SlideShare a Scribd company logo
1 of 12
Download to read offline
1 Dark energy with constant equation of state
[1]
1.1 Flat, cosmological constant model - Flat Λ
H2
H2
0
= Ωm0(1 + z)3
+ (1 − Ωm0) (1)
1.2 Cosmological constant model
H2
H2
0
= Ωm0(1 + z)3
+ Ωk0(1 + z)2
+ ΩΛ0 (2)
where Ωk0 = 1 − Ωm0 − ΩΛ0
1.3 Flat dark energy model
H2
H2
0
= Ωm0(1 + z)3
+ Ωx0(1 + z)3(1+ω)
(3)
1.4 Standard dark energy model
H2
H2
0
= Ωm0(1 + z)3
+ Ωk0(1 + z)2
+ Ωx0(1 + z)3(1+ω)
(4)
2 Dark energy models with variable EoS
Replacing
a−3(1+ω)
→ exp 3
1
a
1 + ω(a )
a
da (5)
2.1 Standard parameterization - (CPL)CDM model [1–
3]
ω(a) = ω0 + ωa(1 − a) (6)
a3(1+ω)
→ a3(1+ω0+ωa)
exp [3ωa(1 − a)] (7)
1
2.2 Collection of parameterizations [4]
ω(N) = ωf +
∆ω
1 + exp[(N − Nt)/τ]
, (8)
where N = ln a, ωf is the value in a asymptotic future dominated by DE, ωp
is the valuex deep in the past value, and the transition between the two as
occurring at some scale factor at and with some rapidity τ, ∆ω = ωp − ωf ,
τ = ∆ω/4(−dω/dNt).
ω(a) = ω0 + ωa(1 − ab
) (9)
ω(a) = ω0 + ωa(1 − a) + ω3(1 − a)3
(10)
ω(a) = ω0 + ωa(1 − a) + ωe [(1 + z)ez
− 1] (11)
ω(a) = ω0 + ω1z (12)
ω(a) = ω0 + ω1z + ω2z2
(13)
2.3 Parametrizing trasition to phantom epoch [5]
ω1(z) = −1 + ω0 [tanh(z − z0) − 1] (14)
ω2(z) = −1 + ω0 [tanh(z − z0)] (15)
3 Flat - Λ(t)CDM [6–9]
H
H0
= 1 − Ωm0 + Ωm0(1 + z)3/2
(16)
2
4 Kinematics description
Taking H = ˙a/a, q = −(¨a/a)(˙a/a)−2
and j = −(
...
a /a)(˙a/a)−3
a(t) = a0 1 + H0(t − t0) −
1
2
q0H2
0 (t − t0)2
+
1
3!
j0H3
0 (t − t0)3
+ O [t − t0]4
(17)
dL(z) =
cz
H0
1 +
1
2
(1 − q0)z −
1
6
(1 − q0 − 3q3
0 + j0)z2
+ O(z3
) (18)
5 Dvali-Gabadadze-Porrati – DGP models (brane
world models) [1,10]
5.1 DGP model
H2
H2
0
=
Ωk0
a2
+
Ωm0
a3
+ Ωrc + Ωrc
2
(19)
where
Ωm0 = 1 − Ωk0 − 2 Ωrc 1 − Ωk0 (20)
and
Ωrc =
1
4r2
c H2
0
(21)
and rc is the lenght scale beyond which gravity leaks out into the bulk.
5.2 Flat DGP model
H2
H2
0
=
Ωm0
a3
+ Ωrc + Ωrc
2
(22)
where
Ωm0 = 1 − 2 Ωrc (23)
6 Cardassian expansion [1,11]
Modification of the Friedmann equation that allows for acceleration in a flat,
matter-dominated universe.
3
6.1 Original power-law Cardassian model
H2
H2
0
= Ωm0(1 + z)3
+ Ωk0(1 + z)2
+ (1 − Ωm0 − Ωk0)(1 + z)3n
(24)
equivalent to standard dark energy model for ω = n − 1. No need to fit this
model again.
6.2 Modified polytropic Cardassian expansion
H2
H2
0
=
Ωm0
a3
1 +
Ω−q
m0 − 1
a3q(n−1)
1/q
(25)
and q = 1 returns to flat dark energy model ω = n − 1.
7 Chaplygin gas [12]
7.1 Generalized Chaplygin gas
EoS: p = −A/ρα
, (ρ > 0, A > 0)
H2
H2
0
=
Ωk0
a2
+ (1 − Ωk0) A +
1 − A
a3(1+α)
1
1+α
(26)
If α = 0 and Ωm0 = (1 − Ωk0)(1 − A), returns to standard cosmological
constant model.
7.2 Flat Generalized Chaplygin gas
H2
H2
0
= A +
1 − A
a3(1+α)
1
1+α
(27)
Making A = 1 − Ωm0 we obtain non-Adiabatic Chaplygin gas of [13,14].
7.3 Standard Chaplygin gas (α = 1)
H2
H2
0
=
Ωk0
a2
+ (1 − Ωk0) A +
1 − A
a6
1
2
(28)
4
7.4 Flat Standard Chaplygin gas (α = 1)
H2
H2
0
= A +
1 − A
a6
1
2
(29)
7.5 New Generalized Chaplygin gas [15]
EoS: pNGCG = −
˜A(a)
ρα
NGCG
, where ρNGCG = Aa−3(1+ωx)(1+α)
+ Ba−3(1+α)
1
1+α
,
and A + B = ρ1+α
NGCG.
H2
H2
0
= (1−Ωb0 −Ωr0)a−3
1 −
Ωx0
1 − Ωb0 − Ωr0
1 − a−3ωx(1+α)
1
1+α
+
Ωb0
a3
+
Ωr0
a4
(30)
8 Inhomogeneous cosmologies – Lemaˆıtre-Tolman-
Bondi models [16]
Having H(r, t) and choosing such that tBB = 2
