SlideShare a Scribd company logo
1 of 24
Inner Product spaces
1 . Length and Dot Product in R
n
2. Inner Product Spaces
3.Orthonormal Bases: Gram-Schmidt Process
4.Mathematical Models and Least Square Analysis
5.Applications of Inner Product Spaces
5.3
5.4
1 Length and Dot Product in Rn
 Length :
The length of a vector in Rn
is given
by 2 2 2
1 2|| || ( || || is a real number)nv v v   v vL
 Properties of length (or norm)
(1) 0
(2) 1
(3) 0 if and only if
(4) (proved in Theoerm 5.1)c c

 
 

v
v v
v v 0
v v
is called a unit vector
),,,( 21 nvvv v
 Notes: The length of a vector is also called its norm
Inner Product Spaces Inner product:
Let u, v, and w be vectors in a vector space V, and let c be
any scalar. An inner product on V is a function that
associates a real number <u, v> with each pair of vectors
u and v and satisfies the following axioms.
(1)
(2)
(3)
(4)
〉〈〉〈 uvvu ,, 
〉〈〉〈〉〈 wuvuwvu ,,, 
〉〈〉〈 vuvu ,, cc 
0, 〉〈 vv 0, 〉〈 vv
 Note:
V
Rn
spacefor vectorproductinnergeneral,
)forproductinnerEuclidean(productdot


vu
vu
 Note:
A vector space V with an inner product is called an inner product space.
 ,,VVector space:
Inner product space:
  ,,,,V
 (Properties of inner products)
Let u, v, and w be vectors in an inner product space V, and let c be any
real number.
(1)
(2)
(3)
(4)
(5)
0,,  〉〈〉〈 0vv0
〉〈〉〈〉〈 wvwuwvu ,,, 
〉〈〉〈 vuvu ,, cc 
 Norm (length) of u:
〉〈 uuu ,|||| 
〉〈 uuu ,|||| 2

 Note:
, , ,
, , ,
u v w u w v w
u v w u v u w
        
        
u and v are orthogonal if .
 Distance between u and v:
 vuvuvuvu ,||||),(d
 Angle between two nonzero vectors u and v:
  0,
||||||||
,
cos
vu
vu 〉〈
 Orthogonal:
0, 〉〈 vu
)( vu 
5.9
 Distance between two vectors:
The distance between two vectors u and v in R
n
is
||||),( vuvu d
 Properties of distance
(1)
(2) if and only if u = v
(3)
0),( vud
0),( vud
),(),( uvvu dd  (commutative property (交換律) of the distance function)
5.10
 Ex : Finding the distance between two vectors
The distance between u = (0, 2, 2) and v = (2, 0, 1) is
312)2(
)120220(
222

 ||,,||||vu||v),d(u
5.11
 Theorem 5.4: The Cauchy-Schwarz inequality (科西-舒瓦茲不等式)
If u and v are vectors in R
n
, then
( denotes the absolute value of )
|||||||||| vuvu  || vu  vu
vuvu
vvuuvu
vu



55511
11
1, 11, 5      u v u u v v
Ex 7: An example of the Cauchy-Schwarz inequality
Verify the Cauchy-Schwarz inequality for u = (1, –1, 3)
and v = (2, 0, –1)
Sol:
(The geometric interpretation for this inequality is shown on the next slide)
5.
 Dot product in Rn
:
The dot product of and
returns a scalar quantity
 Ex : Finding the dot product of two vectors
The dot product of u = (1, 2, 0, –3) and v = (3, –2, 4, 2) is
7)2)(3()4)(0()2)(2()3)(1(  vu
1 1 2 2 ( is a real number)n nu v u v u v     u v u vL
),,,( 21 nuuu u ),,,( 21 nvvv v
(The dot product is defined as the sum of component-by-
component multiplications)
5.13
 Theorem : Properties of the dot product
If u, v, and w are vectors in R
n
and c is a scalar,
then the following properties are true
(1)
(2)
(3)
(4)
(5)
uvvu 
wuvuwvu  )(
)()()( vuvuvu ccc 
2
|||| vvv  0 vv
0 vv v 0
※ The proofs of the above properties simply follow the definition of dot
product in Rn
(commutative property of the dot product)
(distributive property f the dot product
over vector addition)
(associative property of the scalar
multiplication and the dot product)
if and only if
Angle between Vectors
 For any nonzero vectors u and v in an inner
product space, V, the angle between u and v is
defined to be the angle θ such that
and  0
vu
vu,
cos 
 Orthogonal vectors:
Two vectors u and v in Rn are
orthogonal if 0 vu
 Note:
The vector 0 is said to be
orthogonal to every vector.
(Finding orthogonal vectors)
Ex. Determine all vectors in Rn that are orthogonal to u=(4, 2).
0
24
),()2,4(
21
21



