	
   Flow	
   Chart	
   III,	
   pg.	
   9).	
   The	
   venturi	
   and	
  
orifice	
   meters	
   will	
   each	
   be	
   analyzed	
   with	
   a	
   plot	
   of	
   the	
   discharge	
   coefficient	
   versus	
   the	
  
Reynolds	
  number	
  at	
  various	
  flow	
  rate	
  and	
  diameter	
  values.	
  The	
  discharge	
  coefficient	
  is	
  a	
  
dimensionless	
  parameter	
  used	
  to	
  describe	
  the	
  relative	
  efficiency	
  of	
  a	
  valve	
  discharging	
  to	
  a	
  
reservoir	
  (equation	
  11,	
  Calculation	
  Flow	
  Chart	
  IV,	
  pg.	
  9).	
  By	
  the	
  end	
  of	
  the	
  experiment,	
  the	
  
dependence	
  of	
  the	
  pressure	
  drop	
  on	
  diameter	
  and	
  flow	
  rate	
  will	
  be	
  approximately	
  known.	
  
The	
  resulting	
  correlations	
  and	
  relationships	
  may	
  be	
  used	
  in	
  the	
  future	
  to	
  help	
  design	
  a	
  new	
  
piping	
  network	
  with	
  this	
  piping	
  material.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
   	
  
  4	
  
Apparatus	
  and	
  Equipment	
  
	
  
	
  
Figure	
  1.	
  Process	
  Flow	
  Diagram.	
  
	
  
Orifice Meter
Venturi Meter
Air release valves
Bonnet Valve
Ball Valve
Pressure Gauge/Transducer Connection
Gate valve
Rotameter switch valve
Rotameter
Flow in
Flow out
Line 6
Line 5
Line 4
Line 3
Line 2
Line 1
Reservoir
Pump
A
B
C
D
E
F
G H
I J
2 psid pressure transducer
5 psid pressure transducer
10 psid pressure transducer
L
K
Entrance length
L=length of P drop
Exit Length
M
  5	
  
Apparatus	
  &	
  Equipment	
  
The	
  Process	
  Flow	
  	
  
The	
  pump	
  pushes	
  water	
  up	
  from	
  the	
  reservoir,	
  through	
  one	
  of	
  the	
  rotameters	
  (M),	
  
and	
  up	
  the	
  left	
  side	
  of	
  the	
  apparatus.	
  The	
  air	
  release	
  valves	
  (F),	
  allow	
  the	
  water	
  to	
  air	
  push	
  
up	
  and	
  out	
  of	
  the	
  system.	
  Each	
  line	
  has	
  a	
  ball	
  valve	
  that	
  controls	
  the	
  flow	
  into	
  that	
  tube.	
  
Lines	
  one,	
  four,	
  five,	
  and	
  six	
  are	
  just	
  straight	
  pipes	
  with	
  pressure	
  sensor	
  ports	
  on	
  opposite	
  
ends.	
  Line	
  two	
  has	
  the	
  Venturi	
  meter	
  (I),	
  the	
  orifice	
  meter	
  (J),	
  and	
  the	
  bend	
  (K).	
  Line	
  three	
  
has	
  two	
  different	
  kinds	
  of	
  valves	
  –	
  Ball	
  (H)	
  and	
  Bonnet	
  (G).	
  Each	
  of	
  these	
  components	
  has	
  
pressure	
  sensor	
  ports	
  on	
  either	
  side	
  of	
  them.	
  The	
  water	
  flows	
  out	
  on	
  the	
  opposite	
  side	
  of	
  
the	
  apparatus,	
  passes	
  through	
  the	
  gate	
  valve	
  (L),	
  and	
  drains	
  back	
  into	
  the	
  reservoir	
  to	
  be	
  
recycled.	
  
	
  
Table	
  1.	
  Process	
  Flow	
  Diagram	
  Components	
  
	
   Component	
   G	
   Bonnet	
  valve	
  
A	
   Pump	
   H	
   Ball	
  valve	
  	
  
B	
   Valve	
  to	
  switch	
  rotameters;	
  Orifice	
  0.01905	
  m	
  	
   I	
   Venturi	
  Meter	
  
C	
   Ball	
  valve	
  to	
  open	
  each	
  line	
   J	
   Orifice	
  Meter	
  
D	
   Pressure	
  sensor	
  connection	
  port	
   K	
   Bend	
  
E	
   Brass	
  Alloy	
  260	
  Tubing	
   L	
   Gate	
  valve	
  	
  
F	
   Air	
  release	
  valves	
   M	
   Rotameter	
  
	
  
Operating	
  Instructions	
  and	
  Safety	
  
Start	
  Up	
  
	
   Before	
  engaging	
  the	
  pump	
  and	
  beginning	
  data	
  collection,	
  the	
  apparatus	
  must	
  be	
  in	
  
the	
  proper	
  state.	
  One	
  of	
  the	
  rotameter	
  valves	
  should	
  be	
  open	
  and	
  the	
  other	
  closed	
  (B;	
  see	
  
figure	
  1,	
  pg.	
  4);	
  if	
  both	
  are	
  in	
  the	
  same	
  position,	
  damage	
  to	
  the	
  pump	
  may	
  occur.	
  The	
  entry	
  
valves	
  to	
  each	
  pipe	
  should	
  be	
  such	
  that	
  the	
  lines’	
  under	
  study	
  are	
  open	
  and	
  the	
  rest	
  are	
  
closed	
  (C).	
  On	
  the	
  exiting	
  side,	
  the	
  gate	
  valve	
  leading	
  into	
  the	
  drain	
  tub	
  (L)	
  should	
  be	
  all	
  the	
  
way	
  open	
  and	
  secured	
  to	
  the	
  reservoir.	
  Once	
  the	
  water	
  has	
  established	
  full	
  flow	
  and	
  the	
  
experiment	
  begun,	
  the	
  exit	
  valve	
  may	
  be	
  adjusted	
  accordingly	
  to	
  avoid	
  vacuum	
  pressures.	
  
When	
  all	
  of	
  this	
  has	
  been	
  accomplished,	
  the	
  pump	
  is	
  ready	
  to	
  be	
  engaged.	
  When	
  the	
  pump	
  
is	
  started,	
  the	
  lines	
  must	
  be	
  cleared	
  of	
  air	
  to	
  avoid	
  hammering	
  and	
  equipment	
  damage.	
  To	
  
clear	
  the	
  line,	
  open	
  the	
  air	
  release	
  valves	
  on	
  each	
  side	
  of	
  the	
  apparatus	
  (F).	
  When	
  water	
  can	
  
be	
  seen	
  in	
  the	
  tube,	
  all	
  the	
  air	
  has	
  been	
  cleared	
  from	
  the	
  lines	
  and	
  the	
  valve	
  can	
  be	
  shut.	
  
Calibration	
  
	
   The	
  rotameters	
  (M)	
  will	
  be	
  calibrated	
  with	
  a	
  catch	
  and	
  weigh.	
  Once	
  full	
  flow	
  has	
  
been	
  established	
  –	
  the	
  ¾”	
  lines	
  may	
  take	
  several	
  minutes	
  –	
  the	
  process	
  can	
  begin.	
  The	
  
information	
  being	
  recorded	
  will	
  be	
  the	
  time	
  for	
  which	
  water	
  is	
  allowed	
  to	
  flow	
  into	
  the	
  
bucket,	
  along	
  with	
  the	
  mass	
  of	
  the	
  bucket,	
  before	
  and	
  after	
  the	
  water	
  is	
  allowed	
  to	
  drain	
  
into	
  it.	
  With	
  this	
  information,	
  equation	
  (1)	
  can	
  be	
  used	
  to	
  calculate	
  the	
  actual	
  flow	
  rate	
  and	
  
compare	
  it	
  to	
  the	
  rotameter	
  reading.	
  For	
  each	
  rotameter,	
  five	
  different	
  flow	
  rates	
  will	
  be	
  
measured,	
  and	
  three	
  replicates	
  will	
  be	
  performed	
  at	
  each	
  level.	
  This	
  data	
  should	
  then	
  be	
  
  6	
  
consolidated	
  into	
  a	
  calibration	
  curve,	
  which	
  then	
  can	
  be	
  used	
  for	
  the	
  duration	
  of	
  the	
  
experiment.	
  Table	
  5	
  in	
  appendix	
  III	
  shows	
  the	
  specified	
  levels	
  to	
  be	
  calibrated.	
  
