SlideShare a Scribd company logo
1 of 150
Download to read offline
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
1














‫إبراهيم‬


























‫الطالق‬
3D Structural Analysis
‫دووريدا‬ َ‫ى‬‫س‬ ‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬
•
‫َب‬‫ي‬‫كت‬ ‫ناوى‬
:
(
3D Structural Analysis
)
‫دووريدا‬ َ‫ى‬‫س‬ ‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬
•
: ‫ئامادةكردنى‬
/ ‫ئةندازيار‬
‫َخة‬‫ي‬‫ش‬ ‫حممد‬ ‫على‬
•
: ‫َداضوونةوةى‬‫ي‬‫ث‬
‫سعيد‬ ‫حممد‬ ‫الدين‬ ‫جنم‬.‫د‬
•
‫ابوبكر‬ ‫امساعيل‬ ‫بيالل‬ : ‫بةرط‬ ‫نةخشةسازى‬
•
: ‫َكارى‬‫ل‬َ‫ي‬‫ه‬ ‫و‬ ‫تايث‬
‫ئامادةكار‬
•
‫يةكةم‬ : ‫ضاث‬
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
2
‫َزانني‬
‫ي‬‫ث‬ ‫و‬ ‫سوثاس‬
❖
‫لة‬ ‫كردم‬ ‫هاوكاريان‬ ‫كة‬ ‫كةسانةى‬ ‫ئةو‬ ‫هةموو‬ ‫بؤ‬ ‫سوثاس‬
.‫بابةتة‬ ‫ئةم‬ ‫ئامادةكردنى‬
❖
.‫َت‬
‫ي‬‫ب‬ ‫ووشةش‬ ‫يةك‬ ‫بة‬ ‫ئةطةر‬ ‫َبةخشيوم‬
‫ي‬‫ث‬ ‫زانياريان‬ ‫كة‬ ‫ئةكةسانةى‬ ‫هةموو‬ ‫بؤ‬ ‫سوثاس‬
❖
‫بؤ‬ ‫سوثاس‬
.‫خؤى‬ ‫ئةستؤى‬ ‫طرتة‬ ‫َداضونةوةى‬
‫ي‬‫ث‬ ‫ئةركى‬ ‫كة‬ )‫سعيد‬ ‫حممد‬ ‫الدين‬ ‫جنم‬ .‫(د‬
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
3
‫َشكةشكردن‬
‫ي‬‫ث‬
❖
‫َة‬
‫ل‬‫مندا‬ ‫و‬ ‫باوكم‬ ‫و‬ ‫دايك‬ ‫بة‬ ‫َشكةشة‬
‫ي‬‫ث‬
‫خؤشةويستةكامن‬
) ‫منصور‬ ‫و‬ ‫ميسور‬ (
.
❖
‫َشكةشة‬
‫ي‬‫ث‬
َ
‫ي‬‫دةخيو‬ ‫كة‬ ‫كةسانةى‬ ‫ئةم‬ ‫هةموو‬ ‫بة‬
‫ن‬
‫ن‬
‫ةوة‬
‫َوةردةطرن‬
‫ي‬‫ل‬ ‫سودى‬ ‫و‬
.
❖
‫الوانى‬ ‫و‬ ‫طةنج‬ ‫بة‬ ‫َشكةشة‬
‫ي‬‫ث‬
‫كوردستان‬
.
❖
.‫َتةكةيانن‬
‫ال‬‫و‬ ‫و‬ ‫ميللـةت‬ ‫َسؤزى‬
‫ل‬‫د‬ ‫كة‬ ‫ئةوكةسانةى‬ ‫هةموو‬ ‫بة‬ ‫َشكةشة‬
‫ي‬‫ث‬
❖
‫بؤ‬ ‫دةدةن‬ َ
‫ل‬‫هةو‬ ‫كة‬ ‫كةسانةى‬ ‫ئةو‬ ‫هةموو‬ ‫بة‬ ‫َشكةشة‬
‫ي‬‫ث‬
.‫زانست‬ ‫َربوونى‬
‫ي‬‫ف‬
❖
.‫برادةران‬ ‫و‬ ‫دؤست‬ ‫و‬ ‫هاوريان‬ ‫سةرجةم‬ ‫بة‬ ‫َشكةشة‬
‫ي‬‫ث‬
❖
.‫حاجياوا‬ ‫شارةوانى‬ ‫سةرؤكايةتى‬ ‫لة‬ ‫َيامن‬
‫ي‬‫هاور‬ ‫سةرجةم‬ ‫بة‬ ‫َشكةشة‬
‫ي‬‫ث‬
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
4
Contents: Page
1. Preface )‫َشةكى‬‫ي‬‫(ث‬ …………………………………………………………………………………………………………………........ 5
2. Symbols and Abbreviations (
‫َما‬‫ي‬‫ه‬
‫كو‬
‫ر‬
‫تكراوةكان‬
) ……………………………………………………………………………… 7
3. Matrix (Some Information About Matrix) (
‫ِيزكراوةكان‬‫ر‬
) ……………………………………………………………….… 8
4. Drawing, Supports and Review Some Rules (
َ‫ل‬َ‫ي‬‫ه‬
,‫كارى‬
....‫ياساكاندا‬ ‫بة‬ ‫َداضونةوةيةك‬‫ي‬‫ث‬ ‫و‬ ‫ِاطرةكان‬‫ر‬
) ………………….……12
5. Stiffness Method (Matrix Structural Analysis) (
‫ِةقى‬‫ر‬ ‫َطاى‬‫ي‬ِ‫ر‬
) ……………………………………………………….….17
6. Example1 …………………………………………………………………………………………………………………………………18
7. Direct Stiffness Method (
‫ِةقى‬‫ر‬ ‫ِاستةوخؤى‬‫ر‬ ‫َطاى‬‫ي‬ِ‫ر‬
) ………………..………………‫يةكةم‬ ‫بةشى‬ …………………….……..……19
8. 2D analysis ……………………………………………………………………………………………………………………….………19
9. 2D Beams Analysis by Direct Stiffness Method ………………………………………………………………..…….…18
10. Example2 ……………………………………………………………………………………………………………………………….…22
11. 2D Frames Analysis by Direct Stiffness Method ………………………………………………………………….…….28
12. Example3 …………………………………………………………………………………………………………………………………30
13. 2D Trusses Analysis by Direct Stiffness Method ……………………………………………………………………….38
14. Example4 ………………………………………………………………………………………………………………………………...39
15. 3D analysis ………………………………………………………………………………………………………………………….……43
16. 3D Beams Analysis by Direct Stiffness Method …………………………………………………………………….…..43
17. Example5 …………………………………………………………………………………………………………………………………47
18. 3D Frames Analysis by Direct Stiffness Method ……………………………………………………………………….54
19. Example6 ………………………………………………………………………………………………………………………………...54
20. 3D Trusses Analysis by Direct Stiffness Method ……………………………………………………………….…..….82
21. Example7 ………………………………………………………………………………………………………………………………….84
22. Example8 ………………………………………………………………………………………………………………………………….87
23. Problems ………………………………………………………………………………………………………………………………….98
24. Assembly Stiffness Method (
‫ِةقى‬‫ر‬ ‫طشتى‬ ‫َطاى‬‫ي‬ِ‫ر‬
) …………….……..........…. ‫دوو‬ ‫بةشى‬
‫ة‬
‫م‬ ……………………….……….99
25. Symbols and Abbreviations (
‫َما‬‫ي‬‫ه‬
‫كورتكراوةكان‬
) …………………………………………………………………………… 101
26. ‫شيكاركردن‬ ‫هةنطاوةكانى‬ …………………………………………………………………………………………………………..…………….111
27. Example1 ……………………………………………………………………………………………………………………..…………112
28. Example2 ……………………………………………………………………………………………………………………..…………123
29. Example3 ……………………………………………………………………………………………………………………..…………139
30. Problem ………………………………………………………………………………………………………………………………….147
31. References (
‫سةرضاوةكان‬
) …………………………………………………………………………………………….…………..…148
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
5
‫ث‬
‫ـ‬
َ‫ي‬
‫ـ‬
‫ش‬
‫ـ‬
‫ةك‬
‫ـ‬
‫ى‬
( ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬
Structural analysis
)
‫و‬ ‫َز‬‫ي‬‫ه‬ ‫ئةو‬ ‫هةموو‬ ‫دؤزينةوةى‬ ‫بؤ‬ ‫َتةوة‬‫ي‬‫ئةبين‬ ‫خؤى‬ ‫سةرةكى‬ ‫َكى‬‫ي‬‫بابةت‬ ‫وةك‬
‫َزو‬‫ي‬‫ه‬ ‫بةهؤى‬ ‫َت‬‫ي‬‫دةب‬ ‫دروست‬ ‫َكهاتةكاندا‬‫ي‬‫ث‬ ‫ناو‬ ‫لة‬ ‫كة‬ ‫زةبرانةى‬
‫بة‬ ‫كة‬ ‫دةرةكيةوة‬ ‫زةبرى‬
‫رةنطا‬
‫ر‬
‫وايكردووة‬ ‫ئةمةش‬ ,‫َتةوة‬‫ي‬‫دةب‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫ى‬
َ‫ي‬‫ئةجنامدةدر‬ ‫َدا‬‫ي‬‫ت‬ ‫َينةوةى‬‫ل‬‫َكؤ‬‫ي‬‫ل‬ ‫سةرةكى‬ ‫َكى‬‫ي‬‫بابةت‬ ‫وةك‬ ‫كة‬
‫بةرفراوانى‬ .‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرى‬ ‫َوازو‬‫ي‬‫ش‬ ‫َبذاردنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫َت‬‫ي‬‫َنر‬‫ي‬‫دةه‬ ‫بةكار‬ ‫و‬ ‫ت‬
‫شيكار‬ ‫بؤ‬ ‫َت‬‫ي‬‫هةب‬ ‫جياوازى‬ ‫َطاى‬‫ي‬ِ‫ر‬ ‫ضةندةها‬ ‫كة‬ ‫وايكردووة‬ ‫بابةتة‬ ‫ئةم‬
‫كردن‬
‫ئاسان‬ ‫َكى‬‫ي‬‫كار‬ ‫دةست‬ ‫بة‬ ‫َؤزةكان‬‫ل‬‫ئا‬ ‫َكهاتة‬‫ي‬‫ث‬ ‫شيكارى‬ ‫كة‬ ‫ديارة‬ ,
‫بؤ‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫ِؤدا‬‫ر‬‫ئةم‬ ‫ِؤذطارى‬‫ر‬ ‫لة‬ ‫ئةبينني‬ ,‫نية‬
‫بابةتة‬ ‫ئةم‬
‫كةم‬ ‫بةاليةنى‬ ‫ئةندازيار‬ ‫َم‬‫ال‬‫بة‬ ,‫طرتووةتةوة‬ ‫دةستيان‬ ‫َطاى‬‫ي‬‫ج‬
‫َويستة‬‫ي‬‫ث‬ ‫ةوة‬
‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬
‫باشرت‬ ‫و‬ ‫َت‬‫ي‬‫َر‬‫ي‬‫َبذ‬‫ل‬‫هة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرى‬ ‫َوازو‬‫ي‬‫ش‬ ‫َت‬‫ي‬‫بتوان‬ ‫سةركةووتوانة‬ ‫َكى‬‫ي‬‫َواز‬‫ي‬‫ش‬ ‫بة‬ ‫ئةوةى‬ ‫بؤ‬ ‫َت‬‫ي‬‫بزان‬ ‫دةست‬ ‫بة‬
.‫َت‬‫ي‬‫َن‬‫ي‬‫به‬ ‫بةكار‬ ‫َرةكان‬‫ي‬‫سؤفتو‬
‫هة‬ ‫َمة‬‫ي‬‫ئ‬ ‫ئةمة‬ ‫لةبةر‬
‫بؤ‬ ‫َن‬‫ي‬‫َنر‬‫ي‬‫كاردةه‬ ‫بة‬ ‫كة‬ ‫َطايانةى‬‫ي‬‫ر‬ ‫ئةم‬ ‫هةموو‬ ‫ناو‬ ‫لة‬ ‫َشكةوتوو‬‫ي‬‫ث‬ ‫َطايةكى‬‫ي‬‫ر‬ ‫َبذاردنى‬‫ل‬‫هة‬ ‫بة‬ ‫ستاوين‬
‫شيكار‬
‫كردن‬
,
‫ِوونكردونةتةوة‬‫ر‬ ‫هةنطاوةكامنان‬ ‫كوردى‬ ‫شريينى‬ ‫زمانى‬ ‫بة‬
‫جؤ‬ ‫طشت‬ َ‫ل‬‫لةطة‬ ‫َت‬‫ي‬‫بطوجن‬ ‫كة‬
‫ر‬
( ‫ةكانى‬
Beams, Frames, Trusses
,)
‫بؤ‬
‫لة‬ ‫ئاسانرت‬ ‫َوةيةكى‬‫ي‬‫ش‬ ‫بة‬ ‫َنةر‬‫ي‬‫خو‬ ‫ئةوةى‬
َ‫ي‬‫ت‬ ‫بابةتةكة‬
‫بطات‬
‫ِةقى‬‫ر‬ ‫بةهؤى‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكاركردنى‬ ‫َطاى‬‫ي‬ِ‫ر‬ ‫لة‬ ‫بريتية‬ ‫ئةميش‬ ‫كة‬ ,
( ‫َكهاتةكةوة‬‫ي‬‫ث‬
(
Matrix Structural analysis
)
Stiffness Method
)
.
‫ئةندا‬ ‫ِةقى‬‫ر‬ ‫ثةيوةندى‬ ‫َطاية‬‫ي‬ِ‫ر‬ ‫ئةم‬
‫بةكار‬ ‫مةكان‬
‫َت‬‫ي‬‫َن‬‫ي‬‫دةه‬
,‫َكهاتةكة‬‫ي‬‫ث‬ ‫َةى‬‫ل‬‫جو‬ ‫و‬ ‫ئةندامةكان‬ ‫َزى‬‫ي‬‫ه‬ ‫دؤزينةوةى‬ ‫بؤ‬
‫شيكا‬ ‫دةتوانني‬ ‫كة‬
‫ر‬
‫جؤ‬ ‫طشت‬ ‫ى‬
‫ر‬
‫بة‬ ‫بةامبةر‬ ‫بدةين‬ ‫ئةجنام‬ ‫َكاتةكان‬‫ي‬‫ث‬ ‫ى‬
‫َطريةكان‬‫ي‬‫ج‬ ‫زةبرة‬ ‫و‬ ‫َز‬‫ي‬‫ه‬
‫دوو‬ ‫لة‬
‫دوورى‬
(
‫ِووتةخت‬‫ر‬
)
‫دووريدا‬ َ‫ي‬‫س‬ ‫و‬
)‫(بؤشايى‬
,
‫بةكارى‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫زؤربةى‬ ‫كة‬ ‫َطايةشة‬‫ي‬ِ‫ر‬ ‫ئةم‬ ‫هةمان‬ ‫وة‬
‫شي‬ ‫بؤ‬ ‫َنن‬‫ي‬‫دةه‬
‫َؤزةكان‬‫ل‬‫ئا‬ ‫َكهاتة‬‫ي‬‫ث‬ ‫كارى‬
.
‫لةم‬
‫بةشةدا‬
)‫يةكةم‬ ‫(بةشى‬
‫ِاستةوخؤ‬‫ر‬ ‫ِيطاى‬‫ر‬ ‫َمة‬‫ي‬‫ئ‬
‫ى‬
(
Direct Stiffness Method
)
‫َنني‬‫ي‬‫دةه‬ ‫بةكار‬
,
‫ياسا‬ ‫َطاية‬‫ي‬ِ‫ر‬ ‫ئةم‬ ‫كة‬
‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬ ‫بؤ‬ ‫َت‬‫ي‬‫َن‬‫ي‬‫بةكاردةه‬ ‫سةرةكيةكة‬
‫تيايدا‬ ‫ِانكاريةك‬‫ر‬‫طؤ‬ ‫هيض‬ َ‫ي‬‫بةب‬
.
‫بة‬ ‫و‬ ‫طشتطريدا‬ ‫منوونةيةكى‬ ‫ضةند‬ ‫لة‬ ‫وة‬
‫ضةند‬
‫دياريك‬‫َكى‬‫ي‬‫هةنطاو‬
‫ر‬
‫َرةكانى‬‫ي‬‫سؤفتو‬ ‫شيكارى‬‫ئةجنامى‬ ‫بة‬‫كردووة‬‫بةراورد‬‫منونةكانيشمان‬ ‫شيكارى‬‫ئةجنامى‬ ‫و‬ ‫شيكردؤتةوة‬‫بابةتةكةمان‬‫او‬
( ‫وةك‬
STAAD. Pro, SAP 2000, ETABS
)
.
‫ئةندازي‬
‫ـ‬
‫عل‬ /‫ار‬
‫ـ‬
‫حم‬ ‫ى‬
‫ـ‬
‫ش‬ ‫مد‬
‫ـ‬
‫َخة‬‫ي‬
07502454161
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
6
: ‫زاراوةكان‬ ‫لة‬ َ‫ي‬‫هةند‬ ‫َناسةي‬‫ي‬‫ث‬
❖
‫َكهاتةكان‬‫ي‬‫ث‬
(
Structures
)
‫بريتية‬ :
......‫و‬ ‫تاوةرةكان‬ ,‫ثرد‬ ,‫(بينا‬ ‫وةك‬ ‫وةزنةكان‬ ‫َطرتنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫جياواز‬ ‫َوازى‬‫ي‬‫ش‬ ‫بة‬ ‫لكاو‬ ‫بةيةكةوة‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫َة‬‫ل‬‫كؤمة‬ ‫لة‬
❖
َ‫ل‬‫ِاية‬‫ر‬
(
Beam
)
.‫زةبر‬ ‫يان‬ ‫ستونى‬ ‫وةزنى‬ ‫َطرتنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫َت‬‫ي‬‫َنر‬‫ي‬‫دةه‬ ‫بةكار‬ ‫ئاسؤيية‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫طشتى‬ ‫َوةيةكة‬‫ي‬‫ش‬ ‫بة‬ :
❖
‫ثاية‬
(
Column
)
‫طش‬ ‫َوةيةكة‬‫ي‬‫ش‬ ‫بة‬ :
.‫زةبرةكان‬ ‫يان‬ ‫ستونى‬ ‫وةزنى‬ ‫َطرتنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫َت‬‫ي‬‫َنر‬‫ي‬‫دةه‬ ‫بةكار‬ ‫ستونية‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫تى‬
❖
(‫طورزةكان‬ ‫َى‬‫ل‬‫توو‬
Trusses Bar
: )
‫دةب‬ ‫َك‬‫ي‬‫َز‬‫ي‬‫ه‬ ‫بةرةنطاري‬ ‫َت‬‫ي‬‫الرب‬ ‫يان‬ ‫ستوونى‬ , ‫ئاسؤى‬ ‫َت‬‫ي‬‫دةطوجن‬ ‫كة‬ ‫طورزةية‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫طشتى‬ ‫َوةيةكة‬‫ي‬‫ش‬ ‫بة‬
‫َت‬‫ي‬
‫بة‬ ‫كة‬ ‫ةوة‬
‫َذ‬‫ي‬‫در‬ ‫تةوةرةى‬ ‫ئاراستةى‬
‫يةكةيةتى‬
.
‫َواز‬‫ي‬‫ش‬ ‫ِووى‬‫ر‬‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرى‬
( ‫َنان‬‫ي‬‫بةكاره‬ ‫و‬
Type of Structures
:)
❖
‫َةكان‬‫ل‬‫ِاية‬‫ر‬
(
Beams
)
‫وةزنةكان‬ ‫َطرتنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫َنراون‬‫ي‬‫لك‬ ‫بةيةكةوة‬ ‫جياواز‬ ‫َوازى‬‫ي‬‫ش‬ ‫و‬ ‫ئاسؤى‬ ‫َوازى‬‫ي‬‫ش‬ ‫بة‬ ‫َك‬‫ي‬َ‫ل‬‫ِاية‬‫ر‬ ‫ضةند‬ ‫يان‬ َ‫ل‬‫ِاية‬‫ر‬ ‫يةك‬ ‫لة‬ ‫بريتية‬ :
.
❖
‫ثةيكةرةكان‬
(
Frames
)
‫لةو‬ ‫بريتية‬ :
.‫َت‬‫ي‬‫بةكارد‬ ‫بينادا‬ ‫درووستكردنى‬ ‫لة‬ ‫زؤرى‬ ‫بة‬ ‫كة‬ ‫َت‬‫ي‬‫دةب‬ ‫دروست‬ ‫ثاية‬ ‫و‬ َ‫ل‬‫ِاية‬‫ر‬ ‫َك‬‫ي‬َ‫ل‬‫كؤمة‬ ‫يةكطرتنى‬ ‫لة‬ ‫كة‬ ‫ثةيكةرةى‬
❖
‫طورزة‬
‫كان‬
(
Trusses
)
( ‫َوازى‬‫ي‬‫ش‬ ‫بة‬ ‫لكاو‬ ‫بةيةكةوة‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫َة‬‫ل‬‫كؤمة‬ ‫لة‬ ‫بريتية‬ :
Pin
)
،
‫َك‬‫ي‬‫َز‬‫ي‬‫ه‬ ‫بةرةنطاري‬ ‫طشتى‬ ‫َوةيةكى‬‫ي‬‫ش‬ ‫بة‬ ‫ئةندامةكانى‬ ‫طشت‬ ‫وة‬
‫دةبنة‬
.‫ئةندامةكةية‬ ‫َذى‬‫ي‬‫در‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بة‬ ‫كة‬ ‫وة‬
❖
‫وةك‬ ‫هةية‬ ‫َكهاتةمان‬‫ي‬‫ث‬ ‫ترى‬ ‫جؤرى‬ ‫ضةند‬
(
…….Cable, Arches, Surface Structures
)
.
( ‫وةزنةكان‬
Loads
)
‫كة‬ ‫وةزنانةى‬ ‫لةم‬ ‫بريتني‬ :
‫دةكةنة‬ ‫كاريطةرى‬
‫دةبنةوة‬ ‫بةرةنطاريان‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫وة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫سةر‬
‫بةهؤى‬ ‫يان‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫ئةندامةكانى‬ ‫بةهؤى‬
‫وةك‬ ‫وةزنةكانيش‬ ,‫ئةندامةكان‬ ‫بةيةكالكانى‬ ‫َنى‬‫ي‬‫شو‬
(
Deal Load, Live load, Wind load, Snow load, Earthquake load,………
)
,
‫ِى‬‫ر‬‫ب‬ ‫وة‬
‫َت‬‫ي‬‫دادةنر‬ ‫وةزنة‬ ‫ئةو‬ ‫َرةى‬‫ي‬‫بةطو‬ ‫ئةمانةش‬
‫كة‬
‫َت‬‫ي‬‫دةكر‬ ‫َشبينى‬‫ي‬‫ث‬
‫َكهاتةكة‬‫ي‬‫ث‬ ‫سةر‬ ‫كاربكاتة‬
‫موو‬ ‫كةمينةكانى‬ ‫لة‬ ‫و‬
‫ا‬
‫سةرجةميشيان‬ ‫ِةضاوى‬‫ر‬ ‫و‬ ‫َت‬‫ي‬‫نةب‬ ‫كةمرت‬ ‫سةفات‬
.‫َت‬‫ي‬‫دةكر‬
( ‫شيكاريةوة‬ ‫ِووى‬‫ر‬‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرى‬
Type of Structures
:)
❖
(
Statically Determinate Structures
‫دةتوانني‬ ‫كة‬ ‫َكهاتانةن‬‫ي‬‫ث‬ ‫ئةو‬ : )
.‫هاوسةنطى‬ ‫َزى‬‫ي‬‫ه‬ ‫ياساكانى‬ ‫َنانى‬‫ي‬‫بةكاره‬ ‫بة‬ ‫بكةين‬ ‫شيكاريان‬
❖
(
Statically Indeterminate Structures
)
.‫هاوسةنطى‬ ‫َزى‬‫ي‬‫ه‬ ‫ياساكانى‬ ‫َنانى‬‫ي‬‫بةكاره‬ ‫بة‬ ‫بكةين‬ ‫شيكاريان‬ ‫ناتوانني‬ ‫كة‬ ‫َكهاتانةن‬‫ي‬‫ث‬ ‫ئةو‬ :
‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكاركردنى‬ ‫َطاكانى‬‫ي‬ِ‫ر‬ ‫لة‬ ‫َك‬‫ي‬‫هةند‬
‫َطريةكان‬‫ي‬‫ج‬ ‫وةزنة‬ ‫بؤ‬
:
1. Deflections Using Energy Method.
2. Approximate Analysis Method.
3. Deflections.
4. Force Method ( Flexibility Method ) .
5. ........
6. …….
7. Stiffness Method (Matrix Structural Analysis)
(
Degree of Freedom
:)
‫َةكان‬‫ل‬‫خا‬ ‫ِانى‬‫ر‬‫سو‬ ‫و‬ ‫َة‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬
(
Translation and Rotation
)
‫بؤ‬ ‫ئةندامةكة‬ ‫تةوةرةى‬ ‫يان‬ ‫طشتى‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بة‬
‫هةية‬ ‫ِانيان‬‫ر‬‫سو‬ ‫و‬ ‫َن‬‫ال‬‫جو‬ ‫ئةطةرى‬ ‫كة‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫ِاطرةكانى‬‫ر‬ ‫و‬ َ‫ل‬‫خا‬ ‫هةموو‬
.
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
7
σ = Stress ‫فشا‬
‫ر‬
‫كورتكراوةكان‬ ‫َما‬‫ي‬‫ه‬
:
A = Area ‫ِووبةر‬‫ر‬
L= Length ‫َذى‬‫ي‬‫در‬
H= Height ‫بةرزى‬
W= Width ‫ثانى‬
D or DOF = Deformation ro Degree Of Freedom(Rotation & Displacement) ‫سةربةست‬ ‫ِانى‬‫ر‬‫سو‬ ‫و‬ ‫َن‬‫ال‬‫جو‬ ‫ِادةى‬‫ر‬
K= Stiffness Matrix ‫ِيزكراوة‬‫ر‬ ‫َوةى‬‫ي‬‫ش‬ ‫بة‬ ‫مةواد‬ ‫ِةقى‬‫ر‬
F= Load ‫بارستايى‬
E= Modulus of Elasticity ‫ِي‬‫ري‬‫ج‬ ‫ِادةى‬‫ر‬
G= Shear Modulus (Modulus of Rigidity) ‫ِين‬‫ر‬‫ب‬ ‫و‬ ‫ِان‬‫ر‬‫سو‬ ‫بؤ‬ ‫ِى‬‫ري‬‫ج‬ ‫ِادةى‬‫ر‬
J= Polar moment of inertia
Ix = moment of inertia about( x)
Iy= moment of inertia about (y)
Iz = moment of inertia about (z)
X, Z, Y= Axis Direction
RX, RZ, RY= Rotation About Axis
B. M. D= Bending Moment Diagram
S. F. D= Shear Force Diagram
A. F. D= Axial Force Diagram
MZ = Moment about (z)
My = Moment about (y)
Mx = Torsion (Moment about (x))
SZ = Shear Force about (z)
Sy = Shear Force about (y)
AX = Axial Force
FER = Fixed End Reaction
PER = Pinned End Reaction
C = Compression
T = Tension
JFV= Joint Force Vector
θx, θy, θz=Rotate Angle About Axis
∆𝑥, ∆𝑦, ∆𝑧 = Displacement Direct Axis
θ= Rotate Angle
∆= Displacement
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
8
‫ِيزكراوةكان‬‫ر‬
(
Matrix
)
:
‫ِيزكراو‬‫ر‬ ‫ِى‬‫ر‬‫ب‬ ‫َك‬‫ي‬َ‫ل‬‫كؤمة‬ ‫لة‬ ‫بريتني‬
‫ستوون‬ ‫و‬ ‫ِيز‬‫ر‬ ‫َوةى‬‫ي‬‫ش‬ ‫بة‬
.‫ِيزكراون‬‫ر‬
‫تايبةمتةندى‬
‫ِيزكراوةكان‬‫ر‬
(Matrices Property)
:
( ‫ئةطةر‬
A,B
)
. ‫بن‬ ‫ِيزكراوة‬‫ر‬ ‫دوو‬
A ± B = [
2 3
4 5
] ± [
6 −7
8 9
] = [
2 ± 6 3 ± (−7)
4 ± 8 5 ± 9
]
x ∗ A = 𝑥 ∗ [
2 3
4 5
] = [
𝑥 ∗ 2 𝑥 ∗ 3
𝑥 ∗ 4 𝑥 ∗ 5
] = [
2𝑥 3𝑥
4𝑥 5𝑥
] = A*x
A = [
a11 a12 … … a1𝑛
a21 a22 … … a2𝑛
… … … … …
a𝑚1 a𝑚2 … … a𝑚𝑛
]
|A| = 2 ∗ 5 − 4 ∗ 3 = −2
|B| = 6 ∗ 9 − (8 ∗ −7) = 110
𝟐 −𝐀𝐝𝐝𝐢𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝐒𝐮𝐛𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐌𝐚𝐭𝐫𝐢𝐜𝐞𝐬
A2∗2 ∗ B2∗2 = [
2 3
4 5
] ∗ [
6 −7
8 9
] = [
2 ∗ 6 + 3 ∗ 8 2 ∗ (−7) + 3 ∗ 9
4 ∗ 6 + 5 ∗ 8 4 ∗ (−7) + 5 ∗ 9
]
2∗2
𝟑 −𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐌𝐚𝐭𝐫𝐢𝐜𝐞𝐬
[6 8] ∗ A = [6 8] ∗ [
2 3
4 5
] = [6 ∗ 2 + 8 ∗ 4 6 ∗ 3 + 8 ∗ 5]=[44 58]
A ∗ [
6
8
] = [
2 3
4 5
] [
6
8
] = [
2 ∗ 6 + 3 ∗ 8
4 ∗ 6 + 5 ∗ 8
]=[
36
64
]
𝟒 −𝐈𝐧𝐯𝐞𝐫𝐬𝐞 𝐨𝐟 𝐌𝐚𝐭𝐫𝐢𝐱
A−1
=
1
|A|
[
5 −3
−4 2
] =
1
−2
∗ [
5 −3
−4 2
] =[
1
−2
∗ 5
1
−2
∗ −3
1
−2
∗ −4
1
−2
∗ 2
]=[
−2.5 1.5
2 −1
]
𝟓 −𝐓𝐫𝐚𝐧𝐬𝐩𝐨𝐬𝐞 𝐨𝐟 𝐌𝐚𝐭𝐢𝐱
AT
= [
2 4
3 5
]
𝟔 −𝐏𝐫𝐨𝐩𝐞𝐫𝐭𝐲 𝐨𝐟 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧
AB ≠ BA
A(BC)=(AB)C
A(B+C)=AB+AC
(A+B)C=AC+BC
(AB)T
=BT
AT
A*A-1
=1 (aij=0 but for each i=j then aij=1)
A2∗2 = [
2 3
4 5
] , B2∗2 = [
6 −7
8 9
]
𝟏 − 𝐃𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐧𝐭 𝐨𝐟 𝐌𝐚𝐭𝐫𝐢𝐱
aij = matrix element
Matrix
‫ستونى‬
1
‫ِيزى‬‫ر‬
1
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
9
[
2 6
7 9
]
−1
:‫ِيزكراوةكان‬‫ر‬ ‫سودى‬
.‫َيةكان‬‫ل‬َ‫ي‬‫ه‬ ‫َشة‬‫ي‬‫هاوك‬ ‫سيستةمى‬ ‫كردنى‬ ‫شيكار‬ ‫بؤ‬ ‫َنني‬‫ي‬‫دةه‬ ‫بةكار‬ ‫ِيزكراوةكان‬‫ر‬
.‫ِيزكراوةكان‬‫ر‬ ‫َنانى‬‫ي‬‫كاره‬ ‫بة‬ ‫بة‬ ‫بكة‬ ‫شيكار‬ ‫خووارةوة‬ ‫َشةى‬‫ي‬‫هاوك‬ ‫دوو‬ ‫ئةم‬ :1‫منونة‬
/ ‫شيكار‬
-1
‫ِيزكراوة‬‫ر‬ ‫َوةةى‬‫ي‬‫ش‬ ‫بؤ‬ ‫ِين‬‫ر‬‫دةطؤ‬ ‫َشةكة‬‫ي‬‫هاوك‬ ‫هةردوو‬
:‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
‫هةردوو‬
:‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ‫دةكةين‬ ‫جارانى‬ ‫َشةكة‬‫ي‬‫هاوك‬ ‫الى‬ -2
.‫َشة‬‫ي‬‫هاوك‬ ‫سيستةمى‬ ‫بؤ‬ ‫ِة‬‫ر‬‫بطؤ‬ ‫ِيزكراوة‬‫ر‬ ‫ئةم‬ :2‫منونة‬
/ ‫شيكار‬
-1
.‫دةدةين‬ ‫ئةجنام‬ ‫ِاست‬‫ر‬ ‫الى‬ ‫بؤ‬ ‫ِيزكراوة‬‫ر‬ ‫جارانكردنى‬ ‫كردارى‬
2𝑥 + 6𝑦 = 62 1
7𝑥 + 9𝑦 = 109 2
[
2 6
7 9
] [
𝑥
𝑦] = [
62
109
]
[
2 6
7 9
] [
2 6
7 9
]
−1
[
𝑥
𝑦] = [
2 6
7 9
]
−1
[
62
109
]
∴ [
𝑥
𝑦] =
1
−24
∗ [
9 −6
−7 2
] [
62
109
]
∴ [
𝑥
𝑦] =
1
−24
∗ [
9 ∗ 62 + (−6) ∗ 109
(−7) ∗ 62 + 2 ∗ 109
] =
1
−24
[
−96
−216
]=[
4
9
] ∴ x = 4 , y = 9
[
F1
F2
] =[
2 6
7 9
] [
𝐷1
𝐷2
]
[
F1
F2
] =[
2 ∗ 𝐷1 + 6 ∗ 𝐷2
7 ∗ 𝐷1 + 9 ∗ 𝐷2
]
∴ F1 =2𝐷1 + 6𝐷2
∴ F2 =7𝐷1 + 9𝐷2
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
10
and Inverse Matrix:
nt
General Determina
1 -Minors?
2 -Cofactors?
:
nt
General Determina
or
General Inverse:
A = [
a11 a12 a13
a21 a22 a23
a31 a13 a33
]
𝑚11 = [ 𝐚𝟐𝟐 𝐚𝟐𝟑
𝐚𝟏𝟑 𝐚𝟑𝟑
] = [
a22 a23
a13 a33
]
C𝑖𝑗 = (-1)i+j
*mij
𝑚12 = [𝐚𝟐𝟏 𝐚𝟐𝟑
𝐚𝟑𝟏 𝐚𝟑𝟑
] = [
a21 a23
a31 a33
]
𝐶11 = (−1)2
∗ [ 𝐚𝟐𝟐 𝐚𝟐𝟑
𝐚𝟏𝟑 𝐚𝟑𝟑
] = [
a22 a23
a13 a33
] 𝐶12 = (−1)3
∗ [𝐚𝟐𝟏 𝐚𝟐𝟑
𝐚𝟑𝟏 𝐚𝟑𝟑
] = −1 ∗ [
a21 a23
a31 a33
]
|A| = ∑ 𝑎𝑖𝑗𝑐𝑖𝑗
𝑛
𝑖=1
For j= 1,…………,n-1 or n
|A| = ∑ 𝑎𝑖𝑗𝑐𝑖𝑗
𝑛
𝑗=1
For i= 1,………,n-1 or n
A−1
=
𝐶𝑇
|𝐴|
, 𝐶𝑇
= 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝐶𝑜𝑓𝑎𝑐𝑡𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 .
aij = matrix element
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
11
( |A| =? , A−1
=? ) ‫منونة‬
3
:
‫بؤ‬
‫ِيزكراوة‬‫ر‬ ‫ئةم‬
‫بكة‬ ‫ديارى‬ ‫دذةكةى‬ ‫و‬ ‫ئةجنام‬
.
/ ‫شيكار‬
1 -Minors?
2 -Cofactors?
Minor for each element=?
A = [
2 −3 4
0 6 5
8 1 −7
]
𝑚11 = [
2 −3 4
0 6 5
8 1 −7
] = [
6 5
1 −7
] 𝑚12 = [
2 −3 4
0 6 5
8 1 −7
] = [
0 5
8 −7
] 𝑚13 = [
2 −3 4
0 6 5
8 1 −7
] = [
0 6
8 1
]
𝐶11 = [
6 5
1 −7
]= -42-5=-47 𝐶12 = −1 ∗ [
0 5
8 −7
] =-1*(0-40) = 40 𝐶13 = [
0 6
8 1
] =0-48 =-48
∴ |A| =2*-47+(-3) *40+4*-48 = -406
m =
[
[
6 5
1 −7
] [
0 5
8 −7
] [
0 6
8 1
]
[
−3 4
1 −7
] [
2 4
8 −7
] [
2 −3
8 1
]
[
−3 4
6 5
] [
2 4
0 5
] [
2 −3
0 6
]]
= [
−47 −40 −48
17 −46 26
−39 10 12
]
C𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 = [
−47 40 −48
−17 −46 −26
−39 −10 12
]
C𝑇
𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝑜𝑓 𝐶𝑜𝑓𝑎𝑐𝑡𝑜𝑟 = [
−47 −17 −39
40 −46 −10
−48 −26 12
]
∴ A−1
=
𝐶𝑇
|𝐴|
=
−1
406
[
−47 −17 −39
40 −46 −10
−48 −26 12
]
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
12
_ +
+
+
3D Drawing Diagrams of Forces and Moments:
2D Drawing Diagrams of Forces and Moments:
B.M.D(z) B.M.D(y)
B.M.D(x) S.F.D(y)
S.F.D(z) A.F.D(x)
.‫َشني‬‫ي‬‫دةك‬ ‫َنة‬‫ي‬‫و‬ ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ‫َكارى‬‫ل‬َ‫ي‬‫ه‬
‫زةبرةكان‬ ‫َزو‬‫ي‬‫ه‬
B.M.D S.F.D
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
13
:‫َطرةكان‬‫ل‬‫هة‬ ‫كاردانةوةى‬ ‫ذمارةى‬ ‫و‬ ‫َكارى‬‫ل‬َ‫ي‬‫ه‬ ‫و‬ ‫جؤر‬ ‫بة‬ ‫تايبةت‬ ‫خشتةى‬
‫َداضونةوةيةك‬‫ي‬‫ث‬
‫بؤ‬
‫َزةكان‬‫ي‬‫ه‬ ‫بوونى‬ ‫دابةش‬ ‫و‬ ‫ئةندازةيةكان‬ ‫َوة‬‫ي‬‫ش‬
:
Supports
‫كان‬ ‫َطرة‬‫ل‬‫هة‬ ‫جؤرى‬
‫َنةكةى‬‫ي‬‫و‬
Number of
Reactions
‫كاردانةوةكان‬ ‫ذمارةى‬ ‫َبينى‬‫ي‬‫ت‬
2D 3D
Fix 3 6
( ‫لة‬ ‫كاردانةوةكانى‬ ‫ذمارةى‬
2D
‫يةك‬ ‫َزو‬‫ي‬‫ه‬ ‫دوو‬ )
‫زةبرة‬
( ‫لة‬ ‫َم‬‫ال‬‫بة‬
3D
‫زةبرة‬ َ‫ى‬‫س‬ ‫َزو‬‫ي‬‫ه‬ َ‫ى‬‫س‬ )
.
Pin(Hinge)
(ball &Socket)
2 3 ‫ِاطر‬‫ر‬ ‫وةك‬ ‫سفرة‬ ‫تيايدا‬ ‫زةبر‬
.
Roller 1 1
‫ِاطرة‬‫ر‬ ‫جؤة‬ ‫ئةم‬
‫َرةكاندا‬‫ي‬‫سؤفتو‬ ‫لة‬
‫كة‬ ‫هةية‬ ‫جؤرى‬ ‫زؤرترين‬
‫َت‬‫ي‬ِ‫ر‬‫دةطؤ‬ ‫جؤرةكةى‬ ‫َرةى‬‫ي‬‫طو‬ ‫بة‬ ‫كاردانةوةكانى‬ ‫ذمارةى‬
.
Cable 1 1 ‫َةكةية‬‫ل‬‫َب‬‫ي‬‫ك‬ ‫ئاراستةى‬ ‫بة‬ ‫كاردانةوةكةى‬
.
Internal Hinge 2 3 ‫سفرة‬ ‫تيايدا‬ ‫زةبر‬
.
0,0,9
FAH
FAF
H
G
F
E
D
C
B
A
3,8,0
0,8,0
3,0,9
3,0,0
Z
Y
X
0,0,0
0,8,9
3,8,9
(X,Y,Z)
LAH = √(XH − XA)2 + (YH − YA)2 + (ZH − ZA)2
2
‫دوورى‬ َ‫ى‬‫س‬ ‫بؤ‬
LAF = √(XF − XA)2 + (ZF − ZA)2
2
‫تةوةرةكان‬ ‫َرةى‬‫ي‬‫طو‬ ‫بة‬ ‫دوورى‬ ‫دوو‬ ‫بؤ‬
FX(AH) = FAH ∗
XH − XA
LAH
FY(AH) = FAH ∗
YH − YA
LAH
FZ(AH) = FAH ∗
ZH − ZA
LAH
FX(AF) = FAF ∗
XF − XA
LAF
FZ(AF) = FAF ∗
ZF − ZA
LAF
cos 𝜃𝑋(𝐴𝐻) =
XH − XA
LAH
cos 𝜃𝑌(𝐴𝐻) =
YH − YA
LAH
cos 𝜃𝑍(𝐴𝐻) =
ZH − ZA
LAH
cos 𝜃𝑋(𝐴𝐹) =
XF − XA
LAF
cos 𝜃𝑍(𝐴𝐹) =
ZF − ZA
LAF
θ = 𝐴𝑛𝑔𝑙𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑎𝑥𝑖𝑠
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
14
1
2
4
3
5
6
7
‫َداضونة‬‫ي‬‫ث‬
‫ياساكان‬ ‫بؤ‬ ‫وةيةك‬
:
‫لة‬ ‫بريتني‬ ‫سورن‬ ‫ِةنطى‬‫ر‬ ‫بة‬ ‫ياساكاندا‬ ‫لة‬ ‫كة‬ ‫بةشةى‬ ‫ئةم‬
(
K
)
.‫َوازةكةى‬‫ي‬‫ش‬ ‫بؤ‬ ‫ئةندامةكة‬ ‫ى‬
T =
GJ
L
θ
T =
GJ
L
θ
δ𝑆 = ρθ
γ =
𝛿𝑆
L
=
𝜌𝜃
𝐿
τ =
𝑇𝜌
J
T =
GJ
L
θ
G =
𝜏
γ
T = Torque
𝑀𝐴𝐵 =
4𝐸𝐼𝜃
𝐿 𝑀𝐵𝐴 =
2𝐸𝐼𝜃
𝐿
L
A B
θ
𝑆𝐴𝐵 =
6𝐸𝐼𝜃
𝐿2
𝑆𝐵𝐴 =
6𝐸𝐼𝜃
𝐿2
𝑀𝐴𝐵 =
4𝐸𝐼
𝐿
𝜃
𝑀𝐵𝐴 =
2𝐸𝐼
𝐿
𝜃
𝑆𝐴𝐵 =
6𝐸𝐼
𝐿2
𝜃
𝑆𝐵𝐴 = −
6𝐸𝐼
𝐿2
𝜃
𝑀𝐵𝐴 =
6𝐸𝐼
𝐿2
∆
𝑀𝐴𝐵 =
6𝐸𝐼
𝐿2
∆
𝑆𝐴𝐵 =
12𝐸𝐼
𝐿3
∆
𝑆𝐵𝐴 = −
12𝐸𝐼
𝐿3
∆
L
∆
𝑀𝐵𝐴 =
6𝐸𝐼∆
𝐿2
𝑀𝐴𝐵 =
6𝐸𝐼∆
𝐿2
A B
𝑆𝐴𝐵 =
12𝐸𝐼∆
𝐿3
𝑆𝐵𝐴 =
12𝐸𝐼∆
𝐿3
∆
𝐹 =
𝐸𝐴∆
𝐿
A B
𝐹 =
𝐸𝐴∆
𝐿
σ =
F
A
ϵ =
∆
L
E =
𝜎
ϵ
F =
EA
L
∆
ϵ =Unit Tensile or Compressive strain (‫َفشار‬‫ي‬‫)ج‬
A B
L
L
𝐀𝐱𝐢𝐚𝐥 𝐅𝐨𝐫𝐜𝐞
𝐓𝐨𝐫𝐬𝐢𝐨𝐧
𝐑𝐨𝐭𝐚𝐭𝐢𝐨𝐧
𝐃𝐞𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
15
W
W
Y
Z
Y
Z
Y
Z
D
H
Square Member
Rectangular member
Circular member
‫بة‬ ‫تايبةت‬ ‫خشتةى‬
‫يةكة‬
‫َماى‬‫ي‬‫ه‬ ‫و‬
‫بةكارهاتوو‬
:
‫بة‬ ‫تايبةت‬ ‫خشتةى‬
‫ِطةى‬‫ر‬‫ب‬ ‫تايبةمتةندى‬
:‫ئةندامةكان‬
(
J
)
x
I
y
I
z
I
Area
Member Type
π
32
D4
π
64
D4
π
64
D4
π
4
D2
HW3
(
1
3
− 0.21
𝑊
𝐻
(1 −
𝑊4
12𝐻4))
HW3
12
WH3
12
H ∗ W
2.25
16
W4
W4
12
W4
12
W2
Quantity Unit Symbol Formula
Length Meter L m
Height Meter H m
Width Meter W m
Area Square Meter A m2
Force Kilogram F kg
Stress Kilogram per Square Meter σ kg/ m2
Modulus of elasticity Kilogram per Square Meter E kg/ m2
Shear modulus Kilogram per Square Meter G kg/ m2
Moment of inertia Meter to fourth power I m4
Polar moment of inertia Meter to fourth power J m4
Rotate angle Rad R R
Displacement Meter ∆ m
Bending moment Kilogram. Meter M kg. m
Torsion Kilogram. Meter T kg. m
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
16
3D Structural Analysis
‫دووريدا‬ َ‫ى‬‫س‬ ‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬
Stiffness Method
‫يةكةم‬ ‫بةشى‬
(
Direct Stiffness Method
)
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
17
Stiffness Method ( Matrix Structural Analysis )
‫َكة‬‫ي‬‫يةك‬
( ‫كردنى‬ ‫شيكار‬ ‫َطاكانى‬‫ي‬ِ‫ر‬ ‫لة‬
Structure
‫َؤزةكان‬‫ل‬‫ئا‬ ‫َكهاتة‬‫ي‬‫ث‬ ‫شيكارى‬ ‫بؤ‬ ‫َنن‬‫ي‬‫دةه‬ ‫بةكارى‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫كة‬ ‫تايبةتة‬ ‫َكى‬‫ي‬‫شيكار‬ )
(
complex
structures
)
.
‫َطاي‬‫ي‬‫ر‬ ‫ضةند‬ ‫بة‬ ‫َت‬‫ي‬‫دةب‬ ‫ئةميش‬
‫َكهاتةكان‬‫ي‬‫ث‬ ‫دةتوانني‬ ‫كة‬ ‫ةكةوة‬
(‫دوورى‬ ‫دوو‬ ‫لة‬
2D
(‫دووريدا‬ َ‫ى‬‫س‬ ‫و‬ )
3D
‫شيكار‬ َ‫ى‬‫ث‬ )
‫بكةين‬
.
‫ئةم‬
‫ئةندا‬ ‫ِةقى‬‫ر‬ ‫ثةيوةندى‬ ‫َطاية‬‫ي‬ِ‫ر‬
.‫َكهاتةكة‬‫ي‬‫ث‬ ‫َةى‬‫ل‬‫جو‬ ‫و‬ ‫ئةندامةكان‬ ‫َزى‬‫ي‬‫ه‬ ‫دؤزينةوةى‬ ‫بؤ‬ ‫َت‬‫ي‬‫َن‬‫ي‬‫دةه‬ ‫بةكار‬ ‫مةكان‬
‫بةهؤى‬
‫َينوةى‬‫ل‬‫َكؤ‬‫ي‬‫ل‬
‫لة‬ ‫بابةتة‬ ‫ئةم‬
‫َدةطةين‬‫ي‬‫ت‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫ِةفتارى‬‫ر‬ ‫ياساو‬
‫َنني‬‫ي‬‫به‬ ‫بةكار‬ ‫َرةكان‬‫ي‬‫و‬ ‫سؤفت‬ ‫دةتوانني‬ ‫ئاسانرت‬ ‫بة‬ ‫وة‬
.
‫د‬ ‫طؤرانكاريةكاندا‬ ‫يان‬ ‫ئةندامةكاندا‬ ‫بةيةكةوةبةستنى‬ ‫لة‬ ‫كار‬ ‫و‬ ‫َن‬‫ي‬‫دةبر‬ ‫َؤز‬‫ل‬‫ئا‬ ‫َكى‬‫ي‬‫شيكار‬ ‫بةرةو‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫َطايةدا‬‫ي‬‫ر‬ ‫ئةم‬ ‫شيكارى‬ ‫لة‬
.‫َت‬‫ي‬‫ةكر‬
‫ئاراستةى‬ ‫بة‬ ‫َةكان‬‫ل‬‫خا‬ ‫لة‬ ‫هةركام‬
‫ث‬ ‫ئةندامةكة‬ ‫يان‬ ‫طشتى‬ ‫تةوةرةى‬
.‫هةية‬ ‫ثلةيةيان‬ ‫ئةم‬ ‫ئةطةرى‬ ‫كة‬ ‫َت‬‫ي‬‫دادةنر‬ ‫بؤ‬ ‫سورانيان‬ ‫َةو‬‫ل‬‫جوو‬ ‫ئازادى‬ ‫لةى‬
‫ِى‬‫ر‬‫ب‬ ‫لة‬ ‫بريتية‬ ‫شيكارةكة‬ ‫نةزانراوى‬
‫َة‬‫ل‬‫جو‬
َ‫ي‬‫ث‬ ‫َكهاتةكةتى‬‫ي‬‫ث‬ ‫ئةندامةكانى‬ ‫ناو‬ ‫زةبرةكانى‬ ‫َزو‬‫ي‬‫ه‬ ‫هةموو‬ ‫دةتوانيت‬ ‫كة‬ ,‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ‫ِان‬‫ر‬‫سو‬ ‫و‬
.‫بدؤزيتةوة‬
‫بةرةنطار‬ ‫كة‬ ‫َزانة‬‫ي‬‫ه‬ ‫ئةم‬ ‫هةموو‬ ‫وة‬
َ‫ل‬‫خا‬ ‫هؤى‬ ‫بة‬ ‫كة‬ ‫َتةوة‬‫ي‬‫دةب‬ ‫َكهاتةكة‬‫ي‬‫ث‬
‫َت‬‫ي‬‫ب‬ ‫ئةندامةكانةوة‬ ‫يان‬ ‫ئةندامةكان‬ ‫بةستنى‬ ‫بةيةكةوة‬ ‫ةكانى‬
‫َز‬‫ي‬‫ه‬ ‫َتة‬‫ي‬‫بكر‬ ‫َويستة‬‫ي‬‫ث‬
.‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ‫َى‬‫ل‬‫خا‬ ‫َكى‬‫ي‬‫زةبر‬ ‫و‬
ِ‫ر‬ ‫لة‬ ‫بريتية‬ ‫ياساكةش‬ ‫هاوكؤلكةى‬ ‫وة‬
‫بة‬ ‫ِانةكان‬‫ر‬‫سو‬ ‫و‬ ‫َان‬‫ل‬‫جو‬ ‫بارى‬ ‫طشت‬ ‫بؤ‬ ‫كة‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫ةقى‬
‫بؤ‬ ‫يةك‬ ‫ذمارة‬ ‫دانانى‬
‫َةكان‬‫ل‬‫خا‬ ‫لة‬ ‫ياساالوةكيةكان‬
‫بؤ‬ ‫ِيزكراوة‬‫ر‬ ‫َوةى‬‫ي‬‫ش‬ ‫بة‬ ‫َكهاتةكةش‬‫ي‬‫ث‬ ‫ِةقى‬‫ر‬ ‫وة‬ .‫َكهاتةكة‬‫ي‬‫ث‬ ‫بؤ‬ ‫خةتى‬ ‫َكى‬‫ي‬‫َز‬‫ي‬‫ه‬ ‫َتة‬‫ي‬‫دةب‬ ‫و‬ ‫َتةوة‬‫ي‬‫دةدؤزر‬ ‫دا‬
‫تر‬ ‫ِةكانى‬‫ر‬‫ب‬ ‫موجةبةو‬ ‫ِيزكراوةكة‬‫ر‬ ‫َذى‬‫ي‬‫ل‬ ‫وة‬ ,‫َت‬‫ي‬‫دةكر‬ ‫ِيز‬‫ر‬ ‫َكهاتةكة‬‫ي‬‫ث‬
‫بةكاره‬ ‫و‬ ‫َيةكان‬‫ل‬َ‫ي‬‫ه‬ ‫َشة‬‫ي‬‫هاوك‬ ‫بوونى‬ ‫بؤية‬ ‫هةر‬ ,‫يةكسانن‬ ‫دةوريدا‬ ‫بة‬
‫َنانى‬‫ي‬
.‫ِيطاية‬‫ر‬ ‫ئةم‬ ‫بؤ‬ ‫َك‬‫ي‬‫ناو‬ ‫بؤتة‬ ‫ِيزكراوةكان‬‫ر‬
‫سنوورى‬ ‫لة‬ ‫كة‬ , ‫بكةيت‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرةكانى‬ ‫هةموو‬ ‫شيكارى‬ ‫دةتوانيت‬ ‫َطاية‬‫ي‬ِ‫ر‬ ‫ئةم‬ ‫َنانى‬‫ي‬‫بةكاره‬ ‫بة‬
.‫َكهاتةكانن‬‫ي‬‫ث‬ ‫َطريى‬‫ي‬‫ج‬ ‫َساكانى‬‫ي‬‫ر‬
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
18
/ ‫َبينى‬‫ي‬‫ت‬
1
-
( ‫لة‬ ‫هةركام‬
DOF
( ‫بة‬ ‫بكةين‬ ‫كان‬ ‫ة‬ )
1
.‫َت‬‫ي‬‫دةب‬ ‫دروست‬ ‫ماتريكسةكةى‬ ‫ستيفنس‬ ‫ِيزى‬‫ر‬ ‫و‬ ‫َم‬‫ل‬‫كؤ‬ ‫ذمارةى‬ ‫ئةوا‬ ‫بن‬ ‫سفر‬ ‫تر‬ ‫ئةوانى‬ )
2
-
( ‫َوان‬‫ي‬‫ن‬ ‫ثةيوةندى‬
F
( ‫و‬ )
D
( ‫ِانى‬‫ر‬‫نةطؤ‬ ‫بة‬ ‫راستةوانةية‬ )
K
.)
‫يةكةم‬ ‫منوونةى‬
:
‫ِيزكراوةى‬‫ر‬
( ‫َى‬‫ل‬‫خا‬ ‫ئاسؤى‬ ‫َةى‬‫ل‬‫جوو‬
1
‫و‬
2
( ‫َزى‬‫ي‬‫ه‬ ‫هؤى‬ ‫بة‬ ‫بكة‬ ‫ديارى‬ )
2
,F
1
F
( ‫َك‬‫ي‬‫كات‬ )
2
,K
1
K
)
.‫َت‬‫ي‬‫زانراب‬
:‫شيكار‬
‫سثرينطةكان‬ ‫َنى‬‫ال‬‫جو‬ ‫لةبةرئةوةى‬
‫هةية‬ ‫َمان‬‫ل‬‫خا‬ ‫دوو‬ ‫ئاسؤييةو‬ ‫تةنها‬
.
‫َتة‬‫ي‬‫ئةب‬ ‫و‬ ‫َت‬‫ي‬‫دةب‬ ‫دروست‬ ‫بؤ‬ ‫َشةمان‬‫ي‬‫هاوك‬ ‫دوو‬ ‫كةواتا‬
‫ِيزكراوةيةكى‬‫ر‬
.‫دوو‬ ‫بة‬ ‫دوو‬
‫يةكةم‬ ‫هةنطاوى‬
‫(طرميان‬
D1=1, D2=0
)
1
K
1
+ D
2
K
1
+ D
- D1K2
‫هةنطاوى‬
‫دووةم‬
‫(طرميان‬
D1=0, D2=1
)
2
F2
F1
1
K1 K2
D2
D1
K1
F1 F2
K2
D1=1
F1
K1
K1
K2
K2
D2
D1
K1
F1 F2
K2
D1=0
F1
D2=1
K2
K2
Point(1) D1(K1+K2)
Point(2) - D1K2
Point(1)
- D2K2 - D2K2
Point(2) +D2K2 +D2K2
+F1 = D1 (K1+K2) - D2K2
Point(1)
Point(2) +F2 = - D1K2+D2K2
+F1
+F2