vv
vvvu
  



 0
2
1
1024
tv
t
v 

 21 ,
2

Rt,t
t





 
 ,
2
v
)2,4(u Let ),( 21 vvv
Sol:
 (The Pythagorean theorem)
If u and v are vectors in Rn, then u and v are
orthogonal
if and only if
222
|||||||||||| vuvu 
 Dot product and matrix multiplication:













nu
u
u

2
1
u













nv
v
v

2
1
v
][][ 2211
2
1
21 nn
n
n
T
vuvuvu
v
v
v
uuu 












 

vuvu
(A vector in Rn
is represented as an n×1 column matrix)
),,,( 21 nuuu u
 Gram-Schmidt orthonormalization process:
is a basis for an inner product space V},,,{ 21 nB uuu 
11Let uv  })({1 1vw span
}),({2 21 vvw span
},,,{' 21 nB vvv 
},,,{''
2
2
n
n
B
v
v
v
v
v
v
1
1

is an orthogonal basis.
is an orthonormal basis.



 
1
1 〉〈
〉〈
proj 1
n
i
i
ii
in
nnnn n
v
v,v
v,v
uuuv W

2
22
23
1
11
13
3333
〉〈
〉〈
〉〈
〉〈
proj 2
v
v,v
v,u
v
v,v
v,u
uuuv W 
1
11
12
2222
〉〈
〉〈
proj 1
v
v,v
v,u
uuuv W 
Sol: )0,1,1(11  uv
)2,0,0()0,
2
1
,
2
1
(
2/1
2/1
)0,1,1(
2
1
)2,1,0(
2
22
23
1
11
13
33






 v
vv
vu
v
vv
vu
uv
 Ex (Applying the Gram-Schmidt ortho normalization process)
Apply the Gram-Schmidt process to the following basis.
)}2,1,0(,)0,2,1(,)0,1,1{(
321
B
uuu
)0,
2
1
,
2
1
()0,1,1(
2
3
)0,2,1(1
11
12
22 


 v
vv
vu
uv
}2)0,(0,0),,
2
1
,
2
1
(0),1,(1,{},,{' 321

 vvvB
Orthogonal basis
}1)0,(0,0),,
2
1
,
2
1
(0),,
2
1
,
2
1
({},,{''
3
3
2
2 

v
v
v
v
v
v
1
1
B
Orthonormal basis
Thus one basis for the solution space is
)}1,0,8,1(,)0,1,2,2{(},{ 21
 uuB
 
   
 1,2,4,3
01,2,,2
9
18
10,8,1,
,
,
01,2,,2
1
11
12
22
11








v
vv
vu
uv
uv
   1,2,4,30,1,2,2'  B (orthogonal basis)











 





 

30
1
,
30
2
,
30
4
,
30
3
,0,
3
1
,
3
2
,
3
2
''B
(orthonormal basis)
Innerproductspaces 151013072051-lva1-app6892 (1)

More Related Content

What's hot

Null space, Rank and nullity theorem
Null space, Rank and nullity theoremNull space, Rank and nullity theorem
Null space, Rank and nullity theorem
Ronak Machhi
 

What's hot (20)