3
H−1
0 is the time of Big Bang
for all the observers.
H0(r) =
3H0
2
1
Ωk(r)
−
Ωm(r)
Ω3
k(r)
sinh−1 Ωk(r)
Ωm(r)
(31)
where Ωm(r) + Ωk(r) = 1. Two different density profiles:
8.1 Gaussian underdensity – LTBg
Ωm(r) = Ωout + (Ωin − Ωout)e
− r
r0
2
(32)
where
• Ωin: matter density at the center of the void
• Ωout: asymptotic value of matter density
• r0: scale size of the underdensity
5
8.2 Sharper transition – LTBs
Ωm(r) = Ωout + (Ωin − Ωout)
1 + e−
r0
∆r
1 + e
r−r0
∆r
(33)
where
• r0: size at which the transition occurs
• ∆r: transition width
• If ∆r → 0, Ωm(r) → step function.
9 Brane models [17]
Related to FRW models with ρ2
modifications; bouncing models; Loop Quan-
tum Cosmology (LQC).
H2
H2
0
= Ωm0(1 + z)3
+ Ωk0(1 + z)2
+ Ωmod,0(1 + z)6
+ ΩΛ0 (34)
where
• Ωmod = − ρ2
3H2ρcr
= − Ω2
m
Ωloops
• Ωloops,0 = − ρcr
3H2
0
• For H0 = 65km/s/Mpc and Ωm0 ≈ 0.3, Ωloops,0 ≈ 5.24 × 10122
and
Ωmod,0 ≈ 1.72 × 10−124
9.1 No longer (1+z)6
modifications, but different curved
models
H2
H2
0
= Ωm0(1 + z)3
+ Ωk0(1 + z)2
+ ΩΛ0 1 −
Ωm0(1 + z)3
Ωloops,0
−
3Ωk0(1 + z)2
Ωloops,0
(35)
10 Two parametric models for total pressure
at low redshift [18]
Related to Quintessence and phantom energy.
6
10.1 Model 1
P(z) = Pa + Pbz (36)
ρ(a) = −(Pa − Pb) −
3
2
Pba−1
+ C1a−3
(37)
where C1 = ρ0 + Pa + 1
2
Pb. Defining
P∗
= P/ρ0 (38)
ρ∗
= ρ/ρ0 = H2
/H2
0 (39)
we obtain
P∗
(a) = −α −
2
3
βa−1
(40)
ρ∗
(a) = α +
β
a
+
1 − α − β
a3
(41)
where α ≡ −(P∗
a − P∗
b ) and β ≡ −3
2
P∗
b .
10.2 Model 2
P(z) = Pc +
Pd
1 + z
(42)
ρ(a) = −Pc −
3
4
Pda + C2a−3
(43)
where C2 = ρ0 + Pc + 3
4
Pd.
P∗
(a) = −γ −
4
3
δa (44)
ρ∗
(a) = γ + δa + (1 − γ − δ)a−3
(45)
where γ ≡ −P∗
c and δ ≡ −3
4
P∗
d .
7
10.3 Hubble function
H
H0
= Ω1 + Ω2 + Ωm (46)
• Model 1
Ω1 = α
Ω2 = β/a
Ωm = Ωm0a−3
Ωm0 = 1 − α − β
• Model 2
Ω1 = γ
Ω2 = δa
Ωm = Ωm0a−3
Ωm0 = 1 − γ − δ
11 G-corrected Holographic Dark Energy [19]
Related to Brans-Dicke gravity
H2
=
8πG(t)
3
(ρm + ρd) + H
˙G
G
(47)
H2
(1 − αG) = H2
0 Ωm0a−3
+ Ωd0a−3(1+ωd)
(48)
where
• ωd = −1
3
− 2
√
Ωd
3c
+ 1
3
αG
• Ωm + Ωd = 1 − αG
• αG = G
G
, and G = dG
d(ln a)
• αG = 0 −→ G(t) = G0
8
12 Exact solutions for Brans-Dicke Cosmol-
ogy with decaying vacuum density [20]
12.1 ˙q = 0 case
H(z) = H0(1 + z)(1+q)
(49)
12.2 ˙q = 0 case
H
H0
=
√
12 − 1 − q0 (z + 1)−
√
12
+
√
12 + 1 + q0
2
48 (z + 1)−
√
12
(50)
9
Table 1: Free parameters of each comological model
Model free parameters section
Flat ΛCDM Ωm,0 1.1
Flat Λ(t)CDM Ωm,0 3
Flat DPG Ωrc 5.2
Flat Standard Chaplygin gas A 7.4
Λ(t) Brans-Dicke ˙q = 0 q 12.1
Λ(t) Brans-Dicke ˙q = 0 q0 12.2
ΛCDM Ωm,0, Ωk,0 1.2
Flat ω-CDM Ωm,0, ω 1.3
Kinematics description q0, j0 4
DPG Ωk,0, Ωrc 5.1
Flat Generalized Chaplygin gas A, α 7.2
Standard Chaplygin gas Ωk,0, A 7.3
Parametrized pressure 1 α, β 10.1
Parametrized pressure 2 γ, δ 10.2
ω-CDM Ωm,0, Ωk,0, ω 1.4
Flat CLP-CDM Ωm,0, ω0, ωa 2.1
w parametrization Ωm,0, ω0, ω1 2.2 (eq. 12)
Phantom epoch transition Ωm,0, ω0, z0 2.3 (eq. 14-15)
polytropic Cardassian expansion Ωm,0, q, n 6.2
Generalized Chaplygin gas Ωk,0, A, α 7.1
LTBg Ωin, Ωout, r0 8.1
LTBs Ωin, Ωout, r0 8.2
(1 + z)6
modification / Brane Ωm,0, Ωloops, Ωk,0 9
Bouncing / Brane Ωm,0, Ωloops, Ωk,0 9.1
G-corrected HDE Ωm,0, αG, c 11
w parametrization Ωm,0, ω0, ωa, b 2.2 (eq. 9)
w parametrization Ωm,0, ω0, ωa, ω3 2.2 (eq. 10)