	
   At	
  each	
  of	
  the	
  flow	
  rates,	
  the	
  pressure	
  transducers	
  will	
  also	
  be	
  calibrated.	
  Using	
  the	
  
same	
  gauge,	
  measurements	
  will	
  be	
  taken	
  across	
  the	
  pipe	
  at	
  the	
  same	
  sites	
  that	
  the	
  
transducers	
  connect	
  to.	
  Since	
  there	
  are	
  two	
  rotameters	
  and	
  two	
  pressure	
  transducers	
  that	
  
require	
  calibration,	
  the	
  ten-­‐psid	
  transducer	
  will	
  be	
  calibrated	
  with	
  the	
  0.2-­‐2	
  gpm	
  
rotameter,	
  and	
  the	
  five-­‐psid	
  transducer	
  with	
  the	
  2-­‐15	
  gpm	
  rotameter.	
  The	
  gauge	
  and	
  
transducer	
  data	
  will	
  be	
  compared	
  in	
  a	
  calibration	
  curve.	
  Between	
  each	
  replicate	
  of	
  the	
  
calibrations,	
  the	
  flow	
  rate	
  should	
  be	
  varied	
  slightly	
  and	
  brought	
  back	
  to	
  the	
  original	
  level.	
  
Data	
  Collection	
  
	
   Since	
  the	
  aim	
  of	
  this	
  experiment	
  is	
  to	
  explore	
  a	
  wide	
  range	
  of	
  Reynolds	
  numbers	
  and	
  
pressure	
  changes,	
  a	
  wide	
  variety	
  flow	
  rates	
  will	
  be	
  investigated.	
  For	
  each	
  straight	
  tube,	
  four	
  
flow	
  rates	
  have	
  been	
  specified	
  and	
  three	
  replicates	
  will	
  be	
  performed	
  at	
  each.	
  If	
  time	
  does	
  
not	
  permit	
  for	
  this	
  many	
  trials,	
  one	
  flow	
  rate	
  for	
  each	
  line	
  has	
  been	
  specified	
  as	
  being	
  less	
  
necessary;	
  table	
  6	
  (appendix	
  III)	
  shows	
  the	
  specified	
  flow	
  rates	
  to	
  be	
  studied.	
  At	
  each	
  
specified	
  flow	
  rate,	
  the	
  actual	
  flow	
  reading	
  and	
  pressure	
  drop	
  across	
  the	
  appropriate	
  
transducer	
  will	
  be	
  recorded.	
  Pressure	
  drop	
  will	
  be	
  measured	
  via	
  LabView	
  Software.	
  The	
  
experiment	
  will	
  generate	
  between	
  thirty-­‐six	
  and	
  forty-­‐eight	
  data	
  points.	
  These	
  will	
  be	
  used	
  
to	
  create	
  an	
  experimental	
  moody	
  chart	
  (see	
  calculations	
  flow	
  chart	
  II	
  for	
  more	
  
information).	
  The	
  generated	
  plot	
  will	
  be	
  compared	
  to	
  typical	
  ones	
  found	
  in	
  literature.	
  An	
  
example	
  Moody	
  chart	
  has	
  been	
  attached	
  in	
  Appendix	
  V	
  for	
  comparison	
  with	
  the	
  results	
  
obtained.	
  Since	
  all	
  the	
  lines	
  will	
  be	
  used,	
  when	
  switching	
  between	
  them,	
  one	
  must	
  open	
  the	
  
next	
  valve	
  before	
  closing	
  the	
  current	
  one.	
  If	
  all	
  entry	
  valves	
  are	
  closed,	
  damage	
  to	
  the	
  
equipment	
  may	
  result.	
  	
  
	
   After	
  the	
  straight	
  pipe	
  data	
  have	
  been	
  taken,	
  lines	
  two	
  and	
  three	
  will	
  be	
  studied.	
  
Again,	
  flow	
  rate	
  and	
  pressure	
  drop	
  around	
  each	
  component	
  will	
  be	
  varied	
  and	
  recorded.	
  
These	
  data	
  will	
  be	
  used	
  to	
  make	
  two	
  more	
  plots	
  –	
  discharge	
  coefficient	
  (calculation	
  flow	
  
chart	
  IV)	
  versus	
  Reynolds	
  number	
  for	
  the	
  venturi	
  and	
  orifice	
  meters	
  and	
  equivalent	
  length	
  
(calculation	
  flow	
  chart	
  III)	
  versus	
  Reynolds	
  number	
  for	
  the	
  valves	
  and	
  bend.	
  	
  
Shut	
  Down	
  
	
   To	
  shut	
  down	
  the	
  apparatus,	
  simply	
  turn	
  off	
  the	
  pump.	
  After	
  this,	
  shut	
  all	
  the	
  gate	
  
valves	
  to	
  the	
  lines	
  and	
  all	
  other	
  valves	
  should	
  be	
  in	
  safe	
  positions	
  for	
  future	
  use.	
  Because	
  
water	
  may	
  leak	
  from	
  the	
  lines	
  or	
  reservoir,	
  dry	
  the	
  surrounding	
  area	
  for	
  the	
  safety	
  of	
  
others	
  in	
  the	
  lab.	
  
Safety	
  
• As	
  stated	
  above,	
  water	
  leakage	
  increases	
  the	
  risk	
  of	
  slipping	
  in	
  the	
  lab.	
  	
  
• The	
  pump	
  is	
  an	
  electrical	
  component	
  in	
  a	
  water	
  reservoir.	
  Be	
  careful	
  not	
  to	
  allow	
  
loose	
  wires,	
  or	
  other	
  conductors	
  that	
  have	
  electricity	
  running	
  through	
  them,	
  to	
  come	
  
into	
  contact	
  with	
  the	
  water.	
  
	
  
	
  
  7	
  
Calculations	
  
-­‐Refer	
  to	
  Appendix	
  I	
  for	
  variable	
  definitions	
  and	
  physical	
  property	
  values.	
  
I.	
  Calibration	
  of	
  Rotameter	
  
	
  
II.	
  Experimental	
  Moody	
  Chart	
  
	
  	
  
	
  
Catch	
  &	
  
Weigh	
  
•  Measure	
  mass	
  of	
  empty	
  bucket.	
  
•  Time	
  how	
  long	
  water	
  llows	
  into	
  the	
  bucket.	
  
•  Measure	
  the	
  mass	
  of	
  the	
  bucket	
  and	
  water(m).	
  
Obtain	
  
Flow	
  Rates	
  
•  Q=(m/t)(1/ρ)	
  	
   	
   	
   	
  (1)	
  
•  Record	
  observed	
  llow	
  rate	
  from	
  rotameter.	
  
Callibration	
  
Curve	
  
•  Plot	
  Q	
  vs.	
  the	
  readings	
  from	
  the	
  rotameter.	
  
Velocity	
  
•  ν=Q/A 	
  	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  (2)	
  
Pipe	
  
properties	
  
• A=π(D/2)2 	
  	
   	
  	
   	
  	
   	
  (3)	
  
• Relative	
  Roughness	
  =	
  ϵ/D 	
   	
  (4)	
  	
  	
  
Reynolds	
  
Number	
  
• Re=ρνD/μ	
   	
   	
  	
  	
  	
  	
  	
  	
  	
   	
  	
   	
  (5)	
  
• τw=	
  -­‐(dP/dz)(D/4)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  	
   	
  (6)	
  
Friction	
  
Factor	
  
•  ff=2τw/ρν2 	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (7)	
  
•  Assuming	
  the	
  shear	
  stress	
  is	
  constant.	
  
•  ff	
  	
  =	
  (ΔP)D/2ρν2L	
  =	
  	
  (P1-­‐P2)D/2ρν2L	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  (8)	
  
Moody	
  
Chart	
  
•  Plot	
  ff	
  vs.	
  Re	
  for	
  different	
  experimental	
  values	
  of	
  ν,	
  
ΔP/L,	
  and	
  D.	
  Compare	
  this	
  with	
  charts	
  found	
  in	
  
literature.	
  
  8	
  
Assume	
  
•  Horizontal	
  llow	
  
•  Uniform	
  velocity	
  prolile	
  upstream	
  and	
  
downstream	
  
Discharge	
  
Coeflicient	
  
Reynolds	
  
Number	
  
• Re=ρνD/μ	
   	
   	
   	
  (4)	
  	
  
Graph	
  
•  Plot	
  Cd	
  vs.	
  Re	
  for	
  each	
  meter	
  at	
  various	
  llow	
  
rates.	
  Analyze	
  the	
  graphs.	
  
III.	
  Bend	
  and	
  Valves	
  	
  
	
  
	
  
IV.	
  Venturi	
  meter	
  and	
  Orifice	
  meter	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   𝐶! =
!!
!!!
!
!(!!(
!!
!!
)!)
! !"
                                                   11 	
  	
   	
  
Reynolds	
  
Number	
  	
  
•  Re=ρνD/μ	
   	
   	
  	
  	
  	
   	
  (4)	
  
•  Use	
  this	
  along	
  with	
  the	
  experimental	
  moody	
  chart	
  to	
  get	
  
ff	
  	
  
Loss	
  
Coeflicient	
  
•  Assuming	
  fully-­‐developed,	
  steady,	
  incompressible	
  llow.	
  
•  KL	
  =	
  2Ploss/ρν2	
  	
  =	
  2(P1-­‐P2)/ρν2	
  	
  	
  	
  	
  	
  	
  	
  (9)	
  
Equivalent	
  
Length	
  
•  leq=KLD/ff	
   	
   	
  	
  	
  	
  	
  	
  	
   	
  	
  (10)	
  
•  Graph	
  leq	
  vs.	
  Re	
  for	
  the	
  bend	
  and	
  both	
  valves	
  at	
  various	
  
values	
  of	
  ΔP,	
  ff,	
  and	
  ν.	
  