+F2
=
K1+K2 - K2
- K2 K2
D1
D2
F=KD D=K-1
F
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
19
Set
Typical Beam
θB ΘC
θB θB
Θ1 Θ2
D3
θB
A
A D1
D2
D3
1- Direct Stiffness Method :
‫َك‬‫ي‬‫يةك‬
‫لة‬
ِ‫ر‬
( ‫َطاكانى‬‫ي‬
Stiffness Method
‫لة‬ ‫بريتية‬ )
(
Direct Stiffness Method
)
( ‫َت‬‫ي‬‫دةوتر‬ ‫َشى‬‫ي‬‫ث‬ ‫وة‬
Matrix Stiffness Method
)
( ‫سةرةكيةكةى‬ ‫ياسا‬ ‫َطايةدا‬‫ي‬ِ‫ر‬ ‫لةم‬ ‫كة‬
Stiffness Method
‫َكهاتةك‬‫ي‬‫ث‬ ‫ئةندامى‬ ‫و‬ ‫ِانكاريةك‬‫ر‬‫طؤ‬ ‫هيض‬ َ‫ي‬‫بةب‬ ‫َت‬‫ي‬‫َنر‬‫ي‬‫دةه‬ ‫بةكار‬ )
َ‫ل‬‫لةطة‬ ‫َن‬‫ي‬‫َكدةخر‬‫ي‬ِ‫ر‬ ‫ان‬
‫وة‬ .‫ياساكة‬
‫َؤزةكان‬‫ل‬‫ئا‬ ‫َكهاتة‬‫ي‬‫ث‬ ‫شيكارى‬ ‫بؤ‬ ‫َنن‬‫ي‬‫دةه‬ ‫بةكارى‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫كة‬ ‫تايبةتة‬ ‫َكى‬‫ي‬‫شيكار‬
(
Complex Structures
)
.
‫باوترين‬ ‫َطاية‬‫ي‬ِ‫ر‬ ‫ئةم‬
( ‫َكارى‬‫ي‬‫َبةج‬‫ي‬‫ج‬
finite element method
)
.‫ة‬
: 2D Structure
‫كة‬ ‫َكهاتانةن‬‫ي‬‫ث‬ ‫ئةو‬
‫ِووتةخدان‬‫ر‬ ‫يةك‬ ‫لة‬
‫َت‬‫ي‬‫دةطوجن‬
‫َز‬‫ي‬‫ه‬
‫زةبر‬ ‫و‬
(
Load, Moment
)
‫لة‬
‫ِوتةختدا‬‫ر‬ ‫هةمان‬
‫كاري‬
‫خبةنة‬ ‫طةرى‬
‫سةر‬
.
1- 2D Beams Analysis by Direct Stiffness Method
‫هةنطاوةكانى‬
‫شيكاركردن‬
:
1
-
( Degree of Freedom )
‫ى‬
(
Structure
)
‫دةكةين‬ ‫ديارى‬ ‫كة‬ ‫ة‬
‫َة‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ‫كة‬
‫ِانى‬‫ر‬‫سو‬ ‫و‬
‫َةكان‬‫ل‬‫خا‬
(
Translation and Rotation
)
‫بةم‬
‫قةبارةى‬ ‫َوة‬‫ي‬‫ش‬
‫ستيفنس‬
‫َت‬‫ي‬‫دةردةكةو‬ ‫بؤ‬ ‫ماتريكسةكةمان‬
,
( ‫بؤ‬
Beam
‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ )
‫خوارةوةية‬
.
2
-
(
Structure
‫ةكة‬ )
‫و‬ ‫دةكةين‬ ‫بةش‬ ‫بةش‬ ‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬
(
Fixed End Reaction
)
‫بؤ‬ ‫ئةدؤزينةوة‬
‫يةكةلة‬ ‫يةك‬
Deformation
(
Rotation, Shear , Axial
)
( ‫َى‬‫ي‬‫ث‬ ‫بة‬
DOF
‫دةدؤزينةوة‬ ‫ماتريكسةكة‬ ‫ستيفنس‬ ‫بةمةش‬ ‫كان‬ ‫ة‬ )
‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
.
Rotation Deformation for Fixed-Fixed (θ=1)
L L
(0,0,0) (8,0,0) (14,0,0) (20,0,0)
(22,0,0)
θ
A D
B C A B A B
DOF=2 or 3 DOF=1 or 4 DOF=3 or DOF=1
DOF=1 or DOF=0
2𝐸𝐼𝜃
𝐿
A B
θ
4𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
2𝐸𝐼𝜃
𝐿
A B
θ
4𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
Y X
Z
Global Axis
‫طشتى‬ ‫تةوةرةى‬
X
y
Local Axis
‫تةوةرةى‬
‫ئةندامةكة‬
DOF=3
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
20
Rotation Deformation for Fixed-Hinge (θ=1)
Shear Deformation for Fixed-Fixed(∆=1)
Shear Deformation for Fixed-Hinge (∆=1)
Axial Deformation for Fixed-Fixed (∆=1)
Axial Deformation for Fixed-Hinge (∆=1)
( ‫َوازى‬‫ي‬‫ش‬ ‫تةنها‬ ‫ئةطةر‬
Fixed-Fixed
)
‫َرين‬‫ي‬‫َبذ‬‫ل‬‫هة‬
‫ئةندامةكان‬ ‫طشت‬ ‫بؤ‬ ‫ِدةكةينةوة‬‫ر‬‫ث‬ ‫خوارةوة‬ ‫خشتةى‬ ‫ئةم‬ ‫ئةوا‬
.
EA/L
3
12EI/L
2
6EI/L
4EI/L
2EI/L
I
E
A
Height(H)
Width(W)
Length(L)
Member
A-B
A B
θ
3𝐸𝐼𝜃
𝐿
3𝐸𝐼𝜃
𝐿2
3𝐸𝐼𝜃
𝐿2
A B
θ
3𝐸𝐼𝜃
𝐿
3𝐸𝐼𝜃
𝐿2
3𝐸𝐼𝜃
𝐿2
∆
6𝐸𝐼∆
𝐿2
A B 6𝐸𝐼∆
𝐿2
12𝐸𝐼∆
𝐿3
12𝐸𝐼∆
𝐿3
∆
6𝐸𝐼∆
𝐿2
6𝐸𝐼∆
𝐿2
A B
12𝐸𝐼∆
𝐿3
12𝐸𝐼∆
𝐿3
∆
3𝐸𝐼∆
𝐿2
A B
3𝐸𝐼∆
𝐿3
3𝐸𝐼∆
𝐿3
3𝐸𝐼∆
𝐿2
A B
3𝐸𝐼∆
𝐿3
3𝐸𝐼∆
𝐿3
∆
∆
𝐸𝐴∆
𝐿
A B 𝐸𝐴∆
𝐿
∆
𝐸𝐴∆
𝐿
A B 𝐸𝐴∆
𝐿
∆
𝐸𝐴∆
𝐿
A B 𝐸𝐴∆
𝐿
∆
𝐸𝐴∆
𝐿
A B 𝐸𝐴∆
𝐿
L L
L
L L
L
L
L
L
L
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
21
1
-
.‫َت‬‫ي‬‫بكر‬ ‫يةكة‬ ‫ِةضاوى‬‫ر‬ ‫َويستة‬‫ي‬‫ث‬ ‫َك‬‫ي‬‫ثرسيار‬ ‫هةر‬ ‫شيكاركردنى‬ ‫بؤ‬
2
-
‫لة‬ ‫بريتية‬ ‫ئةندامةكان‬ ‫ناو‬ ‫َكى‬‫ي‬َ‫ل‬‫خا‬ ‫هةر‬ ‫َزى‬‫ي‬‫ه‬ ‫طشتى‬ ‫َوةيةكى‬‫ي‬‫ش‬ ‫بة‬, ‫َوازةن‬‫ي‬‫ش‬ ‫ئةم‬ ‫دروستكراوى‬ ‫و‬ ‫نني‬ ‫َطري‬‫ي‬‫ج‬ ‫سةرةوة‬ ‫ياسايانةى‬ ‫ئةم‬
‫سةرجةمى‬
‫َزةكان‬‫ي‬‫ه‬
( ‫طشت‬ ‫بؤ‬ ‫َةكةدا‬‫ل‬‫خا‬ ‫لة‬
DOF
( ‫و‬ ‫ةكان‬ )
FER
)
.‫ةكة‬
∆
𝐸𝐴∆
𝐿
A B 𝐸𝐴∆
𝐿
- 3
(
Fixed End Reaction
)
‫بؤ‬ ‫ئةدؤزينةوة‬
(
Member Loads
)
:‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
-4
‫سةرئةجنامى‬
(
FER
)
‫كان‬ ‫ة‬
‫ئةدؤزينةوة‬
‫بؤ‬ ‫ِين‬‫ر‬‫ئةيطؤ‬ ‫و‬
(
Joint Force Vector
)
‫ماتريكس‬ ‫ناو‬ ‫دةخيةينة‬ ‫نيشانةيةو‬ ‫َضةوانةى‬‫ي‬‫ث‬ ‫كة‬
‫َزةكةوة‬‫ي‬‫ه‬ ‫ى‬
َ‫ل‬‫خا‬ ‫ناو‬ ‫ترى‬ ‫َكى‬‫ي‬‫زةبر‬ ‫َزو‬‫ي‬‫ه‬ ‫هةر‬ َ‫ل‬‫لةطة‬
‫ةكان‬
‫بة‬ ‫بةرامبةر‬
(
Degree of Freedom
)
.‫كة‬ ‫ة‬
.‫دةكةين‬ ‫شيكار‬ ‫ماتريكسةكة‬ ‫َشة‬‫ي‬‫هاوك‬ ‫دواتر‬
5
-
‫زةبرى‬ ‫َزو‬‫ي‬‫ه‬
‫ئة‬ ‫ئةندامةكان‬ ‫ناو‬
(‫دؤزينةوة‬
Internal Force of Members
)
:
Fixed
-
Fixed
For
Bending Moment
:
Fixed
-
Fixed
For
Shear Force
Axial Force:
‫َبينى‬‫ي‬‫ت‬
//
SBA =S(FER)BA -
6𝐸𝐼
𝐿2 (𝜃𝐴 + 𝜃𝐵 −
2∆
𝐿
)
A B
R1 R2
q
𝑞𝑑
𝐿2
ቈ𝑎𝑏2
+
(𝑎 − 2𝑏)𝑑2
12
቉
𝑎 𝑏
𝑞𝑑
𝐿2
ቈ𝑎2
𝑏 +
(𝑏 − 2𝑎)𝑑2
12
቉
𝑑
q
q
F
MBA =M(FER)BA +
2𝐸𝐼
𝐿
(𝜃𝐴 + 2𝜃𝐵 −
3∆
𝐿
)
A B
θ
4𝐸𝐼𝜃
𝐿
2𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
L
6𝐸𝐼∆
𝐿2
6𝐸𝐼∆
𝐿2
12𝐸𝐼∆
𝐿3
12𝐸𝐼∆
𝐿3
∆
MAB =M(FER)AB+
2𝐸𝐼
𝐿
(2𝜃𝐴 + 𝜃𝐵 −
3∆
𝐿
) ,
FA =
EA∆
L
𝐹𝐿
8
𝐿
2
𝐿
2 𝐹
2
𝐹
2
𝐹𝐿
8
𝑎 𝑏
𝐹𝑎2(𝑎 + 3𝑏)
𝐿3
𝐹𝑎𝑏2
𝐿2
𝐹𝑎2
𝑏
𝐿2
𝐹𝑏2(3𝑎 + 𝑏)
𝐿3
F
𝑎 𝑏
𝑀𝑏(2𝑎 − 𝑏)
𝐿2
6𝑀𝑎𝑏
𝐿3
6𝑀𝑎𝑏
𝐿3
𝑀𝑎(2𝑏 − 𝑎)
𝐿2
M
∆
6𝐸𝐼∆
𝐿2
6𝐸𝐼∆
𝐿2
12𝐸𝐼∆
𝐿3
12𝐸𝐼∆
𝐿3
𝑞𝐿2
12
𝐿
𝑞𝐿
2
𝑞𝐿
2
𝑞𝐿2
12
q
5𝑞𝐿2
96
𝐿
𝑞𝐿
4
𝑞𝐿
4
5𝑞𝐿2
96
𝑞𝐿2
20
𝐿
7𝑞𝐿
20
3𝑞𝐿
20
𝑞𝐿2
30
𝑅1 =
𝑞𝑑
𝐿3
[(2𝑎 + 𝐿)𝑏2
+ (
𝑎 − 𝑏
4
)𝑑2
] 𝑅2 =
𝑞𝑑
𝐿3
[(2𝑏 + 𝐿)𝑎2
+ (
𝑎 − 𝑏
4
)𝑑2
]
SAB =S(FER)AB+
6𝐸𝐼
𝐿2 (𝜃𝐴 + 𝜃𝐵 −
2∆
𝐿
) ,
L
L
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
22
[
K11 K12 K13 K14 K15 K16
K21 K22 K23 K24 K25 K26
K31 K32 K33 K34 K35 K36
K41 K42 K43 K44 K45 K46
K51 K52 K53 K54 K55 K56
K61 K62 K63 K64 K65 K66 ]
[
1.6EI
0
−0.96EI
0
0
0 ]
[
K11
K21
K31
K41
K51
K61]
=
Example (2)  Draw B.M.D & calculate S.F for the Beam shown due to the Loads shown and
vertical settlement at Support (D =0.01m), where cross section of members are (0.6*0.3)m and
E=2.2e+9kg/m2.
olution:
S
DOF?
-
1
Rad)
M,
kg,
s
(Unit
=? When DOF=1
K
,
=?
(FER)
-
2
I
E
A
W
H(m)
L(m)
Member
0.0054
2.2e+9
0.18
0.3
0.6
2.5
AB
0.0054
2.2e+9
0.18
0.3
0.6
2.5
BC
0.0054
2.2e+9
0.18
0.3
0.6
6
CD
0.0054
2.2e+9
0.18
0.3
0.6
4
DE
//‫َبينى‬‫ي‬‫ت‬
( ‫ئةوةى‬ ‫لةبةر‬
EA,EI
‫طشت‬ )
‫ئةندامةكان‬
‫ن‬ ‫دةتوانني‬ ‫يةكرتى‬ ‫بة‬ ‫يةكسانن‬
‫ر‬
‫خ‬
‫ةكةى‬
‫نةدؤزينةوة‬
.‫كؤتاى‬ ‫تا‬
EA/L
3
12EI/L
2
6EI/L
4EI/L
2EI/L
Member
0.4EA
0.768EI
0.96EI
1.6EI
0.8EI
AB
0.4EA
0.768EI
0.96EI
1.6EI
0.8EI
BC
EA /6
EI /18
EI /6
2 EI /3
EI /3
CD
0.25EA
3 EI /16
3 EI /8
EI
0.5EI
DE
for stiffness matrix
to obtain Column (1)
=0)
2,3,4,5,6
=1, (D
1
D
D2
D1
D3
D4 D5 D6
E
A D
C
5m
(0,0,0) (5,0,0) (11,0,0) (15,0,0)
(17,0,0)
Internal hinge
1000kg/m
1000kg/m 500kg
300kg
B F
DOF=6 Stiffness matrix= (6*6)
[
F1
F2
F3
F4
F5
F6 ]
=
[
D1
D2
D3
D4
D5
D6 ]
(F=KD)
2𝐸𝐼𝜃
𝐿
A B
θ
4𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
1.6EI
0.96EI
0.8EI
A B
θ
0.96EI
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
23
[
K14
K24
K34
K44
K54
K64]
=
[
0
0.8EI
0.96EI
6.8EI/3
EI/3
0 ]
[
K12
K22
K32
K42
K52
K62]
=
[
0
1.6EI
0.96EI
0.80EI
0
0 ]
[
K13
K23
K33
K43
K53
K63]
=
[
−0.96EI
0.96EI
1.536EI
0.96EI
0
0 ]
=0) to obtain Column (2)
1,3,4,5,6
=1, (D
2
D
obtain Column (3)
=0) to
1,2,4,5,6
=1, (D
3
D
=0) to obtain Column (4)
1,2,3,5,6
=1, (D
4
D
∆
6𝐸𝐼∆
𝐿2
6𝐸𝐼∆
𝐿2
A B
12𝐸𝐼∆
𝐿3
12𝐸𝐼∆
𝐿3
∆
6𝐸𝐼∆
𝐿2
6𝐸𝐼∆
𝐿2
B C
12𝐸𝐼∆
𝐿3
12𝐸𝐼∆
𝐿3
∆
0.96EI
0.96EI
A B
12𝐸𝐼∆
𝐿3 0.768EI
∆
0.96EI
B C 0.96EI
0.768EI
12𝐸𝐼∆
𝐿3
2/3EI
C D
θ
1/3EI
1/6EI 1/6EI
4𝐸𝐼𝜃
𝐿
2𝐸𝐼𝜃
𝐿
B C
θ
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
1.6EI
0.8EI
B C
θ
0.96EI
6𝐸𝐼𝜃
𝐿2
B C
θ
2𝐸𝐼𝜃
𝐿
4𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
C D
θ
4𝐸𝐼𝜃
𝐿
2𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
0.96EI
B C
θ
1.6EI
0.96EI
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
24
K =
[
0
0
0
0
0.5EI
EI ]
[
K16
K26
K36
K46
K56
K66]
=
[
K11 K12 K13 K14 K15 K16
K21 K22 K23 K24 K25 K26
K31 K32 K33 K34 K35 K36
K41 K42 K43 K44 K45 K46
K51 K52 K53 K54 K55 K56
K61 K62 K63 K64 K65 K66 ]
=
[
1.6EI 0 −0.96EI 0 0 0
0 1.6EI 0.96EI 0.80EI 0 0
−0.96EI 0.96EI 1.536EI 0.96EI 0 0
0 0.8EI 0.96EI 6.8EI/3 EI/3 0
0 0 0 1EI/3 5EI/3 0.5EI
0 0 0 0 0.5EI EI ]
[
0
0
0
EI/3
5EI/3
0.5EI]
[
K15
K25
K35
K45
K55
K65]
=
*
‫ستونةكان‬ ‫طشت‬ ‫ِى‬‫ر‬‫ب‬ ‫كة‬ ‫ئةوةى‬ ‫دواى‬
‫دؤزيةوة‬ ‫ِيزكراوةكةمان‬‫ر‬ ‫ى‬
,
‫ِةكان‬‫ر‬‫ب‬
‫ِيزكراوةكة‬‫ر‬ ‫ناو‬ ‫دةخةينةوة‬
‫خواةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
.
=0) to obtain Column (5)
1,2,3,4,6
=1, (D
5
D
obtain Column (6)
=0) to
1,2,3,4,5
=1, (D
6
D
D E
θ
4𝐸𝐼𝜃
𝐿
2𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
D E
θ
2𝐸𝐼𝜃
𝐿
4𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
D E
θ
EI
3/8EI 3/8EI
C D
θ
2𝐸𝐼𝜃
𝐿
4𝐸𝐼𝜃
𝐿
6𝐸𝐼𝜃
𝐿2
6𝐸𝐼𝜃
𝐿2
C D
θ
2/3EI
1/6EI 1/6EI
EI
D E
θ
0.5EI
3/8EI 3/8EI
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
25
[
1.6EI 0 −0.96EI 0 0 0
0 1.6EI 0.96EI 0.80EI 0 0
−0.96EI 0.96EI 1.536EI 0.96EI 0 0
0 0.8EI 0.96EI 6.8EI/3 EI/3 0
0 0 0 EI/3 5EI/3 0.5EI
0 0 0 0 0.5EI EI ]
[
1.6 0 −0.96 0 0 0
0 1.6 0.96 0.80 0 0
−0.96 0.96 1.536 0.96 0 0
0 0.8 0.96 6.8/3 1/3 0
0 0 0 1/3 5/3 0.5
0 0 0 0 0.5 1 ]
−1
17925
253850/12
6250/12 6250/12
A B C D E
21675 600
A B
E
C D E
D
C
17925 600
B
ixed End Reaction ? for member Loads:
F
-
3
FER=
4- Joint Force Vector?
Invert of FER=
Joint Force Vector =
1
𝐸𝐼
[
6250/12
−6250/12
−2500
−253850/12
26375
44200 ]
=
[
D1
D2
D3
D4
D5
D6 ]
[
D1
D2
D3
D4
D5
D6 ]
=
[
6250/12
−6250/12
−2500
−253850/12
26375
44200 ]
1
𝐸𝐼
6250/12
44800
44300 44800
[
D1
D2
D3
D4
D5
D6 ]
=
22825
27125
9350
2500
1250
6250/12 6250/12 6250/12
[
9739.2739
−1510.3135
15689.5885
−16457.9208
6890.0990
40754.9505 ]
44300
6250/12
F
B
A
1250
1250
1000kg/m
6250/12
6250/12
E
300
300kg
600
E
D
250
250
500kg
250
250
C
B
1250
1250
1000kg/m
6250/12
6250/12
D
C
1500
1500
1000kg/m
1875
1875
D
C
6600
6600
For Settlement
19800
19800
E
D
22275
22275
For Settlement
44550
44550
44200
26375
2500
22825
27125
9350
2500
1250
6250/12 6250/12 21675
6250/12
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
26
=?
t
Momen
-
5
∴ 𝐌𝐀𝐁 = −𝟔𝟕𝟒𝟗. 𝟕𝟓 𝐤𝐠. 𝐦
MAB = MFER(AB) +
2EI
L
(2θA + θB −
3∆
L
) → MAB =
6250
12
+
2
2.5
(2 ∗ 0 + 9739.2739 −
3 ∗ 15689.5885
2.5
)
∴ 𝐌𝐁𝐀 = 𝟎
MBC = MFER(BC) +
2EI
L
(2θB + θC −
3∆
L
) → MBC =
6250
12
+
2
2.5
(2 ∗ (−1510.3135) − 16457.9208 −
3 ∗ − 15689.5885
2.5
)
∴ 𝐌𝐁𝐂 = 𝟎
MBA = MFER(BA) +
2EI
L
(2θB + θA −
3∆
L
) → MBA = −
6250
12
+
2
2.5
(2 ∗ 9739.2739 + 0 −
3 ∗ 15689.5885
2.5
)
MCB = MFER(CB) +
2EI
L
(2θC + θB −
3∆
L
) → MCB = −
6250
12
+
2
2.5
(2 ∗ (−16457.9208) − 1510.3135 −
3 ∗ −15689.5885
2.5
)
∴ 𝐌𝐂𝐁 = −𝟏𝟐𝟗𝟗𝟗. 𝟕𝟓 𝐤𝐠. 𝐦
∴ 𝐌𝐂𝐃 = +𝟏𝟐𝟗𝟗𝟗. 𝟕𝟓 𝐤𝐠. 𝐦
MCD = MFER(CD) +
2EI
L
(2θC + θD −
3∆
L
) → MCD = 21675 +
2
6
(2 ∗ (−16457.9208) + 6890.0990 − 0)
MDC = MFER(DC) +
2EI
L
(2θD + θC −
3∆
L
) → MDC = 17925 +
2
6
(2 ∗ (6890.0990) − 16457.9208 − 0)
∴ 𝐌𝐃𝐄 = −𝟏𝟕𝟎𝟑𝟐. 𝟒𝟑 𝐤𝐠. 𝐦
∴ 𝐌𝐃𝐂 = 𝟏𝟕𝟎𝟑𝟐. 𝟒𝟑 𝐤𝐠. 𝐦
MDE = MFER(DE) +
2EI
L
(2θD + θE −
3∆
L
) → MDE = −44300 +
2
4
(2 ∗ (6890.0990) + 40754.9505 − 0)
MED = MFER(ED) +
2EI
L
(2θE + θD −
3∆
L
) → MED = −44800 +
2
4
(2 ∗ (40754.9505) + 6890.0990 − 0)
∴ 𝐌𝐄𝐃 = −𝟔𝟎𝟎 𝐤𝐠. 𝐦
∴ 𝐌𝐄𝐅 = +𝟔𝟎𝟎 𝐤𝐠. 𝐦
B.M.D (kg. m)
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
27
= ?
Shear
‫بةراور‬
‫د‬
‫ى‬
‫منوونةكة‬ ‫شيكارى‬ ‫ئةجنامى‬
‫بة‬
‫ئةجنامى‬
‫سؤفت‬
:‫َرةكان‬‫ي‬‫و‬
Note
F
E
D
C
B
A
m)
(kg.
Moment
0
600
-17032.43
12999.75
0
-6749.75
‫منوونةكة‬ ‫ئةجنامى‬
OK
0
600
-17032.42
12999.75
0
-6749.75
STAAD V8i
OK
0
600
-17032.43
12999.75
0
-6749.75
SAP2000
‫بة‬ ‫ئةجنامةكان‬ ‫ئايا‬
(
ETABS
‫ضةند‬ )
‫ن‬
‫؟‬
?
?
?
?
?
?
ETABS
SAB =S (FER)AB+
6EI
L2 (θA + θB −
2∆
L
) → SAB = 1250+
6
6.25
(0 + 9739.2739 −
2∗15689.5885
2.5
)
∴ 𝐒𝐀𝐁 = −𝟏𝟒𝟒𝟗. 𝟗𝟎 𝐤𝐠
SBA=S (FER)BA-
6EI
L2 (θA + θB −
2∆
L
) → SAB = 1250-
6
6.25
(0 + 9739.2739 −
2∗15689.5885
2.5
)
∴ 𝐒𝐁𝐀 = 𝟑𝟗𝟒𝟗. 𝟗𝟎 𝐤𝐠
SBC =S (FER)BC+
6EI
L2 (θB + θC −
2∆
L
) → SBC = 1250+
6
6.25
((−1510.3135) − 16457.9208 −
2∗−15689.5885
2.5
)
∴ 𝐒𝐁𝐂 = −𝟑𝟗𝟒𝟗. 𝟗𝟎 𝐤𝐠
SCB =S (FER)CB-
6EI
L2 (θB + θC −
2∆
L
) → SCB = 1250-
6
6.25
((−1510.3135) − 16457.9208 −
2∗−15689.5885
2.5
)
∴ 𝐒𝐂𝐁 = 𝟔𝟒𝟒𝟗. 𝟗𝟎 𝐤𝐠
SCD=S (FER) CD+
6EI
L2 (θC + θD −
2∆
L
) → SCD = 8100+
6
36
(−16457.9208 + 6890.0990 − 0)
∴ 𝐒𝐂𝐃 = 𝟔𝟓𝟎𝟓. 𝟑𝟔 𝐤𝐠
SDC=S (FER)DC-
6EI
L2 (θC + θD −
2∆
L
) → SCD = -5100-
6
36
(−16457.9208 + 6890.0990 − 0)
∴ 𝐒𝐃𝐂 = 𝟑𝟓𝟎𝟓. 𝟑𝟔 𝐤𝐠
SED=S(FER)ED-
6EI
L2 (θD + θE −
2∆
L
) → SDE = +22525-
6
16
(6890.0990 + 40754.9505 − 0)
∴ 𝐒𝐄𝐃 = 𝟒𝟔𝟓𝟖. 𝟏𝟏𝐤𝐠
SDE=S(FER)DE+
6EI
L2 (θD + θE −
2∆
L
) → SDE = -22025+
6
16
(6890.0990 + 40754.9505 − 0)
∴ 𝐒𝐃𝐄 = −𝟒𝟏𝟓𝟖. 𝟏𝟏 𝐤𝐠
𝐀𝐧𝐝 𝐒𝐄𝐅 = 𝟑𝟎𝟎𝐤𝐠
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
28
∆
D1
D2
D3 D1
D1
D2
ϴ
D4
D5
D6
D1
D2
D3
θ
[
∑ −
6𝐸𝐼
𝐿2
sin 𝜃
∑
6𝐸𝐼
𝐿2
cos 𝜃
∑
4𝐸𝐼
𝐿
+
6𝐸𝐼
𝐿2
sin 𝜃
−
6𝐸𝐼
𝐿2
cos 𝜃
2𝐸𝐼
𝐿 ]
2- 2D Frames Analysis by Direct Stiffness Method
‫هةنطاوةكانى‬
‫شيكاركردن‬
:
1
-
( Degree of Freedom )
‫ى‬
(
Structure
)
‫دةكةين‬ ‫ديارى‬ ‫كة‬ ‫ة‬
‫َةكان‬‫ل‬‫خا‬ ‫َةى‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ‫كة‬
(
Translations and Rotations
)
‫َوة‬‫ي‬‫ش‬ ‫بةم‬
‫َت‬‫ي‬‫دةردةكةو‬ ‫بؤ‬ ‫ماتريكسةكةمان‬ ‫ستيفنس‬ ‫قةبارةى‬
,
( ‫بؤ‬
Frame
.‫خوارةوةية‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ )
‫كةلة‬ ‫تر‬ ‫بةشانةى‬ ‫ئةو‬ ‫ِةضاوكردنى‬‫ر‬ ‫ِايى‬‫ر‬‫سةرة‬
(
Beam
)
.‫كردووة‬ ‫بامسان‬
2
-
( ‫َى‬‫ل‬‫خا‬ ‫ِةضاوكردنى‬‫ر‬
,3,4,5
2
( ‫بةشى‬ ‫لة‬ ‫كة‬ )
Beam
.‫بامسانكرد‬ )
//‫َبينى‬‫ي‬‫ت‬
( ‫دؤزينةوةى‬ ‫بؤ‬
FER
‫ئةم‬ ‫بؤ‬ ‫ةكان‬ )
‫ئةندامانةى‬
‫َزةكانيان‬‫ي‬‫ه‬ ‫بونى‬ ‫دابةش‬ ‫بؤ‬ ‫َت‬‫ي‬‫بكر‬ ‫طؤشةكةيان‬ ‫ِةضاوى‬‫ر‬ ‫َويستة‬‫ي‬‫ث‬ ‫نني‬ ‫ئاسؤيي‬ ‫كة‬
‫لة‬ ‫كة‬
‫ئاسؤييةوة‬
‫َر‬‫ي‬‫ذم‬ ‫كات‬ ‫ميلى‬ ‫َضةوانة‬‫ي‬‫ث‬ ‫بة‬
‫بؤ‬
‫ئةندامة‬
‫كة‬
‫َت‬‫ي‬‫َور‬‫ي‬‫دةث‬
.‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
)
=1
D3
(
ixed
F
-
for Fixed
Deformation
Rotation
B
6𝐸𝐼
𝐿2
cos θ
6𝐸𝐼
𝐿2
cos 𝜃
6𝐸𝐼
𝐿2
sin θ
6𝐸𝐼
𝐿2
sin θ
B
θ
DOF= 3 DOF= 1 or 0 DOF= 2 or 1
A
Typical Frame
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
29
D5
D6
D4
D2 ө
Ø
D4
D5
D6
D2
1
D1
D3
D1
D3
[
∑
EA
L
sin 𝜃 cos θ −
12EI
L3 sin𝜃 cosθ
∑
𝐸𝐴
𝐿
sin2
𝜃 +
12EI
L3 cos2
𝜃
∑
6𝐸𝐼
𝐿2 cosθ
−
EA
L
sin 𝜃 cos θ +
12EI
L3 sin𝜃 cos θ
−
𝐸𝐴
𝐿
sin2
𝜃 −
12EI
L3 cos2
𝜃
6𝐸𝐼
𝐿2 cosθ ]
1
[
∑
𝐸𝐴
𝐿
cos
2
𝜃 +
12EI
L3
sin
2
𝜃
∑
EA
L
sin 𝜃 cos θ −
12EI
L3
sin 𝜃 cos θ
∑ −
6𝐸𝐼
𝐿2
sin 𝜃
−
𝐸𝐴
𝐿
cos
2
𝜃 −
12EI
L3
sin
2
𝜃
−
EA
L
sin 𝜃 cos θ +
12EI
L3
sin 𝜃 cos θ
6𝐸𝐼
𝐿2
sin 𝜃 ]
=1
1
Fixed) D
-
Horizontal Deformation for (Fixed
Fixed) D2=1
-
Vertical Deformation for (Fixed
EA
L
sin
2
θ
EA
L
sin
2
θ
12EI
L
3
sin
𝜃
cos
𝜃
12EI
L
3
sin
𝜃
cos
𝜃
EA
L
sin
𝜃
cos
θ
EA
L
sin
𝜃
cos
θ
𝐸𝐴
𝐿
cos2
𝜃
12EI
L3
sin2
𝜃
12EI
L
3
sin
𝜃
cos
𝜃
B
A
EA
L
sin
𝜃
cos
θ
A
B
𝐸𝐴
𝐿
cos2
𝜃
12EI
L3
sin 𝜃 cos 𝜃
12EI
L3
sin2
𝜃
EA
L
sin
𝜃
cos
θ
A
B
B
A
12EI
L3
sin2
θ
12EI
L3
sin2
θ
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
30
1000 kg
A
B C
D
L=5m
L=4m
1m
D1
D2
D3
D4
D5
D6
D7
[
K11 K12 K13 K14 K15 K16 K17
K21 K22 K23 K24 K25 K26 K27
K31 K32 K33 K34 K35 K36 K37
K41 K42 K43 K44 K45 K46 K47
K51 K52 K53 K54 K55 K56 K57
K61 K62 K63 K64 K65 K66 K67
K71 K72 K73 K74 K75 K76 K77]
A
B C
D
Example (3)  Draw B.M.D and S.F.D for the Frame shown due to the Loads Shown and
where cross section of members (600*200)mm and E=2200kg/mm2
Solution:
DOF?
-
1
Rad)
Cm,
kg,
s
(Unit
K =? When DOF=1
,
=?
(FER)
-
2
)
4
cm
(
I
)
2
cm
kg/
(
E
)
2
(cm
A
(cm)
W
(cm)
H
(cm)
L
Member
4
36*10
4
*10
22
1200
20
60
500
AB
4
36*10
4
*10
22
1200
20
60
500
BC
4
36*10
4
*10
22
1200
20
60
400
CD
EA/L
3
12EI/L
2
6EI/L
4EI/L
2EI/L
Member
528000
7603.2
1900800
6336*105
3168*105
AB
528000
7603.2
1900800
6336*105
3168*105
BC
660000
14850
2970000
7920*105
3960*105
CD
DOF=7 Stiffness matrix=(7*7)
(F=KD)
[
F1
F2
F3
F4
F5
F6
F7 ]
=
[
D1
D2
D3
D4
D5
D6
D7 ]
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
31
1
[
K11
K21
K31
K41
K51
K61
K71]
=
[
722946.048
249790.464
1520640
−528000
0
0
0 ]
1
[
K12
K22
K32
K42
K52
K62
K72]
=
[
249790.464
348260.352
760320
0
−7603.2
1900800
0 ]
6𝐸𝐼
𝐿2
6𝐸𝐼
𝐿2
Column (1)
obtain
=0) to
7
,
2,3,4,5,6
=1, (D
1
D
=0) to obtain Column (2)
1,3,4,5,6,7
=1, (D
2
D
Cos(θ) Sin(θ)
)
θ
(
2
Cos
)
θ
(
2
Sin
Cos(θ)
Sin(θ)
Angle(θ)
Member
0.48
0.36
0.64
-0.6
-0.8
233.130
BA
0
1
0
1
0
0
BC
0
1
0
-1
0
180
CB
0
0
1
0
-1
270
CD
EA
L
sinθ cos θ
12EI
L3
sin θ cos θ
12EI
L3
sin2
θ
12EI
L3
cos2
θ
EA
L
cos2
θ
EA
L
sin2
θ
6EI
L2
cos θ
6EI
L2
sin θ
Member
253440
3649.536
4866.048
2737.152
190080
337920
-1140480
-1520640
BA
0
0
0
7603.2
528000
0
1900800
0
BC
253440
3649.536
4866.048
10340.352
718080
337920
760320
-1520640
Sum
0
0
0
7603.2
528000
0
-1900800
0
CB
0
0
14850
0
0
660000
0
-2970000
CD
0
0
14850
7603.2
528000
660000
-1900800
-2970000
Sum
12EI
L
3
EA
L
EA
L
C
B
A
B C
D
A
B C
D
B
12EI
L
3
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
32
[
K43
K24
K34
K44
K54
K64
K74]
=
1
[
−528000
0
0
542850
0
2970000
2970000]
6𝐸𝐼
𝐿2
6𝐸𝐼
𝐿2
6𝐸𝐼
𝐿2
6𝐸𝐼
𝐿2
6𝐸𝐼
𝐿2
[
K13
K23
K33
K43
K53
K63
K73]
=
[
1520640
760320
1267200000
0
−1900800
316800000
0 ]
[
K15
K25
K35
K45
K55
K65
K75]
=
1
[
0
−7603.2
−1900800
0
667603.2
−1900800
0 ]
6𝐸𝐼
𝐿2
6𝐸𝐼
𝐿2
=0) to obtain Column (3)
1,2,4,5,6,7
=1, (D
3
D
D4=1, (D1,2,3,5,6,7=0) to obtain Column (4)
D5=1, (D1,2,3,4,6,7=0) to obtain Column (5)
EA
L
12EI
L3
EA
L
EA
L
4𝐸𝐼
𝐿
2𝐸𝐼
𝐿
4𝐸𝐼
𝐿
B
A
D
A
B C
D
C
C
B
B C
θ
A
B C
D
D
12EI
L3
B
12EI
L3
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
33
[
K16
K26
K36
K46
K56
K66
K76]
=
[
0
1900800
316800000
2970000
−1900800
1425600000
396000000 ]
θ
[
K17
K27
K37
K47
K57
K67
K77]
=
[
0
0
0
2970000
0
396000000
792000000]
θ
2𝐸𝐼
𝐿
2𝐸𝐼
𝐿
[
722946.048 249790.464 1520640 −528000 0 0 0
249790.464 348260.352 760320 0 −7603.2 1900800 0
1520640 760320 1267200000 0 −1900800 316800000 0
−528000 0 0 542850 0 2970000 2970000
0 −7603.2 −1900800 0 667603.2 −1900800 0
0 1900800 316800000 2970000 −1900800 1425600000 396000000
0 0 0 2970000 0 396000000 792000000]
[
K11 K12 K13 K14 K15 K16 K17
K21 K22 K23 K24 K25 K26 K27
K31 K32 K33 K34 K35 K36 K37
K41 K42 K43 K44 K45 K46 K47
K51 K52 K53 K54 K55 K56 K57
K61 K62 K63 K64 K65 K66 K67
K71 K72 K73 K74 K75 K76 K77]
=
4𝐸𝐼
𝐿
6𝐸𝐼
𝐿2
6𝐸𝐼
𝐿2
6𝐸𝐼
𝐿2
2𝐸𝐼
𝐿
4𝐸𝐼
𝐿
4𝐸𝐼
𝐿
6𝐸𝐼
𝐿2
D6=1, (D1,2,3,4,5,7=0) to obtain Column (6)
D7=1, (D1,2,3,4,5,6=0) to obtain Column (7)
//‫َبينى‬‫ي‬‫ت‬
( ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
∆
( ‫هؤى‬ ‫َتة‬‫ي‬‫دةب‬ ‫كة‬ ‫دةدؤزينةوة‬ )
Shear
)
‫ئةندامةكاندا‬ ‫لة‬
.
( ‫ئةم‬ ‫ئةوةى‬ ‫بةر‬ ‫لة‬
∆
‫شيكا‬ ‫لة‬ ‫كة‬ )
‫ر‬
‫ى‬
‫ِيزكر‬‫ر‬
‫ئةي‬ ‫اوةكةدا‬
‫تةوة‬ ‫ئاراستةى‬ ‫بة‬ ‫دؤزينةوة‬
‫ر‬
.‫ئةندامةكة‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بؤ‬ ‫ِين‬‫ر‬‫بيانطؤ‬ ‫َويستة‬‫ي‬‫ث‬ ‫طشتني‬ ‫ةى‬
𝜃
∆Ax
∆Ay
∆Bx
∆By
A
B
C
A
B C
D
B
D
D
A
B
C
D
C
∆= (∆By − ∆Ay) cos 𝜃 − (∆Bx − ∆Ax) sin 𝜃
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
34
[
722946.048 249790.464 1520640 −528000 0 0 0
249790.464 348260.352 760320 0 −7603.2 1900800 0
1520640 760320 1267200000 0 −1900800 316800000 0
−528000 0 0 542850 0 2970000 2970000
0 −7603.2 −1900800 0 667603.2 −1900800 0
0 1900800 316800000 2970000 −1900800 1425600000 396000000
0 0 0 2970000 0 396000000 792000000]
Fixed End Reaction ? for member Loads:
-
3
4- Joint Force Vector?
Invert of FER=
Joint Force Vector =
C
B
104kg
896kg
1000kg
16000kg.cm
64000kg.cm
D
C
0
0
0
0
150kg
200kg
C
B
104kg
896kg
16000kg.cm
64000kg.cm
D
C
0
0
0
0
200kg
150kg
B
200kg
1046kg
C
0
104kg
0
D
[
F1
F2
F3
F4
F5
F6
F7 ]
=
[
200
−1046
−32750
0
−104
16000
0 ]
[
200
−1046
−32750
0
−104
16000
0 ]
=
[
D1
D2
D3
D4
D5
D6
D7 ]
F=KD
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
35
-1
[
722946.048 249790.464 1520640 −528000 0 0 0
249790.464 348260.352 760320 0 −7603.2 1900800 0
1520640 760320 1267200000 0 −1900800 316800000 0
−528000 0 0 542850 0 2970000 2970000
0 −7603.2 −1900800 0 667603.2 −1900800 0
0 1900800 316800000 2970000 −1900800 1425600000 396000000
0 0 0 2970000 0 396000000 792000000]
Moment = ?
-
5
[
D1
D2
D3
D4
D5
D6
D7 ]
=
[
200
−1046
−32750
0
−104
16000
0 ]
[
D1
D2
D3
D4
D5
D6
D7 ]
=
[
0.0525065441654327𝑐𝑚
−0.0406883975484445 𝑐𝑚
−7.32555333685725 ∗ 10−5
𝑟𝑎𝑑
0.0520538439417292 𝑐𝑚
−0.000739980109877633 𝑐𝑚
3.08254696846886 ∗ 10−5
𝑟𝑎𝑑
−2.10614649623829 ∗ 10−4
𝑟𝑎𝑑]
MAB = MFER(AB) +
2EI
L
(2θA + θB −
3∆
L
) , MBA = MFER(BA) +
2EI
L
(2θB + θA −
3∆
L
)
∴ 𝐌𝐀𝐁 = 𝟏𝟑𝟒𝟐𝟗𝟎. 𝟓𝟎𝟐 𝐤𝐠. 𝐜𝐦
MAB = 31250 +
2 ∗ 220000 ∗ 36 ∗ 104
500
(2 ∗ 0 − 7.32555333685725 ∗ 10−5
−
3 ∗ −0.0664182738614128
500
)
MBA = −31250 +
2 ∗ 220000 ∗ 36 ∗ 104
500
(2 ∗ −7.32555333685725 ∗ 10−5
+ 0 −
3 ∗ −0.0664182738614128
500
)
∴ 𝐌𝐁𝐂 = −𝟒𝟖𝟓𝟖𝟑. 𝟏𝟓 𝐤𝐠. 𝐜𝐦
MBC = MFER(BC) +
2EI
L
(2θB + θC −
3∆
L
) , MCB = MFER(CB) +
2EI
L
(2θC + θB −
3∆
L
)
MBC = 64000 +
2 ∗ 220000 ∗ 36 ∗ 104
500
(2 ∗ −7.32555333685725 ∗ 10−5
+ 3.08254696846886 ∗ 10−5
−
3 ∗ 0.0399484174385668
500
)
∴ 𝐌𝐁𝐀 = 𝟒𝟖𝟓𝟖𝟑. 𝟏𝟓 𝐤𝐠. 𝐜𝐦
MCB = −16000 +
2 ∗ 220000 ∗ 36 ∗ 104
500
(2 ∗ 3.08254696846886 ∗ 10−5
− 7.32555333685725 ∗ 10−5
−
3 ∗ −0.0399484174385668
500
)
∴ 𝐌𝐂𝐁 = −𝟗𝟓𝟔𝟏𝟎. 𝟐𝟗 𝐤𝐠. 𝐜𝐦
MCD = MFER(CD) +
2EI
L
(2θC + θD −
3∆
L
) , MDC = MFER(DC) +
2EI
L
(2θD + θC −
3∆
L
)
MCD = 0 +
2 ∗ 220000 ∗ 36 ∗ 104
400
(2 ∗ 3.08254696846886 ∗ 10−5
− 2.10614649623829 ∗ 10−4
−
3 ∗ −0.0520538439417292
400
)
∴ 𝐌𝐂𝐃 = 𝟗𝟓𝟔𝟏𝟎. 𝟐𝟗 𝐤𝐠. 𝐜𝐦 𝐌𝐃𝐂 = 𝟎 (It must be zero, since it is hinge )
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
36
Shear = ?
‫يان‬:
𝟎
𝐁
−𝟒𝟖𝟓𝟖𝟑. 𝟏𝟓
𝐀
−𝟏𝟗𝟔𝟒𝟔. 𝟑𝟐
𝟒𝟐𝟖𝟓𝟑. 𝟔𝟖
𝟗𝟓𝟔𝟏𝟎. 𝟐𝟗
−𝟏𝟗𝟕𝟒𝟒. 𝟒𝟔 𝐂
𝐃
−𝟗𝟗𝟕𝟒𝟒. 𝟒𝟔
B.M.D( kg.cm)
𝐁
𝐀
(134290.29+48583.15)/500=365.75kg
365.75 250+365.75 =615.75
365.75 250-365.75 =-115.75
-
S.F.D for A -B
( ‫دةتوانني‬
Shear
)
‫هؤى‬ ‫بة‬ ‫بدؤزينةوة‬
‫زةبرةوة‬
(
Moment
)
‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
:
SAB =S(FER)AB+
6EI
L2 (θA + θB −
2∆
L
) → SAB = 250+
6∗220000∗36∗104
250000
(0 + −7.32555333685725 ∗ 10−5
−
2∗−0.0664182738614128
500
)
∴ 𝐒𝐀𝐁 = 𝟏𝟔𝟏𝟓. 𝟕𝟓 𝐤𝐠
SBA =S(FER)BA-
6EI
L2 (θA + θB −
2∆
L
) → SBA = 250-
6∗220000∗36∗104
250000
(0 + −7.32555333685725 ∗ 10−5
−
2∗−0.0664182738614128
500
)
∴ 𝐒𝐁𝐀 = −𝟏𝟏𝟓. . 𝟕𝟓 𝐤𝐠
SBC =S(FER)BC+
6EI
L2 (θC + θB −
2∆
L
)
→ SBC = 896+
6∗220000∗36∗104
250000
(3.08254696846886 ∗ 10−5
− 7.32555333685725 ∗ 10−5
−
2∗0.03994841743857
500
)
∴ 𝐒𝐁𝐂 = 𝟓𝟏𝟏. 𝟔𝟏 𝐤𝐠
SCB =S(FER)BC-
6EI
L2 (θC + θB −
2∆
L
)
→ SCB = 104-
6∗220000∗36∗104
250000
(3.08254696846886 ∗ 10−5
− 7.32555333685725 ∗ 10−5
−
2∗0.03994841743857
500
)
∴ 𝐒𝐂𝐁 = 𝟒𝟖𝟖. 𝟑𝟗 𝐤𝐠
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
37
‫بةراوردى‬
‫بة‬ ‫منوونةكة‬ ‫شيكارى‬ ‫ئةجنامى‬
‫ئةجنامى‬
:‫َرةكان‬‫ي‬‫و‬ ‫سؤفت‬
Note
D
C
B
A
(kg.cm)
Moment
0
95610.29
48583.15
-
134290.50
‫ئةجنامى‬
‫منوونةكة‬
OK
0
95610.29
48583.15
-
134290.51
STAAD V8i
OK
0
95610.29
48583.15
-
134290.50
SAP2000
( ‫بة‬ ‫ئةجنامةكان‬ ‫ئايا‬
ETABS
‫ضةند‬ )
‫ن‬
‫؟‬
?
?
?
?
ETABS
Note
D
C
B
A
)
(kg
Shear
CD
CB
BC
BA
239.03
239.03
488.39
511.61
115.75
615.75
‫ئةجنامى‬
‫منوونةكة‬
OK
239.03
239.03
488.39
511.61
115.75
615.75
STAAD V8i
OK
239.03
239.03
488.39
511.61
115.75
615.75
SAP2000
( ‫بة‬ ‫ئةجنامةكان‬ ‫ئايا‬
ETABS
‫ضةند‬ )
‫ن‬
‫؟‬
?
?
?
?
?
?
ETABS
239.03
-488.39
511.61
𝐃
𝐁
𝐀
𝐂
S.F.D(kg)
SDC =S(FER)DC-
6EI
L2 (θC + θD −
2∆
L
)
→ SDC = 0-
6∗220000∗36∗104
160000
( 3.08254696846886 ∗ 10−5
+ −2.10614649623829 ∗ 10−4
−
2∗−0.0520538439417292
400
)
∴ 𝐒𝐃𝐂 = −𝟐𝟑𝟗. 𝟎𝟑 𝐤𝐠
SCD =S(FER)CD+
6EI
L2 (θC + θD −
2∆
L
)
→ SCD = 0+
6∗220000∗36∗104
160000
( 3.08254696846886 ∗ 10−5
+ −2.10614649623829 ∗ 10−4
−
2∗−0.0520538439417292
400
)
∴ 𝐒𝐂𝐃 = 𝟐𝟑𝟗. 𝟎𝟑 𝐤𝐠
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
38
D1
D2
D1
1
EA
L
sin
𝜃
cos
θ
EA
L
sin
𝜃
cos
θ
𝐸𝐴
𝐿
cos2
𝜃
𝐸𝐴
𝐿
cos2
𝜃
[
∑
𝐸𝐴
𝐿
cos2
𝜃
∑
𝐸𝐴
𝐿
sin 𝜃 cos 𝜃
−
𝐸𝐴
𝐿
cos2
𝜃
−
𝐸𝐴
𝐿
sin 𝜃 cos 𝜃]
3- 2D Trusses Analysis by Direct Stiffness Method
‫هةنطاوةكانى‬
‫شيكاركردن‬
:
1
-
( Degree of Freedom )
‫ى‬
(
Structure
)
‫دةكةين‬ ‫ديارى‬ ‫كة‬ ‫ة‬
(‫َةكان‬‫ل‬‫خا‬ ‫َةى‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ‫كة‬
Translations
)
‫ستيفنس‬ ‫قةبارةى‬ ‫َوة‬‫ي‬‫ش‬ ‫بةم‬
‫َت‬‫ي‬‫دةردةكةو‬ ‫بؤ‬ ‫ماتريكسةكةمان‬
,
( ‫بؤ‬
Truss
.‫خوارةوةية‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ )
2
-
(
Structure
‫و‬ ‫دةكةين‬ ‫بةش‬ ‫بةش‬ ‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ‫ةكة‬ )
(
Pinned End Reaction
)
‫بؤ‬ ‫ئةدؤزينةوة‬
‫يةكةلة‬ ‫يةك‬
(
Axial
Deformation
)
( ‫َى‬‫ي‬‫ث‬ ‫بة‬
DOF
‫دةدؤزينةوة‬ ‫ماتريكسةكة‬ ‫ستيفنس‬ ‫بةمةش‬ ‫كان‬ ‫ة‬ )
‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
.
- 3
(
Joint Force Vector
)
‫بؤ‬ ‫ئةدؤزينةوة‬
(
Joint Loads
)
‫ئةو‬ ‫بؤ‬ ‫تايبةت‬ ‫بة‬
( ‫بة‬ ‫بةرامبةر‬ ‫كة‬ ‫َزانةى‬‫ي‬‫ه‬
DOF
.‫نني‬ ‫كان‬ ‫ة‬ )
4
-
‫سةرئةجنامى‬
(
Joint Force Vector
)
‫كان‬ ‫ة‬
‫ئةدؤزينةوة‬
‫و‬
‫بة‬ ‫بةرامبةر‬ ‫َزةكةوة‬‫ي‬‫ه‬ ‫ماتريكسى‬ ‫ناو‬ ‫دةخيةينة‬
(
Degree of Freedom
)
.‫كة‬ ‫ة‬
.‫دةكةين‬ ‫شيكار‬ ‫ماتريكسةكة‬ ‫َشة‬‫ي‬‫هاوك‬ ‫دواتر‬
5
-
‫ئةندامةكان‬ ‫ناو‬ ‫َزى‬‫ي‬‫ه‬
‫ئةدؤزينةوة‬
(
s
Internal Force of Member
)
A
F
//‫َبينى‬‫ي‬‫ت‬
( ‫دؤزينةوةى‬ ‫بؤ‬
PER
‫ئةم‬ ‫بؤ‬ ‫ةكان‬ )
‫ئةنداما‬
‫كة‬ ‫نةى‬
‫لة‬ ‫كة‬ ‫َزةكانيان‬‫ي‬‫ه‬ ‫بونى‬ ‫دابةش‬ ‫بؤ‬ ‫َت‬‫ي‬‫بكر‬ ‫طؤشةكةيان‬ ‫ِةضاوى‬‫ر‬ ‫َويستة‬‫ي‬‫ث‬ ‫نني‬ ‫ئاسؤيي‬
‫َضةوانة‬‫ي‬‫ث‬ ‫بة‬ ‫ئاسؤييةوة‬
‫ى‬
‫بؤ‬ ‫َر‬‫ي‬‫ذم‬ ‫كات‬ ‫ميلى‬
‫َت‬‫ي‬‫َور‬‫ي‬‫دةث‬ ‫ئةندامةكة‬
.‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
=
𝐸𝐴∆
𝐿
DOF= 2 DOF= 0 DOF= 1
Some Typical Truss
∆
𝐸𝐴∆
𝐿
A B 𝐸𝐴∆
𝐿
A
∆
B
𝐸𝐴∆
𝐿
A B 𝐸𝐴∆
𝐿
Horizontal Deformation for (Pinned- Pinned) D1=1
D4
D3
𝜃
D2
D1=1
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
39
EA
L
sin
2
𝜃
𝐸𝐴
𝐿
sin 𝜃 cos θ
EA
L
sin
2
𝜃
𝐸𝐴
𝐿
sin 𝜃 cos θ
[
∑
𝐸𝐴
𝐿
sin 𝜃 cos 𝜃
∑
𝐸𝐴
𝐿
sin2
𝜃
−
𝐸𝐴
𝐿
sin 𝜃 cos 𝜃
−
𝐸𝐴
𝐿
sin2
𝜃 ]
[
K11 K12 K13 K14 K15
K21 K22 K23 K24 K25
K31 K32 K33 K34 K35
K41 K42 K43 K44 K45
K51 K52 K53 K54 K55]
hown due to the
s
russ
T
at (D) and internal forces for the
Calculate the Joint Displacement