Gram-Schmidt and QR Decomposition (Factorization) of Matrices
Gram-Schmidt and QR Decomposition (Factorization) of MatricesGram-Schmidt and QR Decomposition (Factorization) of Matrices
Gram-Schmidt and QR Decomposition (Factorization) of Matrices
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
Real analysis
Real analysis Real analysis
Real analysis
 
Null space, Rank and nullity theorem
Null space, Rank and nullity theoremNull space, Rank and nullity theorem
Null space, Rank and nullity theorem
 
Analytic function
Analytic functionAnalytic function
Analytic function
 
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
 
Chapter 5 Graphs (1).ppt
Chapter 5 Graphs (1).pptChapter 5 Graphs (1).ppt
Chapter 5 Graphs (1).ppt
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green Theorem
 
Vector Space.pptx
Vector Space.pptxVector Space.pptx
Vector Space.pptx
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex Differentiation
 
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuriLINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
LINER SURFACE AND VOLUM INTERGRALS Karishma mansuri
 
2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Newton’s Divided Difference Formula
Newton’s Divided Difference FormulaNewton’s Divided Difference Formula
Newton’s Divided Difference Formula
 
1532 fourier series
1532 fourier series1532 fourier series
1532 fourier series
 
Linear algebra-Basis & Dimension
Linear algebra-Basis & DimensionLinear algebra-Basis & Dimension
Linear algebra-Basis & Dimension
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
real vector space
real vector spacereal vector space
real vector space
 
Vector Spaces
Vector SpacesVector Spaces
Vector Spaces
 
Lagrange’s interpolation formula
Lagrange’s interpolation formulaLagrange’s interpolation formula
Lagrange’s interpolation formula
 

Viewers also liked (7)

1639 vector-linear algebra
1639 vector-linear algebra1639 vector-linear algebra
1639 vector-linear algebra
 
Inner product
Inner productInner product
Inner product
 
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7
Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
 
Lesson34 Intro To Game Theory Slides
Lesson34    Intro To  Game  Theory SlidesLesson34    Intro To  Game  Theory Slides
Lesson34 Intro To Game Theory Slides
 
Physics Chapter 10 section 1 Work, Energy, and Power
Physics Chapter 10 section 1 Work, Energy, and PowerPhysics Chapter 10 section 1 Work, Energy, and Power
Physics Chapter 10 section 1 Work, Energy, and Power
 
Lesson 2: Vectors and the Dot Product
Lesson 2: Vectors and the Dot ProductLesson 2: Vectors and the Dot Product
Lesson 2: Vectors and the Dot Product
 

Similar to Innerproductspaces 151013072051-lva1-app6892 (1)

Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash maths
yash bhathawala
 
CHAPTER 3.pptx
CHAPTER 3.pptxCHAPTER 3.pptx
CHAPTER 3.pptx
BangIzz
 

Similar to Innerproductspaces 151013072051-lva1-app6892 (1) (20)

Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash maths
 
Presentation1 yash maths
Presentation1 yash mathsPresentation1 yash maths
Presentation1 yash maths
 
Ch4
Ch4Ch4
Ch4
 
Mathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data Mining
 
Chapter 4: Vector Spaces - Part 5/Slides By Pearson
Chapter 4: Vector Spaces - Part 5/Slides By PearsonChapter 4: Vector Spaces - Part 5/Slides By Pearson
Chapter 4: Vector Spaces - Part 5/Slides By Pearson
 
Vcla ppt ch=vector space
Vcla ppt ch=vector spaceVcla ppt ch=vector space
Vcla ppt ch=vector space
 
Vector space
Vector spaceVector space
Vector space
 
Mat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.pptMat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.ppt
 
150490106037
150490106037150490106037
150490106037
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
 
Vectors mod-1-part-1
Vectors mod-1-part-1Vectors mod-1-part-1
Vectors mod-1-part-1
 
Taller 2. 4264. (2)
Taller 2. 4264. (2)Taller 2. 4264. (2)
Taller 2. 4264. (2)
 
Vectors mod-1-part-2
Vectors mod-1-part-2Vectors mod-1-part-2
Vectors mod-1-part-2
 