  9	
  
Error	
  Propagation	
  
	
   Three	
  replicates	
  will	
  be	
  done	
  for	
  each	
  measurement.	
  The	
  data	
  taken	
  from	
  these	
  
measurements	
  will	
  be	
  analyzed	
  with	
  the	
  equations	
  and	
  graphs	
  mentioned	
  previously.	
  The	
  
error	
  associated	
  with	
  the	
  measurements	
  will	
  propagate	
  when	
  these	
  calculations	
  are	
  
performed,	
  so	
  the	
  equations	
  below	
  should	
  be	
  used	
  to	
  estimate	
  the	
  error	
  associated	
  with	
  a	
  
calculated	
  value.	
  
𝛿𝑄 =
1
𝜌𝑡
!
(𝛿𝑚)! + (
−𝑚
𝜌𝑡!
)!(𝛿𝑡)!                  (1)	
  
𝛿𝑉 =
𝛿𝑄
𝐴
                                (2)	
  
𝛿𝑓! =
𝐷
2𝜌𝑣! 𝐿
!
𝛿Δ𝑃 ! + (
−Δ𝑃𝐷
𝜌𝑣! 𝐿
)! 𝛿𝑣 !                                            (8)	
  
𝛿𝐾! =
2
𝜌𝑣!
!
(𝛿Δ𝑃)! +
−4Δ𝑃
𝜌𝑣!
!
(𝛿𝑣)!                                                  (9)	
  
𝛿𝑙!" =
𝐷
𝑓!
!
𝛿𝐾!
! + (
−𝐷𝐾!
𝑓!
! )!(𝛿𝑓!)!                                  (10)	
  
𝛿𝐶! =
4
𝜋𝐷!
!
𝜌(1 − (
𝐷!
𝐷!
)!)
2 𝛥𝑃
!
(𝛿𝑄)! +
−2𝑄
𝜋𝐷!
!
𝜌(1 − (
𝐷!
𝐷!
)!)
2(Δ𝑃)!
!
(𝛿Δ𝑃)!                          (11)	
  
	
  
The	
  equations	
  for	
  which	
  these	
  errors	
  should	
  be	
  used	
  are	
  noted	
  on	
  the	
  right	
  of	
  the	
  
equation.	
  The	
  error	
  for	
  each	
  measurement	
  will	
  be	
  the	
  greater	
  of	
  two	
  errors:	
  the	
  error	
  
associated	
  with	
  reading	
  the	
  measurement	
  and	
  random	
  error	
  between	
  measurements	
  due	
  
to	
  random	
  fluctuations	
  (standard	
  deviation).	
  The	
  error	
  associated	
  with	
  equation	
  one	
  
should	
  not	
  be	
  used	
  as	
  the	
  error	
  value	
  in	
  the	
  latter	
  equations;	
  it	
  is	
  only	
  for	
  the	
  catch	
  and	
  
weigh.	
  Manufacturer	
  data	
  are	
  shown	
  in	
  appendix	
  II,	
  table	
  4.	
  The	
  precision	
  is	
  an	
  estimate	
  
based	
  on	
  the	
  markings	
  on	
  the	
  instrument.	
  No	
  measurements	
  were	
  taken	
  with	
  them	
  in	
  
order	
  to	
  verify	
  the	
  estimates.	
  The	
  systematic	
  error	
  for	
  measurements	
  of	
  volumetric	
  flow	
  
rate	
  and	
  pressure	
  drop	
  should	
  be	
  eliminated	
  with	
  the	
  calibration	
  of	
  the	
  instruments.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  10	
  
Bibliography	
  
Kestin,	
  J.,	
  Sokolov,	
  M.,	
  Wakeham,	
  W.	
  A.	
  (1978).	
  Viscosity	
  of	
  Liquid	
  Water	
  in	
  the	
  Range	
  -­‐8oC	
  
to	
  150oC.	
  J.	
  Phys.	
  Chemical	
  Reference	
  Data,	
  Vol.	
  7.	
  Retrieved	
  from:	
  
http://www.nist.gov/data/PDFfiles/jpcrd121.pdf	
  
The	
  Engineering	
  Page.	
  Retrieved	
  from:	
  	
  	
  	
  http://www.the-­‐engineering-­‐
page.com/forms/dp/typ_eps.html	
  
The	
  Engineering	
  Toolbox.	
  Retrieved	
  from:	
  http://www.engineeringtoolbox.com/moody-­‐
diagram-­‐d_618.html	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  11	
  
Appendices	
  
Appendix	
  I	
  
Table	
  2.	
  Table	
  of	
  Nomenclature.	
  
Symbol	
   Definition	
   Units	
   Obtained	
  by:	
  
Q	
   Volume	
  flow	
  rate	
   m3/s	
   Calculated/measured	
  
m	
   Mass	
  of	
  water	
   kg	
   Measured	
  
ρ	
  	
   Density	
  of	
  water	
  @	
  Twater	
  ≅	
  25oC	
   kg/m3	
   Constant	
  (varies	
  with	
  T)	
  
t	
   time	
   s	
   Measured	
  
T	
   Temperature	
  of	
  water	
   oC	
   Measured	
  (LabView)	
  
τw	
   Shear	
  stress	
  at	
  the	
  wall	
   N/m2	
   Calculated	
  
A	
   Cross	
  sectional	
  area	
  of	
  pipe	
   m2	
   Calculated	
  
D	
   Diameter	
  of	
  pipe	
   in	
   Constant	
  
ν	
  	
   Velocity	
   m/s	
   Calculated	
  
ff	
   Fanning	
  friction	
  factor	
   -­‐-­‐	
   Calculated	
  
ΔP	
   Differential	
  pressure	
   psid	
   Measured	
  (LabView)	
  
P1	
   Upstream	
  pressure	
   psig	
   Measured	
  
P2	
   Downstream	
  pressure	
   psig	
   Measured	
  
L	
   Length	
  of	
  pipe	
  between	
  P1	
  &	
  P2	
   in	
   Constant	
  
Re	
   Reynolds	
  number	
   -­‐-­‐	
   Calculated	
  
μ	
  	
   Dynamic	
  viscocity	
  of	
  water	
  at	
  25oC	
   Ns/m2	
   Constant	
  (varies	
  with	
  T)	
  
D1	
   Large	
  diameter	
  of	
  venturi/orifice	
  meter	
   in	
   Constant	
  
D2	
   Small	
  diameter	
  of	
  venturi/orifice	
  meter	
   in	
   Constant	
  
Cd	
  	
   Discharge	
  Coefficient	
   -­‐-­‐	
   Calculated	
  
KL	
  	
   Loss	
  Coefficient	
   -­‐-­‐	
   Calculated	
  
leq	
   Equivalent	
  length	
  of	
  straight	
  pipe	
   m	
   Calculated	
  
ϵ	
  	
   Roughness	
  Factor	
   m	
   Constant	
  
	
  
	
  
	
  
Table	
  3.	
  Table	
  of	
  Physical	
  Properties.	
  
Property	
   Value	
   Units	
  
1ρ	
  (at	
  25oC)	
   997.1	
   kg/m3	
  
1μ	
  (at	
  25oC)	
   8.902E-­‐4	
   Ns/m2	
  
2ϵ	
  (Brass)	
   1.0E-­‐7–1.5E-­‐7	
   m	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
1-­‐	
  Kestin	
  et	
  al.,	
  1978	
  
2-­‐	
  “The	
  Engineering	
  Page”	
  	
  
  12	
  
Appendix	
  II	
  
Table	
  4.	
  Instrument	
  Specifications	
  
Instrument	
   Mfr.1	
   Range	
   Units	
   3Accuracy/Bias	
   Precision	
   Tolerance	
  
Pressure	
  
Gauge	
  
WIKA	
   0-­‐15	
   psig	
   ±	
  2.5%	
   ±0.5	
   If	
  the	
  same	
  gauge	
  is	
  used	
  to	
  
measure	
  pressure	
  in	
  both	
  
positions,	
  the	
  bias	
  should	
  be	
  
eliminated	
  
Pressure	
  
Gauge	
  
WIKA	
   0-­‐30	
   psig	
   ±	
  2.5%	
   ±1.0	
  
Pressure	
  
Transducer	
  
Dwyer	
   0-­‐2	
   psid	
   ±	
  .25%	
   ±0.02	
   	
  
The	
  transducers	
  can	
  be	
  
calibrated	
  using	
  the	
  gauges	
  
to	
  measure	
  P1	
  and	
  P2	
  	
  
Pressure	
  
Transducer	
  
Dwyer	
   0-­‐5	
   psid	
   ±	
  .25%	
   ±0.02	
  
Pressure	
  
Transducer	
  
Dwyer	
   0-­‐10	
  	
   psid	
   ±	
  .25%	
   ±0.02	
  
Rotameter	
   King	
   0.2-­‐2	
   gpm	
   ±	
  5%	
   ±	
  0.5	
   The	
  rotameters	
  will	
  be	
  
calibrated	
  Rotameter	
   King	
   1.5-­‐15	
   gpm	
   ±	
  5%	
   ±	
  0.5	
  
____________________________________	
  
1-­‐Manufacturer	
  
2-­‐The	
  data	
  are	
  collected	
  using	
  Labview	
  software.	
  