(4)
Example
all members are pin connected.
ll members,
a
for
2
A=0.05m
,
2
ton/m
7
2*10
where E=
,
shown
Load
Solution:
?
DOF
-
1
C
C
A
B
Verticall Deformation for (Pinned - Pinned) D2=1
D3
𝜃
D4
D2=1
D1
//‫َبينى‬‫ي‬‫ت‬
( ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
∆
( ‫هؤى‬ ‫َتة‬‫ي‬‫كةدةب‬ ‫دةدؤزينةوة‬ )
Axial Force
‫لة‬ )
‫ئةندامةكاندا‬
( ‫ئةم‬ ‫ئةوةى‬ ‫بةر‬ ‫لة‬.
∆
‫شيكارى‬ ‫لة‬ ‫كة‬ )
‫ئةندامةكة‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بؤ‬ ‫ِين‬‫ر‬‫بيانطؤ‬ ‫َويستة‬‫ي‬‫ث‬ ‫طشتني‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بة‬ ‫ئةيدؤزينةوة‬ ‫ِيزكراوةكةدا‬‫ر‬
.
𝜃
∆Ax
∆Ay
∆Bx
∆By
A
B
∆= (∆By − ∆Ay) sin 𝜃 + (∆Bx − ∆Ax) cos 𝜃
1
4m
4m
3m
50 ton
A
B
D
D3
D4
D5
D2
D1
DOF=5 Stiffness matrix=(5*5)
[
F1
F2
F3
F4
F5 ]
=
[
D1
D2
D3
D4
D5 ]
(F= KD)
A
B
D
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
40
[
∑
𝐸𝐴
𝐿
cos2
𝜃{𝐴𝐵,𝐴𝐷}
−
𝐸𝐴
𝐿
cos2
𝜃
−
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
−
𝐸𝐴
𝐿
cos2
𝜃
−
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 ]
[
K11
K21
K31
K41
K51]
= =
[
0.378EA
−0.25EA
0
−0.128EA
−0.096EA]
[
−
𝐸𝐴
𝐿
cos2
𝜃
∑
𝐸𝐴
𝐿
cos2
𝜃{𝐴𝐵,𝐵𝐶,𝐵𝐷}
∑
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃{𝐵𝐴,𝐵𝐶,𝐵𝐷}
−
𝐸𝐴
𝐿
cos2
𝜃
−
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 ]
[
K12
K22
K32
K42
K52]
= =
[
−0.25EA
0.5EA
0
0
0 ]
[
−
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
∑
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃{𝐵𝐴,𝐵𝐶,𝐵𝐷}
∑
𝐸𝐴
𝐿
sin2
𝜃{𝐵𝐴,𝐵𝐶,𝐵𝐷}
−
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
−
𝐸𝐴
𝐿
sin2
𝜃 ]
[
K13
K23
K33
K43
K53]
= =
[
0
0
1/3EA
0
−1/3EA]
ton, m)
s
(Unit
K =? When DOF=1
,
=?
ER)
P
(
-
2
EA
L
sinθ cos θ
EA
L
cos2
θ
EA
L
sin2
θ
Angle(θ)
EA/L
)
(ton/m
)
2
ton/m
(
E
)
2
(m
A
(m)
L
Member
Point
0
0.25 EA
0
0
0.25 EA
2*107
0.05
4
AB
A
0.096EA
0.128EA
0.072EA
36.87
0.2 EA
2*107
0.05
5
AD
0.096EA
0.378EA
0.072EA
∑ 𝐴𝐵, 𝐴𝐷
0
0.25 EA
0
180
0.25 EA
2*107
0.05
4
BA
B 0
0.25 EA
0
0
0.25 EA
2*107
0.05
4
BC
0
0
1/3EA
90
1/3 EA
2*107
0.05
3
BD
0
0.5EA
1/3EA
∑ 𝐵𝐴, 𝐵𝐶, 𝐵𝐷
0
0
1/3EA
270
1/3EA
2*107
0.05
3
DB
D
0.096EA
0.128EA
0.072EA
216.87
0.2 EA
2*107
0.05
5
DA
-0.096EA
0.128EA
0.072EA
323.13
0.2 EA
2*107
0.05
5
DC
0
0.256EA
1.432/3EA
∑ 𝐷𝐴, 𝐷𝐵
,DC
=0) to obtain Column (1)
2,3,4,5
=1, (D
1
D
=0) to obtain Column (2)
1,3,4,5
=1, (D
2
D
)
3
=0) to obtain Column (
1,2,4,5
=1, (D
3
D
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
41
[
−
𝐸𝐴
𝐿
cos2
𝜃
−
𝐸𝐴
𝐿
cos2
𝜃
−
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
∑
𝐸𝐴
𝐿
cos2
𝜃{𝐷𝐴,𝐷𝐶,𝐷𝐵}
∑
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃{𝐷𝐴,𝐷𝐶,𝐷𝐵}]
[
K14
K24
K34
K44
K54]
= =
[
−0.128EA
0
0
0.256EA
0 ]
[
−
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
−
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
−
𝐸𝐴
𝐿
sin2
𝜃
∑
𝐸𝐴
𝐿
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃{𝐷𝐴,𝐷𝐶,𝐷𝐵}
∑
𝐸𝐴
𝐿
sin2
𝜃{𝐷𝐴,𝐷𝐶,𝐷𝐵} ]
[
K15
K25
K35
K45
K55]
= =
[
−0.096EA
0
−1/3EA
0
1.432/3EA]
[
K11 K12 K13 K14 K15
K21 K22 K23 K24 K25
K31 K32 K33 K34 K35
K41 K42 K43 K44 K45
K51 K52 K53 K54 K55]
=
[
0.378𝐸𝐴 −0.25𝐸𝐴 0 −0.128𝐸𝐴 −0.096𝐸𝐴
−0.25𝐸𝐴 0.5𝐸𝐴 0 0 0
0 0 1/3𝐸𝐴 0 −1/3𝐸𝐴
−0.128𝐸𝐴 0 0 0.256𝐸𝐴 0
−0.096𝐸𝐴 0 −1/3𝐸𝐴 0. 1.432/3𝐸𝐴]
=0) to obtain Column (4)
1,2,3,5
=1, (D
4
D
=0) to obtain Column (5)
4
1,2,4,
=1, (D
5
D
Loads:
Joint
At
?
Joint Force Vector
-
3
4-
50 ton
[
F1
F2
F3
F4
F5 ]
=
[
0
0
−50
0
0 ]
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
42
[
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5]
[
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5]
=
-1
[
𝐷1
𝐷2
𝐷3
𝐷4
𝐷5]
=
[
0.378𝐸𝐴 −0.25𝐸𝐴 0 −0.128𝐸𝐴 −0.096𝐸𝐴
−0.25𝐸𝐴 0.5𝐸𝐴 0 0 0
0 0 1/3𝐸𝐴 0 −1/3𝐸𝐴
−0.128𝐸𝐴 0 0 0.256𝐸𝐴 0
−0.096𝐸𝐴 0 −1/3𝐸𝐴 0 1.486/3𝐸𝐴]
[
0
0
−50
0
0 ]
=
= ?
nternal Forces
I
-
5
F (Ton) =
EA
L
∆
(m)
)
∆
(
1
𝐸𝐴
)
2
(ton/m
EA/L
)
2
ton/m
(
E
)
2
(m
A
(m)
L
Member
sion
ten
4
33.3
133.4
0.25 EA
2*107
0.05
4
AB
tension
33.33
133.3
0.25 EA
2*107
0.05
4
BC
presion
com
41.67
-
-208.33
0.2 EA
2*107
0.05
5
CD
presion
com
7
41.6
-
-208.34
0.2 EA
2*107
0.05
5
DA
tension
50
150
EA /3
2*107
0.05
3
BD
Joint Displacement at (D)
=
(D)
Horizontal Displacement at
=
(D)
Vertical Displacement at
‫بةراوردى‬
‫منوونةكة‬ ‫شيكارى‬ ‫ئةجنامى‬
‫بة‬
‫ئةجنامى‬
‫سؤفت‬
:‫َرةكان‬‫ي‬‫و‬
Note
A
D
BD
D
C
C
B
B
A
Force (ton)
-41.67
50
-41.67
33.33
33.34
‫منوونةكة‬ ‫ئةجنامى‬
OK
-41.67
50
-41.67
33.33
33.33
STAAD V8i
OK
-41.67
50
-41.67
33.33
33.33
SAP2000
‫بة‬ ‫ئةجنامةكان‬ ‫ئايا‬
(
ETABS
‫ضةند‬ )
‫ن‬
‫؟‬
?
?
?
?
?
ETABS
[
0
0
−50
0
0 ]
1
𝐸𝐴
[
0.378 −0.25 0 −0.128 −0.096
−0.25 0.5 0 0 0
0 0 1/3 0 −1/3
−0.128 0 0 0.256 0
−0.096 0 −1/3 0 1.486/3]
1
𝐸𝐴
[
−266.67
−133.33
−675
−133.33
−525 ]
m
1
𝐸𝐴
∗ (−133.33) = -1.3333*10-4
= 1.3333*10-4
m
1
𝐸𝐴
∗ (−525) = -5.25*10-4
= 5.25*10-4
m
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
43
A
Y
Local Axis
A
DOF=6
RY
RX
RZ
RZ
RX
RY
‫َماى‬‫ي‬‫ه‬
‫َوة‬‫ي‬‫ش‬ ‫بةم‬ ‫زةبرةكان‬ ‫ئاراستةى‬
‫َنة‬‫ي‬‫و‬
‫دةكةين‬
:
x
: ( 3D Structure )
‫دةطوجن‬ ‫كة‬ ‫َكهاتانةن‬‫ي‬‫ث‬ ‫ئةو‬
‫َت‬‫ي‬
‫َز‬‫ي‬‫ه‬
‫زةبر‬ ‫و‬
(
Load, Moment
)
‫َكدا‬‫ي‬‫ِوتةخت‬‫ر‬ ‫هةر‬ ‫لة‬
‫كار‬
‫ي‬
‫خبةنة‬ ‫طةريان‬
‫سةر‬
.
//‫َبينى‬‫ي‬‫ت‬
‫شيكارى‬ ‫لة‬
(
Beam, Frame
)
‫لة‬
(
3D Structure
( ‫بة‬ ‫راورد‬ ‫بة‬ )
2D Structure
( َ‫ى‬‫س‬ )
DOF
)
‫وةك‬ ‫َت‬‫ي‬‫دةب‬ ‫زياد‬
‫سةرةوةدا‬ ‫َنةكةى‬‫ي‬‫و‬ ‫لة‬
‫دةيبينني‬
.
‫ئةندا‬ ‫َذاى‬‫ي‬‫در‬ ‫بة‬ ‫كة‬ ‫ِانةى‬‫ر‬‫سو‬ ‫ئةو‬ ‫َت‬‫ي‬‫ِةضاوبكر‬‫ر‬ ‫َويستة‬‫ي‬‫ث‬ ‫كة‬ ‫ئةوةى‬ ‫وة‬
( ‫َتة‬‫ي‬‫دةب‬ ‫ِوودةدات‬‫ر‬ ‫مةكة‬
Torsion
)
( ‫ِةضاوكردنى‬‫ر‬ َ‫ل‬‫لةطة‬
moment of Inertia
)
.‫َةتةكان‬‫ل‬‫حا‬ ‫طشت‬ ‫بؤ‬
4- 3D Beams Analysis by Direct Stiffness Method
‫هةنطاوةكانى‬
‫شيكاركردن‬
:
1
-
( Degree of Freedom )
‫ى‬
(
Structure
)
‫دةكةين‬ ‫ديارى‬ ‫كة‬ ‫ة‬
‫َةى‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ‫كة‬
‫َةكان‬‫ل‬‫خا‬
(
Translations and Rotations
)
‫َوة‬‫ي‬‫ش‬ ‫بةم‬
‫َت‬‫ي‬‫دةردةكةو‬ ‫بؤ‬ ‫ماتريكسةكةمان‬ ‫ستيفنس‬ ‫قةبارةى‬
.
2
-
(
Structure
‫و‬ ‫دةكةين‬ ‫بةش‬ ‫بةش‬ ‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ‫ةكة‬ )
(
Fixed End Reaction
)
‫بؤ‬ ‫ئةدؤزينةوة‬
‫يةكةلة‬ ‫يةك‬
Deformation
(
Rotation, Shear , Axial
)
( ‫َى‬‫ي‬‫ث‬ ‫بة‬
DOF
‫دةدؤزينةوة‬ ‫ماتريكسةكة‬ ‫ستيفنس‬ ‫بةمةش‬ ‫كان‬ ‫ة‬ )
‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬
.
D6 D5
D4
D3
D2
D1
Z
Y
X
Z
Global Axis
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
44
)
1
=
z
θ
(
ixed
F
-
for Fixed
Deformation
Rotation
`
)
=1
y
θ
(
fixed
-
for Fixed
Deformation
Rotation
Z
Z
Y
6𝐸𝐼𝑦𝜃𝑦
𝐿2
6𝐸𝐼𝑦𝜃𝑦
𝐿2
4𝐸𝐼𝑦𝜃𝑦
𝐿
2𝐸𝐼𝑦𝜃𝑦
𝐿
Z
Y
6𝐸𝐼𝑦
𝐿2
6𝐸𝐼𝑦
𝐿2
4𝐸𝐼𝑦
𝐿
2𝐸𝐼𝑦
𝐿
Z
Y
Z
Y
6𝐸𝐼𝑦𝜃𝑦
𝐿2
6𝐸𝐼𝑦𝜃𝑦
𝐿2
2𝐸𝐼𝑦𝜃𝑦
𝐿
4𝐸𝐼𝑦𝜃𝑦
𝐿
Z
Y
6𝐸𝐼𝑦
𝐿2
6𝐸𝐼𝑦
𝐿2
2𝐸𝐼𝑦
𝐿
4𝐸𝐼𝑦
𝐿
Z
Y
Z
Y
Z
Y
6𝐸𝐼𝑧𝜃𝑧
𝐿2
6𝐸𝐼𝑧𝜃𝑧
𝐿2
4𝐸𝐼𝑧𝜃𝑧
𝐿
2𝐸𝐼𝑧𝜃𝑧
𝐿
Z
Y
6𝐸𝐼𝑧
𝐿2
6𝐸𝐼𝑧
𝐿2
2𝐸𝐼𝑧
𝐿
4𝐸𝐼𝑧
𝐿
Z
Y
6𝐸𝐼𝑧𝜃𝑧
𝐿2
6𝐸𝐼𝑧𝜃𝑧
𝐿2
2𝐸𝐼𝑧𝜃𝑧
𝐿
4𝐸𝐼𝑧𝜃𝑧
𝐿
Y
6𝐸𝐼𝑧
𝐿2
6𝐸𝐼𝑧
𝐿2
4𝐸𝐼𝑧
𝐿
2𝐸𝐼𝑧
𝐿
Z
Y
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
45
)
1
=
x
θ
(
ixed
F
-
for Fixed
Deformation
Rotation
=1)
y
(∆
Fixed
-
for Fixed
Deformation
Shear
Z
𝐺𝐼𝑥𝜃𝑥
𝐿
𝐺𝐼𝑥𝜃𝑥
𝐿
∆y
∆y
6𝐸𝐼𝑧∆𝑦
𝐿2
6𝐸𝐼𝑧∆𝑦
𝐿2
12EIz∆y
L3
12EIz∆y
L3
Z
Y
Z
𝐺𝐼𝑥𝜃𝑥
𝐿
𝐺𝐼𝑥𝜃𝑥
𝐿
𝐺𝐼𝑥
𝐿
𝐺𝐼𝑥
𝐿
Y
Z
6𝐸𝐼𝑧
𝐿2
6𝐸𝐼𝑧
𝐿2
12EIz
L3
12EIz
L3
Y
Y Y
6𝐸𝐼𝑧∆𝑦
𝐿2
6𝐸𝐼𝑧∆𝑦
𝐿2
12EIz∆y
L3
12EIz∆y
L3
Z
Y
12EIz
L3
6𝐸𝐼𝑧
𝐿2
6𝐸𝐼𝑧
𝐿2
12EIz
L3
Z
𝐺𝐼𝑥
𝐿
𝐺𝐼𝑥
𝐿
Y
Z
Y
Z
Y
Y
Z
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
46
Shear Deformation for Fixed-Fixed(∆z=1)
=1)
x
(∆
Fixed
-
for Fixed
Deformation
Axial
( ‫َوازى‬‫ي‬‫ش‬ ‫تةنها‬ ‫ئةطةر‬
Fixed-Fixed
)
‫َرين‬‫ي‬‫َبذ‬‫ل‬‫هة‬
‫ئةندامةكان‬ ‫طشت‬ ‫بؤ‬ ‫ِدةكةينةوة‬‫ر‬‫ث‬ ‫خوارةوة‬ ‫خشتةى‬ ‫ئةم‬ ‫ئةوا‬
.
3
-
( ‫َى‬‫ل‬‫خا‬ ‫ِةضاوكردنى‬‫ر‬
3,4,5
( ‫بةشى‬ ‫لة‬ ‫كة‬ )
Beam
.‫َبينيةكان‬‫ي‬‫ت‬ ‫طشت‬ َ‫ل‬‫لةطة‬.‫بامسانكرد‬ )
x
I
y
I
z
I
E
A
H
W
L
Member
A-B
EA/L
/L
x
I
G
3
/L
y
12EI
3
/L
z
12EI
2
/L
y
6EI
2
/L
z
6EI
/L
y
EI
4
/L
y
EI
2
/L
z
EI
4
/L
z
2EI
Member
A-B
𝐸𝐴
𝐿
𝐸𝐴∆𝑥
𝐿
Y
Z
Z
Z
Y
𝐸𝐴∆𝑥
𝐿 𝐸𝐴
𝐿
Z
6𝐸𝐼𝑦∆𝑧
𝐿2
12𝐸𝐼𝑦∆𝑧
𝐿3
12𝐸𝐼𝑦∆𝑧
𝐿3
6𝐸𝐼𝑦∆𝑧
𝐿2
∆z
∆x
∆x
𝐸𝐴∆𝑥
𝐿
𝐸𝐴∆𝑥
𝐿
𝐸𝐴
𝐿
𝐸𝐴
𝐿
Y
Z
Y
Y
Z
∆z
Y
6𝐸𝐼𝑦
𝐿2
12𝐸𝐼𝑦
𝐿3
12𝐸𝐼𝑦
𝐿3
6𝐸𝐼𝑦
𝐿2
6𝐸𝐼𝑦
𝐿2
12𝐸𝐼𝑦
𝐿3
12𝐸𝐼𝑦
𝐿3
6𝐸𝐼𝑦
𝐿2
Y
Z
Y
Z
Y
Z
Y
Z
6𝐸𝐼𝑦∆𝑧
𝐿2
12𝐸𝐼𝑦∆𝑧
𝐿3
12𝐸𝐼𝑦∆𝑧
𝐿3
6𝐸𝐼𝑦∆𝑧
𝐿2
Y
Z
Y
Z
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
47
(0,6,0)
D2
(4,0,0)
(4,0,0)
A
A
B
C
B
C
6m
2000kg
1000kg
A
B
C
(0,0,0)
(0,6,0)
D1
D3
D4
D5
D6
[
K11 K12 K13 K14 K15 K16
K21 K22 K23 K24 K25 K26
K31 K32 K33 K34 K35 K36
K41 K42 K43 K44 K45 K46
K51 K52 K53 K54 K55 K56
K61 K62 K63 K64 K65 K66 ]
(0,0,0)
(X,Y,Z)
Example (5)  Draw B.M.D(z)&(y) for the Beams shown Space due to the Loads shown, where
cross section of members are (0.9*0.4)m and E=2.2e+9kg/m2, G=9.167e+8 kg/m2 (member
Loads are at the center of members).
4m
3D View Top View
Solution:
1- DOF?
``
Rad)
kg, m,
s
(Unit
When DOF=1
K =?
,
=?
(FER)
-
2
`
)
4
(m
x
I
)
4
(m
y
I
)
4
(m
z
I
)
2
( kg/m
G
)
2
kg/m
(
E
)
2
(m
A
(m)
W
(m)
H
(m)
L
Member
0.01384148026
0.0048
0.0243
9.167e+8
2.2e+9
0.36
0.4
0.9
6
AB
0.01384148026
0.0048
0.0243
9.167e+8
2.2e+9
0.36
0.4
0.9
4
BC
Z
X
Y
Global Axis
DOF=6 Stiffness matrix=(6*6)
(F=KD) [
F1
F2
F3
F4
F5
F6 ]
=
[
D1
D2
D3
D4
D5
D6 ]
Y
W
H Z
Iz =
WH3
12
Iy =
HW3
12
Ix =J = HW3
(
1
3
− 0.21
𝑊
𝐻
(1 −
𝑊4
12𝐻4))
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
48
[K11 … . … K16] =[198586666.66667 0 0 0 0 −1760000]
[K21 … . … K26] = [0 133980000 0 0 0 3960000]
[K31 … . … K36] = [0 0 12993750 8910000 −20047500 0]
D1=1, (D2,3,4,5,6=0) to obtain Row(1)
D2=1, (D1,3,4,5,6=0) to obtain Row (2)
D3=1, (D1,2,4,5,6=0) to obtain Row (3)
EA/L
/L
x
I
G
3
/L
y
12EI
3
/L
z
12EI
2
/L
y
6EI
2
/L
z
6EI
/L
y
EI
4
/L
y
EI
2
/L
z
EI
4
/L
z
2EI
Member
132 e+6
2114747.49272
586666.67
2970000
1760000
8910000
7040000
3520000
35640000
17820000
AB
198 e+6
3172121.23908
1980000
10023750
3960000
20047500
10560000
5280000
53460000
26730000
BC
B
A
A
A
A
C
A
C
B
1
c
B
A
B
1
1
B
C
B Z
Y
Z
Y
6𝐸𝐼𝑦
𝐿2
12𝐸𝐼𝑦
𝐿3
Z
Y
𝐸𝐴
𝐿
Z
Y
B
C
B Z
Y
Z
Y
B
Global Axis
Z
X
Y
1
12𝐸𝐼𝑦
𝐿3
6𝐸𝐼𝑦
𝐿2
Z
Y
𝐸𝐴
𝐿
Z
Y
B
C
B Z
Y
Z
Y
1
6𝐸𝐼𝑧
𝐿2
12EIz
L3
Z
Y
B
6𝐸𝐼𝑧
𝐿2
12EIz
L3
Z
Y
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
49
B
[K41 … . … K46] =[0 0 8910000 38812121.23908 0 0]
[K51 … . … K56] =[0 0 −20047500 0 55574747.49272 0]
1
C
[K61 … . … K66] =[−1760000 3960000 0 0 0 17600000]
C
D4=1, (D1,2,3, 5,6=0) to obtain Row (4)
D5=1, (D1,2,3, 4,6=0) to obtain Row(5)
1
D6=1, (D1,2,3, 4,5=0) to obtain Row(6)
B
A
B
B
A C
B
A
B
C
B Z
Y
1 1
Z
Y
Global Axis
Z
X
Y
Z
Y
𝐺𝐼𝑥
𝐿
6𝐸𝐼𝑧
𝐿2
4𝐸𝐼𝑧
𝐿
Z
Y
B
A
B
C
B Z
Y
1
Z
Y
Z
Y
𝐺𝐼𝑥
𝐿
𝐺𝐼𝑥
𝐿
6𝐸𝐼𝑧
𝐿2
4𝐸𝐼𝑧
𝐿
Z
Y
A
B
C
B
Z
Y
1
Z
Y
6𝐸𝐼𝑦
𝐿2
4𝐸𝐼𝑦
𝐿
Z
Y
6𝐸𝐼𝑦
𝐿2
4𝐸𝐼𝑦
𝐿
Z
Y
X
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
50
[
K11 K12 K13 K14 K15 K16
K21 K22 K23 K24 K25 K26
K31 K32 K33 K34 K35 K36
K41 K42 K43 K44 K45 K46
K51 K52 K53 K54 K55 K56
K61 K62 K63 K64 K65 K66 ]
=
[
198586666.66667 0 0 0 0 −1760000
0 133980000 0 0 0 3960000
0 0 12993750 8910000 −20047500 0
0 0 8910000 38812121.23908 0 0
0 0 −20047500 0 55574747.49272 0
−1760000 3960000 0 0 0 17600000 ]
1000 kg.m
[
1000
1000
−2500
−3750
0
1000 ]
=
[
198586666.66667 0 0 0 0 −1760000
0 133980000 0 0 0 3960000
0 0 12993750 8910000 −20047500 0
0 0 8910000 38812121.23908 0 0
0 0 −20047500 0 55574747.49272 0
−1760000 3960000 0 0 0 17600000 ][
D1
D2
D3
D4
D5
D6 ]
for member Loads:
Reaction?
Fixed End
-
3
4- Joint Force Vector?
Invert of FER=
Joint Force Vector =
3750 kg.m
A
5000 kg
3750 kg. m
2500 kg
B
2500 kg
2500 kg
3750 kg.m
1000 kg.m
C
B
1000 kg.m
1000 kg.m
C
B
3750 kg.m
A
B
2500 kg
2500 kg
3750 kg.m
1000 kg. m
B
[
F1
F2
F3
F4
F5
F6 ]
=
[
1000
1000
−2500
−3750
0
1000 ]
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
51
-1
[
D1
D2
D3
D4
D5
D6 ]
=
[
198586666.66667 0 0 0 0 −1760000
0 133980000 0 0 0 3960000
0 0 12993750 8910000 −20047500 0
0 0 8910000 38812121.23908 0 0
0 0 −20047500 0 55574747.49272 0
−1760000 3960000 0 0 0 17600000 ] [
1000
1000
−2500
−3750
0
1000 ]
[
D1
D2
D3
D4
D5
D6 ]
=
[
5.5324674E − 06
5.8067094𝐸 − 06
−4.4103185𝐸 − 04
4.6272605𝐸 − 06
−1.5909359𝐸 − 04
5.6064919𝐸 − 05 ]
5- Moment =?
MZ=? For Member AB
FER=
MZ=? For Member BC
FER=
D3=1
Z
Y
6𝐸𝐼𝑧∆𝑦
𝐿2
4𝐸𝐼𝑧𝜃𝑧
𝐿
D4=1
A
C
6𝐸𝐼𝑧∆𝑦
𝐿2
3750 kg.m
2𝐸𝐼𝑧𝜃𝑧
𝐿
Z
Y
B
D5=1
C
B
4𝐸𝐼𝑧𝜃𝑧
𝐿
2𝐸𝐼𝑧𝜃𝑧
𝐿
6𝐸𝐼𝑧∆𝑦
𝐿2
D3=1
C
B 6𝐸𝐼𝑧∆𝑦
𝐿2
5000 kg
B
2500 kg
2500 kg
3750 kg.m
B
A
M(Z)AB = MFER(AB) +
2EIzθz
L
+
6EIz∆y
L2 = -3750 +
2∗2.2∗109∗0.0243∗4.6272605E−06
6
+
6∗2.2∗109∗0.0243∗(−4.4103185E−04)
62
∴ 𝐌(𝐙)𝐀𝐁 = −𝟕𝟓𝟗𝟕. 𝟏𝟒 𝐤𝐠. 𝐦
M(Z)CB = MFER(CB) +
2EIzθz
L
−
6EIz∆y
L2 = 0 +
2∗2.2∗109∗0.0243∗−1.5909359𝐸−04
4
−
6∗2.2∗109∗0.0243∗(−4.4103185𝐸−04)
42
∴ 𝐌(𝐙)𝐂𝐁 = −𝟒𝟓𝟖𝟗. 𝟎𝟏 𝐤𝐠. 𝐦
M(Z)BA = MFER(BA) +
4EIzθz
L
+
6EIz∆y
L2 =+3750 +
4∗2.2∗109∗0.0243∗4.6272605E−06
6
+
6∗2.2∗109∗0.0243∗(−4.4103185E−04)
62
∴ 𝐌(𝐙)𝐁𝐀 = −𝟏𝟒. 𝟔𝟖 𝐤𝐠. 𝐦
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
52
MY=? For Member AB
FER =
MY=? For Member CB
FER=
1000 kg. m
C
B
1000 kg. m
B
6𝐸𝐼𝑦∆𝑧
𝐿2
2𝐸𝐼𝑦𝜃𝑦
𝐿
6𝐸𝐼𝑦∆𝑧
𝐿2
A
4𝐸𝐼𝑦𝜃𝑦
𝐿
2𝐸𝐼𝑦𝜃𝑦
𝐿
B
MBC = MFER(BC) +
4EIzθz
L
−
6EIz∆y
L2 = 0 +
4∗2.2∗109∗0.0243∗−1.5909359𝐸−04
4
−
6∗2.2∗109∗0.0243∗(−4.4103185𝐸−04)
42
∴ 𝐌(𝐙)𝐁𝐂 = 𝟑𝟑𝟔. 𝟒𝟒 𝐤𝐠. 𝐦
Z
Y
A
D6=1
A
6𝐸𝐼𝑦∆𝑧
𝐿2
M(Y)AB = MFER(AB) +
2EIyθy
L
+
6EIy∆z
L2 = 0+
2∗2.2∗109∗0.0048∗ 5.6064919E−05
6
−
6∗2.2∗109∗0.0048∗ 5.5324674E−06
62
B
∴ 𝐌(𝐘)𝐀𝐁 = 𝟏𝟖𝟕. 𝟔𝟏 𝐤𝐠. 𝐦
D1=1
M(Y)BA = MFER(BA) +
4EIyθy
L
+
6EIy∆z
L2 = 0+
4∗2.2∗109∗0.0048∗ 5.6064919E−05
6
−
6∗2.2∗109∗0.0048∗ 5.5324674E−06
62
∴ 𝐌(𝐘)𝐁𝐀 = 𝟑𝟖𝟒. 𝟗𝟔 𝐤𝐠. 𝐦
B
4𝐸𝐼𝑦𝜃𝑦
𝐿
Z
Y
C
C
B
D6=1
6𝐸𝐼𝑦∆𝑧
𝐿2
D2=1
M(Y)CB = MFER(CB) +
2EIyθy
L
+
6EIy∆z
L2 = +1000+
2∗2.2∗109∗0.0048∗ 5.6064919E−05
4
+
6∗2.2∗109∗0.0048∗ 5.8067094E−06
42
∴ 𝐌(𝐘)𝐂𝐁 = 𝟏𝟑𝟏𝟗. 𝟎𝟐 𝐤𝐠. 𝐦
M(Y)BC = MFER(BC) +
4EIyθy
L
+
6EIy∆z
L2 = -1000+
4∗2.2∗109∗0.0048∗ 5.6064919E−05
4
+
6∗2.2∗109∗0.0048∗ 5.8067094E−06
42
∴ 𝐌(𝐘)𝐁𝐂 = −𝟑𝟖𝟒. 𝟗𝟔 𝐤𝐠. 𝐦
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
53
‫بةراوردى‬
‫ئ‬
‫بة‬ ‫منوونةكة‬ ‫شيكارى‬ ‫ةجنامى‬
‫ئةجنامى‬
‫سؤفت‬
:‫َرةكان‬‫ي‬‫و‬
Note
C
C
B
A
B
A
m)
Moment(kg.
4589.01
-336.44
-14.68
7597.14
z
M
‫ئ‬
‫منوونةكة‬ ‫ةجنامى‬
-1319.02
-384.96
-384.96
187.61
y
M
OK
4589.02
-336.44
-14.68
7597.14
z
M
STAAD V8i
OK
-1319.02
-384.96
-384.96
187.61
y
M
OK
4589.02
-336.43
-14.68
7597.14
z
M
SAP2000
OK
-1319.02
-384.96
-384.96
187.61
y
M
?
?
?
?
ETABS
187.61
851.99
384.96 1319.02
3708.76
-7597.14
14.68
336.44
B.M.D(z)( kg. m)
-4589.01
-3791.24
B.M.D(y)( kg. m)
1148.01
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
54
5- 3D Frames Analysis by Direct Stiffness Method
//‫َبينى‬‫ي‬‫ت‬
‫هةنطاوةكانى‬
( ‫شيكاركردنى‬
3D Frame
‫تةنها‬ )
(
5
‫َشوو‬‫ي‬‫ث‬ ‫هةنطاوةكانى‬ )
.‫َبينيةكان‬‫ي‬‫ت‬ ‫طشت‬ َ‫ل‬‫طة‬ ‫لة‬ ‫َنني‬‫ي‬‫دةه‬ ‫بةكار‬
Example (6)  Draw all diagrams for the Space Frame shown due to the Loads Shown, where Section of
beams are (0.6*0.4)m and Columns (0.4*0.4)m, E=3*109
kg/m2
, G=1.25*109
kg/m2
.
Solution:
1- DOF?
F
D22
D23
D19
D20
D21
D24
D16
D17
D13
D14
D15
D18
D10
D11
D7
D8
D9
D12
D4
D5
D1
D2
D3
5 ton
2 ton
1 ton
1 ton
F
E
G
H
D
C
B
A
6m
8m
4m
Y
X
Z
Global Axis
E
G
H
D
C
B
A
D6
Y
X
Z
Global Axis
DOF=24 Stiffness matrix= (24*24)
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
55
G =
E
2.4
//‫َبينى‬‫ي‬‫ت‬
( ‫َوان‬‫ي‬‫ن‬ ‫ثةيوةندى‬
E,G
( ‫تةنها‬ ‫ئةوةى‬ ‫بؤ‬ ‫ثرسيارةكة‬ ‫َرةى‬‫ي‬‫طو‬ ‫بة‬ ‫دةدؤزينةوة‬ )
E
‫َنني‬‫ي‬‫به‬ ‫بةكار‬ )
.
2- (FER) =? , K =? When DOF=1 (Units Ton, m, Rad)
4
x m
I
4
y m
I
4
m
z
I
kg/m2
G
kg/m2
E
(m2)
A
(m)
W
(m)
H
(m)
L
Member
0.00360533333
0.0256/12
0.0256/12
E/2.4
E
0.16
0.4
0.4
4
AB
0.00751249383
0.0032
0.0072
E/2.4
E
0.24
0.4
0.6
6
BC
0.00360533333
0.0256/12
0.0256/12
E/2.4
E
0.16
0.4
0.4
4
CD
0.00751249383
0.0032
0.0072
E/2.4
E
0.24
0.4
0.6
8
CE
0.00360533333
0.0256/12
0.0256/12
E/2.4
E
0.16
0.4
0.4
4
EF
0.00751249383
0.0032
0.0072
E/2.4
E
0.24
0.4
0.6
6
EG
0.00360533333
0.0256/12
0.0256/12
E/2.4
E
0.16
0.4
0.4
4
GH
0.00751249383
0.0032
0.0072
E/2.4
E
0.24
0.4
0.6
8
GB
2
/L
y
6EI
2
/L
z
6EI
/L
y
EI
4
/L
y
EI
2
/L
z
EI
4
/L
z
2EI
Member
0.0008E
0.0008E
E*0.0064/3
E*0.0032/3
E*0.0064/3
E*0.0032/3
AB
E*0.0016/3
0.0012E
E*0.0064/3
E*0.0032/3
0.0048E
0.0024E
BC
0.0008E
0.0008E
E*0.0064/3
E*0.0032/3
E*0.0064/3
E*0.0032/3
CD
0.0003E
0.000675E
0.0016E
0.0008E
0.0036E
0.0018E
CE
0.0008E
0.0008E
E*0.0064/3
E*0.0032/3
E*0.0064/3
E*0.0032/3
EF
E*0.0016/3
0.0012E
E*0.0064/3
E*0.0032/3
0.0048E
0.0024E
EG
0.0008E
0.0008E
E*0.0064/3
E*0.0032/3
E*0.0064/3
E*0.0032/3
GH
0.0003E
0.000675E
0.0016E
0.0008E
0.0036E
0.0018E
GB
EA/L
/L
x
I
G
3
/L
y
12EI
3
/L
z
12EI
Member
0.04E
E*0.00360533333/9.6
0.0004E
0.0004E
AB
0.04E
E*0.00751249383/14.4
E*0.0016/9
0.0004E
BC
0.04E
E*0.00360533333/9.6
0.0004E
0.0004E
CD
0.03E
E*0.00751249383/19.2
0.000075E
E*0.0216/128
CE
0.04E
E*0.00360533333/9.6
0.0004E
0.0004E
EF
0.04E
E*0.00751249383/14.4
E*0.0016/9
0.0004E
EG
0.04E
E*0.00360533333/9.6
0.0004E
0.0004E
GH
0.03E
E*0.00751249383/19.2
0.000075E
E*0.0216/128
GB
[
F1
F2
F3
F4
F5
.
.
.
F24]
=
[
K11 K12 K13 K14 K15 K16 . . . K124
K21 K22 K23 K24 K25 K26 . . . K224
K31 K32 K33 K34 K35 K36 . . . K324
K41 K42 K43 K44 K45 K46 . . . K424
K51 K52 K53 K54 K55 K56 . . . K524
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
K241 K242 K243 K244 K245 K246 . . . K2424] [
D1
D2
D3
D4
D5
.
.
.
D24]
(F=KD)
Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha
56
D1=1 to obtain Row(1)
D2=1 to obtain Row (2)
D3=1 to obtain Row (3)
12𝐸𝐼𝑦
𝐿3
C
6𝐸𝐼𝑧
𝐿2
6𝐸𝐼𝑧
𝐿2
6𝐸𝐼𝑧
𝐿2
6𝐸𝐼𝑧
𝐿2
12𝐸𝐼𝑧
𝐿3
12𝐸𝐼𝑧
𝐿3
12𝐸𝐼𝑧
𝐿3
12𝐸𝐼𝑧
𝐿3
12𝐸𝐼𝑦
𝐿3
12𝐸𝐼𝑦
𝐿3
6𝐸𝐼𝑦
𝐿2
6𝐸𝐼𝑦
𝐿2
𝐸𝐴
𝐿
𝐸𝐴
𝐿
C
𝐸𝐴
𝐿
12𝐸𝐼𝑦
𝐿3
12𝐸𝐼𝑦
𝐿3
Row3=
𝐸𝐴
𝐿
1 Y
A
B
X
Z
12𝐸𝐼𝑧
𝐿3
12𝐸𝐼𝑧
𝐿3
6𝐸𝐼𝑦
𝐿2
𝐸𝐴
𝐿
C
6𝐸𝐼𝑦
𝐿2
6𝐸𝐼𝑦
𝐿2
Row1=
[0.040475E 0 0 0 −0.0008E −0.0003E −0.04𝐸 0 0 0 0 0 0 0 0 0 0 0 −0.000075E 0 0 0 0 −0.0003E]
[0 E ∗ 0.2752/9 0 0.0008E 0 E ∗ 0.0016/3 0 −E ∗ 0.0016/9 0 0 0 E ∗ 0.0016/3 0 0 0 0 0 0 0 −0.03E 0 0 0 0]
B
B Z
A
B
Z
X
Y
6𝐸𝐼𝑧
𝐿2
6𝐸𝐼𝑧
𝐿2
Y
X
Z
Global Axis
1
Y
A
B
X
Z
Y
A
B
X
Z
B
G
1
1
B Z
Y
Z
Y
[0 0 E ∗ 5.1928/128 0.000675𝐸 −0.0012E 0 0 0 −0.0004E 0 −0.0012E 0 0 0 0 0 0 0 0 0 −E ∗ 0.0216/128 0.000675E 0 0]
G
Y
Row2=
Z
Y
C
1
Y
A
B
X
Z
B
G
1
1 B Z
Y
Z
Y
Y
A
B
X
Z
B
B
G
Z
Y
Z
Y
C
12𝐸𝐼𝑦
𝐿3
1
B
G
1
B Z
Y
Z
Y
B
B
G
Z
Y
Z
Y
C
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)
3D Structure analysis (Kurdish)