w parametrization Ωm,0, ω0, ωa, ωe 2.2 (eq. 11)
w parametrization Ωm,0, ω0, ω1, ω2 2.2 (eq. 12)
References
[1] Tamara M. Davis, E. Mortsell, J. Sollerman, A.C. Becker, S. Blondin,
et al. Scrutinizing exotic cosmological models using essence supernova
data combined with other cosmological probes. Astrophys.J., 666:716–
10
725, 2007.
[2] Michel Chevallier and David Polarski. Accelerating universes with scal-
ing dark matter. Int.J.Mod.Phys., D10:213–224, 2001.
[3] Eric V. Linder. Exploring the expansion history of the universe.
Phys.Rev.Lett., 90:091301, 2003.
[4] Eric V. Linder and Dragan Huterer. How many dark energy parameters?
Phys.Rev., D72:043509, 2005.
[5] Iker Leanizbarrutia and Diego Sez-Gmez. Parametrizing the transi-
tion to the phantom epoch with Supernovae Ia and Standard Rulers.
Phys.Rev., D90(6):063508, 2014.
[6] H. A. Borges and S. Carneiro. Friedmann cosmology with decaying
vacuum density. Gen. Rel. Grav., 37:1385–1394, 2005.
[7] S. Carneiro, C. Pigozzo, H. A. Borges, and J. S. Alcaniz. Supernova
constraints on decaying vacuum cosmology. Phys. Rev., D74:023532,
2006.
[8] S. Carneiro, M. A. Dantas, C. Pigozzo, and J. S. Alcaniz. Observational
constraints on late-time Λ(t)cosmology.Phys.Rev., D77 : 083504, 2008.
[9] C. Pigozzo, M. A. Dantas, S. Carneiro, and J. S. Alcaniz. Background
tests for L(t)CDM cosmology. arXiv: astro-ph/1007.5290, 2010.
[10] G.R. Dvali, G. Gabadadze, and M. Porrati. Metastable gravitons and
infinite volume extra dimensions. Phys.Lett., B484:112–118, 2000.
[11] Katherine Freese and Matthew Lewis. Cardassian expansion: A Model
in which the universe is flat, matter dominated, and accelerating.
Phys.Lett., B540:1–8, 2002.
[12] Alexander Yu. Kamenshchik, Ugo Moschella, and Vincent Pasquier. An
Alternative to quintessence. Phys.Lett., B511:265–268, 2001.
[13] S. Carneiro and H.A. Borges. On dark degeneracy and interacting mod-
els. JCAP, 1406:010, 2014.
11
[14] S. Carneiro and C. Pigozzo. Observational tests of non-adiabatic Chap-
lygin gas. JCAP, 1410:060, 2014.
[15] K. Liao, Y. Pan, and Z.-H. Zhu. Observational constraints on the new
generalized Chaplygin gas model. Research in Astronomy and Astro-
physics, 13:159–169, February 2013.
[16] J. Sollerman, E. M¨ortsell, T. M. Davis, M. Blomqvist, B. Bassett, A. C.
Becker, D. Cinabro, A. V. Filippenko, R. J. Foley, J. Frieman, P. Gar-
navich, H. Lampeitl, J. Marriner, R. Miquel, R. C. Nichol, M. W. Rich-
mond, M. Sako, D. P. Schneider, M. Smith, J. T. Vanderplas, and J. C.
Wheeler. First-year sloan digital sky survey-ii (sdss-ii) supernova results:
Constraints on nonstandard cosmological models. , 703:1374–1385, Oc-
tober 2009.
[17] Marek Szydlowski, Wlodzimierz Godlowski, and Tomasz Stachowiak.
Testing and selection of cosmological models with (1+z)6 corrections.
Phys.Rev., D77:043530, 2008.
[18] Qiang Zhang, Guang Yang, Keji Shen, and Xinhe Meng. Exploring the
universe: two parametric models for the total pressure at low redshift.
2015.
[19] Hamzeh Alavirad and Mohammad Malekjani. Observational constraints
on G-corrected holographic dark energy using a Markov chain Monte
Carlo method. Astrophys.Space Sci., 349:967–974, 2014.
[20] A. E. Montenegro, Jr. and S. Carneiro. Exact solutions of Brans-Dicke
cosmology with decaying vacuum density. Class. Quant. Grav., 24:313–
327, 2007.
12