3-­‐Estimates	
  based	
  on	
  multiple	
  possible	
  models	
  
	
  
	
  
	
  
Appendix	
  III	
  
Table	
  5.	
  Calibration	
  flow	
  rate	
  specifications	
  
Rotameter	
   Flow	
  rates	
  to	
  be	
  calibrated	
  (gpm)	
  
0.2-­‐2	
  gpm	
   0.35	
   0.8	
   1.2	
   1.6	
   2.0	
  
2-­‐15	
  gpm	
   2.1	
   4.3	
   6.5	
   8.7	
   11	
  
	
  
Table	
  6.	
  Data	
  collection	
  flow	
  rates	
  
	
   Flow	
  Rates	
  to	
  be	
  studied	
  (gpm)	
   Possible	
  flow	
  
rates	
  
Line	
  1	
   4	
  	
   5.2	
  	
   8	
  	
   11	
  gpm	
  
Line	
  4	
   3	
  	
   4.5	
   8.5	
   5.3	
  gpm	
  
Line	
  5	
   0.8	
  	
   1	
   4.5	
   1.85	
  gpm	
  
Line	
  6	
   0.35	
   0.5	
   1.3	
   0.9	
  gpm	
  
	
  
	
  
	
  
	
  
	
  
	
  
  13	
  
Appendix	
  IV	
  
Table	
  7.	
  Straight	
  Tube	
  Specifications	
  and	
  Recommendations.	
  
	
   Line	
  1	
   Line	
  4	
   Line	
  5	
   Line6	
  
I.D.	
  (m)	
   0.015748	
   0.0110744	
   7.8994E-­‐3	
   4.7244E-­‐3	
  
Recommended	
  Gauge	
   15	
  psig	
   15	
  psig	
   30	
  psig	
   30	
  psig	
  
Recommended	
  Transducer	
   5	
  psid	
   5	
  psid	
   10	
  psid	
   10	
  psid	
  
Recommended	
  Flow	
  Rate	
  
(m3/s)*104	
  
6.94–2.52	
   5.36–1.89	
   2.84–0.505	
   0.82–0.221	
  
Length	
  between	
  psid	
  
measurements	
  (m)	
  
1.0922	
   1.09855	
   1.09855	
   1.09855	
  
Entry	
  Ball	
  Valve	
  Orifice	
  (m)	
   0.019304	
   0.0103124	
   7.1374E-­‐3	
   4.7498E-­‐3	
  
Relative	
  Roughness	
  (x105)	
   0.64–0.95	
   0.9–1.35	
   1.27–1.9	
   2.12–3.18	
  
	
  
	
  
Table	
  8.	
  Component	
  Specifications	
  and	
  Recommendations.	
  
	
   Venturi	
  
Meter	
  
Orifice	
  
Meter	
  
Bonnet	
  
Valve	
  
Ball	
  
Valve	
  
Line	
   2	
   2	
   3	
   3	
  
Length	
   0.0889	
  m	
   n/a	
   n/a	
   n/a	
  
Throat	
  1L	
   0.022225	
  m	
   n/a	
   n/a	
   n/a	
  
Throat/Bore	
  
Diameter	
  
9.525E-­‐3	
  m	
   0.014732	
  m	
  
	
  
n/a	
   n/a	
  
1L	
  across	
   0.4572	
  m	
   0.34925	
  m	
   0.34925	
  m	
   0.3556	
  m	
  
1L	
  upstream	
   .22225	
  m	
   0.18415	
  m	
   n/a	
   n/a	
  
1L	
  down-­‐stream	
   .23495	
  m	
   0.1651	
  m	
   n/a	
   n/a	
  
Entry	
  valve	
  
orifice	
  (m)	
  
0.019304	
   -­‐-­‐	
   0.0103124	
   -­‐-­‐	
  
2Flow	
  Rate*104	
   5.68–2.52	
  m3
/s	
   4.1–1.89	
  m3
/s	
   -­‐-­‐	
   -­‐-­‐	
  
2P	
  Gauge	
   15	
  psig	
   15	
  psig	
   30	
  psig	
   30	
  psig	
  
2Transducer	
   5	
  psid	
   5	
  psid	
   10	
  psid	
   10	
  psid	
  
	
  
	
   	
  
  14	
  
Appendix	
  V	
  
	
  
Figure	
  2.	
  Example	
  experimental	
  Moody	
  Chart	
  (The	
  Engineering	
  Toolbox).	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

More Related Content

What's hot

Cc303 hydraulics 1_29.5
Cc303 hydraulics 1_29.5Cc303 hydraulics 1_29.5
Cc303 hydraulics 1_29.5mumyzz
 
2 c industrial hydraulic circuits
2 c industrial hydraulic circuits2 c industrial hydraulic circuits
2 c industrial hydraulic circuitsDr.R. SELVAM
 
Ii air control valves
Ii air control valvesIi air control valves
Ii air control valvesmoroyusef
 
2 b industrial hydraulic circuits
2 b industrial hydraulic circuits2 b industrial hydraulic circuits
2 b industrial hydraulic circuitsDr.R. SELVAM
 
Week 6 1_basic_of_pneumatics
Week 6 1_basic_of_pneumaticsWeek 6 1_basic_of_pneumatics
Week 6 1_basic_of_pneumaticsakmal ariffin
 
4 fluid power ansi symbols
4 fluid power ansi symbols4 fluid power ansi symbols
4 fluid power ansi symbolsDr.R. SELVAM
 
Single action cylinder
Single action cylinderSingle action cylinder
Single action cylinderrawaabdullah
 
Week 2 2_hydraulic_systems_component
Week 2 2_hydraulic_systems_componentWeek 2 2_hydraulic_systems_component
Week 2 2_hydraulic_systems_componentakmal ariffin
 
Sizing and selection information
Sizing and selection informationSizing and selection information
Sizing and selection informationRommy Romanza
 
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROL
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROLVARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROL
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROLVijay Sarathy
 
Chapter 3 electro pneumatic.updated
Chapter 3 electro pneumatic.updatedChapter 3 electro pneumatic.updated
Chapter 3 electro pneumatic.updatedHattori Sidek
 
4526 4530.output
4526 4530.output4526 4530.output
4526 4530.outputj1075017
 
Advanced Anti surge Control System for Turbine Driven Centrifugal Compressors
Advanced Anti surge Control System for Turbine Driven Centrifugal CompressorsAdvanced Anti surge Control System for Turbine Driven Centrifugal Compressors
Advanced Anti surge Control System for Turbine Driven Centrifugal CompressorsArslan Ahmed Amin
 
Anti surge-control-concepts
Anti surge-control-conceptsAnti surge-control-concepts
Anti surge-control-conceptspakmek
 
Differential Pressure Level Gauge Calibration Setup and Procedure
Differential Pressure Level Gauge Calibration Setup and ProcedureDifferential Pressure Level Gauge Calibration Setup and Procedure
Differential Pressure Level Gauge Calibration Setup and Procedureedwin ponciano
 
Project on Butterfly Valve
Project on Butterfly ValveProject on Butterfly Valve
Project on Butterfly ValveManish Kumar
 

What's hot (20)

Cc303 hydraulics 1_29.5
Cc303 hydraulics 1_29.5Cc303 hydraulics 1_29.5
Cc303 hydraulics 1_29.5
 
2 c industrial hydraulic circuits
2 c industrial hydraulic circuits2 c industrial hydraulic circuits
2 c industrial hydraulic circuits
 
Ii air control valves
Ii air control valvesIi air control valves
Ii air control valves
 
2 b industrial hydraulic circuits
2 b industrial hydraulic circuits2 b industrial hydraulic circuits
2 b industrial hydraulic circuits
 
Week 6 1_basic_of_pneumatics
Week 6 1_basic_of_pneumaticsWeek 6 1_basic_of_pneumatics
Week 6 1_basic_of_pneumatics
 
4 fluid power ansi symbols
4 fluid power ansi symbols4 fluid power ansi symbols
4 fluid power ansi symbols
 
Pneumatic circuits
Pneumatic circuitsPneumatic circuits
Pneumatic circuits
 
Single action cylinder
Single action cylinderSingle action cylinder
Single action cylinder
 
Week 2 2_hydraulic_systems_component
Week 2 2_hydraulic_systems_componentWeek 2 2_hydraulic_systems_component
Week 2 2_hydraulic_systems_component
 
Control valves
Control valvesControl valves
Control valves
 
instrumentation docments
instrumentation docmentsinstrumentation docments
instrumentation docments
 
Sizing and selection information
Sizing and selection informationSizing and selection information
Sizing and selection information
 