More Related Content

What's hot

Staad pro-getting started &tutorial
Staad pro-getting started &tutorialStaad pro-getting started &tutorial
Staad pro-getting started &tutorialPriyabrata Behera
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and ShellsDrASSayyad
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1propaul
 
بناغە
بناغەبناغە
بناغەBahzad5
 
Is 1893-part3-2014pdf
Is 1893-part3-2014pdfIs 1893-part3-2014pdf
Is 1893-part3-2014pdfshankar kumar
 
Bricks خشت،کەرپوچ
Bricks خشت،کەرپوچBricks خشت،کەرپوچ
Bricks خشت،کەرپوچBahzad5
 
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRODESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PROAli Meer
 
Combine piled raft foundation (cprf)_Er.Karan Chauhan
Combine piled raft foundation (cprf)_Er.Karan ChauhanCombine piled raft foundation (cprf)_Er.Karan Chauhan
Combine piled raft foundation (cprf)_Er.Karan ChauhanEr.Karan Chauhan
 
Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirModule3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirSHAMJITH KM
 
Soil Mechanics (Problems & solutions)
Soil Mechanics (Problems & solutions)Soil Mechanics (Problems & solutions)
Soil Mechanics (Problems & solutions)Bahzad5
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1SHAMJITH KM
 
Module 1 Behaviour of RC beams in Shear and Torsion
Module 1   Behaviour of RC beams in Shear and TorsionModule 1   Behaviour of RC beams in Shear and Torsion
Module 1 Behaviour of RC beams in Shear and TorsionVVIETCIVIL
 
Fem class notes
Fem class notesFem class notes
Fem class notesDrASSayyad
 
shallow foundation
shallow foundationshallow foundation
shallow foundationJNTUK
 

What's hot (20)

Staad pro-getting started &tutorial
Staad pro-getting started &tutorialStaad pro-getting started &tutorial
Staad pro-getting started &tutorial
 
Theory of Plates and Shells
Theory of Plates and ShellsTheory of Plates and Shells
Theory of Plates and Shells
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1
 
بناغە
بناغەبناغە
بناغە
 
Is 1893-part3-2014pdf
Is 1893-part3-2014pdfIs 1893-part3-2014pdf
Is 1893-part3-2014pdf
 
Bricks خشت،کەرپوچ
Bricks خشت،کەرپوچBricks خشت،کەرپوچ
Bricks خشت،کەرپوچ
 
L20
L20L20
L20
 
Lecture 13 modeling_errors_and_accuracy
Lecture 13 modeling_errors_and_accuracyLecture 13 modeling_errors_and_accuracy
Lecture 13 modeling_errors_and_accuracy
 
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRODESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
 
Combine piled raft foundation (cprf)_Er.Karan Chauhan
Combine piled raft foundation (cprf)_Er.Karan ChauhanCombine piled raft foundation (cprf)_Er.Karan Chauhan
Combine piled raft foundation (cprf)_Er.Karan Chauhan
 
Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirModule3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sir
 
Soil Mechanics (Problems & solutions)
Soil Mechanics (Problems & solutions)Soil Mechanics (Problems & solutions)
Soil Mechanics (Problems & solutions)
 
Types of slope failures
Types of slope failuresTypes of slope failures
Types of slope failures
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1
 
Module 1 Behaviour of RC beams in Shear and Torsion
Module 1   Behaviour of RC beams in Shear and TorsionModule 1   Behaviour of RC beams in Shear and Torsion
Module 1 Behaviour of RC beams in Shear and Torsion
 