More Related Content

What's hot

Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte CarloUnbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte CarloJeremyHeng10
 
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性Yuichi Yoshida
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDChristos Kallidonis
 
Fractal dimensions of 2d quantum gravity
Fractal dimensions of 2d quantum gravityFractal dimensions of 2d quantum gravity
Fractal dimensions of 2d quantum gravityTimothy Budd
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory BasedJEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory BasedMiso Study
 
Possible existence of_wormholes_in_the_central_regions_of_halos
Possible existence of_wormholes_in_the_central_regions_of_halosPossible existence of_wormholes_in_the_central_regions_of_halos
Possible existence of_wormholes_in_the_central_regions_of_halosSérgio Sacani
 
Some Thoughts on Sampling
Some Thoughts on SamplingSome Thoughts on Sampling
Some Thoughts on SamplingDon Sheehy
 
Analysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksAnalysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksYong Heui Cho
 
Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo JeremyHeng10
 
Engineering formula sheet
Engineering formula sheetEngineering formula sheet
Engineering formula sheetsankalptiwari
 
Differential Equations 4th Edition Blanchard Solutions Manual
Differential Equations 4th Edition Blanchard Solutions ManualDifferential Equations 4th Edition Blanchard Solutions Manual
Differential Equations 4th Edition Blanchard Solutions Manualqyfuc
 
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...SEENET-MTP
 
Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"SEENET-MTP
 

What's hot (18)

Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte CarloUnbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo
 
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
次数制限モデルにおける全てのCSPに対する最適な定数時間近似アルゴリズムと近似困難性
 
Computing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCDComputing the masses of hyperons and charmed baryons from Lattice QCD
Computing the masses of hyperons and charmed baryons from Lattice QCD
 
Fractal dimensions of 2d quantum gravity
Fractal dimensions of 2d quantum gravityFractal dimensions of 2d quantum gravity
Fractal dimensions of 2d quantum gravity
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory BasedJEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
JEE Main 2020 Question Paper With Solution 08 Jan 2020 Shift 1 Memory Based
 
Velocity of Neutrino
Velocity of NeutrinoVelocity of Neutrino
Velocity of Neutrino
 
Possible existence of_wormholes_in_the_central_regions_of_halos
Possible existence of_wormholes_in_the_central_regions_of_halosPossible existence of_wormholes_in_the_central_regions_of_halos
Possible existence of_wormholes_in_the_central_regions_of_halos
 
ENFPC 2010
ENFPC 2010ENFPC 2010
ENFPC 2010
 
Some Thoughts on Sampling
Some Thoughts on SamplingSome Thoughts on Sampling
Some Thoughts on Sampling
 
Analysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocksAnalysis of a ridge waveguide using overlapping T-blocks
Analysis of a ridge waveguide using overlapping T-blocks
 
Gold1
Gold1Gold1
Gold1
 
Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo
 
Engineering formula sheet
Engineering formula sheetEngineering formula sheet
Engineering formula sheet
 
ENFPC 2013
ENFPC 2013ENFPC 2013
ENFPC 2013
 
Differential Equations 4th Edition Blanchard Solutions Manual
Differential Equations 4th Edition Blanchard Solutions ManualDifferential Equations 4th Edition Blanchard Solutions Manual
Differential Equations 4th Edition Blanchard Solutions Manual
 
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
V. B. Jovanovic/ S. Ignjatovic: Mass Spectrum of the Light Scalar Tetraquark ...
 
Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"
 

Similar to Non standard

Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusSEENET-MTP
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesDaisuke Satow
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Jurgen Riedel
 
Scheelite CGEW/MO for luminescence - Summary of the paper
Scheelite CGEW/MO for luminescence - Summary of the paperScheelite CGEW/MO for luminescence - Summary of the paper
Scheelite CGEW/MO for luminescence - Summary of the paperJoke Hadermann
 
SMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionSMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionLilyana Vankova
 
Quantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holesQuantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holesSérgio Sacani
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersOndrej Cernotik
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997JOAQUIN REA
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMediumJohn Paul
 
T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2askiitians
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2IJEMM
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 

Similar to Non standard (20)

CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Alexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present statusAlexei Starobinsky - Inflation: the present status
Alexei Starobinsky - Inflation: the present status
 
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixturesSpectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
Spectral properties of the Goldstino in supersymmetric Bose-Fermi mixtures
 
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
Supersymmetric Q-balls and boson stars in (d + 1) dimensions - Jena Talk Mar ...
 
Scheelite CGEW/MO for luminescence - Summary of the paper
Scheelite CGEW/MO for luminescence - Summary of the paperScheelite CGEW/MO for luminescence - Summary of the paper
Scheelite CGEW/MO for luminescence - Summary of the paper
 
Talk5
Talk5Talk5
Talk5
 
SMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionSMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last version
 
Bohrn haber cycle of NaCl
Bohrn haber cycle of NaClBohrn haber cycle of NaCl
Bohrn haber cycle of NaCl
 
rep jee chem.docx
rep jee chem.docxrep jee chem.docx
rep jee chem.docx
 
Quantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holesQuantum gravitational corrections to particle creation by black holes
Quantum gravitational corrections to particle creation by black holes
 
AIPMT 2014-paper-solution-chemistry
AIPMT 2014-paper-solution-chemistryAIPMT 2014-paper-solution-chemistry
AIPMT 2014-paper-solution-chemistry
 
Measurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducersMeasurement-induced long-distance entanglement with optomechanical transducers
Measurement-induced long-distance entanglement with optomechanical transducers
 
Finite frequency H∞control design for nonlinear systems
Finite frequency H∞control design for nonlinear systemsFinite frequency H∞control design for nonlinear systems
Finite frequency H∞control design for nonlinear systems
 
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
Computer Controlled Systems (solutions manual). Astrom. 3rd edition 1997
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMedium
 
T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2T.I.M.E. JEE Advanced 2013 Solution Paper2
T.I.M.E. JEE Advanced 2013 Solution Paper2
 
Manhpowerpoint
ManhpowerpointManhpowerpoint
Manhpowerpoint
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 

Recently uploaded

Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Exploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdfExploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdfrohankumarsinghrore1
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learninglevieagacer
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY1301aanya
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptxryanrooker
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsSérgio Sacani
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)AkefAfaneh2
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flyPRADYUMMAURYA1
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfSumit Kumar yadav
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxrohankumarsinghrore1
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Silpa
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)Areesha Ahmad
 
Velocity and Acceleration PowerPoint.ppt
Velocity and Acceleration PowerPoint.pptVelocity and Acceleration PowerPoint.ppt
Velocity and Acceleration PowerPoint.pptRakeshMohan42
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Silpa
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Silpa
 

Recently uploaded (20)

Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Exploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdfExploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdf
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)COMPUTING ANTI-DERIVATIVES(Integration by SUBSTITUTION)
COMPUTING ANTI-DERIVATIVES (Integration by SUBSTITUTION)
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit flypumpkin fruit fly, water melon fruit fly, cucumber fruit fly
pumpkin fruit fly, water melon fruit fly, cucumber fruit fly
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Velocity and Acceleration PowerPoint.ppt
Velocity and Acceleration PowerPoint.pptVelocity and Acceleration PowerPoint.ppt
Velocity and Acceleration PowerPoint.ppt
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 