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROL
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROLVARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROL
VARIOUS METHODS OF CENTRIFUGAL COMPRESSOR SURGE CONTROL
 
Chapter 3 electro pneumatic.updated
Chapter 3 electro pneumatic.updatedChapter 3 electro pneumatic.updated
Chapter 3 electro pneumatic.updated
 
Flow controll valve
Flow controll valveFlow controll valve
Flow controll valve
 
4526 4530.output
4526 4530.output4526 4530.output
4526 4530.output
 
Advanced Anti surge Control System for Turbine Driven Centrifugal Compressors
Advanced Anti surge Control System for Turbine Driven Centrifugal CompressorsAdvanced Anti surge Control System for Turbine Driven Centrifugal Compressors
Advanced Anti surge Control System for Turbine Driven Centrifugal Compressors
 
Anti surge-control-concepts
Anti surge-control-conceptsAnti surge-control-concepts
Anti surge-control-concepts
 
Differential Pressure Level Gauge Calibration Setup and Procedure
Differential Pressure Level Gauge Calibration Setup and ProcedureDifferential Pressure Level Gauge Calibration Setup and Procedure
Differential Pressure Level Gauge Calibration Setup and Procedure
 
Project on Butterfly Valve
Project on Butterfly ValveProject on Butterfly Valve
Project on Butterfly Valve
 

Viewers also liked

Teatro Nacional Ruben Dario, Managua, Nicaragua
Teatro Nacional Ruben Dario, Managua, NicaraguaTeatro Nacional Ruben Dario, Managua, Nicaragua
Teatro Nacional Ruben Dario, Managua, NicaraguaDaniela Dangla Roche
 
Alpha Award_Best Sukuk House_2015
Alpha Award_Best Sukuk House_2015Alpha Award_Best Sukuk House_2015
Alpha Award_Best Sukuk House_2015Nik Zaki Abdullah
 
B-DonnaKMarino-Portfolio
B-DonnaKMarino-PortfolioB-DonnaKMarino-Portfolio
B-DonnaKMarino-PortfolioDonna Marino
 
Trabalho de sistemas operativos
Trabalho de sistemas operativosTrabalho de sistemas operativos
Trabalho de sistemas operativosFrank macoo
 
Sugo - Digital and Mobile Store List
Sugo - Digital and Mobile Store ListSugo - Digital and Mobile Store List
Sugo - Digital and Mobile Store Listjonathan johnson
 
Hyatt Certificate
Hyatt CertificateHyatt Certificate
Hyatt CertificateGio Atienza
 
Caracteristica arquitectonica y urbanistica del mundo egeo
Caracteristica arquitectonica y urbanistica del mundo egeoCaracteristica arquitectonica y urbanistica del mundo egeo
Caracteristica arquitectonica y urbanistica del mundo egeojuanmoya159
 
Rosewood Hotels and Resorts.
Rosewood Hotels and Resorts.Rosewood Hotels and Resorts.
Rosewood Hotels and Resorts.Shantanu Garg
 
Trabajo el origen de la urbanistica moderna
Trabajo el origen de la urbanistica modernaTrabajo el origen de la urbanistica moderna
Trabajo el origen de la urbanistica modernaLizbeth Gutierrez
 

Viewers also liked (20)

Teatro Nacional Ruben Dario, Managua, Nicaragua
Teatro Nacional Ruben Dario, Managua, NicaraguaTeatro Nacional Ruben Dario, Managua, Nicaragua
Teatro Nacional Ruben Dario, Managua, Nicaragua
 
Cacería de Rajoy
Cacería de Rajoy Cacería de Rajoy
Cacería de Rajoy
 
Alpha Award_Best Sukuk House_2015
Alpha Award_Best Sukuk House_2015Alpha Award_Best Sukuk House_2015
Alpha Award_Best Sukuk House_2015
 
B-DonnaKMarino-Portfolio
B-DonnaKMarino-PortfolioB-DonnaKMarino-Portfolio
B-DonnaKMarino-Portfolio
 
Trabalho de sistemas operativos
Trabalho de sistemas operativosTrabalho de sistemas operativos
Trabalho de sistemas operativos
 
Nana Mouskouri
Nana MouskouriNana Mouskouri
Nana Mouskouri
 
José Ramón Sánchez
José Ramón SánchezJosé Ramón Sánchez
José Ramón Sánchez
 
Carnaval2009
Carnaval2009Carnaval2009
Carnaval2009
 
Sugo - Digital and Mobile Store List
Sugo - Digital and Mobile Store ListSugo - Digital and Mobile Store List
Sugo - Digital and Mobile Store List
 
Hyatt Certificate
Hyatt CertificateHyatt Certificate
Hyatt Certificate
 
Urbanismo Participativo
Urbanismo ParticipativoUrbanismo Participativo
Urbanismo Participativo
 
Caracteristica arquitectonica y urbanistica del mundo egeo
Caracteristica arquitectonica y urbanistica del mundo egeoCaracteristica arquitectonica y urbanistica del mundo egeo
Caracteristica arquitectonica y urbanistica del mundo egeo
 
Arquitectura Gotica
Arquitectura GoticaArquitectura Gotica
Arquitectura Gotica
 
Psychological Learning
Psychological LearningPsychological Learning
Psychological Learning
 
Umbral Mortal y Rosa
Umbral Mortal y RosaUmbral Mortal y Rosa
Umbral Mortal y Rosa
 
Rosewood Hotels and Resorts.
Rosewood Hotels and Resorts.Rosewood Hotels and Resorts.
Rosewood Hotels and Resorts.
 
Trabajo el origen de la urbanistica moderna
Trabajo el origen de la urbanistica modernaTrabajo el origen de la urbanistica moderna
Trabajo el origen de la urbanistica moderna
 
URBANISMO FUNCIONALISTA
URBANISMO FUNCIONALISTAURBANISMO FUNCIONALISTA
URBANISMO FUNCIONALISTA
 
Arquitectura Griega
Arquitectura GriegaArquitectura Griega
Arquitectura Griega
 
Teorias urbanas
Teorias urbanasTeorias urbanas
Teorias urbanas
 

Similar to Rutenbeck; GLR Pressure Drop

Fluid Mechanic Lab - Venturi Meter
Fluid Mechanic Lab - Venturi MeterFluid Mechanic Lab - Venturi Meter
Fluid Mechanic Lab - Venturi MeterMuhammadSRaniYah
 
Venturi and orificemeter - Ed Ryan Ruales
Venturi and orificemeter - Ed Ryan RualesVenturi and orificemeter - Ed Ryan Ruales
Venturi and orificemeter - Ed Ryan RualesEd Ryan Ruales
 
Using Computational Fluid Dynamics as a tool for improved prediction of press...
Using Computational Fluid Dynamics as a tool for improved prediction of press...Using Computational Fluid Dynamics as a tool for improved prediction of press...
Using Computational Fluid Dynamics as a tool for improved prediction of press...ijceronline
 
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Salman Jailani
 
Calibration of venturi and orifice meters
Calibration of venturi and orifice metersCalibration of venturi and orifice meters
Calibration of venturi and orifice metersHirizza Junko Yamamoto
 
Over all pressure of Fluid flow
Over all pressure of Fluid flowOver all pressure of Fluid flow
Over all pressure of Fluid flowAree Salah
 
Fluid Mechanic Lab - Bernoulli Equation
Fluid Mechanic Lab - Bernoulli EquationFluid Mechanic Lab - Bernoulli Equation
Fluid Mechanic Lab - Bernoulli EquationMuhammadSRaniYah
 
Project Report - Spring 2014
Project Report - Spring 2014Project Report - Spring 2014
Project Report - Spring 2014Garret Stec
 
IRJET- Numerical Analysis of Butterfly Valve for Industrial Application
IRJET- Numerical Analysis of Butterfly Valve for Industrial ApplicationIRJET- Numerical Analysis of Butterfly Valve for Industrial Application
IRJET- Numerical Analysis of Butterfly Valve for Industrial ApplicationIRJET Journal
 
3.10 valves modeling dynamics - engineering libre-texts
3.10  valves   modeling dynamics - engineering libre-texts3.10  valves   modeling dynamics - engineering libre-texts
3.10 valves modeling dynamics - engineering libre-textsKyriakos Michalaki
 
Flow measurement basics
Flow measurement basicsFlow measurement basics
Flow measurement basicsSalman1011
 
Hooman_Rezaei_asme_paper1
Hooman_Rezaei_asme_paper1Hooman_Rezaei_asme_paper1
Hooman_Rezaei_asme_paper1rezaeiho
 
Pneumatics: Shuttle, Twin pressure, Quick Exhaust, Time Delay, FRL
Pneumatics: Shuttle, Twin pressure, Quick Exhaust, Time Delay, FRLPneumatics: Shuttle, Twin pressure, Quick Exhaust, Time Delay, FRL
Pneumatics: Shuttle, Twin pressure, Quick Exhaust, Time Delay, FRLAbhishek Patange
 
Measurement and control of nonelectrical quantities
Measurement and control of nonelectrical quantitiesMeasurement and control of nonelectrical quantities
Measurement and control of nonelectrical quantitiesMaria Romina Angustia
 

Similar to Rutenbeck; GLR Pressure Drop (20)

Fluid Mechanic Lab - Venturi Meter
Fluid Mechanic Lab - Venturi MeterFluid Mechanic Lab - Venturi Meter
Fluid Mechanic Lab - Venturi Meter
 
Venturi and orificemeter - Ed Ryan Ruales
Venturi and orificemeter - Ed Ryan RualesVenturi and orificemeter - Ed Ryan Ruales
Venturi and orificemeter - Ed Ryan Ruales
 
Using Computational Fluid Dynamics as a tool for improved prediction of press...
Using Computational Fluid Dynamics as a tool for improved prediction of press...Using Computational Fluid Dynamics as a tool for improved prediction of press...
Using Computational Fluid Dynamics as a tool for improved prediction of press...
 