Fem class notes
Fem class notesFem class notes
Fem class notes
 
Stiffness Matrix
Stiffness MatrixStiffness Matrix
Stiffness Matrix
 
etabs ppt.pptx
etabs ppt.pptxetabs ppt.pptx
etabs ppt.pptx
 
staad pro
staad prostaad pro
staad pro
 
shallow foundation
shallow foundationshallow foundation
shallow foundation
 

More from Bahzad5

دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratoryدليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide LaboratoryBahzad5
 
2013 (Total Station & Civil 3D) فێرکاری
2013  (Total Station & Civil 3D) فێرکاری2013  (Total Station & Civil 3D) فێرکاری
2013 (Total Station & Civil 3D) فێرکاریBahzad5
 
Engineering field knowledge -زانیاری بواری ئەندازیاری
Engineering field knowledge -زانیاری بواری ئەندازیاریEngineering field knowledge -زانیاری بواری ئەندازیاری
Engineering field knowledge -زانیاری بواری ئەندازیاریBahzad5
 
(atmosphere correction) زانیاری دەربارەی
(atmosphere correction) زانیاری دەربارەی(atmosphere correction) زانیاری دەربارەی
(atmosphere correction) زانیاری دەربارەیBahzad5
 
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بیناBahzad5
 
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی  (Municipal guidelines)المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی  (Municipal guidelines)
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)Bahzad5
 
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTION
CONDITIONS OF CONTRACT  FOR WORKS OF CIVIL  ENGINEERING CONSTRUCTIONCONDITIONS OF CONTRACT  FOR WORKS OF CIVIL  ENGINEERING CONSTRUCTION
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTIONBahzad5
 
Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Bahzad5
 
الشروط العامة لمقاولات اعمال الهندسة المدنية
الشروط العامة لمقاولات اعمال الهندسة المدنيةالشروط العامة لمقاولات اعمال الهندسة المدنية
الشروط العامة لمقاولات اعمال الهندسة المدنيةBahzad5
 
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS Bahzad5
 
2 سەرەتاکانی دیزاین
2 سەرەتاکانی دیزاین2 سەرەتاکانی دیزاین
2 سەرەتاکانی دیزاینBahzad5
 
ڕێبەری بەشە ئەندازیارییەکان
ڕێبەری بەشە ئەندازیارییەکانڕێبەری بەشە ئەندازیارییەکان
ڕێبەری بەشە ئەندازیارییەکانBahzad5
 
سەرەتاکانی دیزاین
سەرەتاکانی دیزاینسەرەتاکانی دیزاین
سەرەتاکانی دیزاینBahzad5
 
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیەڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیەBahzad5
 
پرۆژەی ناساندنی ئەندازیاری
پرۆژەی ناساندنی ئەندازیاریپرۆژەی ناساندنی ئەندازیاری
پرۆژەی ناساندنی ئەندازیاریBahzad5
 
بناغە و بنەپایە Footing and Foundation
بناغە و بنەپایە Footing and Foundationبناغە و بنەپایە Footing and Foundation
بناغە و بنەپایە Footing and FoundationBahzad5
 
slump test سڵەمپ تێست
slump test سڵەمپ تێستslump test سڵەمپ تێست
slump test سڵەمپ تێستBahzad5
 
Design of Storm Sewer System
Design of Storm Sewer SystemDesign of Storm Sewer System
Design of Storm Sewer SystemBahzad5
 
ڕۆنی بزوێنەر
ڕۆنی بزوێنەرڕۆنی بزوێنەر
ڕۆنی بزوێنەرBahzad5
 
فەرهەنگی تەکنۆلۆژیای زانیاری
فەرهەنگی تەکنۆلۆژیای زانیاریفەرهەنگی تەکنۆلۆژیای زانیاری
فەرهەنگی تەکنۆلۆژیای زانیاریBahzad5
 

More from Bahzad5 (20)

دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratoryدليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
 
2013 (Total Station & Civil 3D) فێرکاری
2013  (Total Station & Civil 3D) فێرکاری2013  (Total Station & Civil 3D) فێرکاری
2013 (Total Station & Civil 3D) فێرکاری
 
Engineering field knowledge -زانیاری بواری ئەندازیاری
Engineering field knowledge -زانیاری بواری ئەندازیاریEngineering field knowledge -زانیاری بواری ئەندازیاری
Engineering field knowledge -زانیاری بواری ئەندازیاری
 
(atmosphere correction) زانیاری دەربارەی
(atmosphere correction) زانیاری دەربارەی(atmosphere correction) زانیاری دەربارەی
(atmosphere correction) زانیاری دەربارەی
 
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
 
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی  (Municipal guidelines)المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی  (Municipal guidelines)
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)
 
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTION
CONDITIONS OF CONTRACT  FOR WORKS OF CIVIL  ENGINEERING CONSTRUCTIONCONDITIONS OF CONTRACT  FOR WORKS OF CIVIL  ENGINEERING CONSTRUCTION
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTION
 
Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)
 
الشروط العامة لمقاولات اعمال الهندسة المدنية
الشروط العامة لمقاولات اعمال الهندسة المدنيةالشروط العامة لمقاولات اعمال الهندسة المدنية
الشروط العامة لمقاولات اعمال الهندسة المدنية
 
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
 
2 سەرەتاکانی دیزاین
2 سەرەتاکانی دیزاین2 سەرەتاکانی دیزاین
2 سەرەتاکانی دیزاین
 
ڕێبەری بەشە ئەندازیارییەکان
ڕێبەری بەشە ئەندازیارییەکانڕێبەری بەشە ئەندازیارییەکان
ڕێبەری بەشە ئەندازیارییەکان
 
سەرەتاکانی دیزاین
سەرەتاکانی دیزاینسەرەتاکانی دیزاین
سەرەتاکانی دیزاین
 
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیەڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
 
پرۆژەی ناساندنی ئەندازیاری
پرۆژەی ناساندنی ئەندازیاریپرۆژەی ناساندنی ئەندازیاری
پرۆژەی ناساندنی ئەندازیاری
 
بناغە و بنەپایە Footing and Foundation
بناغە و بنەپایە Footing and Foundationبناغە و بنەپایە Footing and Foundation
بناغە و بنەپایە Footing and Foundation
 
slump test سڵەمپ تێست
slump test سڵەمپ تێستslump test سڵەمپ تێست
slump test سڵەمپ تێست
 
Design of Storm Sewer System
Design of Storm Sewer SystemDesign of Storm Sewer System
Design of Storm Sewer System
 
ڕۆنی بزوێنەر
ڕۆنی بزوێنەرڕۆنی بزوێنەر
ڕۆنی بزوێنەر
 
فەرهەنگی تەکنۆلۆژیای زانیاری
فەرهەنگی تەکنۆلۆژیای زانیاریفەرهەنگی تەکنۆلۆژیای زانیاری
فەرهەنگی تەکنۆلۆژیای زانیاری
 

Recently uploaded

Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfragupathi90
 
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTUUNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTUankushspencer015
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashidFaiyazSheikh
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalSwarnaSLcse
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxMustafa Ahmed
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxMustafa Ahmed
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...archanaece3
 
Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdfKamal Acharya
 
Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...IJECEIAES
 
15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon15-Minute City: A Completely New Horizon
15-Minute City: A Completely New HorizonMorshed Ahmed Rahath
 
Working Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfWorking Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfSkNahidulIslamShrabo
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdfAlexander Litvinenko
 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...IJECEIAES
 
Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfssuser5c9d4b1
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024EMMANUELLEFRANCEHELI
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentationsj9399037128
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligencemahaffeycheryld
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...josephjonse
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfEr.Sonali Nasikkar
 

Recently uploaded (20)

Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdf
 
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTUUNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
UNIT-2 image enhancement.pdf Image Processing Unit 2 AKTU
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded Systems
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
Autodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptxAutodesk Construction Cloud (Autodesk Build).pptx
Autodesk Construction Cloud (Autodesk Build).pptx
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
Insurance management system project report.pdf
Insurance management system project report.pdfInsurance management system project report.pdf
Insurance management system project report.pdf
 
Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...Fuzzy logic method-based stress detector with blood pressure and body tempera...
Fuzzy logic method-based stress detector with blood pressure and body tempera...
 
15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon15-Minute City: A Completely New Horizon
15-Minute City: A Completely New Horizon
 
Working Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdfWorking Principle of Echo Sounder and Doppler Effect.pdf
Working Principle of Echo Sounder and Doppler Effect.pdf
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...
 
Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdf
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
Artificial Intelligence in due diligence
Artificial Intelligence in due diligenceArtificial Intelligence in due diligence
Artificial Intelligence in due diligence
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 

3D Structure analysis (Kurdish)

