This document discusses hyperparameter optimization using approximate gradients. It introduces the problem of optimizing hyperparameters along with model parameters. While model parameters can be estimated from data, hyperparameters require methods like cross-validation. The document proposes using approximate gradients to optimize hyperparameters more efficiently than costly methods like grid search. It derives the gradient of the objective with respect to hyperparameters and presents an algorithm called HOAG that approximates this gradient using inexact solutions. The document analyzes HOAG's convergence and provides experimental results comparing it to other hyperparameter optimization methods.