Non standard

  • 1. 1 Dark energy with constant equation of state [1] 1.1 Flat, cosmological constant model - Flat Λ H2 H2 0 = Ωm0(1 + z)3 + (1 − Ωm0) (1) 1.2 Cosmological constant model H2 H2 0 = Ωm0(1 + z)3 + Ωk0(1 + z)2 + ΩΛ0 (2) where Ωk0 = 1 − Ωm0 − ΩΛ0 1.3 Flat dark energy model H2 H2 0 = Ωm0(1 + z)3 + Ωx0(1 + z)3(1+ω) (3) 1.4 Standard dark energy model H2 H2 0 = Ωm0(1 + z)3 + Ωk0(1 + z)2 + Ωx0(1 + z)3(1+ω) (4) 2 Dark energy models with variable EoS Replacing a−3(1+ω) → exp 3 1 a 1 + ω(a ) a da (5) 2.1 Standard parameterization - (CPL)CDM model [1– 3] ω(a) = ω0 + ωa(1 − a) (6) a3(1+ω) → a3(1+ω0+ωa) exp [3ωa(1 − a)] (7) 1
  • 2. 2.2 Collection of parameterizations [4] ω(N) = ωf + ∆ω 1 + exp[(N − Nt)/τ] , (8) where N = ln a, ωf is the value in a asymptotic future dominated by DE, ωp is the valuex deep in the past value, and the transition between the two as occurring at some scale factor at and with some rapidity τ, ∆ω = ωp − ωf , τ = ∆ω/4(−dω/dNt). ω(a) = ω0 + ωa(1 − ab ) (9) ω(a) = ω0 + ωa(1 − a) + ω3(1 − a)3 (10) ω(a) = ω0 + ωa(1 − a) + ωe [(1 + z)ez − 1] (11) ω(a) = ω0 + ω1z (12) ω(a) = ω0 + ω1z + ω2z2 (13) 2.3 Parametrizing trasition to phantom epoch [5] ω1(z) = −1 + ω0 [tanh(z − z0) − 1] (14) ω2(z) = −1 + ω0 [tanh(z − z0)] (15) 3 Flat - Λ(t)CDM [6–9] H H0 = 1 − Ωm0 + Ωm0(1 + z)3/2 (16) 2
  • 3. 4 Kinematics description Taking H = ˙a/a, q = −(¨a/a)(˙a/a)−2 and j = −( ... a /a)(˙a/a)−3 a(t) = a0 1 + H0(t − t0) − 1 2 q0H2 0 (t − t0)2 + 1 3! j0H3 0 (t − t0)3 + O [t − t0]4 (17) dL(z) = cz H0 1 + 1 2 (1 − q0)z − 1 6 (1 − q0 − 3q3 0 + j0)z2 + O(z3 ) (18) 5 Dvali-Gabadadze-Porrati – DGP models (brane world models) [1,10] 5.1 DGP model H2 H2 0 = Ωk0 a2 + Ωm0 a3 + Ωrc + Ωrc 2 (19) where Ωm0 = 1 − Ωk0 − 2 Ωrc 1 − Ωk0 (20) and Ωrc = 1 4r2 c H2 0 (21) and rc is the lenght scale beyond which gravity leaks out into the bulk. 5.2 Flat DGP model H2 H2 0 = Ωm0 a3 + Ωrc + Ωrc 2 (22) where Ωm0 = 1 − 2 Ωrc (23) 6 Cardassian expansion [1,11] Modification of the Friedmann equation that allows for acceleration in a flat, matter-dominated universe. 3
  • 4. 6.1 Original power-law Cardassian model H2 H2 0 = Ωm0(1 + z)3 + Ωk0(1 + z)2 + (1 − Ωm0 − Ωk0)(1 + z)3n (24) equivalent to standard dark energy model for ω = n − 1. No need to fit this model again. 6.2 Modified polytropic Cardassian expansion H2 H2 0 = Ωm0 a3 1 + Ω−q m0 − 1 a3q(n−1) 1/q (25) and q = 1 returns to flat dark energy model ω = n − 1. 7 Chaplygin gas [12] 7.1 Generalized Chaplygin gas EoS: p = −A/ρα , (ρ > 0, A > 0) H2 H2 0 = Ωk0 a2 + (1 − Ωk0) A + 1 − A a3(1+α) 1 1+α (26) If α = 0 and Ωm0 = (1 − Ωk0)(1 − A), returns to standard cosmological constant model. 7.2 Flat Generalized Chaplygin gas H2 H2 0 = A + 1 − A a3(1+α) 1 1+α (27) Making A = 1 − Ωm0 we obtain non-Adiabatic Chaplygin gas of [13,14]. 7.3 Standard Chaplygin gas (α = 1) H2 H2 0 = Ωk0 a2 + (1 − Ωk0) A + 1 − A a6 1 2 (28) 4
  • 5. 7.4 Flat Standard Chaplygin gas (α = 1) H2 H2 0 = A + 1 − A a6 1 2 (29) 7.5 New Generalized Chaplygin gas [15] EoS: pNGCG = − ˜A(a) ρα NGCG , where ρNGCG = Aa−3(1+ωx)(1+α) + Ba−3(1+α) 1 1+α , and A + B = ρ1+α NGCG. H2 H2 0 = (1−Ωb0 −Ωr0)a−3 1 − Ωx0 1 − Ωb0 − Ωr0 1 − a−3ωx(1+α) 1 1+α + Ωb0 a3 + Ωr0 a4 (30) 8 Inhomogeneous cosmologies – Lemaˆıtre-Tolman- Bondi models [16] Having H(r, t) and choosing such that tBB = 2 3 H−1 0 is the time of Big Bang for all the observers. H0(r) = 3H0 2 1 Ωk(r) − Ωm(r) Ω3 k(r) sinh−1 Ωk(r) Ωm(r) (31) where Ωm(r) + Ωk(r) = 1. Two different density profiles: 8.1 Gaussian underdensity – LTBg Ωm(r) = Ωout + (Ωin − Ωout)e − r r0 2 (32) where • Ωin: matter density at the center of the void • Ωout: asymptotic value of matter density • r0: scale size of the underdensity 5