  • 1.
  • 2. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 1               ‫إبراهيم‬                           ‫الطالق‬ 3D Structural Analysis ‫دووريدا‬ َ‫ى‬‫س‬ ‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬ • ‫َب‬‫ي‬‫كت‬ ‫ناوى‬ : ( 3D Structural Analysis ) ‫دووريدا‬ َ‫ى‬‫س‬ ‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬ • : ‫ئامادةكردنى‬ / ‫ئةندازيار‬ ‫َخة‬‫ي‬‫ش‬ ‫حممد‬ ‫على‬ • : ‫َداضوونةوةى‬‫ي‬‫ث‬ ‫سعيد‬ ‫حممد‬ ‫الدين‬ ‫جنم‬.‫د‬ • ‫ابوبكر‬ ‫امساعيل‬ ‫بيالل‬ : ‫بةرط‬ ‫نةخشةسازى‬ • : ‫َكارى‬‫ل‬َ‫ي‬‫ه‬ ‫و‬ ‫تايث‬ ‫ئامادةكار‬ • ‫يةكةم‬ : ‫ضاث‬
  • 3. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 2 ‫َزانني‬ ‫ي‬‫ث‬ ‫و‬ ‫سوثاس‬ ❖ ‫لة‬ ‫كردم‬ ‫هاوكاريان‬ ‫كة‬ ‫كةسانةى‬ ‫ئةو‬ ‫هةموو‬ ‫بؤ‬ ‫سوثاس‬ .‫بابةتة‬ ‫ئةم‬ ‫ئامادةكردنى‬ ❖ .‫َت‬ ‫ي‬‫ب‬ ‫ووشةش‬ ‫يةك‬ ‫بة‬ ‫ئةطةر‬ ‫َبةخشيوم‬ ‫ي‬‫ث‬ ‫زانياريان‬ ‫كة‬ ‫ئةكةسانةى‬ ‫هةموو‬ ‫بؤ‬ ‫سوثاس‬ ❖ ‫بؤ‬ ‫سوثاس‬ .‫خؤى‬ ‫ئةستؤى‬ ‫طرتة‬ ‫َداضونةوةى‬ ‫ي‬‫ث‬ ‫ئةركى‬ ‫كة‬ )‫سعيد‬ ‫حممد‬ ‫الدين‬ ‫جنم‬ .‫(د‬
  • 4. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 3 ‫َشكةشكردن‬ ‫ي‬‫ث‬ ❖ ‫َة‬ ‫ل‬‫مندا‬ ‫و‬ ‫باوكم‬ ‫و‬ ‫دايك‬ ‫بة‬ ‫َشكةشة‬ ‫ي‬‫ث‬ ‫خؤشةويستةكامن‬ ) ‫منصور‬ ‫و‬ ‫ميسور‬ ( . ❖ ‫َشكةشة‬ ‫ي‬‫ث‬ َ ‫ي‬‫دةخيو‬ ‫كة‬ ‫كةسانةى‬ ‫ئةم‬ ‫هةموو‬ ‫بة‬ ‫ن‬ ‫ن‬ ‫ةوة‬ ‫َوةردةطرن‬ ‫ي‬‫ل‬ ‫سودى‬ ‫و‬ . ❖ ‫الوانى‬ ‫و‬ ‫طةنج‬ ‫بة‬ ‫َشكةشة‬ ‫ي‬‫ث‬ ‫كوردستان‬ . ❖ .‫َتةكةيانن‬ ‫ال‬‫و‬ ‫و‬ ‫ميللـةت‬ ‫َسؤزى‬ ‫ل‬‫د‬ ‫كة‬ ‫ئةوكةسانةى‬ ‫هةموو‬ ‫بة‬ ‫َشكةشة‬ ‫ي‬‫ث‬ ❖ ‫بؤ‬ ‫دةدةن‬ َ ‫ل‬‫هةو‬ ‫كة‬ ‫كةسانةى‬ ‫ئةو‬ ‫هةموو‬ ‫بة‬ ‫َشكةشة‬ ‫ي‬‫ث‬ .‫زانست‬ ‫َربوونى‬ ‫ي‬‫ف‬ ❖ .‫برادةران‬ ‫و‬ ‫دؤست‬ ‫و‬ ‫هاوريان‬ ‫سةرجةم‬ ‫بة‬ ‫َشكةشة‬ ‫ي‬‫ث‬ ❖ .‫حاجياوا‬ ‫شارةوانى‬ ‫سةرؤكايةتى‬ ‫لة‬ ‫َيامن‬ ‫ي‬‫هاور‬ ‫سةرجةم‬ ‫بة‬ ‫َشكةشة‬ ‫ي‬‫ث‬
  • 5. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 4 Contents: Page 1. Preface )‫َشةكى‬‫ي‬‫(ث‬ …………………………………………………………………………………………………………………........ 5 2. Symbols and Abbreviations ( ‫َما‬‫ي‬‫ه‬ ‫كو‬ ‫ر‬ ‫تكراوةكان‬ ) ……………………………………………………………………………… 7 3. Matrix (Some Information About Matrix) ( ‫ِيزكراوةكان‬‫ر‬ ) ……………………………………………………………….… 8 4. Drawing, Supports and Review Some Rules ( َ‫ل‬َ‫ي‬‫ه‬ ,‫كارى‬ ....‫ياساكاندا‬ ‫بة‬ ‫َداضونةوةيةك‬‫ي‬‫ث‬ ‫و‬ ‫ِاطرةكان‬‫ر‬ ) ………………….……12 5. Stiffness Method (Matrix Structural Analysis) ( ‫ِةقى‬‫ر‬ ‫َطاى‬‫ي‬ِ‫ر‬ ) ……………………………………………………….….17 6. Example1 …………………………………………………………………………………………………………………………………18 7. Direct Stiffness Method ( ‫ِةقى‬‫ر‬ ‫ِاستةوخؤى‬‫ر‬ ‫َطاى‬‫ي‬ِ‫ر‬ ) ………………..………………‫يةكةم‬ ‫بةشى‬ …………………….……..……19 8. 2D analysis ……………………………………………………………………………………………………………………….………19 9. 2D Beams Analysis by Direct Stiffness Method ………………………………………………………………..…….…18 10. Example2 ……………………………………………………………………………………………………………………………….…22 11. 2D Frames Analysis by Direct Stiffness Method ………………………………………………………………….…….28 12. Example3 …………………………………………………………………………………………………………………………………30 13. 2D Trusses Analysis by Direct Stiffness Method ……………………………………………………………………….38 14. Example4 ………………………………………………………………………………………………………………………………...39 15. 3D analysis ………………………………………………………………………………………………………………………….……43 16. 3D Beams Analysis by Direct Stiffness Method …………………………………………………………………….…..43 17. Example5 …………………………………………………………………………………………………………………………………47 18. 3D Frames Analysis by Direct Stiffness Method ……………………………………………………………………….54 19. Example6 ………………………………………………………………………………………………………………………………...54 20. 3D Trusses Analysis by Direct Stiffness Method ……………………………………………………………….…..….82 21. Example7 ………………………………………………………………………………………………………………………………….84 22. Example8 ………………………………………………………………………………………………………………………………….87 23. Problems ………………………………………………………………………………………………………………………………….98 24. Assembly Stiffness Method ( ‫ِةقى‬‫ر‬ ‫طشتى‬ ‫َطاى‬‫ي‬ِ‫ر‬ ) …………….……..........…. ‫دوو‬ ‫بةشى‬ ‫ة‬ ‫م‬ ……………………….……….99 25. Symbols and Abbreviations ( ‫َما‬‫ي‬‫ه‬ ‫كورتكراوةكان‬ ) …………………………………………………………………………… 101 26. ‫شيكاركردن‬ ‫هةنطاوةكانى‬ …………………………………………………………………………………………………………..…………….111 27. Example1 ……………………………………………………………………………………………………………………..…………112 28. Example2 ……………………………………………………………………………………………………………………..…………123 29. Example3 ……………………………………………………………………………………………………………………..…………139 30. Problem ………………………………………………………………………………………………………………………………….147 31. References ( ‫سةرضاوةكان‬ ) …………………………………………………………………………………………….…………..…148
  • 6. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 5 ‫ث‬ ‫ـ‬ َ‫ي‬ ‫ـ‬ ‫ش‬ ‫ـ‬ ‫ةك‬ ‫ـ‬ ‫ى‬ ( ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬ Structural analysis ) ‫و‬ ‫َز‬‫ي‬‫ه‬ ‫ئةو‬ ‫هةموو‬ ‫دؤزينةوةى‬ ‫بؤ‬ ‫َتةوة‬‫ي‬‫ئةبين‬ ‫خؤى‬ ‫سةرةكى‬ ‫َكى‬‫ي‬‫بابةت‬ ‫وةك‬ ‫َزو‬‫ي‬‫ه‬ ‫بةهؤى‬ ‫َت‬‫ي‬‫دةب‬ ‫دروست‬ ‫َكهاتةكاندا‬‫ي‬‫ث‬ ‫ناو‬ ‫لة‬ ‫كة‬ ‫زةبرانةى‬ ‫بة‬ ‫كة‬ ‫دةرةكيةوة‬ ‫زةبرى‬ ‫رةنطا‬ ‫ر‬ ‫وايكردووة‬ ‫ئةمةش‬ ,‫َتةوة‬‫ي‬‫دةب‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫ى‬ َ‫ي‬‫ئةجنامدةدر‬ ‫َدا‬‫ي‬‫ت‬ ‫َينةوةى‬‫ل‬‫َكؤ‬‫ي‬‫ل‬ ‫سةرةكى‬ ‫َكى‬‫ي‬‫بابةت‬ ‫وةك‬ ‫كة‬ ‫بةرفراوانى‬ .‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرى‬ ‫َوازو‬‫ي‬‫ش‬ ‫َبذاردنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫َت‬‫ي‬‫َنر‬‫ي‬‫دةه‬ ‫بةكار‬ ‫و‬ ‫ت‬ ‫شيكار‬ ‫بؤ‬ ‫َت‬‫ي‬‫هةب‬ ‫جياوازى‬ ‫َطاى‬‫ي‬ِ‫ر‬ ‫ضةندةها‬ ‫كة‬ ‫وايكردووة‬ ‫بابةتة‬ ‫ئةم‬ ‫كردن‬ ‫ئاسان‬ ‫َكى‬‫ي‬‫كار‬ ‫دةست‬ ‫بة‬ ‫َؤزةكان‬‫ل‬‫ئا‬ ‫َكهاتة‬‫ي‬‫ث‬ ‫شيكارى‬ ‫كة‬ ‫ديارة‬ , ‫بؤ‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫ِؤدا‬‫ر‬‫ئةم‬ ‫ِؤذطارى‬‫ر‬ ‫لة‬ ‫ئةبينني‬ ,‫نية‬ ‫بابةتة‬ ‫ئةم‬ ‫كةم‬ ‫بةاليةنى‬ ‫ئةندازيار‬ ‫َم‬‫ال‬‫بة‬ ,‫طرتووةتةوة‬ ‫دةستيان‬ ‫َطاى‬‫ي‬‫ج‬ ‫َويستة‬‫ي‬‫ث‬ ‫ةوة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬ ‫باشرت‬ ‫و‬ ‫َت‬‫ي‬‫َر‬‫ي‬‫َبذ‬‫ل‬‫هة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرى‬ ‫َوازو‬‫ي‬‫ش‬ ‫َت‬‫ي‬‫بتوان‬ ‫سةركةووتوانة‬ ‫َكى‬‫ي‬‫َواز‬‫ي‬‫ش‬ ‫بة‬ ‫ئةوةى‬ ‫بؤ‬ ‫َت‬‫ي‬‫بزان‬ ‫دةست‬ ‫بة‬ .‫َت‬‫ي‬‫َن‬‫ي‬‫به‬ ‫بةكار‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫هة‬ ‫َمة‬‫ي‬‫ئ‬ ‫ئةمة‬ ‫لةبةر‬ ‫بؤ‬ ‫َن‬‫ي‬‫َنر‬‫ي‬‫كاردةه‬ ‫بة‬ ‫كة‬ ‫َطايانةى‬‫ي‬‫ر‬ ‫ئةم‬ ‫هةموو‬ ‫ناو‬ ‫لة‬ ‫َشكةوتوو‬‫ي‬‫ث‬ ‫َطايةكى‬‫ي‬‫ر‬ ‫َبذاردنى‬‫ل‬‫هة‬ ‫بة‬ ‫ستاوين‬ ‫شيكار‬ ‫كردن‬ , ‫ِوونكردونةتةوة‬‫ر‬ ‫هةنطاوةكامنان‬ ‫كوردى‬ ‫شريينى‬ ‫زمانى‬ ‫بة‬ ‫جؤ‬ ‫طشت‬ َ‫ل‬‫لةطة‬ ‫َت‬‫ي‬‫بطوجن‬ ‫كة‬ ‫ر‬ ( ‫ةكانى‬ Beams, Frames, Trusses ,) ‫بؤ‬ ‫لة‬ ‫ئاسانرت‬ ‫َوةيةكى‬‫ي‬‫ش‬ ‫بة‬ ‫َنةر‬‫ي‬‫خو‬ ‫ئةوةى‬ َ‫ي‬‫ت‬ ‫بابةتةكة‬ ‫بطات‬ ‫ِةقى‬‫ر‬ ‫بةهؤى‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكاركردنى‬ ‫َطاى‬‫ي‬ِ‫ر‬ ‫لة‬ ‫بريتية‬ ‫ئةميش‬ ‫كة‬ , ( ‫َكهاتةكةوة‬‫ي‬‫ث‬ ( Matrix Structural analysis ) Stiffness Method ) . ‫ئةندا‬ ‫ِةقى‬‫ر‬ ‫ثةيوةندى‬ ‫َطاية‬‫ي‬ِ‫ر‬ ‫ئةم‬ ‫بةكار‬ ‫مةكان‬ ‫َت‬‫ي‬‫َن‬‫ي‬‫دةه‬ ,‫َكهاتةكة‬‫ي‬‫ث‬ ‫َةى‬‫ل‬‫جو‬ ‫و‬ ‫ئةندامةكان‬ ‫َزى‬‫ي‬‫ه‬ ‫دؤزينةوةى‬ ‫بؤ‬ ‫شيكا‬ ‫دةتوانني‬ ‫كة‬ ‫ر‬ ‫جؤ‬ ‫طشت‬ ‫ى‬ ‫ر‬ ‫بة‬ ‫بةامبةر‬ ‫بدةين‬ ‫ئةجنام‬ ‫َكاتةكان‬‫ي‬‫ث‬ ‫ى‬ ‫َطريةكان‬‫ي‬‫ج‬ ‫زةبرة‬ ‫و‬ ‫َز‬‫ي‬‫ه‬ ‫دوو‬ ‫لة‬ ‫دوورى‬ ( ‫ِووتةخت‬‫ر‬ ) ‫دووريدا‬ َ‫ي‬‫س‬ ‫و‬ )‫(بؤشايى‬ , ‫بةكارى‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫زؤربةى‬ ‫كة‬ ‫َطايةشة‬‫ي‬ِ‫ر‬ ‫ئةم‬ ‫هةمان‬ ‫وة‬ ‫شي‬ ‫بؤ‬ ‫َنن‬‫ي‬‫دةه‬ ‫َؤزةكان‬‫ل‬‫ئا‬ ‫َكهاتة‬‫ي‬‫ث‬ ‫كارى‬ . ‫لةم‬ ‫بةشةدا‬ )‫يةكةم‬ ‫(بةشى‬ ‫ِاستةوخؤ‬‫ر‬ ‫ِيطاى‬‫ر‬ ‫َمة‬‫ي‬‫ئ‬ ‫ى‬ ( Direct Stiffness Method ) ‫َنني‬‫ي‬‫دةه‬ ‫بةكار‬ , ‫ياسا‬ ‫َطاية‬‫ي‬ِ‫ر‬ ‫ئةم‬ ‫كة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬ ‫بؤ‬ ‫َت‬‫ي‬‫َن‬‫ي‬‫بةكاردةه‬ ‫سةرةكيةكة‬ ‫تيايدا‬ ‫ِانكاريةك‬‫ر‬‫طؤ‬ ‫هيض‬ َ‫ي‬‫بةب‬ . ‫بة‬ ‫و‬ ‫طشتطريدا‬ ‫منوونةيةكى‬ ‫ضةند‬ ‫لة‬ ‫وة‬ ‫ضةند‬ ‫دياريك‬‫َكى‬‫ي‬‫هةنطاو‬ ‫ر‬ ‫َرةكانى‬‫ي‬‫سؤفتو‬ ‫شيكارى‬‫ئةجنامى‬ ‫بة‬‫كردووة‬‫بةراورد‬‫منونةكانيشمان‬ ‫شيكارى‬‫ئةجنامى‬ ‫و‬ ‫شيكردؤتةوة‬‫بابةتةكةمان‬‫او‬ ( ‫وةك‬ STAAD. Pro, SAP 2000, ETABS ) . ‫ئةندازي‬ ‫ـ‬ ‫عل‬ /‫ار‬ ‫ـ‬ ‫حم‬ ‫ى‬ ‫ـ‬ ‫ش‬ ‫مد‬ ‫ـ‬ ‫َخة‬‫ي‬ 07502454161
  • 7. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 6 : ‫زاراوةكان‬ ‫لة‬ َ‫ي‬‫هةند‬ ‫َناسةي‬‫ي‬‫ث‬ ❖ ‫َكهاتةكان‬‫ي‬‫ث‬ ( Structures ) ‫بريتية‬ : ......‫و‬ ‫تاوةرةكان‬ ,‫ثرد‬ ,‫(بينا‬ ‫وةك‬ ‫وةزنةكان‬ ‫َطرتنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫جياواز‬ ‫َوازى‬‫ي‬‫ش‬ ‫بة‬ ‫لكاو‬ ‫بةيةكةوة‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫َة‬‫ل‬‫كؤمة‬ ‫لة‬ ❖ َ‫ل‬‫ِاية‬‫ر‬ ( Beam ) .‫زةبر‬ ‫يان‬ ‫ستونى‬ ‫وةزنى‬ ‫َطرتنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫َت‬‫ي‬‫َنر‬‫ي‬‫دةه‬ ‫بةكار‬ ‫ئاسؤيية‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫طشتى‬ ‫َوةيةكة‬‫ي‬‫ش‬ ‫بة‬ : ❖ ‫ثاية‬ ( Column ) ‫طش‬ ‫َوةيةكة‬‫ي‬‫ش‬ ‫بة‬ : .‫زةبرةكان‬ ‫يان‬ ‫ستونى‬ ‫وةزنى‬ ‫َطرتنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫َت‬‫ي‬‫َنر‬‫ي‬‫دةه‬ ‫بةكار‬ ‫ستونية‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫تى‬ ❖ (‫طورزةكان‬ ‫َى‬‫ل‬‫توو‬ Trusses Bar : ) ‫دةب‬ ‫َك‬‫ي‬‫َز‬‫ي‬‫ه‬ ‫بةرةنطاري‬ ‫َت‬‫ي‬‫الرب‬ ‫يان‬ ‫ستوونى‬ , ‫ئاسؤى‬ ‫َت‬‫ي‬‫دةطوجن‬ ‫كة‬ ‫طورزةية‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫طشتى‬ ‫َوةيةكة‬‫ي‬‫ش‬ ‫بة‬ ‫َت‬‫ي‬ ‫بة‬ ‫كة‬ ‫ةوة‬ ‫َذ‬‫ي‬‫در‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫يةكةيةتى‬ . ‫َواز‬‫ي‬‫ش‬ ‫ِووى‬‫ر‬‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرى‬ ( ‫َنان‬‫ي‬‫بةكاره‬ ‫و‬ Type of Structures :) ❖ ‫َةكان‬‫ل‬‫ِاية‬‫ر‬ ( Beams ) ‫وةزنةكان‬ ‫َطرتنى‬‫ل‬‫هة‬ ‫بؤ‬ ‫َنراون‬‫ي‬‫لك‬ ‫بةيةكةوة‬ ‫جياواز‬ ‫َوازى‬‫ي‬‫ش‬ ‫و‬ ‫ئاسؤى‬ ‫َوازى‬‫ي‬‫ش‬ ‫بة‬ ‫َك‬‫ي‬َ‫ل‬‫ِاية‬‫ر‬ ‫ضةند‬ ‫يان‬ َ‫ل‬‫ِاية‬‫ر‬ ‫يةك‬ ‫لة‬ ‫بريتية‬ : . ❖ ‫ثةيكةرةكان‬ ( Frames ) ‫لةو‬ ‫بريتية‬ : .‫َت‬‫ي‬‫بةكارد‬ ‫بينادا‬ ‫درووستكردنى‬ ‫لة‬ ‫زؤرى‬ ‫بة‬ ‫كة‬ ‫َت‬‫ي‬‫دةب‬ ‫دروست‬ ‫ثاية‬ ‫و‬ َ‫ل‬‫ِاية‬‫ر‬ ‫َك‬‫ي‬َ‫ل‬‫كؤمة‬ ‫يةكطرتنى‬ ‫لة‬ ‫كة‬ ‫ثةيكةرةى‬ ❖ ‫طورزة‬ ‫كان‬ ( Trusses ) ( ‫َوازى‬‫ي‬‫ش‬ ‫بة‬ ‫لكاو‬ ‫بةيةكةوة‬ ‫َكى‬‫ي‬‫ئةندام‬ ‫َة‬‫ل‬‫كؤمة‬ ‫لة‬ ‫بريتية‬ : Pin ) ، ‫َك‬‫ي‬‫َز‬‫ي‬‫ه‬ ‫بةرةنطاري‬ ‫طشتى‬ ‫َوةيةكى‬‫ي‬‫ش‬ ‫بة‬ ‫ئةندامةكانى‬ ‫طشت‬ ‫وة‬ ‫دةبنة‬ .‫ئةندامةكةية‬ ‫َذى‬‫ي‬‫در‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بة‬ ‫كة‬ ‫وة‬ ❖ ‫وةك‬ ‫هةية‬ ‫َكهاتةمان‬‫ي‬‫ث‬ ‫ترى‬ ‫جؤرى‬ ‫ضةند‬ ( …….Cable, Arches, Surface Structures ) . ( ‫وةزنةكان‬ Loads ) ‫كة‬ ‫وةزنانةى‬ ‫لةم‬ ‫بريتني‬ : ‫دةكةنة‬ ‫كاريطةرى‬ ‫دةبنةوة‬ ‫بةرةنطاريان‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫وة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫سةر‬ ‫بةهؤى‬ ‫يان‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫ئةندامةكانى‬ ‫بةهؤى‬ ‫وةك‬ ‫وةزنةكانيش‬ ,‫ئةندامةكان‬ ‫بةيةكالكانى‬ ‫َنى‬‫ي‬‫شو‬ ( Deal Load, Live load, Wind load, Snow load, Earthquake load,……… ) , ‫ِى‬‫ر‬‫ب‬ ‫وة‬ ‫َت‬‫ي‬‫دادةنر‬ ‫وةزنة‬ ‫ئةو‬ ‫َرةى‬‫ي‬‫بةطو‬ ‫ئةمانةش‬ ‫كة‬ ‫َت‬‫ي‬‫دةكر‬ ‫َشبينى‬‫ي‬‫ث‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫سةر‬ ‫كاربكاتة‬ ‫موو‬ ‫كةمينةكانى‬ ‫لة‬ ‫و‬ ‫ا‬ ‫سةرجةميشيان‬ ‫ِةضاوى‬‫ر‬ ‫و‬ ‫َت‬‫ي‬‫نةب‬ ‫كةمرت‬ ‫سةفات‬ .‫َت‬‫ي‬‫دةكر‬ ( ‫شيكاريةوة‬ ‫ِووى‬‫ر‬‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرى‬ Type of Structures :) ❖ ( Statically Determinate Structures ‫دةتوانني‬ ‫كة‬ ‫َكهاتانةن‬‫ي‬‫ث‬ ‫ئةو‬ : ) .‫هاوسةنطى‬ ‫َزى‬‫ي‬‫ه‬ ‫ياساكانى‬ ‫َنانى‬‫ي‬‫بةكاره‬ ‫بة‬ ‫بكةين‬ ‫شيكاريان‬ ❖ ( Statically Indeterminate Structures ) .‫هاوسةنطى‬ ‫َزى‬‫ي‬‫ه‬ ‫ياساكانى‬ ‫َنانى‬‫ي‬‫بةكاره‬ ‫بة‬ ‫بكةين‬ ‫شيكاريان‬ ‫ناتوانني‬ ‫كة‬ ‫َكهاتانةن‬‫ي‬‫ث‬ ‫ئةو‬ : ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكاركردنى‬ ‫َطاكانى‬‫ي‬ِ‫ر‬ ‫لة‬ ‫َك‬‫ي‬‫هةند‬ ‫َطريةكان‬‫ي‬‫ج‬ ‫وةزنة‬ ‫بؤ‬ : 1. Deflections Using Energy Method. 2. Approximate Analysis Method. 3. Deflections. 4. Force Method ( Flexibility Method ) . 5. ........ 6. ……. 7. Stiffness Method (Matrix Structural Analysis) ( Degree of Freedom :) ‫َةكان‬‫ل‬‫خا‬ ‫ِانى‬‫ر‬‫سو‬ ‫و‬ ‫َة‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ( Translation and Rotation ) ‫بؤ‬ ‫ئةندامةكة‬ ‫تةوةرةى‬ ‫يان‬ ‫طشتى‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بة‬ ‫هةية‬ ‫ِانيان‬‫ر‬‫سو‬ ‫و‬ ‫َن‬‫ال‬‫جو‬ ‫ئةطةرى‬ ‫كة‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫ِاطرةكانى‬‫ر‬ ‫و‬ َ‫ل‬‫خا‬ ‫هةموو‬ .
  • 8. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 7 σ = Stress ‫فشا‬ ‫ر‬ ‫كورتكراوةكان‬ ‫َما‬‫ي‬‫ه‬ : A = Area ‫ِووبةر‬‫ر‬ L= Length ‫َذى‬‫ي‬‫در‬ H= Height ‫بةرزى‬ W= Width ‫ثانى‬ D or DOF = Deformation ro Degree Of Freedom(Rotation & Displacement) ‫سةربةست‬ ‫ِانى‬‫ر‬‫سو‬ ‫و‬ ‫َن‬‫ال‬‫جو‬ ‫ِادةى‬‫ر‬ K= Stiffness Matrix ‫ِيزكراوة‬‫ر‬ ‫َوةى‬‫ي‬‫ش‬ ‫بة‬ ‫مةواد‬ ‫ِةقى‬‫ر‬ F= Load ‫بارستايى‬ E= Modulus of Elasticity ‫ِي‬‫ري‬‫ج‬ ‫ِادةى‬‫ر‬ G= Shear Modulus (Modulus of Rigidity) ‫ِين‬‫ر‬‫ب‬ ‫و‬ ‫ِان‬‫ر‬‫سو‬ ‫بؤ‬ ‫ِى‬‫ري‬‫ج‬ ‫ِادةى‬‫ر‬ J= Polar moment of inertia Ix = moment of inertia about( x) Iy= moment of inertia about (y) Iz = moment of inertia about (z) X, Z, Y= Axis Direction RX, RZ, RY= Rotation About Axis B. M. D= Bending Moment Diagram S. F. D= Shear Force Diagram A. F. D= Axial Force Diagram MZ = Moment about (z) My = Moment about (y) Mx = Torsion (Moment about (x)) SZ = Shear Force about (z) Sy = Shear Force about (y) AX = Axial Force FER = Fixed End Reaction PER = Pinned End Reaction C = Compression T = Tension JFV= Joint Force Vector θx, θy, θz=Rotate Angle About Axis ∆𝑥, ∆𝑦, ∆𝑧 = Displacement Direct Axis θ= Rotate Angle ∆= Displacement
  • 9. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 8 ‫ِيزكراوةكان‬‫ر‬ ( Matrix ) : ‫ِيزكراو‬‫ر‬ ‫ِى‬‫ر‬‫ب‬ ‫َك‬‫ي‬َ‫ل‬‫كؤمة‬ ‫لة‬ ‫بريتني‬ ‫ستوون‬ ‫و‬ ‫ِيز‬‫ر‬ ‫َوةى‬‫ي‬‫ش‬ ‫بة‬ .‫ِيزكراون‬‫ر‬ ‫تايبةمتةندى‬ ‫ِيزكراوةكان‬‫ر‬ (Matrices Property) : ( ‫ئةطةر‬ A,B ) . ‫بن‬ ‫ِيزكراوة‬‫ر‬ ‫دوو‬ A ± B = [ 2 3 4 5 ] ± [ 6 −7 8 9 ] = [ 2 ± 6 3 ± (−7) 4 ± 8 5 ± 9 ] x ∗ A = 𝑥 ∗ [ 2 3 4 5 ] = [ 𝑥 ∗ 2 𝑥 ∗ 3 𝑥 ∗ 4 𝑥 ∗ 5 ] = [ 2𝑥 3𝑥 4𝑥 5𝑥 ] = A*x A = [ a11 a12 … … a1𝑛 a21 a22 … … a2𝑛 … … … … … a𝑚1 a𝑚2 … … a𝑚𝑛 ] |A| = 2 ∗ 5 − 4 ∗ 3 = −2 |B| = 6 ∗ 9 − (8 ∗ −7) = 110 𝟐 −𝐀𝐝𝐝𝐢𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝐒𝐮𝐛𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐌𝐚𝐭𝐫𝐢𝐜𝐞𝐬 A2∗2 ∗ B2∗2 = [ 2 3 4 5 ] ∗ [ 6 −7 8 9 ] = [ 2 ∗ 6 + 3 ∗ 8 2 ∗ (−7) + 3 ∗ 9 4 ∗ 6 + 5 ∗ 8 4 ∗ (−7) + 5 ∗ 9 ] 2∗2 𝟑 −𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐌𝐚𝐭𝐫𝐢𝐜𝐞𝐬 [6 8] ∗ A = [6 8] ∗ [ 2 3 4 5 ] = [6 ∗ 2 + 8 ∗ 4 6 ∗ 3 + 8 ∗ 5]=[44 58] A ∗ [ 6 8 ] = [ 2 3 4 5 ] [ 6 8 ] = [ 2 ∗ 6 + 3 ∗ 8 4 ∗ 6 + 5 ∗ 8 ]=[ 36 64 ] 𝟒 −𝐈𝐧𝐯𝐞𝐫𝐬𝐞 𝐨𝐟 𝐌𝐚𝐭𝐫𝐢𝐱 A−1 = 1 |A| [ 5 −3 −4 2 ] = 1 −2 ∗ [ 5 −3 −4 2 ] =[ 1 −2 ∗ 5 1 −2 ∗ −3 1 −2 ∗ −4 1 −2 ∗ 2 ]=[ −2.5 1.5 2 −1 ] 𝟓 −𝐓𝐫𝐚𝐧𝐬𝐩𝐨𝐬𝐞 𝐨𝐟 𝐌𝐚𝐭𝐢𝐱 AT = [ 2 4 3 5 ] 𝟔 −𝐏𝐫𝐨𝐩𝐞𝐫𝐭𝐲 𝐨𝐟 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧 AB ≠ BA A(BC)=(AB)C A(B+C)=AB+AC (A+B)C=AC+BC (AB)T =BT AT A*A-1 =1 (aij=0 but for each i=j then aij=1) A2∗2 = [ 2 3 4 5 ] , B2∗2 = [ 6 −7 8 9 ] 𝟏 − 𝐃𝐞𝐭𝐞𝐫𝐦𝐢𝐧𝐚𝐧𝐭 𝐨𝐟 𝐌𝐚𝐭𝐫𝐢𝐱 aij = matrix element Matrix ‫ستونى‬ 1 ‫ِيزى‬‫ر‬ 1
  • 10. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 9 [ 2 6 7 9 ] −1 :‫ِيزكراوةكان‬‫ر‬ ‫سودى‬ .‫َيةكان‬‫ل‬َ‫ي‬‫ه‬ ‫َشة‬‫ي‬‫هاوك‬ ‫سيستةمى‬ ‫كردنى‬ ‫شيكار‬ ‫بؤ‬ ‫َنني‬‫ي‬‫دةه‬ ‫بةكار‬ ‫ِيزكراوةكان‬‫ر‬ .‫ِيزكراوةكان‬‫ر‬ ‫َنانى‬‫ي‬‫كاره‬ ‫بة‬ ‫بة‬ ‫بكة‬ ‫شيكار‬ ‫خووارةوة‬ ‫َشةى‬‫ي‬‫هاوك‬ ‫دوو‬ ‫ئةم‬ :1‫منونة‬ / ‫شيكار‬ -1 ‫ِيزكراوة‬‫ر‬ ‫َوةةى‬‫ي‬‫ش‬ ‫بؤ‬ ‫ِين‬‫ر‬‫دةطؤ‬ ‫َشةكة‬‫ي‬‫هاوك‬ ‫هةردوو‬ :‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ‫هةردوو‬ :‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ‫دةكةين‬ ‫جارانى‬ ‫َشةكة‬‫ي‬‫هاوك‬ ‫الى‬ -2 .‫َشة‬‫ي‬‫هاوك‬ ‫سيستةمى‬ ‫بؤ‬ ‫ِة‬‫ر‬‫بطؤ‬ ‫ِيزكراوة‬‫ر‬ ‫ئةم‬ :2‫منونة‬ / ‫شيكار‬ -1 .‫دةدةين‬ ‫ئةجنام‬ ‫ِاست‬‫ر‬ ‫الى‬ ‫بؤ‬ ‫ِيزكراوة‬‫ر‬ ‫جارانكردنى‬ ‫كردارى‬ 2𝑥 + 6𝑦 = 62 1 7𝑥 + 9𝑦 = 109 2 [ 2 6 7 9 ] [ 𝑥 𝑦] = [ 62 109 ] [ 2 6 7 9 ] [ 2 6 7 9 ] −1 [ 𝑥 𝑦] = [ 2 6 7 9 ] −1 [ 62 109 ] ∴ [ 𝑥 𝑦] = 1 −24 ∗ [ 9 −6 −7 2 ] [ 62 109 ] ∴ [ 𝑥 𝑦] = 1 −24 ∗ [ 9 ∗ 62 + (−6) ∗ 109 (−7) ∗ 62 + 2 ∗ 109 ] = 1 −24 [ −96 −216 ]=[ 4 9 ] ∴ x = 4 , y = 9 [ F1 F2 ] =[ 2 6 7 9 ] [ 𝐷1 𝐷2 ] [ F1 F2 ] =[ 2 ∗ 𝐷1 + 6 ∗ 𝐷2 7 ∗ 𝐷1 + 9 ∗ 𝐷2 ] ∴ F1 =2𝐷1 + 6𝐷2 ∴ F2 =7𝐷1 + 9𝐷2
  • 11. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 10 and Inverse Matrix: nt General Determina 1 -Minors? 2 -Cofactors? : nt General Determina or General Inverse: A = [ a11 a12 a13 a21 a22 a23 a31 a13 a33 ] 𝑚11 = [ 𝐚𝟐𝟐 𝐚𝟐𝟑 𝐚𝟏𝟑 𝐚𝟑𝟑 ] = [ a22 a23 a13 a33 ] C𝑖𝑗 = (-1)i+j *mij 𝑚12 = [𝐚𝟐𝟏 𝐚𝟐𝟑 𝐚𝟑𝟏 𝐚𝟑𝟑 ] = [ a21 a23 a31 a33 ] 𝐶11 = (−1)2 ∗ [ 𝐚𝟐𝟐 𝐚𝟐𝟑 𝐚𝟏𝟑 𝐚𝟑𝟑 ] = [ a22 a23 a13 a33 ] 𝐶12 = (−1)3 ∗ [𝐚𝟐𝟏 𝐚𝟐𝟑 𝐚𝟑𝟏 𝐚𝟑𝟑 ] = −1 ∗ [ a21 a23 a31 a33 ] |A| = ∑ 𝑎𝑖𝑗𝑐𝑖𝑗 𝑛 𝑖=1 For j= 1,…………,n-1 or n |A| = ∑ 𝑎𝑖𝑗𝑐𝑖𝑗 𝑛 𝑗=1 For i= 1,………,n-1 or n A−1 = 𝐶𝑇 |𝐴| , 𝐶𝑇 = 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝐶𝑜𝑓𝑎𝑐𝑡𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 . aij = matrix element
  • 12. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 11 ( |A| =? , A−1 =? ) ‫منونة‬ 3 : ‫بؤ‬ ‫ِيزكراوة‬‫ر‬ ‫ئةم‬ ‫بكة‬ ‫ديارى‬ ‫دذةكةى‬ ‫و‬ ‫ئةجنام‬ . / ‫شيكار‬ 1 -Minors? 2 -Cofactors? Minor for each element=? A = [ 2 −3 4 0 6 5 8 1 −7 ] 𝑚11 = [ 2 −3 4 0 6 5 8 1 −7 ] = [ 6 5 1 −7 ] 𝑚12 = [ 2 −3 4 0 6 5 8 1 −7 ] = [ 0 5 8 −7 ] 𝑚13 = [ 2 −3 4 0 6 5 8 1 −7 ] = [ 0 6 8 1 ] 𝐶11 = [ 6 5 1 −7 ]= -42-5=-47 𝐶12 = −1 ∗ [ 0 5 8 −7 ] =-1*(0-40) = 40 𝐶13 = [ 0 6 8 1 ] =0-48 =-48 ∴ |A| =2*-47+(-3) *40+4*-48 = -406 m = [ [ 6 5 1 −7 ] [ 0 5 8 −7 ] [ 0 6 8 1 ] [ −3 4 1 −7 ] [ 2 4 8 −7 ] [ 2 −3 8 1 ] [ −3 4 6 5 ] [ 2 4 0 5 ] [ 2 −3 0 6 ]] = [ −47 −40 −48 17 −46 26 −39 10 12 ] C𝑐𝑜𝑓𝑎𝑐𝑡𝑜𝑟 = [ −47 40 −48 −17 −46 −26 −39 −10 12 ] C𝑇 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝑜𝑓 𝐶𝑜𝑓𝑎𝑐𝑡𝑜𝑟 = [ −47 −17 −39 40 −46 −10 −48 −26 12 ] ∴ A−1 = 𝐶𝑇 |𝐴| = −1 406 [ −47 −17 −39 40 −46 −10 −48 −26 12 ]
  • 13. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 12 _ + + + 3D Drawing Diagrams of Forces and Moments: 2D Drawing Diagrams of Forces and Moments: B.M.D(z) B.M.D(y) B.M.D(x) S.F.D(y) S.F.D(z) A.F.D(x) .‫َشني‬‫ي‬‫دةك‬ ‫َنة‬‫ي‬‫و‬ ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ‫َكارى‬‫ل‬َ‫ي‬‫ه‬ ‫زةبرةكان‬ ‫َزو‬‫ي‬‫ه‬ B.M.D S.F.D
  • 14. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 13 :‫َطرةكان‬‫ل‬‫هة‬ ‫كاردانةوةى‬ ‫ذمارةى‬ ‫و‬ ‫َكارى‬‫ل‬َ‫ي‬‫ه‬ ‫و‬ ‫جؤر‬ ‫بة‬ ‫تايبةت‬ ‫خشتةى‬ ‫َداضونةوةيةك‬‫ي‬‫ث‬ ‫بؤ‬ ‫َزةكان‬‫ي‬‫ه‬ ‫بوونى‬ ‫دابةش‬ ‫و‬ ‫ئةندازةيةكان‬ ‫َوة‬‫ي‬‫ش‬ : Supports ‫كان‬ ‫َطرة‬‫ل‬‫هة‬ ‫جؤرى‬ ‫َنةكةى‬‫ي‬‫و‬ Number of Reactions ‫كاردانةوةكان‬ ‫ذمارةى‬ ‫َبينى‬‫ي‬‫ت‬ 2D 3D Fix 3 6 ( ‫لة‬ ‫كاردانةوةكانى‬ ‫ذمارةى‬ 2D ‫يةك‬ ‫َزو‬‫ي‬‫ه‬ ‫دوو‬ ) ‫زةبرة‬ ( ‫لة‬ ‫َم‬‫ال‬‫بة‬ 3D ‫زةبرة‬ َ‫ى‬‫س‬ ‫َزو‬‫ي‬‫ه‬ َ‫ى‬‫س‬ ) . Pin(Hinge) (ball &Socket) 2 3 ‫ِاطر‬‫ر‬ ‫وةك‬ ‫سفرة‬ ‫تيايدا‬ ‫زةبر‬ . Roller 1 1 ‫ِاطرة‬‫ر‬ ‫جؤة‬ ‫ئةم‬ ‫َرةكاندا‬‫ي‬‫سؤفتو‬ ‫لة‬ ‫كة‬ ‫هةية‬ ‫جؤرى‬ ‫زؤرترين‬ ‫َت‬‫ي‬ِ‫ر‬‫دةطؤ‬ ‫جؤرةكةى‬ ‫َرةى‬‫ي‬‫طو‬ ‫بة‬ ‫كاردانةوةكانى‬ ‫ذمارةى‬ . Cable 1 1 ‫َةكةية‬‫ل‬‫َب‬‫ي‬‫ك‬ ‫ئاراستةى‬ ‫بة‬ ‫كاردانةوةكةى‬ . Internal Hinge 2 3 ‫سفرة‬ ‫تيايدا‬ ‫زةبر‬ . 0,0,9 FAH FAF H G F E D C B A 3,8,0 0,8,0 3,0,9 3,0,0 Z Y X 0,0,0 0,8,9 3,8,9 (X,Y,Z) LAH = √(XH − XA)2 + (YH − YA)2 + (ZH − ZA)2 2 ‫دوورى‬ َ‫ى‬‫س‬ ‫بؤ‬ LAF = √(XF − XA)2 + (ZF − ZA)2 2 ‫تةوةرةكان‬ ‫َرةى‬‫ي‬‫طو‬ ‫بة‬ ‫دوورى‬ ‫دوو‬ ‫بؤ‬ FX(AH) = FAH ∗ XH − XA LAH FY(AH) = FAH ∗ YH − YA LAH FZ(AH) = FAH ∗ ZH − ZA LAH FX(AF) = FAF ∗ XF − XA LAF FZ(AF) = FAF ∗ ZF − ZA LAF cos 𝜃𝑋(𝐴𝐻) = XH − XA LAH cos 𝜃𝑌(𝐴𝐻) = YH − YA LAH cos 𝜃𝑍(𝐴𝐻) = ZH − ZA LAH cos 𝜃𝑋(𝐴𝐹) = XF − XA LAF cos 𝜃𝑍(𝐴𝐹) = ZF − ZA LAF θ = 𝐴𝑛𝑔𝑙𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑎𝑥𝑖𝑠
  • 15. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 14 1 2 4 3 5 6 7 ‫َداضونة‬‫ي‬‫ث‬ ‫ياساكان‬ ‫بؤ‬ ‫وةيةك‬ : ‫لة‬ ‫بريتني‬ ‫سورن‬ ‫ِةنطى‬‫ر‬ ‫بة‬ ‫ياساكاندا‬ ‫لة‬ ‫كة‬ ‫بةشةى‬ ‫ئةم‬ ( K ) .‫َوازةكةى‬‫ي‬‫ش‬ ‫بؤ‬ ‫ئةندامةكة‬ ‫ى‬ T = GJ L θ T = GJ L θ δ𝑆 = ρθ γ = 𝛿𝑆 L = 𝜌𝜃 𝐿 τ = 𝑇𝜌 J T = GJ L θ G = 𝜏 γ T = Torque 𝑀𝐴𝐵 = 4𝐸𝐼𝜃 𝐿 𝑀𝐵𝐴 = 2𝐸𝐼𝜃 𝐿 L A B θ 𝑆𝐴𝐵 = 6𝐸𝐼𝜃 𝐿2 𝑆𝐵𝐴 = 6𝐸𝐼𝜃 𝐿2 𝑀𝐴𝐵 = 4𝐸𝐼 𝐿 𝜃 𝑀𝐵𝐴 = 2𝐸𝐼 𝐿 𝜃 𝑆𝐴𝐵 = 6𝐸𝐼 𝐿2 𝜃 𝑆𝐵𝐴 = − 6𝐸𝐼 𝐿2 𝜃 𝑀𝐵𝐴 = 6𝐸𝐼 𝐿2 ∆ 𝑀𝐴𝐵 = 6𝐸𝐼 𝐿2 ∆ 𝑆𝐴𝐵 = 12𝐸𝐼 𝐿3 ∆ 𝑆𝐵𝐴 = − 12𝐸𝐼 𝐿3 ∆ L ∆ 𝑀𝐵𝐴 = 6𝐸𝐼∆ 𝐿2 𝑀𝐴𝐵 = 6𝐸𝐼∆ 𝐿2 A B 𝑆𝐴𝐵 = 12𝐸𝐼∆ 𝐿3 𝑆𝐵𝐴 = 12𝐸𝐼∆ 𝐿3 ∆ 𝐹 = 𝐸𝐴∆ 𝐿 A B 𝐹 = 𝐸𝐴∆ 𝐿 σ = F A ϵ = ∆ L E = 𝜎 ϵ F = EA L ∆ ϵ =Unit Tensile or Compressive strain (‫َفشار‬‫ي‬‫)ج‬ A B L L 𝐀𝐱𝐢𝐚𝐥 𝐅𝐨𝐫𝐜𝐞 𝐓𝐨𝐫𝐬𝐢𝐨𝐧 𝐑𝐨𝐭𝐚𝐭𝐢𝐨𝐧 𝐃𝐞𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧
  • 16. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 15 W W Y Z Y Z Y Z D H Square Member Rectangular member Circular member ‫بة‬ ‫تايبةت‬ ‫خشتةى‬ ‫يةكة‬ ‫َماى‬‫ي‬‫ه‬ ‫و‬ ‫بةكارهاتوو‬ : ‫بة‬ ‫تايبةت‬ ‫خشتةى‬ ‫ِطةى‬‫ر‬‫ب‬ ‫تايبةمتةندى‬ :‫ئةندامةكان‬ ( J ) x I y I z I Area Member Type π 32 D4 π 64 D4 π 64 D4 π 4 D2 HW3 ( 1 3 − 0.21 𝑊 𝐻 (1 − 𝑊4 12𝐻4)) HW3 12 WH3 12 H ∗ W 2.25 16 W4 W4 12 W4 12 W2 Quantity Unit Symbol Formula Length Meter L m Height Meter H m Width Meter W m Area Square Meter A m2 Force Kilogram F kg Stress Kilogram per Square Meter σ kg/ m2 Modulus of elasticity Kilogram per Square Meter E kg/ m2 Shear modulus Kilogram per Square Meter G kg/ m2 Moment of inertia Meter to fourth power I m4 Polar moment of inertia Meter to fourth power J m4 Rotate angle Rad R R Displacement Meter ∆ m Bending moment Kilogram. Meter M kg. m Torsion Kilogram. Meter T kg. m
  • 17. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 16 3D Structural Analysis ‫دووريدا‬ َ‫ى‬‫س‬ ‫لة‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫شيكارى‬ Stiffness Method ‫يةكةم‬ ‫بةشى‬ ( Direct Stiffness Method )