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
Energy losses in Bends, loss coefficient related to velocity head.Pelton Whee...
 
Calibration of venturi and orifice meters
Calibration of venturi and orifice metersCalibration of venturi and orifice meters
Calibration of venturi and orifice meters
 
Over all pressure of Fluid flow
Over all pressure of Fluid flowOver all pressure of Fluid flow
Over all pressure of Fluid flow
 
Ijmet 10 01_008
Ijmet 10 01_008Ijmet 10 01_008
Ijmet 10 01_008
 
Fluid Mechanic Lab - Bernoulli Equation
Fluid Mechanic Lab - Bernoulli EquationFluid Mechanic Lab - Bernoulli Equation
Fluid Mechanic Lab - Bernoulli Equation
 
Project Report - Spring 2014
Project Report - Spring 2014Project Report - Spring 2014
Project Report - Spring 2014
 
IRJET- Numerical Analysis of Butterfly Valve for Industrial Application
IRJET- Numerical Analysis of Butterfly Valve for Industrial ApplicationIRJET- Numerical Analysis of Butterfly Valve for Industrial Application
IRJET- Numerical Analysis of Butterfly Valve for Industrial Application
 
3.10 valves modeling dynamics - engineering libre-texts
3.10  valves   modeling dynamics - engineering libre-texts3.10  valves   modeling dynamics - engineering libre-texts
3.10 valves modeling dynamics - engineering libre-texts
 
Exp 10 flow rate
Exp 10 flow rateExp 10 flow rate
Exp 10 flow rate
 
Flow measurement basics
Flow measurement basicsFlow measurement basics
Flow measurement basics
 
Hooman_Rezaei_asme_paper1
Hooman_Rezaei_asme_paper1Hooman_Rezaei_asme_paper1
Hooman_Rezaei_asme_paper1
 
Minor losses elbow
Minor losses elbowMinor losses elbow
Minor losses elbow
 
Minor losses valve
Minor losses  valveMinor losses  valve
Minor losses valve
 
d-2.pptx
 d-2.pptx d-2.pptx
d-2.pptx
 
Minor losses valve
Minor losses valveMinor losses valve
Minor losses valve
 
Pneumatics: Shuttle, Twin pressure, Quick Exhaust, Time Delay, FRL
Pneumatics: Shuttle, Twin pressure, Quick Exhaust, Time Delay, FRLPneumatics: Shuttle, Twin pressure, Quick Exhaust, Time Delay, FRL
Pneumatics: Shuttle, Twin pressure, Quick Exhaust, Time Delay, FRL
 
Measurement and control of nonelectrical quantities
Measurement and control of nonelectrical quantitiesMeasurement and control of nonelectrical quantities
Measurement and control of nonelectrical quantities
 