  • 6. 8.2 Sharper transition – LTBs Ωm(r) = Ωout + (Ωin − Ωout) 1 + e− r0 ∆r 1 + e r−r0 ∆r (33) where • r0: size at which the transition occurs • ∆r: transition width • If ∆r → 0, Ωm(r) → step function. 9 Brane models [17] Related to FRW models with ρ2 modifications; bouncing models; Loop Quan- tum Cosmology (LQC). H2 H2 0 = Ωm0(1 + z)3 + Ωk0(1 + z)2 + Ωmod,0(1 + z)6 + ΩΛ0 (34) where • Ωmod = − ρ2 3H2ρcr = − Ω2 m Ωloops • Ωloops,0 = − ρcr 3H2 0 • For H0 = 65km/s/Mpc and Ωm0 ≈ 0.3, Ωloops,0 ≈ 5.24 × 10122 and Ωmod,0 ≈ 1.72 × 10−124 9.1 No longer (1+z)6 modifications, but different curved models H2 H2 0 = Ωm0(1 + z)3 + Ωk0(1 + z)2 + ΩΛ0 1 − Ωm0(1 + z)3 Ωloops,0 − 3Ωk0(1 + z)2 Ωloops,0 (35) 10 Two parametric models for total pressure at low redshift [18] Related to Quintessence and phantom energy. 6
  • 7. 10.1 Model 1 P(z) = Pa + Pbz (36) ρ(a) = −(Pa − Pb) − 3 2 Pba−1 + C1a−3 (37) where C1 = ρ0 + Pa + 1 2 Pb. Defining P∗ = P/ρ0 (38) ρ∗ = ρ/ρ0 = H2 /H2 0 (39) we obtain P∗ (a) = −α − 2 3 βa−1 (40) ρ∗ (a) = α + β a + 1 − α − β a3 (41) where α ≡ −(P∗ a − P∗ b ) and β ≡ −3 2 P∗ b . 10.2 Model 2 P(z) = Pc + Pd 1 + z (42) ρ(a) = −Pc − 3 4 Pda + C2a−3 (43) where C2 = ρ0 + Pc + 3 4 Pd. P∗ (a) = −γ − 4 3 δa (44) ρ∗ (a) = γ + δa + (1 − γ − δ)a−3 (45) where γ ≡ −P∗ c and δ ≡ −3 4 P∗ d . 7
  • 8. 10.3 Hubble function H H0 = Ω1 + Ω2 + Ωm (46) • Model 1 Ω1 = α Ω2 = β/a Ωm = Ωm0a−3 Ωm0 = 1 − α − β • Model 2 Ω1 = γ Ω2 = δa Ωm = Ωm0a−3 Ωm0 = 1 − γ − δ 11 G-corrected Holographic Dark Energy [19] Related to Brans-Dicke gravity H2 = 8πG(t) 3 (ρm + ρd) + H ˙G G (47) H2 (1 − αG) = H2 0 Ωm0a−3 + Ωd0a−3(1+ωd) (48) where • ωd = −1 3 − 2 √ Ωd 3c + 1 3 αG • Ωm + Ωd = 1 − αG • αG = G G , and G = dG d(ln a) • αG = 0 −→ G(t) = G0 8
  • 9. 12 Exact solutions for Brans-Dicke Cosmol- ogy with decaying vacuum density [20] 12.1 ˙q = 0 case H(z) = H0(1 + z)(1+q) (49) 12.2 ˙q = 0 case H H0 = √ 12 − 1 − q0 (z + 1)− √ 12 + √ 12 + 1 + q0 2 48 (z + 1)− √ 12 (50) 9
  • 10. Table 1: Free parameters of each comological model Model free parameters section Flat ΛCDM Ωm,0 1.1 Flat Λ(t)CDM Ωm,0 3 Flat DPG Ωrc 5.2 Flat Standard Chaplygin gas A 7.4 Λ(t) Brans-Dicke ˙q = 0 q 12.1 Λ(t) Brans-Dicke ˙q = 0 q0 12.2 ΛCDM Ωm,0, Ωk,0 1.2 Flat ω-CDM Ωm,0, ω 1.3 Kinematics description q0, j0 4 DPG Ωk,0, Ωrc 5.1 Flat Generalized Chaplygin gas A, α 7.2 Standard Chaplygin gas Ωk,0, A 7.3 Parametrized pressure 1 α, β 10.1 Parametrized pressure 2 γ, δ 10.2 ω-CDM Ωm,0, Ωk,0, ω 1.4 Flat CLP-CDM Ωm,0, ω0, ωa 2.1 w parametrization Ωm,0, ω0, ω1 2.2 (eq. 12) Phantom epoch transition Ωm,0, ω0, z0 2.3 (eq. 14-15) polytropic Cardassian expansion Ωm,0, q, n 6.2 Generalized Chaplygin gas Ωk,0, A, α 7.1 LTBg Ωin, Ωout, r0 8.1 LTBs Ωin, Ωout, r0 8.2 (1 + z)6 modification / Brane Ωm,0, Ωloops, Ωk,0 9 Bouncing / Brane Ωm,0, Ωloops, Ωk,0 9.1 G-corrected HDE Ωm,0, αG, c 11 w parametrization Ωm,0, ω0, ωa, b 2.2 (eq. 9) w parametrization Ωm,0, ω0, ωa, ω3 2.2 (eq. 10) w parametrization Ωm,0, ω0, ωa, ωe 2.2 (eq. 11) w parametrization Ωm,0, ω0, ω1, ω2 2.2 (eq. 12) References [1] Tamara M. Davis, E. Mortsell, J. Sollerman, A.C. Becker, S. Blondin, et al. Scrutinizing exotic cosmological models using essence supernova data combined with other cosmological probes. Astrophys.J., 666:716– 10