  • 18. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 17 Stiffness Method ( Matrix Structural Analysis ) ‫َكة‬‫ي‬‫يةك‬ ( ‫كردنى‬ ‫شيكار‬ ‫َطاكانى‬‫ي‬ِ‫ر‬ ‫لة‬ Structure ‫َؤزةكان‬‫ل‬‫ئا‬ ‫َكهاتة‬‫ي‬‫ث‬ ‫شيكارى‬ ‫بؤ‬ ‫َنن‬‫ي‬‫دةه‬ ‫بةكارى‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫كة‬ ‫تايبةتة‬ ‫َكى‬‫ي‬‫شيكار‬ ) ( complex structures ) . ‫َطاي‬‫ي‬‫ر‬ ‫ضةند‬ ‫بة‬ ‫َت‬‫ي‬‫دةب‬ ‫ئةميش‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫دةتوانني‬ ‫كة‬ ‫ةكةوة‬ (‫دوورى‬ ‫دوو‬ ‫لة‬ 2D (‫دووريدا‬ َ‫ى‬‫س‬ ‫و‬ ) 3D ‫شيكار‬ َ‫ى‬‫ث‬ ) ‫بكةين‬ . ‫ئةم‬ ‫ئةندا‬ ‫ِةقى‬‫ر‬ ‫ثةيوةندى‬ ‫َطاية‬‫ي‬ِ‫ر‬ .‫َكهاتةكة‬‫ي‬‫ث‬ ‫َةى‬‫ل‬‫جو‬ ‫و‬ ‫ئةندامةكان‬ ‫َزى‬‫ي‬‫ه‬ ‫دؤزينةوةى‬ ‫بؤ‬ ‫َت‬‫ي‬‫َن‬‫ي‬‫دةه‬ ‫بةكار‬ ‫مةكان‬ ‫بةهؤى‬ ‫َينوةى‬‫ل‬‫َكؤ‬‫ي‬‫ل‬ ‫لة‬ ‫بابةتة‬ ‫ئةم‬ ‫َدةطةين‬‫ي‬‫ت‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫ِةفتارى‬‫ر‬ ‫ياساو‬ ‫َنني‬‫ي‬‫به‬ ‫بةكار‬ ‫َرةكان‬‫ي‬‫و‬ ‫سؤفت‬ ‫دةتوانني‬ ‫ئاسانرت‬ ‫بة‬ ‫وة‬ . ‫د‬ ‫طؤرانكاريةكاندا‬ ‫يان‬ ‫ئةندامةكاندا‬ ‫بةيةكةوةبةستنى‬ ‫لة‬ ‫كار‬ ‫و‬ ‫َن‬‫ي‬‫دةبر‬ ‫َؤز‬‫ل‬‫ئا‬ ‫َكى‬‫ي‬‫شيكار‬ ‫بةرةو‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫َطايةدا‬‫ي‬‫ر‬ ‫ئةم‬ ‫شيكارى‬ ‫لة‬ .‫َت‬‫ي‬‫ةكر‬ ‫ئاراستةى‬ ‫بة‬ ‫َةكان‬‫ل‬‫خا‬ ‫لة‬ ‫هةركام‬ ‫ث‬ ‫ئةندامةكة‬ ‫يان‬ ‫طشتى‬ ‫تةوةرةى‬ .‫هةية‬ ‫ثلةيةيان‬ ‫ئةم‬ ‫ئةطةرى‬ ‫كة‬ ‫َت‬‫ي‬‫دادةنر‬ ‫بؤ‬ ‫سورانيان‬ ‫َةو‬‫ل‬‫جوو‬ ‫ئازادى‬ ‫لةى‬ ‫ِى‬‫ر‬‫ب‬ ‫لة‬ ‫بريتية‬ ‫شيكارةكة‬ ‫نةزانراوى‬ ‫َة‬‫ل‬‫جو‬ َ‫ي‬‫ث‬ ‫َكهاتةكةتى‬‫ي‬‫ث‬ ‫ئةندامةكانى‬ ‫ناو‬ ‫زةبرةكانى‬ ‫َزو‬‫ي‬‫ه‬ ‫هةموو‬ ‫دةتوانيت‬ ‫كة‬ ,‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ‫ِان‬‫ر‬‫سو‬ ‫و‬ .‫بدؤزيتةوة‬ ‫بةرةنطار‬ ‫كة‬ ‫َزانة‬‫ي‬‫ه‬ ‫ئةم‬ ‫هةموو‬ ‫وة‬ َ‫ل‬‫خا‬ ‫هؤى‬ ‫بة‬ ‫كة‬ ‫َتةوة‬‫ي‬‫دةب‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫َت‬‫ي‬‫ب‬ ‫ئةندامةكانةوة‬ ‫يان‬ ‫ئةندامةكان‬ ‫بةستنى‬ ‫بةيةكةوة‬ ‫ةكانى‬ ‫َز‬‫ي‬‫ه‬ ‫َتة‬‫ي‬‫بكر‬ ‫َويستة‬‫ي‬‫ث‬ .‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ‫َى‬‫ل‬‫خا‬ ‫َكى‬‫ي‬‫زةبر‬ ‫و‬ ِ‫ر‬ ‫لة‬ ‫بريتية‬ ‫ياساكةش‬ ‫هاوكؤلكةى‬ ‫وة‬ ‫بة‬ ‫ِانةكان‬‫ر‬‫سو‬ ‫و‬ ‫َان‬‫ل‬‫جو‬ ‫بارى‬ ‫طشت‬ ‫بؤ‬ ‫كة‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫ةقى‬ ‫بؤ‬ ‫يةك‬ ‫ذمارة‬ ‫دانانى‬ ‫َةكان‬‫ل‬‫خا‬ ‫لة‬ ‫ياساالوةكيةكان‬ ‫بؤ‬ ‫ِيزكراوة‬‫ر‬ ‫َوةى‬‫ي‬‫ش‬ ‫بة‬ ‫َكهاتةكةش‬‫ي‬‫ث‬ ‫ِةقى‬‫ر‬ ‫وة‬ .‫َكهاتةكة‬‫ي‬‫ث‬ ‫بؤ‬ ‫خةتى‬ ‫َكى‬‫ي‬‫َز‬‫ي‬‫ه‬ ‫َتة‬‫ي‬‫دةب‬ ‫و‬ ‫َتةوة‬‫ي‬‫دةدؤزر‬ ‫دا‬ ‫تر‬ ‫ِةكانى‬‫ر‬‫ب‬ ‫موجةبةو‬ ‫ِيزكراوةكة‬‫ر‬ ‫َذى‬‫ي‬‫ل‬ ‫وة‬ ,‫َت‬‫ي‬‫دةكر‬ ‫ِيز‬‫ر‬ ‫َكهاتةكة‬‫ي‬‫ث‬ ‫بةكاره‬ ‫و‬ ‫َيةكان‬‫ل‬َ‫ي‬‫ه‬ ‫َشة‬‫ي‬‫هاوك‬ ‫بوونى‬ ‫بؤية‬ ‫هةر‬ ,‫يةكسانن‬ ‫دةوريدا‬ ‫بة‬ ‫َنانى‬‫ي‬ .‫ِيطاية‬‫ر‬ ‫ئةم‬ ‫بؤ‬ ‫َك‬‫ي‬‫ناو‬ ‫بؤتة‬ ‫ِيزكراوةكان‬‫ر‬ ‫سنوورى‬ ‫لة‬ ‫كة‬ , ‫بكةيت‬ ‫َكهاتةكان‬‫ي‬‫ث‬ ‫جؤرةكانى‬ ‫هةموو‬ ‫شيكارى‬ ‫دةتوانيت‬ ‫َطاية‬‫ي‬ِ‫ر‬ ‫ئةم‬ ‫َنانى‬‫ي‬‫بةكاره‬ ‫بة‬ .‫َكهاتةكانن‬‫ي‬‫ث‬ ‫َطريى‬‫ي‬‫ج‬ ‫َساكانى‬‫ي‬‫ر‬
  • 19. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 18 / ‫َبينى‬‫ي‬‫ت‬ 1 - ( ‫لة‬ ‫هةركام‬ DOF ( ‫بة‬ ‫بكةين‬ ‫كان‬ ‫ة‬ ) 1 .‫َت‬‫ي‬‫دةب‬ ‫دروست‬ ‫ماتريكسةكةى‬ ‫ستيفنس‬ ‫ِيزى‬‫ر‬ ‫و‬ ‫َم‬‫ل‬‫كؤ‬ ‫ذمارةى‬ ‫ئةوا‬ ‫بن‬ ‫سفر‬ ‫تر‬ ‫ئةوانى‬ ) 2 - ( ‫َوان‬‫ي‬‫ن‬ ‫ثةيوةندى‬ F ( ‫و‬ ) D ( ‫ِانى‬‫ر‬‫نةطؤ‬ ‫بة‬ ‫راستةوانةية‬ ) K .) ‫يةكةم‬ ‫منوونةى‬ : ‫ِيزكراوةى‬‫ر‬ ( ‫َى‬‫ل‬‫خا‬ ‫ئاسؤى‬ ‫َةى‬‫ل‬‫جوو‬ 1 ‫و‬ 2 ( ‫َزى‬‫ي‬‫ه‬ ‫هؤى‬ ‫بة‬ ‫بكة‬ ‫ديارى‬ ) 2 ,F 1 F ( ‫َك‬‫ي‬‫كات‬ ) 2 ,K 1 K ) .‫َت‬‫ي‬‫زانراب‬ :‫شيكار‬ ‫سثرينطةكان‬ ‫َنى‬‫ال‬‫جو‬ ‫لةبةرئةوةى‬ ‫هةية‬ ‫َمان‬‫ل‬‫خا‬ ‫دوو‬ ‫ئاسؤييةو‬ ‫تةنها‬ . ‫َتة‬‫ي‬‫ئةب‬ ‫و‬ ‫َت‬‫ي‬‫دةب‬ ‫دروست‬ ‫بؤ‬ ‫َشةمان‬‫ي‬‫هاوك‬ ‫دوو‬ ‫كةواتا‬ ‫ِيزكراوةيةكى‬‫ر‬ .‫دوو‬ ‫بة‬ ‫دوو‬ ‫يةكةم‬ ‫هةنطاوى‬ ‫(طرميان‬ D1=1, D2=0 ) 1 K 1 + D 2 K 1 + D - D1K2 ‫هةنطاوى‬ ‫دووةم‬ ‫(طرميان‬ D1=0, D2=1 ) 2 F2 F1 1 K1 K2 D2 D1 K1 F1 F2 K2 D1=1 F1 K1 K1 K2 K2 D2 D1 K1 F1 F2 K2 D1=0 F1 D2=1 K2 K2 Point(1) D1(K1+K2) Point(2) - D1K2 Point(1) - D2K2 - D2K2 Point(2) +D2K2 +D2K2 +F1 = D1 (K1+K2) - D2K2 Point(1) Point(2) +F2 = - D1K2+D2K2 +F1 +F2 +F2 = K1+K2 - K2 - K2 K2 D1 D2 F=KD D=K-1 F
  • 20. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 19 Set Typical Beam θB ΘC θB θB Θ1 Θ2 D3 θB A A D1 D2 D3 1- Direct Stiffness Method : ‫َك‬‫ي‬‫يةك‬ ‫لة‬ ِ‫ر‬ ( ‫َطاكانى‬‫ي‬ Stiffness Method ‫لة‬ ‫بريتية‬ ) ( Direct Stiffness Method ) ( ‫َت‬‫ي‬‫دةوتر‬ ‫َشى‬‫ي‬‫ث‬ ‫وة‬ Matrix Stiffness Method ) ( ‫سةرةكيةكةى‬ ‫ياسا‬ ‫َطايةدا‬‫ي‬ِ‫ر‬ ‫لةم‬ ‫كة‬ Stiffness Method ‫َكهاتةك‬‫ي‬‫ث‬ ‫ئةندامى‬ ‫و‬ ‫ِانكاريةك‬‫ر‬‫طؤ‬ ‫هيض‬ َ‫ي‬‫بةب‬ ‫َت‬‫ي‬‫َنر‬‫ي‬‫دةه‬ ‫بةكار‬ ) َ‫ل‬‫لةطة‬ ‫َن‬‫ي‬‫َكدةخر‬‫ي‬ِ‫ر‬ ‫ان‬ ‫وة‬ .‫ياساكة‬ ‫َؤزةكان‬‫ل‬‫ئا‬ ‫َكهاتة‬‫ي‬‫ث‬ ‫شيكارى‬ ‫بؤ‬ ‫َنن‬‫ي‬‫دةه‬ ‫بةكارى‬ ‫َرةكان‬‫ي‬‫سؤفتو‬ ‫كة‬ ‫تايبةتة‬ ‫َكى‬‫ي‬‫شيكار‬ ( Complex Structures ) . ‫باوترين‬ ‫َطاية‬‫ي‬ِ‫ر‬ ‫ئةم‬ ( ‫َكارى‬‫ي‬‫َبةج‬‫ي‬‫ج‬ finite element method ) .‫ة‬ : 2D Structure ‫كة‬ ‫َكهاتانةن‬‫ي‬‫ث‬ ‫ئةو‬ ‫ِووتةخدان‬‫ر‬ ‫يةك‬ ‫لة‬ ‫َت‬‫ي‬‫دةطوجن‬ ‫َز‬‫ي‬‫ه‬ ‫زةبر‬ ‫و‬ ( Load, Moment ) ‫لة‬ ‫ِوتةختدا‬‫ر‬ ‫هةمان‬ ‫كاري‬ ‫خبةنة‬ ‫طةرى‬ ‫سةر‬ . 1- 2D Beams Analysis by Direct Stiffness Method ‫هةنطاوةكانى‬ ‫شيكاركردن‬ : 1 - ( Degree of Freedom ) ‫ى‬ ( Structure ) ‫دةكةين‬ ‫ديارى‬ ‫كة‬ ‫ة‬ ‫َة‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ‫كة‬ ‫ِانى‬‫ر‬‫سو‬ ‫و‬ ‫َةكان‬‫ل‬‫خا‬ ( Translation and Rotation ) ‫بةم‬ ‫قةبارةى‬ ‫َوة‬‫ي‬‫ش‬ ‫ستيفنس‬ ‫َت‬‫ي‬‫دةردةكةو‬ ‫بؤ‬ ‫ماتريكسةكةمان‬ , ( ‫بؤ‬ Beam ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ) ‫خوارةوةية‬ . 2 - ( Structure ‫ةكة‬ ) ‫و‬ ‫دةكةين‬ ‫بةش‬ ‫بةش‬ ‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ( Fixed End Reaction ) ‫بؤ‬ ‫ئةدؤزينةوة‬ ‫يةكةلة‬ ‫يةك‬ Deformation ( Rotation, Shear , Axial ) ( ‫َى‬‫ي‬‫ث‬ ‫بة‬ DOF ‫دةدؤزينةوة‬ ‫ماتريكسةكة‬ ‫ستيفنس‬ ‫بةمةش‬ ‫كان‬ ‫ة‬ ) ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ . Rotation Deformation for Fixed-Fixed (θ=1) L L (0,0,0) (8,0,0) (14,0,0) (20,0,0) (22,0,0) θ A D B C A B A B DOF=2 or 3 DOF=1 or 4 DOF=3 or DOF=1 DOF=1 or DOF=0 2𝐸𝐼𝜃 𝐿 A B θ 4𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 2𝐸𝐼𝜃 𝐿 A B θ 4𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 Y X Z Global Axis ‫طشتى‬ ‫تةوةرةى‬ X y Local Axis ‫تةوةرةى‬ ‫ئةندامةكة‬ DOF=3
  • 21. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 20 Rotation Deformation for Fixed-Hinge (θ=1) Shear Deformation for Fixed-Fixed(∆=1) Shear Deformation for Fixed-Hinge (∆=1) Axial Deformation for Fixed-Fixed (∆=1) Axial Deformation for Fixed-Hinge (∆=1) ( ‫َوازى‬‫ي‬‫ش‬ ‫تةنها‬ ‫ئةطةر‬ Fixed-Fixed ) ‫َرين‬‫ي‬‫َبذ‬‫ل‬‫هة‬ ‫ئةندامةكان‬ ‫طشت‬ ‫بؤ‬ ‫ِدةكةينةوة‬‫ر‬‫ث‬ ‫خوارةوة‬ ‫خشتةى‬ ‫ئةم‬ ‫ئةوا‬ . EA/L 3 12EI/L 2 6EI/L 4EI/L 2EI/L I E A Height(H) Width(W) Length(L) Member A-B A B θ 3𝐸𝐼𝜃 𝐿 3𝐸𝐼𝜃 𝐿2 3𝐸𝐼𝜃 𝐿2 A B θ 3𝐸𝐼𝜃 𝐿 3𝐸𝐼𝜃 𝐿2 3𝐸𝐼𝜃 𝐿2 ∆ 6𝐸𝐼∆ 𝐿2 A B 6𝐸𝐼∆ 𝐿2 12𝐸𝐼∆ 𝐿3 12𝐸𝐼∆ 𝐿3 ∆ 6𝐸𝐼∆ 𝐿2 6𝐸𝐼∆ 𝐿2 A B 12𝐸𝐼∆ 𝐿3 12𝐸𝐼∆ 𝐿3 ∆ 3𝐸𝐼∆ 𝐿2 A B 3𝐸𝐼∆ 𝐿3 3𝐸𝐼∆ 𝐿3 3𝐸𝐼∆ 𝐿2 A B 3𝐸𝐼∆ 𝐿3 3𝐸𝐼∆ 𝐿3 ∆ ∆ 𝐸𝐴∆ 𝐿 A B 𝐸𝐴∆ 𝐿 ∆ 𝐸𝐴∆ 𝐿 A B 𝐸𝐴∆ 𝐿 ∆ 𝐸𝐴∆ 𝐿 A B 𝐸𝐴∆ 𝐿 ∆ 𝐸𝐴∆ 𝐿 A B 𝐸𝐴∆ 𝐿 L L L L L L L L L L
  • 22. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 21 1 - .‫َت‬‫ي‬‫بكر‬ ‫يةكة‬ ‫ِةضاوى‬‫ر‬ ‫َويستة‬‫ي‬‫ث‬ ‫َك‬‫ي‬‫ثرسيار‬ ‫هةر‬ ‫شيكاركردنى‬ ‫بؤ‬ 2 - ‫لة‬ ‫بريتية‬ ‫ئةندامةكان‬ ‫ناو‬ ‫َكى‬‫ي‬َ‫ل‬‫خا‬ ‫هةر‬ ‫َزى‬‫ي‬‫ه‬ ‫طشتى‬ ‫َوةيةكى‬‫ي‬‫ش‬ ‫بة‬, ‫َوازةن‬‫ي‬‫ش‬ ‫ئةم‬ ‫دروستكراوى‬ ‫و‬ ‫نني‬ ‫َطري‬‫ي‬‫ج‬ ‫سةرةوة‬ ‫ياسايانةى‬ ‫ئةم‬ ‫سةرجةمى‬ ‫َزةكان‬‫ي‬‫ه‬ ( ‫طشت‬ ‫بؤ‬ ‫َةكةدا‬‫ل‬‫خا‬ ‫لة‬ DOF ( ‫و‬ ‫ةكان‬ ) FER ) .‫ةكة‬ ∆ 𝐸𝐴∆ 𝐿 A B 𝐸𝐴∆ 𝐿 - 3 ( Fixed End Reaction ) ‫بؤ‬ ‫ئةدؤزينةوة‬ ( Member Loads ) :‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ -4 ‫سةرئةجنامى‬ ( FER ) ‫كان‬ ‫ة‬ ‫ئةدؤزينةوة‬ ‫بؤ‬ ‫ِين‬‫ر‬‫ئةيطؤ‬ ‫و‬ ( Joint Force Vector ) ‫ماتريكس‬ ‫ناو‬ ‫دةخيةينة‬ ‫نيشانةيةو‬ ‫َضةوانةى‬‫ي‬‫ث‬ ‫كة‬ ‫َزةكةوة‬‫ي‬‫ه‬ ‫ى‬ َ‫ل‬‫خا‬ ‫ناو‬ ‫ترى‬ ‫َكى‬‫ي‬‫زةبر‬ ‫َزو‬‫ي‬‫ه‬ ‫هةر‬ َ‫ل‬‫لةطة‬ ‫ةكان‬ ‫بة‬ ‫بةرامبةر‬ ( Degree of Freedom ) .‫كة‬ ‫ة‬ .‫دةكةين‬ ‫شيكار‬ ‫ماتريكسةكة‬ ‫َشة‬‫ي‬‫هاوك‬ ‫دواتر‬ 5 - ‫زةبرى‬ ‫َزو‬‫ي‬‫ه‬ ‫ئة‬ ‫ئةندامةكان‬ ‫ناو‬ (‫دؤزينةوة‬ Internal Force of Members ) : Fixed - Fixed For Bending Moment : Fixed - Fixed For Shear Force Axial Force: ‫َبينى‬‫ي‬‫ت‬ // SBA =S(FER)BA - 6𝐸𝐼 𝐿2 (𝜃𝐴 + 𝜃𝐵 − 2∆ 𝐿 ) A B R1 R2 q 𝑞𝑑 𝐿2 ቈ𝑎𝑏2 + (𝑎 − 2𝑏)𝑑2 12 ቉ 𝑎 𝑏 𝑞𝑑 𝐿2 ቈ𝑎2 𝑏 + (𝑏 − 2𝑎)𝑑2 12 ቉ 𝑑 q q F MBA =M(FER)BA + 2𝐸𝐼 𝐿 (𝜃𝐴 + 2𝜃𝐵 − 3∆ 𝐿 ) A B θ 4𝐸𝐼𝜃 𝐿 2𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 L 6𝐸𝐼∆ 𝐿2 6𝐸𝐼∆ 𝐿2 12𝐸𝐼∆ 𝐿3 12𝐸𝐼∆ 𝐿3 ∆ MAB =M(FER)AB+ 2𝐸𝐼 𝐿 (2𝜃𝐴 + 𝜃𝐵 − 3∆ 𝐿 ) , FA = EA∆ L 𝐹𝐿 8 𝐿 2 𝐿 2 𝐹 2 𝐹 2 𝐹𝐿 8 𝑎 𝑏 𝐹𝑎2(𝑎 + 3𝑏) 𝐿3 𝐹𝑎𝑏2 𝐿2 𝐹𝑎2 𝑏 𝐿2 𝐹𝑏2(3𝑎 + 𝑏) 𝐿3 F 𝑎 𝑏 𝑀𝑏(2𝑎 − 𝑏) 𝐿2 6𝑀𝑎𝑏 𝐿3 6𝑀𝑎𝑏 𝐿3 𝑀𝑎(2𝑏 − 𝑎) 𝐿2 M ∆ 6𝐸𝐼∆ 𝐿2 6𝐸𝐼∆ 𝐿2 12𝐸𝐼∆ 𝐿3 12𝐸𝐼∆ 𝐿3 𝑞𝐿2 12 𝐿 𝑞𝐿 2 𝑞𝐿 2 𝑞𝐿2 12 q 5𝑞𝐿2 96 𝐿 𝑞𝐿 4 𝑞𝐿 4 5𝑞𝐿2 96 𝑞𝐿2 20 𝐿 7𝑞𝐿 20 3𝑞𝐿 20 𝑞𝐿2 30 𝑅1 = 𝑞𝑑 𝐿3 [(2𝑎 + 𝐿)𝑏2 + ( 𝑎 − 𝑏 4 )𝑑2 ] 𝑅2 = 𝑞𝑑 𝐿3 [(2𝑏 + 𝐿)𝑎2 + ( 𝑎 − 𝑏 4 )𝑑2 ] SAB =S(FER)AB+ 6𝐸𝐼 𝐿2 (𝜃𝐴 + 𝜃𝐵 − 2∆ 𝐿 ) , L L
  • 23. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 22 [ K11 K12 K13 K14 K15 K16 K21 K22 K23 K24 K25 K26 K31 K32 K33 K34 K35 K36 K41 K42 K43 K44 K45 K46 K51 K52 K53 K54 K55 K56 K61 K62 K63 K64 K65 K66 ] [ 1.6EI 0 −0.96EI 0 0 0 ] [ K11 K21 K31 K41 K51 K61] = Example (2) Draw B.M.D & calculate S.F for the Beam shown due to the Loads shown and vertical settlement at Support (D =0.01m), where cross section of members are (0.6*0.3)m and E=2.2e+9kg/m2. olution: S DOF? - 1 Rad) M, kg, s (Unit =? When DOF=1 K , =? (FER) - 2 I E A W H(m) L(m) Member 0.0054 2.2e+9 0.18 0.3 0.6 2.5 AB 0.0054 2.2e+9 0.18 0.3 0.6 2.5 BC 0.0054 2.2e+9 0.18 0.3 0.6 6 CD 0.0054 2.2e+9 0.18 0.3 0.6 4 DE //‫َبينى‬‫ي‬‫ت‬ ( ‫ئةوةى‬ ‫لةبةر‬ EA,EI ‫طشت‬ ) ‫ئةندامةكان‬ ‫ن‬ ‫دةتوانني‬ ‫يةكرتى‬ ‫بة‬ ‫يةكسانن‬ ‫ر‬ ‫خ‬ ‫ةكةى‬ ‫نةدؤزينةوة‬ .‫كؤتاى‬ ‫تا‬ EA/L 3 12EI/L 2 6EI/L 4EI/L 2EI/L Member 0.4EA 0.768EI 0.96EI 1.6EI 0.8EI AB 0.4EA 0.768EI 0.96EI 1.6EI 0.8EI BC EA /6 EI /18 EI /6 2 EI /3 EI /3 CD 0.25EA 3 EI /16 3 EI /8 EI 0.5EI DE for stiffness matrix to obtain Column (1) =0) 2,3,4,5,6 =1, (D 1 D D2 D1 D3 D4 D5 D6 E A D C 5m (0,0,0) (5,0,0) (11,0,0) (15,0,0) (17,0,0) Internal hinge 1000kg/m 1000kg/m 500kg 300kg B F DOF=6 Stiffness matrix= (6*6) [ F1 F2 F3 F4 F5 F6 ] = [ D1 D2 D3 D4 D5 D6 ] (F=KD) 2𝐸𝐼𝜃 𝐿 A B θ 4𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 1.6EI 0.96EI 0.8EI A B θ 0.96EI
  • 24. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 23 [ K14 K24 K34 K44 K54 K64] = [ 0 0.8EI 0.96EI 6.8EI/3 EI/3 0 ] [ K12 K22 K32 K42 K52 K62] = [ 0 1.6EI 0.96EI 0.80EI 0 0 ] [ K13 K23 K33 K43 K53 K63] = [ −0.96EI 0.96EI 1.536EI 0.96EI 0 0 ] =0) to obtain Column (2) 1,3,4,5,6 =1, (D 2 D obtain Column (3) =0) to 1,2,4,5,6 =1, (D 3 D =0) to obtain Column (4) 1,2,3,5,6 =1, (D 4 D ∆ 6𝐸𝐼∆ 𝐿2 6𝐸𝐼∆ 𝐿2 A B 12𝐸𝐼∆ 𝐿3 12𝐸𝐼∆ 𝐿3 ∆ 6𝐸𝐼∆ 𝐿2 6𝐸𝐼∆ 𝐿2 B C 12𝐸𝐼∆ 𝐿3 12𝐸𝐼∆ 𝐿3 ∆ 0.96EI 0.96EI A B 12𝐸𝐼∆ 𝐿3 0.768EI ∆ 0.96EI B C 0.96EI 0.768EI 12𝐸𝐼∆ 𝐿3 2/3EI C D θ 1/3EI 1/6EI 1/6EI 4𝐸𝐼𝜃 𝐿 2𝐸𝐼𝜃 𝐿 B C θ 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 1.6EI 0.8EI B C θ 0.96EI 6𝐸𝐼𝜃 𝐿2 B C θ 2𝐸𝐼𝜃 𝐿 4𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 C D θ 4𝐸𝐼𝜃 𝐿 2𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 0.96EI B C θ 1.6EI 0.96EI
  • 25. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 24 K = [ 0 0 0 0 0.5EI EI ] [ K16 K26 K36 K46 K56 K66] = [ K11 K12 K13 K14 K15 K16 K21 K22 K23 K24 K25 K26 K31 K32 K33 K34 K35 K36 K41 K42 K43 K44 K45 K46 K51 K52 K53 K54 K55 K56 K61 K62 K63 K64 K65 K66 ] = [ 1.6EI 0 −0.96EI 0 0 0 0 1.6EI 0.96EI 0.80EI 0 0 −0.96EI 0.96EI 1.536EI 0.96EI 0 0 0 0.8EI 0.96EI 6.8EI/3 EI/3 0 0 0 0 1EI/3 5EI/3 0.5EI 0 0 0 0 0.5EI EI ] [ 0 0 0 EI/3 5EI/3 0.5EI] [ K15 K25 K35 K45 K55 K65] = * ‫ستونةكان‬ ‫طشت‬ ‫ِى‬‫ر‬‫ب‬ ‫كة‬ ‫ئةوةى‬ ‫دواى‬ ‫دؤزيةوة‬ ‫ِيزكراوةكةمان‬‫ر‬ ‫ى‬ , ‫ِةكان‬‫ر‬‫ب‬ ‫ِيزكراوةكة‬‫ر‬ ‫ناو‬ ‫دةخةينةوة‬ ‫خواةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ . =0) to obtain Column (5) 1,2,3,4,6 =1, (D 5 D obtain Column (6) =0) to 1,2,3,4,5 =1, (D 6 D D E θ 4𝐸𝐼𝜃 𝐿 2𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 D E θ 2𝐸𝐼𝜃 𝐿 4𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 D E θ EI 3/8EI 3/8EI C D θ 2𝐸𝐼𝜃 𝐿 4𝐸𝐼𝜃 𝐿 6𝐸𝐼𝜃 𝐿2 6𝐸𝐼𝜃 𝐿2 C D θ 2/3EI 1/6EI 1/6EI EI D E θ 0.5EI 3/8EI 3/8EI
  • 26. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 25 [ 1.6EI 0 −0.96EI 0 0 0 0 1.6EI 0.96EI 0.80EI 0 0 −0.96EI 0.96EI 1.536EI 0.96EI 0 0 0 0.8EI 0.96EI 6.8EI/3 EI/3 0 0 0 0 EI/3 5EI/3 0.5EI 0 0 0 0 0.5EI EI ] [ 1.6 0 −0.96 0 0 0 0 1.6 0.96 0.80 0 0 −0.96 0.96 1.536 0.96 0 0 0 0.8 0.96 6.8/3 1/3 0 0 0 0 1/3 5/3 0.5 0 0 0 0 0.5 1 ] −1 17925 253850/12 6250/12 6250/12 A B C D E 21675 600 A B E C D E D C 17925 600 B ixed End Reaction ? for member Loads: F - 3 FER= 4- Joint Force Vector? Invert of FER= Joint Force Vector = 1 𝐸𝐼 [ 6250/12 −6250/12 −2500 −253850/12 26375 44200 ] = [ D1 D2 D3 D4 D5 D6 ] [ D1 D2 D3 D4 D5 D6 ] = [ 6250/12 −6250/12 −2500 −253850/12 26375 44200 ] 1 𝐸𝐼 6250/12 44800 44300 44800 [ D1 D2 D3 D4 D5 D6 ] = 22825 27125 9350 2500 1250 6250/12 6250/12 6250/12 [ 9739.2739 −1510.3135 15689.5885 −16457.9208 6890.0990 40754.9505 ] 44300 6250/12 F B A 1250 1250 1000kg/m 6250/12 6250/12 E 300 300kg 600 E D 250 250 500kg 250 250 C B 1250 1250 1000kg/m 6250/12 6250/12 D C 1500 1500 1000kg/m 1875 1875 D C 6600 6600 For Settlement 19800 19800 E D 22275 22275 For Settlement 44550 44550 44200 26375 2500 22825 27125 9350 2500 1250 6250/12 6250/12 21675 6250/12
  • 27. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 26 =? t Momen - 5 ∴ 𝐌𝐀𝐁 = −𝟔𝟕𝟒𝟗. 𝟕𝟓 𝐤𝐠. 𝐦 MAB = MFER(AB) + 2EI L (2θA + θB − 3∆ L ) → MAB = 6250 12 + 2 2.5 (2 ∗ 0 + 9739.2739 − 3 ∗ 15689.5885 2.5 ) ∴ 𝐌𝐁𝐀 = 𝟎 MBC = MFER(BC) + 2EI L (2θB + θC − 3∆ L ) → MBC = 6250 12 + 2 2.5 (2 ∗ (−1510.3135) − 16457.9208 − 3 ∗ − 15689.5885 2.5 ) ∴ 𝐌𝐁𝐂 = 𝟎 MBA = MFER(BA) + 2EI L (2θB + θA − 3∆ L ) → MBA = − 6250 12 + 2 2.5 (2 ∗ 9739.2739 + 0 − 3 ∗ 15689.5885 2.5 ) MCB = MFER(CB) + 2EI L (2θC + θB − 3∆ L ) → MCB = − 6250 12 + 2 2.5 (2 ∗ (−16457.9208) − 1510.3135 − 3 ∗ −15689.5885 2.5 ) ∴ 𝐌𝐂𝐁 = −𝟏𝟐𝟗𝟗𝟗. 𝟕𝟓 𝐤𝐠. 𝐦 ∴ 𝐌𝐂𝐃 = +𝟏𝟐𝟗𝟗𝟗. 𝟕𝟓 𝐤𝐠. 𝐦 MCD = MFER(CD) + 2EI L (2θC + θD − 3∆ L ) → MCD = 21675 + 2 6 (2 ∗ (−16457.9208) + 6890.0990 − 0) MDC = MFER(DC) + 2EI L (2θD + θC − 3∆ L ) → MDC = 17925 + 2 6 (2 ∗ (6890.0990) − 16457.9208 − 0) ∴ 𝐌𝐃𝐄 = −𝟏𝟕𝟎𝟑𝟐. 𝟒𝟑 𝐤𝐠. 𝐦 ∴ 𝐌𝐃𝐂 = 𝟏𝟕𝟎𝟑𝟐. 𝟒𝟑 𝐤𝐠. 𝐦 MDE = MFER(DE) + 2EI L (2θD + θE − 3∆ L ) → MDE = −44300 + 2 4 (2 ∗ (6890.0990) + 40754.9505 − 0) MED = MFER(ED) + 2EI L (2θE + θD − 3∆ L ) → MED = −44800 + 2 4 (2 ∗ (40754.9505) + 6890.0990 − 0) ∴ 𝐌𝐄𝐃 = −𝟔𝟎𝟎 𝐤𝐠. 𝐦 ∴ 𝐌𝐄𝐅 = +𝟔𝟎𝟎 𝐤𝐠. 𝐦 B.M.D (kg. m)
  • 28. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 27 = ? Shear ‫بةراور‬ ‫د‬ ‫ى‬ ‫منوونةكة‬ ‫شيكارى‬ ‫ئةجنامى‬ ‫بة‬ ‫ئةجنامى‬ ‫سؤفت‬ :‫َرةكان‬‫ي‬‫و‬ Note F E D C B A m) (kg. Moment 0 600 -17032.43 12999.75 0 -6749.75 ‫منوونةكة‬ ‫ئةجنامى‬ OK 0 600 -17032.42 12999.75 0 -6749.75 STAAD V8i OK 0 600 -17032.43 12999.75 0 -6749.75 SAP2000 ‫بة‬ ‫ئةجنامةكان‬ ‫ئايا‬ ( ETABS ‫ضةند‬ ) ‫ن‬ ‫؟‬ ? ? ? ? ? ? ETABS SAB =S (FER)AB+ 6EI L2 (θA + θB − 2∆ L ) → SAB = 1250+ 6 6.25 (0 + 9739.2739 − 2∗15689.5885 2.5 ) ∴ 𝐒𝐀𝐁 = −𝟏𝟒𝟒𝟗. 𝟗𝟎 𝐤𝐠 SBA=S (FER)BA- 6EI L2 (θA + θB − 2∆ L ) → SAB = 1250- 6 6.25 (0 + 9739.2739 − 2∗15689.5885 2.5 ) ∴ 𝐒𝐁𝐀 = 𝟑𝟗𝟒𝟗. 𝟗𝟎 𝐤𝐠 SBC =S (FER)BC+ 6EI L2 (θB + θC − 2∆ L ) → SBC = 1250+ 6 6.25 ((−1510.3135) − 16457.9208 − 2∗−15689.5885 2.5 ) ∴ 𝐒𝐁𝐂 = −𝟑𝟗𝟒𝟗. 𝟗𝟎 𝐤𝐠 SCB =S (FER)CB- 6EI L2 (θB + θC − 2∆ L ) → SCB = 1250- 6 6.25 ((−1510.3135) − 16457.9208 − 2∗−15689.5885 2.5 ) ∴ 𝐒𝐂𝐁 = 𝟔𝟒𝟒𝟗. 𝟗𝟎 𝐤𝐠 SCD=S (FER) CD+ 6EI L2 (θC + θD − 2∆ L ) → SCD = 8100+ 6 36 (−16457.9208 + 6890.0990 − 0) ∴ 𝐒𝐂𝐃 = 𝟔𝟓𝟎𝟓. 𝟑𝟔 𝐤𝐠 SDC=S (FER)DC- 6EI L2 (θC + θD − 2∆ L ) → SCD = -5100- 6 36 (−16457.9208 + 6890.0990 − 0) ∴ 𝐒𝐃𝐂 = 𝟑𝟓𝟎𝟓. 𝟑𝟔 𝐤𝐠 SED=S(FER)ED- 6EI L2 (θD + θE − 2∆ L ) → SDE = +22525- 6 16 (6890.0990 + 40754.9505 − 0) ∴ 𝐒𝐄𝐃 = 𝟒𝟔𝟓𝟖. 𝟏𝟏𝐤𝐠 SDE=S(FER)DE+ 6EI L2 (θD + θE − 2∆ L ) → SDE = -22025+ 6 16 (6890.0990 + 40754.9505 − 0) ∴ 𝐒𝐃𝐄 = −𝟒𝟏𝟓𝟖. 𝟏𝟏 𝐤𝐠 𝐀𝐧𝐝 𝐒𝐄𝐅 = 𝟑𝟎𝟎𝐤𝐠
  • 29. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 28 ∆ D1 D2 D3 D1 D1 D2 ϴ D4 D5 D6 D1 D2 D3 θ [ ∑ − 6𝐸𝐼 𝐿2 sin 𝜃 ∑ 6𝐸𝐼 𝐿2 cos 𝜃 ∑ 4𝐸𝐼 𝐿 + 6𝐸𝐼 𝐿2 sin 𝜃 − 6𝐸𝐼 𝐿2 cos 𝜃 2𝐸𝐼 𝐿 ] 2- 2D Frames Analysis by Direct Stiffness Method ‫هةنطاوةكانى‬ ‫شيكاركردن‬ : 1 - ( Degree of Freedom ) ‫ى‬ ( Structure ) ‫دةكةين‬ ‫ديارى‬ ‫كة‬ ‫ة‬ ‫َةكان‬‫ل‬‫خا‬ ‫َةى‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ‫كة‬ ( Translations and Rotations ) ‫َوة‬‫ي‬‫ش‬ ‫بةم‬ ‫َت‬‫ي‬‫دةردةكةو‬ ‫بؤ‬ ‫ماتريكسةكةمان‬ ‫ستيفنس‬ ‫قةبارةى‬ , ( ‫بؤ‬ Frame .‫خوارةوةية‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ) ‫كةلة‬ ‫تر‬ ‫بةشانةى‬ ‫ئةو‬ ‫ِةضاوكردنى‬‫ر‬ ‫ِايى‬‫ر‬‫سةرة‬ ( Beam ) .‫كردووة‬ ‫بامسان‬ 2 - ( ‫َى‬‫ل‬‫خا‬ ‫ِةضاوكردنى‬‫ر‬ ,3,4,5 2 ( ‫بةشى‬ ‫لة‬ ‫كة‬ ) Beam .‫بامسانكرد‬ ) //‫َبينى‬‫ي‬‫ت‬ ( ‫دؤزينةوةى‬ ‫بؤ‬ FER ‫ئةم‬ ‫بؤ‬ ‫ةكان‬ ) ‫ئةندامانةى‬ ‫َزةكانيان‬‫ي‬‫ه‬ ‫بونى‬ ‫دابةش‬ ‫بؤ‬ ‫َت‬‫ي‬‫بكر‬ ‫طؤشةكةيان‬ ‫ِةضاوى‬‫ر‬ ‫َويستة‬‫ي‬‫ث‬ ‫نني‬ ‫ئاسؤيي‬ ‫كة‬ ‫لة‬ ‫كة‬ ‫ئاسؤييةوة‬ ‫َر‬‫ي‬‫ذم‬ ‫كات‬ ‫ميلى‬ ‫َضةوانة‬‫ي‬‫ث‬ ‫بة‬ ‫بؤ‬ ‫ئةندامة‬ ‫كة‬ ‫َت‬‫ي‬‫َور‬‫ي‬‫دةث‬ .‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ) =1 D3 ( ixed F - for Fixed Deformation Rotation B 6𝐸𝐼 𝐿2 cos θ 6𝐸𝐼 𝐿2 cos 𝜃 6𝐸𝐼 𝐿2 sin θ 6𝐸𝐼 𝐿2 sin θ B θ DOF= 3 DOF= 1 or 0 DOF= 2 or 1 A Typical Frame
  • 30. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 29 D5 D6 D4 D2 ө Ø D4 D5 D6 D2 1 D1 D3 D1 D3 [ ∑ EA L sin 𝜃 cos θ − 12EI L3 sin𝜃 cosθ ∑ 𝐸𝐴 𝐿 sin2 𝜃 + 12EI L3 cos2 𝜃 ∑ 6𝐸𝐼 𝐿2 cosθ − EA L sin 𝜃 cos θ + 12EI L3 sin𝜃 cos θ − 𝐸𝐴 𝐿 sin2 𝜃 − 12EI L3 cos2 𝜃 6𝐸𝐼 𝐿2 cosθ ] 1 [ ∑ 𝐸𝐴 𝐿 cos 2 𝜃 + 12EI L3 sin 2 𝜃 ∑ EA L sin 𝜃 cos θ − 12EI L3 sin 𝜃 cos θ ∑ − 6𝐸𝐼 𝐿2 sin 𝜃 − 𝐸𝐴 𝐿 cos 2 𝜃 − 12EI L3 sin 2 𝜃 − EA L sin 𝜃 cos θ + 12EI L3 sin 𝜃 cos θ 6𝐸𝐼 𝐿2 sin 𝜃 ] =1 1 Fixed) D - Horizontal Deformation for (Fixed Fixed) D2=1 - Vertical Deformation for (Fixed EA L sin 2 θ EA L sin 2 θ 12EI L 3 sin 𝜃 cos 𝜃 12EI L 3 sin 𝜃 cos 𝜃 EA L sin 𝜃 cos θ EA L sin 𝜃 cos θ 𝐸𝐴 𝐿 cos2 𝜃 12EI L3 sin2 𝜃 12EI L 3 sin 𝜃 cos 𝜃 B A EA L sin 𝜃 cos θ A B 𝐸𝐴 𝐿 cos2 𝜃 12EI L3 sin 𝜃 cos 𝜃 12EI L3 sin2 𝜃 EA L sin 𝜃 cos θ A B B A 12EI L3 sin2 θ 12EI L3 sin2 θ
  • 31. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 30 1000 kg A B C D L=5m L=4m 1m D1 D2 D3 D4 D5 D6 D7 [ K11 K12 K13 K14 K15 K16 K17 K21 K22 K23 K24 K25 K26 K27 K31 K32 K33 K34 K35 K36 K37 K41 K42 K43 K44 K45 K46 K47 K51 K52 K53 K54 K55 K56 K57 K61 K62 K63 K64 K65 K66 K67 K71 K72 K73 K74 K75 K76 K77] A B C D Example (3) Draw B.M.D and S.F.D for the Frame shown due to the Loads Shown and where cross section of members (600*200)mm and E=2200kg/mm2 Solution: DOF? - 1 Rad) Cm, kg, s (Unit K =? When DOF=1 , =? (FER) - 2 ) 4 cm ( I ) 2 cm kg/ ( E ) 2 (cm A (cm) W (cm) H (cm) L Member 4 36*10 4 *10 22 1200 20 60 500 AB 4 36*10 4 *10 22 1200 20 60 500 BC 4 36*10 4 *10 22 1200 20 60 400 CD EA/L 3 12EI/L 2 6EI/L 4EI/L 2EI/L Member 528000 7603.2 1900800 6336*105 3168*105 AB 528000 7603.2 1900800 6336*105 3168*105 BC 660000 14850 2970000 7920*105 3960*105 CD DOF=7 Stiffness matrix=(7*7) (F=KD) [ F1 F2 F3 F4 F5 F6 F7 ] = [ D1 D2 D3 D4 D5 D6 D7 ]
  • 32. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 31 1 [ K11 K21 K31 K41 K51 K61 K71] = [ 722946.048 249790.464 1520640 −528000 0 0 0 ] 1 [ K12 K22 K32 K42 K52 K62 K72] = [ 249790.464 348260.352 760320 0 −7603.2 1900800 0 ] 6𝐸𝐼 𝐿2 6𝐸𝐼 𝐿2 Column (1) obtain =0) to 7 , 2,3,4,5,6 =1, (D 1 D =0) to obtain Column (2) 1,3,4,5,6,7 =1, (D 2 D Cos(θ) Sin(θ) ) θ ( 2 Cos ) θ ( 2 Sin Cos(θ) Sin(θ) Angle(θ) Member 0.48 0.36 0.64 -0.6 -0.8 233.130 BA 0 1 0 1 0 0 BC 0 1 0 -1 0 180 CB 0 0 1 0 -1 270 CD EA L sinθ cos θ 12EI L3 sin θ cos θ 12EI L3 sin2 θ 12EI L3 cos2 θ EA L cos2 θ EA L sin2 θ 6EI L2 cos θ 6EI L2 sin θ Member 253440 3649.536 4866.048 2737.152 190080 337920 -1140480 -1520640 BA 0 0 0 7603.2 528000 0 1900800 0 BC 253440 3649.536 4866.048 10340.352 718080 337920 760320 -1520640 Sum 0 0 0 7603.2 528000 0 -1900800 0 CB 0 0 14850 0 0 660000 0 -2970000 CD 0 0 14850 7603.2 528000 660000 -1900800 -2970000 Sum 12EI L 3 EA L EA L C B A B C D A B C D B 12EI L 3
  • 33. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 32 [ K43 K24 K34 K44 K54 K64 K74] = 1 [ −528000 0 0 542850 0 2970000 2970000] 6𝐸𝐼 𝐿2 6𝐸𝐼 𝐿2 6𝐸𝐼 𝐿2 6𝐸𝐼 𝐿2 6𝐸𝐼 𝐿2 [ K13 K23 K33 K43 K53 K63 K73] = [ 1520640 760320 1267200000 0 −1900800 316800000 0 ] [ K15 K25 K35 K45 K55 K65 K75] = 1 [ 0 −7603.2 −1900800 0 667603.2 −1900800 0 ] 6𝐸𝐼 𝐿2 6𝐸𝐼 𝐿2 =0) to obtain Column (3) 1,2,4,5,6,7 =1, (D 3 D D4=1, (D1,2,3,5,6,7=0) to obtain Column (4) D5=1, (D1,2,3,4,6,7=0) to obtain Column (5) EA L 12EI L3 EA L EA L 4𝐸𝐼 𝐿 2𝐸𝐼 𝐿 4𝐸𝐼 𝐿 B A D A B C D C C B B C θ A B C D D 12EI L3 B 12EI L3
  • 34. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 33 [ K16 K26 K36 K46 K56 K66 K76] = [ 0 1900800 316800000 2970000 −1900800 1425600000 396000000 ] θ [ K17 K27 K37 K47 K57 K67 K77] = [ 0 0 0 2970000 0 396000000 792000000] θ 2𝐸𝐼 𝐿 2𝐸𝐼 𝐿 [ 722946.048 249790.464 1520640 −528000 0 0 0 249790.464 348260.352 760320 0 −7603.2 1900800 0 1520640 760320 1267200000 0 −1900800 316800000 0 −528000 0 0 542850 0 2970000 2970000 0 −7603.2 −1900800 0 667603.2 −1900800 0 0 1900800 316800000 2970000 −1900800 1425600000 396000000 0 0 0 2970000 0 396000000 792000000] [ K11 K12 K13 K14 K15 K16 K17 K21 K22 K23 K24 K25 K26 K27 K31 K32 K33 K34 K35 K36 K37 K41 K42 K43 K44 K45 K46 K47 K51 K52 K53 K54 K55 K56 K57 K61 K62 K63 K64 K65 K66 K67 K71 K72 K73 K74 K75 K76 K77] = 4𝐸𝐼 𝐿 6𝐸𝐼 𝐿2 6𝐸𝐼 𝐿2 6𝐸𝐼 𝐿2 2𝐸𝐼 𝐿 4𝐸𝐼 𝐿 4𝐸𝐼 𝐿 6𝐸𝐼 𝐿2 D6=1, (D1,2,3,4,5,7=0) to obtain Column (6) D7=1, (D1,2,3,4,5,6=0) to obtain Column (7) //‫َبينى‬‫ي‬‫ت‬ ( ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ∆ ( ‫هؤى‬ ‫َتة‬‫ي‬‫دةب‬ ‫كة‬ ‫دةدؤزينةوة‬ ) Shear ) ‫ئةندامةكاندا‬ ‫لة‬ . ( ‫ئةم‬ ‫ئةوةى‬ ‫بةر‬ ‫لة‬ ∆ ‫شيكا‬ ‫لة‬ ‫كة‬ ) ‫ر‬ ‫ى‬ ‫ِيزكر‬‫ر‬ ‫ئةي‬ ‫اوةكةدا‬ ‫تةوة‬ ‫ئاراستةى‬ ‫بة‬ ‫دؤزينةوة‬ ‫ر‬ .‫ئةندامةكة‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بؤ‬ ‫ِين‬‫ر‬‫بيانطؤ‬ ‫َويستة‬‫ي‬‫ث‬ ‫طشتني‬ ‫ةى‬ 𝜃 ∆Ax ∆Ay ∆Bx ∆By A B C A B C D B D D A B C D C ∆= (∆By − ∆Ay) cos 𝜃 − (∆Bx − ∆Ax) sin 𝜃
  • 35. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 34 [ 722946.048 249790.464 1520640 −528000 0 0 0 249790.464 348260.352 760320 0 −7603.2 1900800 0 1520640 760320 1267200000 0 −1900800 316800000 0 −528000 0 0 542850 0 2970000 2970000 0 −7603.2 −1900800 0 667603.2 −1900800 0 0 1900800 316800000 2970000 −1900800 1425600000 396000000 0 0 0 2970000 0 396000000 792000000] Fixed End Reaction ? for member Loads: - 3 4- Joint Force Vector? Invert of FER= Joint Force Vector = C B 104kg 896kg 1000kg 16000kg.cm 64000kg.cm D C 0 0 0 0 150kg 200kg C B 104kg 896kg 16000kg.cm 64000kg.cm D C 0 0 0 0 200kg 150kg B 200kg 1046kg C 0 104kg 0 D [ F1 F2 F3 F4 F5 F6 F7 ] = [ 200 −1046 −32750 0 −104 16000 0 ] [ 200 −1046 −32750 0 −104 16000 0 ] = [ D1 D2 D3 D4 D5 D6 D7 ] F=KD