Rutenbeck; GLR Pressure Drop

  • 1.                                     Group  Leader  Report   Julianne  Rutenbeck   CHEN  3130-­‐004   Dr.  Wendy  Young   02/10/2015      
  • 2.   2   Table  of  Contents Objectives    ….………………………………………………………………………………………………………………  3 Apparatus  and  Equipment    ………………………………………………………………………………………….  4   Process  Flow  Diagram    ………………………..………………………………………………………………….  4 Operating  Instructions    ……………………………………………………………………………………………….  5 Start  up    ………….…………………………………………………………………………………………………….    5   Calibrations    ………………………………………………………………………………………………......................  5 Data  Collection    ………………………..………………………………………………………………….....................  6   Shut  Down    …………………………………………………………………………………………………………...    6   Safety    …………………………………………………………………………………………………………………..  6 Calculations  …………………………………………………………………………………………………....................  7 Calculation  Flowcharts  …..………………………………………………………………………………………  7   Error  Analysis  ……………………………………………………………………………………………………………  9 Bibliography    …………………………………………………………………………………………………………...    10 Appendices    ……………………………………………………………………………………………………………...  11 Appendix  I:  Table  of  Nomenclature  and  Physical  Properties  ……………………………………...  11 Appendix  II:  Instrument  Specifications      ……………………………………………………………............  12 Appendix  III:  Specified  flow  rates  to  be  studied…………………………………………………………..  12   Appendix  IV:  Pipe  Specifications  ………………………………………………………………………………..  13 Appendix  V:  Example  Moody  Diagram    ……………………………………………………………………...  14      
  • 3.   3   Objectives   This  experiment  will  investigate  how  physical  parameters  affect  the  pressure  drop   in   pipes.   The   pressure   drop   in   straight   pipes   over   a   given   length   will   be   measured   for   various  pipe  diameters  and  volumetric  flow  rates.  With  these  data,  an  experimental  moody   chart   will   be   created   and   compared   to   typical   versions.   A   typical   moody   chart   plots   the   Reynolds  number  –  a  dimensionless  parameter  used  to  characterize  fluid  flow  –  versus  the   friction  factor,  at  various  values  of  the  relative  roughness  (ϵ/D),  which  is  characteristic  of   the  piping  material  (Refer  to  Appendix  V  for  an  example  Moody  chart).  The  plot  created   from  this  experiment  will  have  only  one  value  of  the  roughness  factor  and  therefore  the   relative   roughness   will   depend   only   on   the   pipe   diameter.   The   Reynolds   number   and   friction  factor  can  both  be  calculated  from  properties  of  the  fluid  and  knowledge  of  the  flow   rate,  pipe  diameter,  and  the  pressure  change  over  a  given  length  of  tube  (equations  5,  8;  see   Calculations,  Flow  Chart  II,  pg.  8).  Flow  rate  and  diameter  will  be  varied  and  the  pressure   drop  for  each  combination  will  be  recorded.     Pressure   changes   through   a   number   of   flow   components   will   also   be   observed.   Similar  to  the  method  used  for  straight  pipes,  the  pressure  drop  around  the  components   will  be  measured  as  a  function  of  flow  rate.  These  components  consist  of  a  ball  valve  (H),  a   bonnet  valve  (G),  a  90o  bend  (K),  a  venturi  meter  (I),  and  an  orifice  meter  (J,  see  Figure  1,   pg.  4).  Once  the  data  have  been  obtained,  a  plot  will  be  created  for  each  of  the  two  valves   and   the   bend,   showing   equivalent   length   versus   the   Reynolds   number.   The   equivalent   length  is  an  effective  distance,  equivalent  to  the  length  of  straight  pipe  that  would  cause  the   same   change   in   pressure   at   the   given   flow   rate   and   diameter;   it   can   be   calculated   from   these   three   parameters   (equation   10,   Calculation   Flow   Chart   III,   pg.   9).   The   venturi   and   orifice   meters   will   each   be   analyzed   with   a   plot   of   the   discharge   coefficient   versus   the   Reynolds  number  at  various  flow  rate  and  diameter  values.  The  discharge  coefficient  is  a   dimensionless  parameter  used  to  describe  the  relative  efficiency  of  a  valve  discharging  to  a   reservoir  (equation  11,  Calculation  Flow  Chart  IV,  pg.  9).  By  the  end  of  the  experiment,  the   dependence  of  the  pressure  drop  on  diameter  and  flow  rate  will  be  approximately  known.   The  resulting  correlations  and  relationships  may  be  used  in  the  future  to  help  design  a  new   piping  network  with  this  piping  material.                  
  • 4.   4   Apparatus  and  Equipment       Figure  1.  Process  Flow  Diagram.     Orifice Meter Venturi Meter Air release valves Bonnet Valve Ball Valve Pressure Gauge/Transducer Connection Gate valve Rotameter switch valve Rotameter Flow in Flow out Line 6 Line 5 Line 4 Line 3 Line 2 Line 1 Reservoir Pump A B C D E F G H I J 2 psid pressure transducer 5 psid pressure transducer 10 psid pressure transducer L K Entrance length L=length of P drop Exit Length M
  • 5.   5   Apparatus  &  Equipment   The  Process  Flow     The  pump  pushes  water  up  from  the  reservoir,  through  one  of  the  rotameters  (M),   and  up  the  left  side  of  the  apparatus.  The  air  release  valves  (F),  allow  the  water  to  air  push   up  and  out  of  the  system.  Each  line  has  a  ball  valve  that  controls  the  flow  into  that  tube.   Lines  one,  four,  five,  and  six  are  just  straight  pipes  with  pressure  sensor  ports  on  opposite   ends.  Line  two  has  the  Venturi  meter  (I),  the  orifice  meter  (J),  and  the  bend  (K).  Line  three   has  two  different  kinds  of  valves  –  Ball  (H)  and  Bonnet  (G).  Each  of  these  components  has   pressure  sensor  ports  on  either  side  of  them.  The  water  flows  out  on  the  opposite  side  of   the  apparatus,  passes  through  the  gate  valve  (L),  and  drains  back  into  the  reservoir  to  be   recycled.     Table  1.  Process  Flow  Diagram  Components     Component   G   Bonnet  valve   A   Pump   H   Ball  valve     B   Valve  to  switch  rotameters;  Orifice  0.01905  m     I   Venturi  Meter   C   Ball  valve  to  open  each  line   J   Orifice  Meter   D   Pressure  sensor  connection  port   K   Bend   E   Brass  Alloy  260  Tubing   L   Gate  valve     F   Air  release  valves   M   Rotameter     Operating  Instructions  and  Safety   Start  Up     Before  engaging  the  pump  and  beginning  data  collection,  the  apparatus  must  be  in   the  proper  state.  One  of  the  rotameter  valves  should  be  open  and  the  other  closed  (B;  see   figure  1,  pg.  4);  if  both  are  in  the  same  position,  damage  to  the  pump  may  occur.  The  entry   valves  to  each  pipe  should  be  such  that  the  lines’  under  study  are  open  and  the  rest  are   closed  (C).  On  the  exiting  side,  the  gate  valve  leading  into  the  drain  tub  (L)  should  be  all  the   way  open  and  secured  to  the  reservoir.  Once  the  water  has  established  full  flow  and  the   experiment  begun,  the  exit  valve  may  be  adjusted  accordingly  to  avoid  vacuum  pressures.   When  all  of  this  has  been  accomplished,  the  pump  is  ready  to  be  engaged.  When  the  pump   is  started,  the  lines  must  be  cleared  of  air  to  avoid  hammering  and  equipment  damage.  To   clear  the  line,  open  the  air  release  valves  on  each  side  of  the  apparatus  (F).  When  water  can   be  seen  in  the  tube,  all  the  air  has  been  cleared  from  the  lines  and  the  valve  can  be  shut.   Calibration     The  rotameters  (M)  will  be  calibrated  with  a  catch  and  weigh.  Once  full  flow  has   been  established  –  the  ¾”  lines  may  take  several  minutes  –  the  process  can  begin.  The   information  being  recorded  will  be  the  time  for  which  water  is  allowed  to  flow  into  the   bucket,  along  with  the  mass  of  the  bucket,  before  and  after  the  water  is  allowed  to  drain   into  it.  With  this  information,  equation  (1)  can  be  used  to  calculate  the  actual  flow  rate  and   compare  it  to  the  rotameter  reading.  For  each  rotameter,  five  different  flow  rates  will  be   measured,  and  three  replicates  will  be  performed  at  each  level.  This  data  should  then  be  
  • 6.   6   consolidated  into  a  calibration  curve,  which  then  can  be  used  for  the  duration  of  the   experiment.  Table  5  in  appendix  III  shows  the  specified  levels  to  be  calibrated.     At  each  of  the  flow  rates,  the  pressure  transducers  will  also  be  calibrated.  Using  the   same  gauge,  measurements  will  be  taken  across  the  pipe  at  the  same  sites  that  the   transducers  connect  to.  Since  there  are  two  rotameters  and  two  pressure  transducers  that   require  calibration,  the  ten-­‐psid  transducer  will  be  calibrated  with  the  0.2-­‐2  gpm   rotameter,  and  the  five-­‐psid  transducer  with  the  2-­‐15  gpm  rotameter.  The  gauge  and   transducer  data  will  be  compared  in  a  calibration  curve.  Between  each  replicate  of  the   calibrations,  the  flow  rate  should  be  varied  slightly  and  brought  back  to  the  original  level.   Data  Collection     Since  the  aim  of  this  experiment  is  to  explore  a  wide  range  of  Reynolds  numbers  and   pressure  changes,  a  wide  variety  flow  rates  will  be  investigated.  For  each  straight  tube,  four   flow  rates  have  been  specified  and  three  replicates  will  be  performed  at  each.  If  time  does   not  permit  for  this  many  trials,  one  flow  rate  for  each  line  has  been  specified  as  being  less   necessary;  table  6  (appendix  III)  shows  the  specified  flow  rates  to  be  studied.  At  each   specified  flow  rate,  the  actual  flow  reading  and  pressure  drop  across  the  appropriate   transducer  will  be  recorded.  Pressure  drop  will  be  measured  via  LabView  Software.  The   experiment  will  generate  between  thirty-­‐six  and  forty-­‐eight  data  points.  These  will  be  used   to  create  an  experimental  moody  chart  (see  calculations  flow  chart  II  for  more   information).  The  generated  plot  will  be  compared  to  typical  ones  found  in  literature.  An   example  Moody  chart  has  been  attached  in  Appendix  V  for  comparison  with  the  results   obtained.  Since  all  the  lines  will  be  used,  when  switching  between  them,  one  must  open  the   next  valve  before  closing  the  current  one.  If  all  entry  valves  are  closed,  damage  to  the   equipment  may  result.       After  the  straight  pipe  data  have  been  taken,  lines  two  and  three  will  be  studied.   Again,  flow  rate  and  pressure  drop  around  each  component  will  be  varied  and  recorded.   These  data  will  be  used  to  make  two  more  plots  –  discharge  coefficient  (calculation  flow   chart  IV)  versus  Reynolds  number  for  the  venturi  and  orifice  meters  and  equivalent  length   (calculation  flow  chart  III)  versus  Reynolds  number  for  the  valves  and  bend.     Shut  Down     To  shut  down  the  apparatus,  simply  turn  off  the  pump.  After  this,  shut  all  the  gate   valves  to  the  lines  and  all  other  valves  should  be  in  safe  positions  for  future  use.  Because   water  may  leak  from  the  lines  or  reservoir,  dry  the  surrounding  area  for  the  safety  of   others  in  the  lab.   Safety   • As  stated  above,  water  leakage  increases  the  risk  of  slipping  in  the  lab.     • The  pump  is  an  electrical  component  in  a  water  reservoir.  Be  careful  not  to  allow   loose  wires,  or  other  conductors  that  have  electricity  running  through  them,  to  come   into  contact  with  the  water.      