Vector Space & Sub Space Presentation
Vector Space & Sub Space PresentationVector Space & Sub Space Presentation
Vector Space & Sub Space Presentation
 
linear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdflinear-transformations-2017-03-19-14-38-49.pdf
linear-transformations-2017-03-19-14-38-49.pdf
 
Interpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape controlInterpolating rational bézier spline curves with local shape control
Interpolating rational bézier spline curves with local shape control
 
CHAPTER 3.pptx
CHAPTER 3.pptxCHAPTER 3.pptx
CHAPTER 3.pptx
 
Vectorspace in 2,3and n space
Vectorspace in 2,3and n spaceVectorspace in 2,3and n space
Vectorspace in 2,3and n space
 

Recently uploaded

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 

Recently uploaded (20)

GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 

Innerproductspaces 151013072051-lva1-app6892 (1)

  • 1.
  • 3. 1 . Length and Dot Product in R n 2. Inner Product Spaces 3.Orthonormal Bases: Gram-Schmidt Process 4.Mathematical Models and Least Square Analysis 5.Applications of Inner Product Spaces 5.3
  • 4. 5.4 1 Length and Dot Product in Rn  Length : The length of a vector in Rn is given by 2 2 2 1 2|| || ( || || is a real number)nv v v   v vL  Properties of length (or norm) (1) 0 (2) 1 (3) 0 if and only if (4) (proved in Theoerm 5.1)c c       v v v v v 0 v v is called a unit vector ),,,( 21 nvvv v  Notes: The length of a vector is also called its norm
  • 5. Inner Product Spaces Inner product: Let u, v, and w be vectors in a vector space V, and let c be any scalar. An inner product on V is a function that associates a real number <u, v> with each pair of vectors u and v and satisfies the following axioms. (1) (2) (3) (4) 〉〈〉〈 uvvu ,,  〉〈〉〈〉〈 wuvuwvu ,,,  〉〈〉〈 vuvu ,, cc  0, 〉〈 vv 0, 〉〈 vv
  • 6.  Note: V Rn spacefor vectorproductinnergeneral, )forproductinnerEuclidean(productdot   vu vu  Note: A vector space V with an inner product is called an inner product space.  ,,VVector space: Inner product space:   ,,,,V
  • 7.  (Properties of inner products) Let u, v, and w be vectors in an inner product space V, and let c be any real number. (1) (2) (3) (4) (5) 0,,  〉〈〉〈 0vv0 〉〈〉〈〉〈 wvwuwvu ,,,  〉〈〉〈 vuvu ,, cc   Norm (length) of u: 〉〈 uuu ,||||  〉〈 uuu ,|||| 2   Note: , , , , , , u v w u w v w u v w u v u w                  
  • 8. u and v are orthogonal if .  Distance between u and v:  vuvuvuvu ,||||),(d  Angle between two nonzero vectors u and v:   0, |||||||| , cos vu vu 〉〈  Orthogonal: 0, 〉〈 vu )( vu 
  • 9. 5.9  Distance between two vectors: The distance between two vectors u and v in R n is ||||),( vuvu d  Properties of distance (1) (2) if and only if u = v (3) 0),( vud 0),( vud ),(),( uvvu dd  (commutative property (交換律) of the distance function)
  • 10. 5.10  Ex : Finding the distance between two vectors The distance between u = (0, 2, 2) and v = (2, 0, 1) is 312)2( )120220( 222   ||,,||||vu||v),d(u
  • 11. 5.11  Theorem 5.4: The Cauchy-Schwarz inequality (科西-舒瓦茲不等式) If u and v are vectors in R n , then ( denotes the absolute value of ) |||||||||| vuvu  || vu  vu vuvu vvuuvu vu    55511 11 1, 11, 5      u v u u v v Ex 7: An example of the Cauchy-Schwarz inequality Verify the Cauchy-Schwarz inequality for u = (1, –1, 3) and v = (2, 0, –1) Sol: (The geometric interpretation for this inequality is shown on the next slide)