  • 11. 725, 2007. [2] Michel Chevallier and David Polarski. Accelerating universes with scal- ing dark matter. Int.J.Mod.Phys., D10:213–224, 2001. [3] Eric V. Linder. Exploring the expansion history of the universe. Phys.Rev.Lett., 90:091301, 2003. [4] Eric V. Linder and Dragan Huterer. How many dark energy parameters? Phys.Rev., D72:043509, 2005. [5] Iker Leanizbarrutia and Diego Sez-Gmez. Parametrizing the transi- tion to the phantom epoch with Supernovae Ia and Standard Rulers. Phys.Rev., D90(6):063508, 2014. [6] H. A. Borges and S. Carneiro. Friedmann cosmology with decaying vacuum density. Gen. Rel. Grav., 37:1385–1394, 2005. [7] S. Carneiro, C. Pigozzo, H. A. Borges, and J. S. Alcaniz. Supernova constraints on decaying vacuum cosmology. Phys. Rev., D74:023532, 2006. [8] S. Carneiro, M. A. Dantas, C. Pigozzo, and J. S. Alcaniz. Observational constraints on late-time Λ(t)cosmology.Phys.Rev., D77 : 083504, 2008. [9] C. Pigozzo, M. A. Dantas, S. Carneiro, and J. S. Alcaniz. Background tests for L(t)CDM cosmology. arXiv: astro-ph/1007.5290, 2010. [10] G.R. Dvali, G. Gabadadze, and M. Porrati. Metastable gravitons and infinite volume extra dimensions. Phys.Lett., B484:112–118, 2000. [11] Katherine Freese and Matthew Lewis. Cardassian expansion: A Model in which the universe is flat, matter dominated, and accelerating. Phys.Lett., B540:1–8, 2002. [12] Alexander Yu. Kamenshchik, Ugo Moschella, and Vincent Pasquier. An Alternative to quintessence. Phys.Lett., B511:265–268, 2001. [13] S. Carneiro and H.A. Borges. On dark degeneracy and interacting mod- els. JCAP, 1406:010, 2014. 11
  • 12. [14] S. Carneiro and C. Pigozzo. Observational tests of non-adiabatic Chap- lygin gas. JCAP, 1410:060, 2014. [15] K. Liao, Y. Pan, and Z.-H. Zhu. Observational constraints on the new generalized Chaplygin gas model. Research in Astronomy and Astro- physics, 13:159–169, February 2013. [16] J. Sollerman, E. M¨ortsell, T. M. Davis, M. Blomqvist, B. Bassett, A. C. Becker, D. Cinabro, A. V. Filippenko, R. J. Foley, J. Frieman, P. Gar- navich, H. Lampeitl, J. Marriner, R. Miquel, R. C. Nichol, M. W. Rich- mond, M. Sako, D. P. Schneider, M. Smith, J. T. Vanderplas, and J. C. Wheeler. First-year sloan digital sky survey-ii (sdss-ii) supernova results: Constraints on nonstandard cosmological models. , 703:1374–1385, Oc- tober 2009. [17] Marek Szydlowski, Wlodzimierz Godlowski, and Tomasz Stachowiak. Testing and selection of cosmological models with (1+z)6 corrections. Phys.Rev., D77:043530, 2008. [18] Qiang Zhang, Guang Yang, Keji Shen, and Xinhe Meng. Exploring the universe: two parametric models for the total pressure at low redshift. 2015. [19] Hamzeh Alavirad and Mohammad Malekjani. Observational constraints on G-corrected holographic dark energy using a Markov chain Monte Carlo method. Astrophys.Space Sci., 349:967–974, 2014. [20] A. E. Montenegro, Jr. and S. Carneiro. Exact solutions of Brans-Dicke cosmology with decaying vacuum density. Class. Quant. Grav., 24:313– 327, 2007. 12