  • 7.   7   Calculations   -­‐Refer  to  Appendix  I  for  variable  definitions  and  physical  property  values.   I.  Calibration  of  Rotameter     II.  Experimental  Moody  Chart         Catch  &   Weigh   •  Measure  mass  of  empty  bucket.   •  Time  how  long  water  llows  into  the  bucket.   •  Measure  the  mass  of  the  bucket  and  water(m).   Obtain   Flow  Rates   •  Q=(m/t)(1/ρ)          (1)   •  Record  observed  llow  rate  from  rotameter.   Callibration   Curve   •  Plot  Q  vs.  the  readings  from  the  rotameter.   Velocity   •  ν=Q/A                        (2)   Pipe   properties   • A=π(D/2)2              (3)   • Relative  Roughness  =  ϵ/D    (4)       Reynolds   Number   • Re=ρνD/μ                          (5)   • τw=  -­‐(dP/dz)(D/4)                            (6)   Friction   Factor   •  ff=2τw/ρν2                            (7)   •  Assuming  the  shear  stress  is  constant.   •  ff    =  (ΔP)D/2ρν2L  =    (P1-­‐P2)D/2ρν2L                    (8)   Moody   Chart   •  Plot  ff  vs.  Re  for  different  experimental  values  of  ν,   ΔP/L,  and  D.  Compare  this  with  charts  found  in   literature.  
  • 8.   8   Assume   •  Horizontal  llow   •  Uniform  velocity  prolile  upstream  and   downstream   Discharge   Coeflicient   Reynolds   Number   • Re=ρνD/μ        (4)     Graph   •  Plot  Cd  vs.  Re  for  each  meter  at  various  llow   rates.  Analyze  the  graphs.   III.  Bend  and  Valves         IV.  Venturi  meter  and  Orifice  meter                                                                                                                                                                                 𝐶! = !! !!! ! !(!!( !! !! )!) ! !"                                                   11       Reynolds   Number     •  Re=ρνD/μ              (4)   •  Use  this  along  with  the  experimental  moody  chart  to  get   ff     Loss   Coeflicient   •  Assuming  fully-­‐developed,  steady,  incompressible  llow.   •  KL  =  2Ploss/ρν2    =  2(P1-­‐P2)/ρν2                (9)   Equivalent   Length   •  leq=KLD/ff                      (10)   •  Graph  leq  vs.  Re  for  the  bend  and  both  valves  at  various   values  of  ΔP,  ff,  and  ν.  
  • 9.   9   Error  Propagation     Three  replicates  will  be  done  for  each  measurement.  The  data  taken  from  these   measurements  will  be  analyzed  with  the  equations  and  graphs  mentioned  previously.  The   error  associated  with  the  measurements  will  propagate  when  these  calculations  are   performed,  so  the  equations  below  should  be  used  to  estimate  the  error  associated  with  a   calculated  value.   𝛿𝑄 = 1 𝜌𝑡 ! (𝛿𝑚)! + ( −𝑚 𝜌𝑡! )!(𝛿𝑡)!                  (1)   𝛿𝑉 = 𝛿𝑄 𝐴                                (2)   𝛿𝑓! = 𝐷 2𝜌𝑣! 𝐿 ! 𝛿Δ𝑃 ! + ( −Δ𝑃𝐷 𝜌𝑣! 𝐿 )! 𝛿𝑣 !                                            (8)   𝛿𝐾! = 2 𝜌𝑣! ! (𝛿Δ𝑃)! + −4Δ𝑃 𝜌𝑣! ! (𝛿𝑣)!                                                  (9)   𝛿𝑙!" = 𝐷 𝑓! ! 𝛿𝐾! ! + ( −𝐷𝐾! 𝑓! ! )!(𝛿𝑓!)!                                  (10)   𝛿𝐶! = 4 𝜋𝐷! ! 𝜌(1 − ( 𝐷! 𝐷! )!) 2 𝛥𝑃 ! (𝛿𝑄)! + −2𝑄 𝜋𝐷! ! 𝜌(1 − ( 𝐷! 𝐷! )!) 2(Δ𝑃)! ! (𝛿Δ𝑃)!                          (11)     The  equations  for  which  these  errors  should  be  used  are  noted  on  the  right  of  the   equation.  The  error  for  each  measurement  will  be  the  greater  of  two  errors:  the  error   associated  with  reading  the  measurement  and  random  error  between  measurements  due   to  random  fluctuations  (standard  deviation).  The  error  associated  with  equation  one   should  not  be  used  as  the  error  value  in  the  latter  equations;  it  is  only  for  the  catch  and   weigh.  Manufacturer  data  are  shown  in  appendix  II,  table  4.  The  precision  is  an  estimate   based  on  the  markings  on  the  instrument.  No  measurements  were  taken  with  them  in   order  to  verify  the  estimates.  The  systematic  error  for  measurements  of  volumetric  flow   rate  and  pressure  drop  should  be  eliminated  with  the  calibration  of  the  instruments.                  
  • 10.   10   Bibliography   Kestin,  J.,  Sokolov,  M.,  Wakeham,  W.  A.  (1978).  Viscosity  of  Liquid  Water  in  the  Range  -­‐8oC   to  150oC.  J.  Phys.  Chemical  Reference  Data,  Vol.  7.  Retrieved  from:   http://www.nist.gov/data/PDFfiles/jpcrd121.pdf   The  Engineering  Page.  Retrieved  from:        http://www.the-­‐engineering-­‐ page.com/forms/dp/typ_eps.html   The  Engineering  Toolbox.  Retrieved  from:  http://www.engineeringtoolbox.com/moody-­‐ diagram-­‐d_618.html                                                    
  • 11.   11   Appendices   Appendix  I   Table  2.  Table  of  Nomenclature.   Symbol   Definition   Units   Obtained  by:   Q   Volume  flow  rate   m3/s   Calculated/measured   m   Mass  of  water   kg   Measured   ρ     Density  of  water  @  Twater  ≅  25oC   kg/m3   Constant  (varies  with  T)   t   time   s   Measured   T   Temperature  of  water   oC   Measured  (LabView)   τw   Shear  stress  at  the  wall   N/m2   Calculated   A   Cross  sectional  area  of  pipe   m2   Calculated   D   Diameter  of  pipe   in   Constant   ν     Velocity   m/s   Calculated   ff   Fanning  friction  factor   -­‐-­‐   Calculated   ΔP   Differential  pressure   psid   Measured  (LabView)   P1   Upstream  pressure   psig   Measured   P2   Downstream  pressure   psig   Measured   L   Length  of  pipe  between  P1  &  P2   in   Constant   Re   Reynolds  number   -­‐-­‐   Calculated   μ     Dynamic  viscocity  of  water  at  25oC   Ns/m2   Constant  (varies  with  T)   D1   Large  diameter  of  venturi/orifice  meter   in   Constant   D2   Small  diameter  of  venturi/orifice  meter   in   Constant   Cd     Discharge  Coefficient   -­‐-­‐   Calculated   KL     Loss  Coefficient   -­‐-­‐   Calculated   leq   Equivalent  length  of  straight  pipe   m   Calculated   ϵ     Roughness  Factor   m   Constant         Table  3.  Table  of  Physical  Properties.   Property   Value   Units   1ρ  (at  25oC)   997.1   kg/m3   1μ  (at  25oC)   8.902E-­‐4   Ns/m2   2ϵ  (Brass)   1.0E-­‐7–1.5E-­‐7   m                     1-­‐  Kestin  et  al.,  1978   2-­‐  “The  Engineering  Page”    
  • 12.   12   Appendix  II   Table  4.  Instrument  Specifications   Instrument   Mfr.1   Range   Units   3Accuracy/Bias   Precision   Tolerance   Pressure   Gauge   WIKA   0-­‐15   psig   ±  2.5%   ±0.5   If  the  same  gauge  is  used  to   measure  pressure  in  both   positions,  the  bias  should  be   eliminated   Pressure   Gauge   WIKA   0-­‐30   psig   ±  2.5%   ±1.0   Pressure   Transducer   Dwyer   0-­‐2   psid   ±  .25%   ±0.02     The  transducers  can  be   calibrated  using  the  gauges   to  measure  P1  and  P2     Pressure   Transducer   Dwyer   0-­‐5   psid   ±  .25%   ±0.02   Pressure   Transducer   Dwyer   0-­‐10     psid   ±  .25%   ±0.02   Rotameter   King   0.2-­‐2   gpm   ±  5%   ±  0.5   The  rotameters  will  be   calibrated  Rotameter   King   1.5-­‐15   gpm   ±  5%   ±  0.5   ____________________________________   1-­‐Manufacturer   2-­‐The  data  are  collected  using  Labview  software.   3-­‐Estimates  based  on  multiple  possible  models         Appendix  III   Table  5.  Calibration  flow  rate  specifications   Rotameter   Flow  rates  to  be  calibrated  (gpm)   0.2-­‐2  gpm   0.35   0.8   1.2   1.6   2.0   2-­‐15  gpm   2.1   4.3   6.5   8.7   11     Table  6.  Data  collection  flow  rates     Flow  Rates  to  be  studied  (gpm)   Possible  flow   rates   Line  1   4     5.2     8     11  gpm   Line  4   3     4.5   8.5   5.3  gpm   Line  5   0.8     1   4.5   1.85  gpm   Line  6   0.35   0.5   1.3   0.9  gpm              
  • 13.   13   Appendix  IV   Table  7.  Straight  Tube  Specifications  and  Recommendations.     Line  1   Line  4   Line  5   Line6   I.D.  (m)   0.015748   0.0110744   7.8994E-­‐3   4.7244E-­‐3   Recommended  Gauge   15  psig   15  psig   30  psig   30  psig   Recommended  Transducer   5  psid   5  psid   10  psid   10  psid   Recommended  Flow  Rate   (m3/s)*104   6.94–2.52   5.36–1.89   2.84–0.505   0.82–0.221   Length  between  psid   measurements  (m)   1.0922   1.09855   1.09855   1.09855   Entry  Ball  Valve  Orifice  (m)   0.019304   0.0103124   7.1374E-­‐3   4.7498E-­‐3   Relative  Roughness  (x105)   0.64–0.95   0.9–1.35   1.27–1.9   2.12–3.18       Table  8.  Component  Specifications  and  Recommendations.     Venturi   Meter   Orifice   Meter   Bonnet   Valve   Ball   Valve   Line   2   2   3   3   Length   0.0889  m   n/a   n/a   n/a   Throat  1L   0.022225  m   n/a   n/a   n/a   Throat/Bore   Diameter   9.525E-­‐3  m   0.014732  m     n/a   n/a   1L  across   0.4572  m   0.34925  m   0.34925  m   0.3556  m   1L  upstream   .22225  m   0.18415  m   n/a   n/a   1L  down-­‐stream   .23495  m   0.1651  m   n/a   n/a   Entry  valve   orifice  (m)   0.019304   -­‐-­‐   0.0103124   -­‐-­‐   2Flow  Rate*104   5.68–2.52  m3 /s   4.1–1.89  m3 /s   -­‐-­‐   -­‐-­‐   2P  Gauge   15  psig   15  psig   30  psig   30  psig   2Transducer   5  psid   5  psid   10  psid   10  psid        
  • 14.   14   Appendix  V     Figure  2.  Example  experimental  Moody  Chart  (The  Engineering  Toolbox).