  • 12. 5.  Dot product in Rn : The dot product of and returns a scalar quantity  Ex : Finding the dot product of two vectors The dot product of u = (1, 2, 0, –3) and v = (3, –2, 4, 2) is 7)2)(3()4)(0()2)(2()3)(1(  vu 1 1 2 2 ( is a real number)n nu v u v u v     u v u vL ),,,( 21 nuuu u ),,,( 21 nvvv v (The dot product is defined as the sum of component-by- component multiplications)
  • 13. 5.13  Theorem : Properties of the dot product If u, v, and w are vectors in R n and c is a scalar, then the following properties are true (1) (2) (3) (4) (5) uvvu  wuvuwvu  )( )()()( vuvuvu ccc  2 |||| vvv  0 vv 0 vv v 0 ※ The proofs of the above properties simply follow the definition of dot product in Rn (commutative property of the dot product) (distributive property f the dot product over vector addition) (associative property of the scalar multiplication and the dot product) if and only if
  • 14. Angle between Vectors  For any nonzero vectors u and v in an inner product space, V, the angle between u and v is defined to be the angle θ such that and  0 vu vu, cos 
  • 15.  Orthogonal vectors: Two vectors u and v in Rn are orthogonal if 0 vu  Note: The vector 0 is said to be orthogonal to every vector.
  • 16. (Finding orthogonal vectors) Ex. Determine all vectors in Rn that are orthogonal to u=(4, 2). 0 24 ),()2,4( 21 21    vv vvvu        0 2 1 1024 tv t v    21 , 2  Rt,t t         , 2 v )2,4(u Let ),( 21 vvv Sol:
  • 17.  (The Pythagorean theorem) If u and v are vectors in Rn, then u and v are orthogonal if and only if 222 |||||||||||| vuvu 
  • 18.  Dot product and matrix multiplication:              nu u u  2 1 u              nv v v  2 1 v ][][ 2211 2 1 21 nn n n T vuvuvu v v v uuu                 vuvu (A vector in Rn is represented as an n×1 column matrix) ),,,( 21 nuuu u
  • 19.
  • 20.  Gram-Schmidt orthonormalization process: is a basis for an inner product space V},,,{ 21 nB uuu  11Let uv  })({1 1vw span }),({2 21 vvw span },,,{' 21 nB vvv  },,,{'' 2 2 n n B v v v v v v 1 1  is an orthogonal basis. is an orthonormal basis.      1 1 〉〈 〉〈 proj 1 n i i ii in nnnn n v v,v v,v uuuv W  2 22 23 1 11 13 3333 〉〈 〉〈 〉〈 〉〈 proj 2 v v,v v,u v v,v v,u uuuv W  1 11 12 2222 〉〈 〉〈 proj 1 v v,v v,u uuuv W 
  • 21. Sol: )0,1,1(11  uv )2,0,0()0, 2 1 , 2 1 ( 2/1 2/1 )0,1,1( 2 1 )2,1,0( 2 22 23 1 11 13 33        v vv vu v vv vu uv  Ex (Applying the Gram-Schmidt ortho normalization process) Apply the Gram-Schmidt process to the following basis. )}2,1,0(,)0,2,1(,)0,1,1{( 321 B uuu )0, 2 1 , 2 1 ()0,1,1( 2 3 )0,2,1(1 11 12 22     v vv vu uv
  • 22. }2)0,(0,0),, 2 1 , 2 1 (0),1,(1,{},,{' 321   vvvB Orthogonal basis }1)0,(0,0),, 2 1 , 2 1 (0),, 2 1 , 2 1 ({},,{'' 3 3 2 2   v v v v v v 1 1 B Orthonormal basis
  • 23. Thus one basis for the solution space is )}1,0,8,1(,)0,1,2,2{(},{ 21  uuB        1,2,4,3 01,2,,2 9 18 10,8,1, , , 01,2,,2 1 11 12 22 11         v vv vu uv uv    1,2,4,30,1,2,2'  B (orthogonal basis)                      30 1 , 30 2 , 30 4 , 30 3 ,0, 3 1 , 3 2 , 3 2 ''B (orthonormal basis)