  • 36. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 35 -1 [ 722946.048 249790.464 1520640 −528000 0 0 0 249790.464 348260.352 760320 0 −7603.2 1900800 0 1520640 760320 1267200000 0 −1900800 316800000 0 −528000 0 0 542850 0 2970000 2970000 0 −7603.2 −1900800 0 667603.2 −1900800 0 0 1900800 316800000 2970000 −1900800 1425600000 396000000 0 0 0 2970000 0 396000000 792000000] Moment = ? - 5 [ D1 D2 D3 D4 D5 D6 D7 ] = [ 200 −1046 −32750 0 −104 16000 0 ] [ D1 D2 D3 D4 D5 D6 D7 ] = [ 0.0525065441654327𝑐𝑚 −0.0406883975484445 𝑐𝑚 −7.32555333685725 ∗ 10−5 𝑟𝑎𝑑 0.0520538439417292 𝑐𝑚 −0.000739980109877633 𝑐𝑚 3.08254696846886 ∗ 10−5 𝑟𝑎𝑑 −2.10614649623829 ∗ 10−4 𝑟𝑎𝑑] MAB = MFER(AB) + 2EI L (2θA + θB − 3∆ L ) , MBA = MFER(BA) + 2EI L (2θB + θA − 3∆ L ) ∴ 𝐌𝐀𝐁 = 𝟏𝟑𝟒𝟐𝟗𝟎. 𝟓𝟎𝟐 𝐤𝐠. 𝐜𝐦 MAB = 31250 + 2 ∗ 220000 ∗ 36 ∗ 104 500 (2 ∗ 0 − 7.32555333685725 ∗ 10−5 − 3 ∗ −0.0664182738614128 500 ) MBA = −31250 + 2 ∗ 220000 ∗ 36 ∗ 104 500 (2 ∗ −7.32555333685725 ∗ 10−5 + 0 − 3 ∗ −0.0664182738614128 500 ) ∴ 𝐌𝐁𝐂 = −𝟒𝟖𝟓𝟖𝟑. 𝟏𝟓 𝐤𝐠. 𝐜𝐦 MBC = MFER(BC) + 2EI L (2θB + θC − 3∆ L ) , MCB = MFER(CB) + 2EI L (2θC + θB − 3∆ L ) MBC = 64000 + 2 ∗ 220000 ∗ 36 ∗ 104 500 (2 ∗ −7.32555333685725 ∗ 10−5 + 3.08254696846886 ∗ 10−5 − 3 ∗ 0.0399484174385668 500 ) ∴ 𝐌𝐁𝐀 = 𝟒𝟖𝟓𝟖𝟑. 𝟏𝟓 𝐤𝐠. 𝐜𝐦 MCB = −16000 + 2 ∗ 220000 ∗ 36 ∗ 104 500 (2 ∗ 3.08254696846886 ∗ 10−5 − 7.32555333685725 ∗ 10−5 − 3 ∗ −0.0399484174385668 500 ) ∴ 𝐌𝐂𝐁 = −𝟗𝟓𝟔𝟏𝟎. 𝟐𝟗 𝐤𝐠. 𝐜𝐦 MCD = MFER(CD) + 2EI L (2θC + θD − 3∆ L ) , MDC = MFER(DC) + 2EI L (2θD + θC − 3∆ L ) MCD = 0 + 2 ∗ 220000 ∗ 36 ∗ 104 400 (2 ∗ 3.08254696846886 ∗ 10−5 − 2.10614649623829 ∗ 10−4 − 3 ∗ −0.0520538439417292 400 ) ∴ 𝐌𝐂𝐃 = 𝟗𝟓𝟔𝟏𝟎. 𝟐𝟗 𝐤𝐠. 𝐜𝐦 𝐌𝐃𝐂 = 𝟎 (It must be zero, since it is hinge )
  • 37. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 36 Shear = ? ‫يان‬: 𝟎 𝐁 −𝟒𝟖𝟓𝟖𝟑. 𝟏𝟓 𝐀 −𝟏𝟗𝟔𝟒𝟔. 𝟑𝟐 𝟒𝟐𝟖𝟓𝟑. 𝟔𝟖 𝟗𝟓𝟔𝟏𝟎. 𝟐𝟗 −𝟏𝟗𝟕𝟒𝟒. 𝟒𝟔 𝐂 𝐃 −𝟗𝟗𝟕𝟒𝟒. 𝟒𝟔 B.M.D( kg.cm) 𝐁 𝐀 (134290.29+48583.15)/500=365.75kg 365.75 250+365.75 =615.75 365.75 250-365.75 =-115.75 - S.F.D for A -B ( ‫دةتوانني‬ Shear ) ‫هؤى‬ ‫بة‬ ‫بدؤزينةوة‬ ‫زةبرةوة‬ ( Moment ) ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ : SAB =S(FER)AB+ 6EI L2 (θA + θB − 2∆ L ) → SAB = 250+ 6∗220000∗36∗104 250000 (0 + −7.32555333685725 ∗ 10−5 − 2∗−0.0664182738614128 500 ) ∴ 𝐒𝐀𝐁 = 𝟏𝟔𝟏𝟓. 𝟕𝟓 𝐤𝐠 SBA =S(FER)BA- 6EI L2 (θA + θB − 2∆ L ) → SBA = 250- 6∗220000∗36∗104 250000 (0 + −7.32555333685725 ∗ 10−5 − 2∗−0.0664182738614128 500 ) ∴ 𝐒𝐁𝐀 = −𝟏𝟏𝟓. . 𝟕𝟓 𝐤𝐠 SBC =S(FER)BC+ 6EI L2 (θC + θB − 2∆ L ) → SBC = 896+ 6∗220000∗36∗104 250000 (3.08254696846886 ∗ 10−5 − 7.32555333685725 ∗ 10−5 − 2∗0.03994841743857 500 ) ∴ 𝐒𝐁𝐂 = 𝟓𝟏𝟏. 𝟔𝟏 𝐤𝐠 SCB =S(FER)BC- 6EI L2 (θC + θB − 2∆ L ) → SCB = 104- 6∗220000∗36∗104 250000 (3.08254696846886 ∗ 10−5 − 7.32555333685725 ∗ 10−5 − 2∗0.03994841743857 500 ) ∴ 𝐒𝐂𝐁 = 𝟒𝟖𝟖. 𝟑𝟗 𝐤𝐠
  • 38. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 37 ‫بةراوردى‬ ‫بة‬ ‫منوونةكة‬ ‫شيكارى‬ ‫ئةجنامى‬ ‫ئةجنامى‬ :‫َرةكان‬‫ي‬‫و‬ ‫سؤفت‬ Note D C B A (kg.cm) Moment 0 95610.29 48583.15 - 134290.50 ‫ئةجنامى‬ ‫منوونةكة‬ OK 0 95610.29 48583.15 - 134290.51 STAAD V8i OK 0 95610.29 48583.15 - 134290.50 SAP2000 ( ‫بة‬ ‫ئةجنامةكان‬ ‫ئايا‬ ETABS ‫ضةند‬ ) ‫ن‬ ‫؟‬ ? ? ? ? ETABS Note D C B A ) (kg Shear CD CB BC BA 239.03 239.03 488.39 511.61 115.75 615.75 ‫ئةجنامى‬ ‫منوونةكة‬ OK 239.03 239.03 488.39 511.61 115.75 615.75 STAAD V8i OK 239.03 239.03 488.39 511.61 115.75 615.75 SAP2000 ( ‫بة‬ ‫ئةجنامةكان‬ ‫ئايا‬ ETABS ‫ضةند‬ ) ‫ن‬ ‫؟‬ ? ? ? ? ? ? ETABS 239.03 -488.39 511.61 𝐃 𝐁 𝐀 𝐂 S.F.D(kg) SDC =S(FER)DC- 6EI L2 (θC + θD − 2∆ L ) → SDC = 0- 6∗220000∗36∗104 160000 ( 3.08254696846886 ∗ 10−5 + −2.10614649623829 ∗ 10−4 − 2∗−0.0520538439417292 400 ) ∴ 𝐒𝐃𝐂 = −𝟐𝟑𝟗. 𝟎𝟑 𝐤𝐠 SCD =S(FER)CD+ 6EI L2 (θC + θD − 2∆ L ) → SCD = 0+ 6∗220000∗36∗104 160000 ( 3.08254696846886 ∗ 10−5 + −2.10614649623829 ∗ 10−4 − 2∗−0.0520538439417292 400 ) ∴ 𝐒𝐂𝐃 = 𝟐𝟑𝟗. 𝟎𝟑 𝐤𝐠
  • 39. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 38 D1 D2 D1 1 EA L sin 𝜃 cos θ EA L sin 𝜃 cos θ 𝐸𝐴 𝐿 cos2 𝜃 𝐸𝐴 𝐿 cos2 𝜃 [ ∑ 𝐸𝐴 𝐿 cos2 𝜃 ∑ 𝐸𝐴 𝐿 sin 𝜃 cos 𝜃 − 𝐸𝐴 𝐿 cos2 𝜃 − 𝐸𝐴 𝐿 sin 𝜃 cos 𝜃] 3- 2D Trusses Analysis by Direct Stiffness Method ‫هةنطاوةكانى‬ ‫شيكاركردن‬ : 1 - ( Degree of Freedom ) ‫ى‬ ( Structure ) ‫دةكةين‬ ‫ديارى‬ ‫كة‬ ‫ة‬ (‫َةكان‬‫ل‬‫خا‬ ‫َةى‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ‫كة‬ Translations ) ‫ستيفنس‬ ‫قةبارةى‬ ‫َوة‬‫ي‬‫ش‬ ‫بةم‬ ‫َت‬‫ي‬‫دةردةكةو‬ ‫بؤ‬ ‫ماتريكسةكةمان‬ , ( ‫بؤ‬ Truss .‫خوارةوةية‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ) 2 - ( Structure ‫و‬ ‫دةكةين‬ ‫بةش‬ ‫بةش‬ ‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ‫ةكة‬ ) ( Pinned End Reaction ) ‫بؤ‬ ‫ئةدؤزينةوة‬ ‫يةكةلة‬ ‫يةك‬ ( Axial Deformation ) ( ‫َى‬‫ي‬‫ث‬ ‫بة‬ DOF ‫دةدؤزينةوة‬ ‫ماتريكسةكة‬ ‫ستيفنس‬ ‫بةمةش‬ ‫كان‬ ‫ة‬ ) ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ . - 3 ( Joint Force Vector ) ‫بؤ‬ ‫ئةدؤزينةوة‬ ( Joint Loads ) ‫ئةو‬ ‫بؤ‬ ‫تايبةت‬ ‫بة‬ ( ‫بة‬ ‫بةرامبةر‬ ‫كة‬ ‫َزانةى‬‫ي‬‫ه‬ DOF .‫نني‬ ‫كان‬ ‫ة‬ ) 4 - ‫سةرئةجنامى‬ ( Joint Force Vector ) ‫كان‬ ‫ة‬ ‫ئةدؤزينةوة‬ ‫و‬ ‫بة‬ ‫بةرامبةر‬ ‫َزةكةوة‬‫ي‬‫ه‬ ‫ماتريكسى‬ ‫ناو‬ ‫دةخيةينة‬ ( Degree of Freedom ) .‫كة‬ ‫ة‬ .‫دةكةين‬ ‫شيكار‬ ‫ماتريكسةكة‬ ‫َشة‬‫ي‬‫هاوك‬ ‫دواتر‬ 5 - ‫ئةندامةكان‬ ‫ناو‬ ‫َزى‬‫ي‬‫ه‬ ‫ئةدؤزينةوة‬ ( s Internal Force of Member ) A F //‫َبينى‬‫ي‬‫ت‬ ( ‫دؤزينةوةى‬ ‫بؤ‬ PER ‫ئةم‬ ‫بؤ‬ ‫ةكان‬ ) ‫ئةنداما‬ ‫كة‬ ‫نةى‬ ‫لة‬ ‫كة‬ ‫َزةكانيان‬‫ي‬‫ه‬ ‫بونى‬ ‫دابةش‬ ‫بؤ‬ ‫َت‬‫ي‬‫بكر‬ ‫طؤشةكةيان‬ ‫ِةضاوى‬‫ر‬ ‫َويستة‬‫ي‬‫ث‬ ‫نني‬ ‫ئاسؤيي‬ ‫َضةوانة‬‫ي‬‫ث‬ ‫بة‬ ‫ئاسؤييةوة‬ ‫ى‬ ‫بؤ‬ ‫َر‬‫ي‬‫ذم‬ ‫كات‬ ‫ميلى‬ ‫َت‬‫ي‬‫َور‬‫ي‬‫دةث‬ ‫ئةندامةكة‬ .‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ = 𝐸𝐴∆ 𝐿 DOF= 2 DOF= 0 DOF= 1 Some Typical Truss ∆ 𝐸𝐴∆ 𝐿 A B 𝐸𝐴∆ 𝐿 A ∆ B 𝐸𝐴∆ 𝐿 A B 𝐸𝐴∆ 𝐿 Horizontal Deformation for (Pinned- Pinned) D1=1 D4 D3 𝜃 D2 D1=1
  • 40. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 39 EA L sin 2 𝜃 𝐸𝐴 𝐿 sin 𝜃 cos θ EA L sin 2 𝜃 𝐸𝐴 𝐿 sin 𝜃 cos θ [ ∑ 𝐸𝐴 𝐿 sin 𝜃 cos 𝜃 ∑ 𝐸𝐴 𝐿 sin2 𝜃 − 𝐸𝐴 𝐿 sin 𝜃 cos 𝜃 − 𝐸𝐴 𝐿 sin2 𝜃 ] [ K11 K12 K13 K14 K15 K21 K22 K23 K24 K25 K31 K32 K33 K34 K35 K41 K42 K43 K44 K45 K51 K52 K53 K54 K55] hown due to the s russ T at (D) and internal forces for the Calculate the Joint Displacement (4) Example all members are pin connected. ll members, a for 2 A=0.05m , 2 ton/m 7 2*10 where E= , shown Load Solution: ? DOF - 1 C C A B Verticall Deformation for (Pinned - Pinned) D2=1 D3 𝜃 D4 D2=1 D1 //‫َبينى‬‫ي‬‫ت‬ ( ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ ∆ ( ‫هؤى‬ ‫َتة‬‫ي‬‫كةدةب‬ ‫دةدؤزينةوة‬ ) Axial Force ‫لة‬ ) ‫ئةندامةكاندا‬ ( ‫ئةم‬ ‫ئةوةى‬ ‫بةر‬ ‫لة‬. ∆ ‫شيكارى‬ ‫لة‬ ‫كة‬ ) ‫ئةندامةكة‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بؤ‬ ‫ِين‬‫ر‬‫بيانطؤ‬ ‫َويستة‬‫ي‬‫ث‬ ‫طشتني‬ ‫تةوةرةى‬ ‫ئاراستةى‬ ‫بة‬ ‫ئةيدؤزينةوة‬ ‫ِيزكراوةكةدا‬‫ر‬ . 𝜃 ∆Ax ∆Ay ∆Bx ∆By A B ∆= (∆By − ∆Ay) sin 𝜃 + (∆Bx − ∆Ax) cos 𝜃 1 4m 4m 3m 50 ton A B D D3 D4 D5 D2 D1 DOF=5 Stiffness matrix=(5*5) [ F1 F2 F3 F4 F5 ] = [ D1 D2 D3 D4 D5 ] (F= KD) A B D
  • 41. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 40 [ ∑ 𝐸𝐴 𝐿 cos2 𝜃{𝐴𝐵,𝐴𝐷} − 𝐸𝐴 𝐿 cos2 𝜃 − 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝐸𝐴 𝐿 cos2 𝜃 − 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 ] [ K11 K21 K31 K41 K51] = = [ 0.378EA −0.25EA 0 −0.128EA −0.096EA] [ − 𝐸𝐴 𝐿 cos2 𝜃 ∑ 𝐸𝐴 𝐿 cos2 𝜃{𝐴𝐵,𝐵𝐶,𝐵𝐷} ∑ 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃{𝐵𝐴,𝐵𝐶,𝐵𝐷} − 𝐸𝐴 𝐿 cos2 𝜃 − 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 ] [ K12 K22 K32 K42 K52] = = [ −0.25EA 0.5EA 0 0 0 ] [ − 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 ∑ 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃{𝐵𝐴,𝐵𝐶,𝐵𝐷} ∑ 𝐸𝐴 𝐿 sin2 𝜃{𝐵𝐴,𝐵𝐶,𝐵𝐷} − 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝐸𝐴 𝐿 sin2 𝜃 ] [ K13 K23 K33 K43 K53] = = [ 0 0 1/3EA 0 −1/3EA] ton, m) s (Unit K =? When DOF=1 , =? ER) P ( - 2 EA L sinθ cos θ EA L cos2 θ EA L sin2 θ Angle(θ) EA/L ) (ton/m ) 2 ton/m ( E ) 2 (m A (m) L Member Point 0 0.25 EA 0 0 0.25 EA 2*107 0.05 4 AB A 0.096EA 0.128EA 0.072EA 36.87 0.2 EA 2*107 0.05 5 AD 0.096EA 0.378EA 0.072EA ∑ 𝐴𝐵, 𝐴𝐷 0 0.25 EA 0 180 0.25 EA 2*107 0.05 4 BA B 0 0.25 EA 0 0 0.25 EA 2*107 0.05 4 BC 0 0 1/3EA 90 1/3 EA 2*107 0.05 3 BD 0 0.5EA 1/3EA ∑ 𝐵𝐴, 𝐵𝐶, 𝐵𝐷 0 0 1/3EA 270 1/3EA 2*107 0.05 3 DB D 0.096EA 0.128EA 0.072EA 216.87 0.2 EA 2*107 0.05 5 DA -0.096EA 0.128EA 0.072EA 323.13 0.2 EA 2*107 0.05 5 DC 0 0.256EA 1.432/3EA ∑ 𝐷𝐴, 𝐷𝐵 ,DC =0) to obtain Column (1) 2,3,4,5 =1, (D 1 D =0) to obtain Column (2) 1,3,4,5 =1, (D 2 D ) 3 =0) to obtain Column ( 1,2,4,5 =1, (D 3 D
  • 42. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 41 [ − 𝐸𝐴 𝐿 cos2 𝜃 − 𝐸𝐴 𝐿 cos2 𝜃 − 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 ∑ 𝐸𝐴 𝐿 cos2 𝜃{𝐷𝐴,𝐷𝐶,𝐷𝐵} ∑ 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃{𝐷𝐴,𝐷𝐶,𝐷𝐵}] [ K14 K24 K34 K44 K54] = = [ −0.128EA 0 0 0.256EA 0 ] [ − 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝐸𝐴 𝐿 sin2 𝜃 ∑ 𝐸𝐴 𝐿 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃{𝐷𝐴,𝐷𝐶,𝐷𝐵} ∑ 𝐸𝐴 𝐿 sin2 𝜃{𝐷𝐴,𝐷𝐶,𝐷𝐵} ] [ K15 K25 K35 K45 K55] = = [ −0.096EA 0 −1/3EA 0 1.432/3EA] [ K11 K12 K13 K14 K15 K21 K22 K23 K24 K25 K31 K32 K33 K34 K35 K41 K42 K43 K44 K45 K51 K52 K53 K54 K55] = [ 0.378𝐸𝐴 −0.25𝐸𝐴 0 −0.128𝐸𝐴 −0.096𝐸𝐴 −0.25𝐸𝐴 0.5𝐸𝐴 0 0 0 0 0 1/3𝐸𝐴 0 −1/3𝐸𝐴 −0.128𝐸𝐴 0 0 0.256𝐸𝐴 0 −0.096𝐸𝐴 0 −1/3𝐸𝐴 0. 1.432/3𝐸𝐴] =0) to obtain Column (4) 1,2,3,5 =1, (D 4 D =0) to obtain Column (5) 4 1,2,4, =1, (D 5 D Loads: Joint At ? Joint Force Vector - 3 4- 50 ton [ F1 F2 F3 F4 F5 ] = [ 0 0 −50 0 0 ]
  • 43. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 42 [ 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5] [ 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5] = -1 [ 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5] = [ 0.378𝐸𝐴 −0.25𝐸𝐴 0 −0.128𝐸𝐴 −0.096𝐸𝐴 −0.25𝐸𝐴 0.5𝐸𝐴 0 0 0 0 0 1/3𝐸𝐴 0 −1/3𝐸𝐴 −0.128𝐸𝐴 0 0 0.256𝐸𝐴 0 −0.096𝐸𝐴 0 −1/3𝐸𝐴 0 1.486/3𝐸𝐴] [ 0 0 −50 0 0 ] = = ? nternal Forces I - 5 F (Ton) = EA L ∆ (m) ) ∆ ( 1 𝐸𝐴 ) 2 (ton/m EA/L ) 2 ton/m ( E ) 2 (m A (m) L Member sion ten 4 33.3 133.4 0.25 EA 2*107 0.05 4 AB tension 33.33 133.3 0.25 EA 2*107 0.05 4 BC presion com 41.67 - -208.33 0.2 EA 2*107 0.05 5 CD presion com 7 41.6 - -208.34 0.2 EA 2*107 0.05 5 DA tension 50 150 EA /3 2*107 0.05 3 BD Joint Displacement at (D) = (D) Horizontal Displacement at = (D) Vertical Displacement at ‫بةراوردى‬ ‫منوونةكة‬ ‫شيكارى‬ ‫ئةجنامى‬ ‫بة‬ ‫ئةجنامى‬ ‫سؤفت‬ :‫َرةكان‬‫ي‬‫و‬ Note A D BD D C C B B A Force (ton) -41.67 50 -41.67 33.33 33.34 ‫منوونةكة‬ ‫ئةجنامى‬ OK -41.67 50 -41.67 33.33 33.33 STAAD V8i OK -41.67 50 -41.67 33.33 33.33 SAP2000 ‫بة‬ ‫ئةجنامةكان‬ ‫ئايا‬ ( ETABS ‫ضةند‬ ) ‫ن‬ ‫؟‬ ? ? ? ? ? ETABS [ 0 0 −50 0 0 ] 1 𝐸𝐴 [ 0.378 −0.25 0 −0.128 −0.096 −0.25 0.5 0 0 0 0 0 1/3 0 −1/3 −0.128 0 0 0.256 0 −0.096 0 −1/3 0 1.486/3] 1 𝐸𝐴 [ −266.67 −133.33 −675 −133.33 −525 ] m 1 𝐸𝐴 ∗ (−133.33) = -1.3333*10-4 = 1.3333*10-4 m 1 𝐸𝐴 ∗ (−525) = -5.25*10-4 = 5.25*10-4 m
  • 44. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 43 A Y Local Axis A DOF=6 RY RX RZ RZ RX RY ‫َماى‬‫ي‬‫ه‬ ‫َوة‬‫ي‬‫ش‬ ‫بةم‬ ‫زةبرةكان‬ ‫ئاراستةى‬ ‫َنة‬‫ي‬‫و‬ ‫دةكةين‬ : x : ( 3D Structure ) ‫دةطوجن‬ ‫كة‬ ‫َكهاتانةن‬‫ي‬‫ث‬ ‫ئةو‬ ‫َت‬‫ي‬ ‫َز‬‫ي‬‫ه‬ ‫زةبر‬ ‫و‬ ( Load, Moment ) ‫َكدا‬‫ي‬‫ِوتةخت‬‫ر‬ ‫هةر‬ ‫لة‬ ‫كار‬ ‫ي‬ ‫خبةنة‬ ‫طةريان‬ ‫سةر‬ . //‫َبينى‬‫ي‬‫ت‬ ‫شيكارى‬ ‫لة‬ ( Beam, Frame ) ‫لة‬ ( 3D Structure ( ‫بة‬ ‫راورد‬ ‫بة‬ ) 2D Structure ( َ‫ى‬‫س‬ ) DOF ) ‫وةك‬ ‫َت‬‫ي‬‫دةب‬ ‫زياد‬ ‫سةرةوةدا‬ ‫َنةكةى‬‫ي‬‫و‬ ‫لة‬ ‫دةيبينني‬ . ‫ئةندا‬ ‫َذاى‬‫ي‬‫در‬ ‫بة‬ ‫كة‬ ‫ِانةى‬‫ر‬‫سو‬ ‫ئةو‬ ‫َت‬‫ي‬‫ِةضاوبكر‬‫ر‬ ‫َويستة‬‫ي‬‫ث‬ ‫كة‬ ‫ئةوةى‬ ‫وة‬ ( ‫َتة‬‫ي‬‫دةب‬ ‫ِوودةدات‬‫ر‬ ‫مةكة‬ Torsion ) ( ‫ِةضاوكردنى‬‫ر‬ َ‫ل‬‫لةطة‬ moment of Inertia ) .‫َةتةكان‬‫ل‬‫حا‬ ‫طشت‬ ‫بؤ‬ 4- 3D Beams Analysis by Direct Stiffness Method ‫هةنطاوةكانى‬ ‫شيكاركردن‬ : 1 - ( Degree of Freedom ) ‫ى‬ ( Structure ) ‫دةكةين‬ ‫ديارى‬ ‫كة‬ ‫ة‬ ‫َةى‬‫ل‬‫جو‬ ‫لة‬ ‫بريتية‬ ‫كة‬ ‫َةكان‬‫ل‬‫خا‬ ( Translations and Rotations ) ‫َوة‬‫ي‬‫ش‬ ‫بةم‬ ‫َت‬‫ي‬‫دةردةكةو‬ ‫بؤ‬ ‫ماتريكسةكةمان‬ ‫ستيفنس‬ ‫قةبارةى‬ . 2 - ( Structure ‫و‬ ‫دةكةين‬ ‫بةش‬ ‫بةش‬ ‫َةكاندا‬‫ل‬‫خا‬ ‫لة‬ ‫ةكة‬ ) ( Fixed End Reaction ) ‫بؤ‬ ‫ئةدؤزينةوة‬ ‫يةكةلة‬ ‫يةك‬ Deformation ( Rotation, Shear , Axial ) ( ‫َى‬‫ي‬‫ث‬ ‫بة‬ DOF ‫دةدؤزينةوة‬ ‫ماتريكسةكة‬ ‫ستيفنس‬ ‫بةمةش‬ ‫كان‬ ‫ة‬ ) ‫خوارةوة‬ ‫َوةى‬‫ي‬‫ش‬ ‫بةم‬ . D6 D5 D4 D3 D2 D1 Z Y X Z Global Axis
  • 45. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 44 ) 1 = z θ ( ixed F - for Fixed Deformation Rotation ` ) =1 y θ ( fixed - for Fixed Deformation Rotation Z Z Y 6𝐸𝐼𝑦𝜃𝑦 𝐿2 6𝐸𝐼𝑦𝜃𝑦 𝐿2 4𝐸𝐼𝑦𝜃𝑦 𝐿 2𝐸𝐼𝑦𝜃𝑦 𝐿 Z Y 6𝐸𝐼𝑦 𝐿2 6𝐸𝐼𝑦 𝐿2 4𝐸𝐼𝑦 𝐿 2𝐸𝐼𝑦 𝐿 Z Y Z Y 6𝐸𝐼𝑦𝜃𝑦 𝐿2 6𝐸𝐼𝑦𝜃𝑦 𝐿2 2𝐸𝐼𝑦𝜃𝑦 𝐿 4𝐸𝐼𝑦𝜃𝑦 𝐿 Z Y 6𝐸𝐼𝑦 𝐿2 6𝐸𝐼𝑦 𝐿2 2𝐸𝐼𝑦 𝐿 4𝐸𝐼𝑦 𝐿 Z Y Z Y Z Y 6𝐸𝐼𝑧𝜃𝑧 𝐿2 6𝐸𝐼𝑧𝜃𝑧 𝐿2 4𝐸𝐼𝑧𝜃𝑧 𝐿 2𝐸𝐼𝑧𝜃𝑧 𝐿 Z Y 6𝐸𝐼𝑧 𝐿2 6𝐸𝐼𝑧 𝐿2 2𝐸𝐼𝑧 𝐿 4𝐸𝐼𝑧 𝐿 Z Y 6𝐸𝐼𝑧𝜃𝑧 𝐿2 6𝐸𝐼𝑧𝜃𝑧 𝐿2 2𝐸𝐼𝑧𝜃𝑧 𝐿 4𝐸𝐼𝑧𝜃𝑧 𝐿 Y 6𝐸𝐼𝑧 𝐿2 6𝐸𝐼𝑧 𝐿2 4𝐸𝐼𝑧 𝐿 2𝐸𝐼𝑧 𝐿 Z Y
  • 46. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 45 ) 1 = x θ ( ixed F - for Fixed Deformation Rotation =1) y (∆ Fixed - for Fixed Deformation Shear Z 𝐺𝐼𝑥𝜃𝑥 𝐿 𝐺𝐼𝑥𝜃𝑥 𝐿 ∆y ∆y 6𝐸𝐼𝑧∆𝑦 𝐿2 6𝐸𝐼𝑧∆𝑦 𝐿2 12EIz∆y L3 12EIz∆y L3 Z Y Z 𝐺𝐼𝑥𝜃𝑥 𝐿 𝐺𝐼𝑥𝜃𝑥 𝐿 𝐺𝐼𝑥 𝐿 𝐺𝐼𝑥 𝐿 Y Z 6𝐸𝐼𝑧 𝐿2 6𝐸𝐼𝑧 𝐿2 12EIz L3 12EIz L3 Y Y Y 6𝐸𝐼𝑧∆𝑦 𝐿2 6𝐸𝐼𝑧∆𝑦 𝐿2 12EIz∆y L3 12EIz∆y L3 Z Y 12EIz L3 6𝐸𝐼𝑧 𝐿2 6𝐸𝐼𝑧 𝐿2 12EIz L3 Z 𝐺𝐼𝑥 𝐿 𝐺𝐼𝑥 𝐿 Y Z Y Z Y Y Z
  • 47. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 46 Shear Deformation for Fixed-Fixed(∆z=1) =1) x (∆ Fixed - for Fixed Deformation Axial ( ‫َوازى‬‫ي‬‫ش‬ ‫تةنها‬ ‫ئةطةر‬ Fixed-Fixed ) ‫َرين‬‫ي‬‫َبذ‬‫ل‬‫هة‬ ‫ئةندامةكان‬ ‫طشت‬ ‫بؤ‬ ‫ِدةكةينةوة‬‫ر‬‫ث‬ ‫خوارةوة‬ ‫خشتةى‬ ‫ئةم‬ ‫ئةوا‬ . 3 - ( ‫َى‬‫ل‬‫خا‬ ‫ِةضاوكردنى‬‫ر‬ 3,4,5 ( ‫بةشى‬ ‫لة‬ ‫كة‬ ) Beam .‫َبينيةكان‬‫ي‬‫ت‬ ‫طشت‬ َ‫ل‬‫لةطة‬.‫بامسانكرد‬ ) x I y I z I E A H W L Member A-B EA/L /L x I G 3 /L y 12EI 3 /L z 12EI 2 /L y 6EI 2 /L z 6EI /L y EI 4 /L y EI 2 /L z EI 4 /L z 2EI Member A-B 𝐸𝐴 𝐿 𝐸𝐴∆𝑥 𝐿 Y Z Z Z Y 𝐸𝐴∆𝑥 𝐿 𝐸𝐴 𝐿 Z 6𝐸𝐼𝑦∆𝑧 𝐿2 12𝐸𝐼𝑦∆𝑧 𝐿3 12𝐸𝐼𝑦∆𝑧 𝐿3 6𝐸𝐼𝑦∆𝑧 𝐿2 ∆z ∆x ∆x 𝐸𝐴∆𝑥 𝐿 𝐸𝐴∆𝑥 𝐿 𝐸𝐴 𝐿 𝐸𝐴 𝐿 Y Z Y Y Z ∆z Y 6𝐸𝐼𝑦 𝐿2 12𝐸𝐼𝑦 𝐿3 12𝐸𝐼𝑦 𝐿3 6𝐸𝐼𝑦 𝐿2 6𝐸𝐼𝑦 𝐿2 12𝐸𝐼𝑦 𝐿3 12𝐸𝐼𝑦 𝐿3 6𝐸𝐼𝑦 𝐿2 Y Z Y Z Y Z Y Z 6𝐸𝐼𝑦∆𝑧 𝐿2 12𝐸𝐼𝑦∆𝑧 𝐿3 12𝐸𝐼𝑦∆𝑧 𝐿3 6𝐸𝐼𝑦∆𝑧 𝐿2 Y Z Y Z
  • 48. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 47 (0,6,0) D2 (4,0,0) (4,0,0) A A B C B C 6m 2000kg 1000kg A B C (0,0,0) (0,6,0) D1 D3 D4 D5 D6 [ K11 K12 K13 K14 K15 K16 K21 K22 K23 K24 K25 K26 K31 K32 K33 K34 K35 K36 K41 K42 K43 K44 K45 K46 K51 K52 K53 K54 K55 K56 K61 K62 K63 K64 K65 K66 ] (0,0,0) (X,Y,Z) Example (5) Draw B.M.D(z)&(y) for the Beams shown Space due to the Loads shown, where cross section of members are (0.9*0.4)m and E=2.2e+9kg/m2, G=9.167e+8 kg/m2 (member Loads are at the center of members). 4m 3D View Top View Solution: 1- DOF? `` Rad) kg, m, s (Unit When DOF=1 K =? , =? (FER) - 2 ` ) 4 (m x I ) 4 (m y I ) 4 (m z I ) 2 ( kg/m G ) 2 kg/m ( E ) 2 (m A (m) W (m) H (m) L Member 0.01384148026 0.0048 0.0243 9.167e+8 2.2e+9 0.36 0.4 0.9 6 AB 0.01384148026 0.0048 0.0243 9.167e+8 2.2e+9 0.36 0.4 0.9 4 BC Z X Y Global Axis DOF=6 Stiffness matrix=(6*6) (F=KD) [ F1 F2 F3 F4 F5 F6 ] = [ D1 D2 D3 D4 D5 D6 ] Y W H Z Iz = WH3 12 Iy = HW3 12 Ix =J = HW3 ( 1 3 − 0.21 𝑊 𝐻 (1 − 𝑊4 12𝐻4))
  • 49. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 48 [K11 … . … K16] =[198586666.66667 0 0 0 0 −1760000] [K21 … . … K26] = [0 133980000 0 0 0 3960000] [K31 … . … K36] = [0 0 12993750 8910000 −20047500 0] D1=1, (D2,3,4,5,6=0) to obtain Row(1) D2=1, (D1,3,4,5,6=0) to obtain Row (2) D3=1, (D1,2,4,5,6=0) to obtain Row (3) EA/L /L x I G 3 /L y 12EI 3 /L z 12EI 2 /L y 6EI 2 /L z 6EI /L y EI 4 /L y EI 2 /L z EI 4 /L z 2EI Member 132 e+6 2114747.49272 586666.67 2970000 1760000 8910000 7040000 3520000 35640000 17820000 AB 198 e+6 3172121.23908 1980000 10023750 3960000 20047500 10560000 5280000 53460000 26730000 BC B A A A A C A C B 1 c B A B 1 1 B C B Z Y Z Y 6𝐸𝐼𝑦 𝐿2 12𝐸𝐼𝑦 𝐿3 Z Y 𝐸𝐴 𝐿 Z Y B C B Z Y Z Y B Global Axis Z X Y 1 12𝐸𝐼𝑦 𝐿3 6𝐸𝐼𝑦 𝐿2 Z Y 𝐸𝐴 𝐿 Z Y B C B Z Y Z Y 1 6𝐸𝐼𝑧 𝐿2 12EIz L3 Z Y B 6𝐸𝐼𝑧 𝐿2 12EIz L3 Z Y
  • 50. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 49 B [K41 … . … K46] =[0 0 8910000 38812121.23908 0 0] [K51 … . … K56] =[0 0 −20047500 0 55574747.49272 0] 1 C [K61 … . … K66] =[−1760000 3960000 0 0 0 17600000] C D4=1, (D1,2,3, 5,6=0) to obtain Row (4) D5=1, (D1,2,3, 4,6=0) to obtain Row(5) 1 D6=1, (D1,2,3, 4,5=0) to obtain Row(6) B A B B A C B A B C B Z Y 1 1 Z Y Global Axis Z X Y Z Y 𝐺𝐼𝑥 𝐿 6𝐸𝐼𝑧 𝐿2 4𝐸𝐼𝑧 𝐿 Z Y B A B C B Z Y 1 Z Y Z Y 𝐺𝐼𝑥 𝐿 𝐺𝐼𝑥 𝐿 6𝐸𝐼𝑧 𝐿2 4𝐸𝐼𝑧 𝐿 Z Y A B C B Z Y 1 Z Y 6𝐸𝐼𝑦 𝐿2 4𝐸𝐼𝑦 𝐿 Z Y 6𝐸𝐼𝑦 𝐿2 4𝐸𝐼𝑦 𝐿 Z Y X
  • 51. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 50 [ K11 K12 K13 K14 K15 K16 K21 K22 K23 K24 K25 K26 K31 K32 K33 K34 K35 K36 K41 K42 K43 K44 K45 K46 K51 K52 K53 K54 K55 K56 K61 K62 K63 K64 K65 K66 ] = [ 198586666.66667 0 0 0 0 −1760000 0 133980000 0 0 0 3960000 0 0 12993750 8910000 −20047500 0 0 0 8910000 38812121.23908 0 0 0 0 −20047500 0 55574747.49272 0 −1760000 3960000 0 0 0 17600000 ] 1000 kg.m [ 1000 1000 −2500 −3750 0 1000 ] = [ 198586666.66667 0 0 0 0 −1760000 0 133980000 0 0 0 3960000 0 0 12993750 8910000 −20047500 0 0 0 8910000 38812121.23908 0 0 0 0 −20047500 0 55574747.49272 0 −1760000 3960000 0 0 0 17600000 ][ D1 D2 D3 D4 D5 D6 ] for member Loads: Reaction? Fixed End - 3 4- Joint Force Vector? Invert of FER= Joint Force Vector = 3750 kg.m A 5000 kg 3750 kg. m 2500 kg B 2500 kg 2500 kg 3750 kg.m 1000 kg.m C B 1000 kg.m 1000 kg.m C B 3750 kg.m A B 2500 kg 2500 kg 3750 kg.m 1000 kg. m B [ F1 F2 F3 F4 F5 F6 ] = [ 1000 1000 −2500 −3750 0 1000 ]
  • 52. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 51 -1 [ D1 D2 D3 D4 D5 D6 ] = [ 198586666.66667 0 0 0 0 −1760000 0 133980000 0 0 0 3960000 0 0 12993750 8910000 −20047500 0 0 0 8910000 38812121.23908 0 0 0 0 −20047500 0 55574747.49272 0 −1760000 3960000 0 0 0 17600000 ] [ 1000 1000 −2500 −3750 0 1000 ] [ D1 D2 D3 D4 D5 D6 ] = [ 5.5324674E − 06 5.8067094𝐸 − 06 −4.4103185𝐸 − 04 4.6272605𝐸 − 06 −1.5909359𝐸 − 04 5.6064919𝐸 − 05 ] 5- Moment =? MZ=? For Member AB FER= MZ=? For Member BC FER= D3=1 Z Y 6𝐸𝐼𝑧∆𝑦 𝐿2 4𝐸𝐼𝑧𝜃𝑧 𝐿 D4=1 A C 6𝐸𝐼𝑧∆𝑦 𝐿2 3750 kg.m 2𝐸𝐼𝑧𝜃𝑧 𝐿 Z Y B D5=1 C B 4𝐸𝐼𝑧𝜃𝑧 𝐿 2𝐸𝐼𝑧𝜃𝑧 𝐿 6𝐸𝐼𝑧∆𝑦 𝐿2 D3=1 C B 6𝐸𝐼𝑧∆𝑦 𝐿2 5000 kg B 2500 kg 2500 kg 3750 kg.m B A M(Z)AB = MFER(AB) + 2EIzθz L + 6EIz∆y L2 = -3750 + 2∗2.2∗109∗0.0243∗4.6272605E−06 6 + 6∗2.2∗109∗0.0243∗(−4.4103185E−04) 62 ∴ 𝐌(𝐙)𝐀𝐁 = −𝟕𝟓𝟗𝟕. 𝟏𝟒 𝐤𝐠. 𝐦 M(Z)CB = MFER(CB) + 2EIzθz L − 6EIz∆y L2 = 0 + 2∗2.2∗109∗0.0243∗−1.5909359𝐸−04 4 − 6∗2.2∗109∗0.0243∗(−4.4103185𝐸−04) 42 ∴ 𝐌(𝐙)𝐂𝐁 = −𝟒𝟓𝟖𝟗. 𝟎𝟏 𝐤𝐠. 𝐦 M(Z)BA = MFER(BA) + 4EIzθz L + 6EIz∆y L2 =+3750 + 4∗2.2∗109∗0.0243∗4.6272605E−06 6 + 6∗2.2∗109∗0.0243∗(−4.4103185E−04) 62 ∴ 𝐌(𝐙)𝐁𝐀 = −𝟏𝟒. 𝟔𝟖 𝐤𝐠. 𝐦
  • 53. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 52 MY=? For Member AB FER = MY=? For Member CB FER= 1000 kg. m C B 1000 kg. m B 6𝐸𝐼𝑦∆𝑧 𝐿2 2𝐸𝐼𝑦𝜃𝑦 𝐿 6𝐸𝐼𝑦∆𝑧 𝐿2 A 4𝐸𝐼𝑦𝜃𝑦 𝐿 2𝐸𝐼𝑦𝜃𝑦 𝐿 B MBC = MFER(BC) + 4EIzθz L − 6EIz∆y L2 = 0 + 4∗2.2∗109∗0.0243∗−1.5909359𝐸−04 4 − 6∗2.2∗109∗0.0243∗(−4.4103185𝐸−04) 42 ∴ 𝐌(𝐙)𝐁𝐂 = 𝟑𝟑𝟔. 𝟒𝟒 𝐤𝐠. 𝐦 Z Y A D6=1 A 6𝐸𝐼𝑦∆𝑧 𝐿2 M(Y)AB = MFER(AB) + 2EIyθy L + 6EIy∆z L2 = 0+ 2∗2.2∗109∗0.0048∗ 5.6064919E−05 6 − 6∗2.2∗109∗0.0048∗ 5.5324674E−06 62 B ∴ 𝐌(𝐘)𝐀𝐁 = 𝟏𝟖𝟕. 𝟔𝟏 𝐤𝐠. 𝐦 D1=1 M(Y)BA = MFER(BA) + 4EIyθy L + 6EIy∆z L2 = 0+ 4∗2.2∗109∗0.0048∗ 5.6064919E−05 6 − 6∗2.2∗109∗0.0048∗ 5.5324674E−06 62 ∴ 𝐌(𝐘)𝐁𝐀 = 𝟑𝟖𝟒. 𝟗𝟔 𝐤𝐠. 𝐦 B 4𝐸𝐼𝑦𝜃𝑦 𝐿 Z Y C C B D6=1 6𝐸𝐼𝑦∆𝑧 𝐿2 D2=1 M(Y)CB = MFER(CB) + 2EIyθy L + 6EIy∆z L2 = +1000+ 2∗2.2∗109∗0.0048∗ 5.6064919E−05 4 + 6∗2.2∗109∗0.0048∗ 5.8067094E−06 42 ∴ 𝐌(𝐘)𝐂𝐁 = 𝟏𝟑𝟏𝟗. 𝟎𝟐 𝐤𝐠. 𝐦 M(Y)BC = MFER(BC) + 4EIyθy L + 6EIy∆z L2 = -1000+ 4∗2.2∗109∗0.0048∗ 5.6064919E−05 4 + 6∗2.2∗109∗0.0048∗ 5.8067094E−06 42 ∴ 𝐌(𝐘)𝐁𝐂 = −𝟑𝟖𝟒. 𝟗𝟔 𝐤𝐠. 𝐦
  • 54. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 53 ‫بةراوردى‬ ‫ئ‬ ‫بة‬ ‫منوونةكة‬ ‫شيكارى‬ ‫ةجنامى‬ ‫ئةجنامى‬ ‫سؤفت‬ :‫َرةكان‬‫ي‬‫و‬ Note C C B A B A m) Moment(kg. 4589.01 -336.44 -14.68 7597.14 z M ‫ئ‬ ‫منوونةكة‬ ‫ةجنامى‬ -1319.02 -384.96 -384.96 187.61 y M OK 4589.02 -336.44 -14.68 7597.14 z M STAAD V8i OK -1319.02 -384.96 -384.96 187.61 y M OK 4589.02 -336.43 -14.68 7597.14 z M SAP2000 OK -1319.02 -384.96 -384.96 187.61 y M ? ? ? ? ETABS 187.61 851.99 384.96 1319.02 3708.76 -7597.14 14.68 336.44 B.M.D(z)( kg. m) -4589.01 -3791.24 B.M.D(y)( kg. m) 1148.01
  • 55. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 54 5- 3D Frames Analysis by Direct Stiffness Method //‫َبينى‬‫ي‬‫ت‬ ‫هةنطاوةكانى‬ ( ‫شيكاركردنى‬ 3D Frame ‫تةنها‬ ) ( 5 ‫َشوو‬‫ي‬‫ث‬ ‫هةنطاوةكانى‬ ) .‫َبينيةكان‬‫ي‬‫ت‬ ‫طشت‬ َ‫ل‬‫طة‬ ‫لة‬ ‫َنني‬‫ي‬‫دةه‬ ‫بةكار‬ Example (6) Draw all diagrams for the Space Frame shown due to the Loads Shown, where Section of beams are (0.6*0.4)m and Columns (0.4*0.4)m, E=3*109 kg/m2 , G=1.25*109 kg/m2 . Solution: 1- DOF? F D22 D23 D19 D20 D21 D24 D16 D17 D13 D14 D15 D18 D10 D11 D7 D8 D9 D12 D4 D5 D1 D2 D3 5 ton 2 ton 1 ton 1 ton F E G H D C B A 6m 8m 4m Y X Z Global Axis E G H D C B A D6 Y X Z Global Axis DOF=24 Stiffness matrix= (24*24)
  • 56. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 55 G = E 2.4 //‫َبينى‬‫ي‬‫ت‬ ( ‫َوان‬‫ي‬‫ن‬ ‫ثةيوةندى‬ E,G ( ‫تةنها‬ ‫ئةوةى‬ ‫بؤ‬ ‫ثرسيارةكة‬ ‫َرةى‬‫ي‬‫طو‬ ‫بة‬ ‫دةدؤزينةوة‬ ) E ‫َنني‬‫ي‬‫به‬ ‫بةكار‬ ) . 2- (FER) =? , K =? When DOF=1 (Units Ton, m, Rad) 4 x m I 4 y m I 4 m z I kg/m2 G kg/m2 E (m2) A (m) W (m) H (m) L Member 0.00360533333 0.0256/12 0.0256/12 E/2.4 E 0.16 0.4 0.4 4 AB 0.00751249383 0.0032 0.0072 E/2.4 E 0.24 0.4 0.6 6 BC 0.00360533333 0.0256/12 0.0256/12 E/2.4 E 0.16 0.4 0.4 4 CD 0.00751249383 0.0032 0.0072 E/2.4 E 0.24 0.4 0.6 8 CE 0.00360533333 0.0256/12 0.0256/12 E/2.4 E 0.16 0.4 0.4 4 EF 0.00751249383 0.0032 0.0072 E/2.4 E 0.24 0.4 0.6 6 EG 0.00360533333 0.0256/12 0.0256/12 E/2.4 E 0.16 0.4 0.4 4 GH 0.00751249383 0.0032 0.0072 E/2.4 E 0.24 0.4 0.6 8 GB 2 /L y 6EI 2 /L z 6EI /L y EI 4 /L y EI 2 /L z EI 4 /L z 2EI Member 0.0008E 0.0008E E*0.0064/3 E*0.0032/3 E*0.0064/3 E*0.0032/3 AB E*0.0016/3 0.0012E E*0.0064/3 E*0.0032/3 0.0048E 0.0024E BC 0.0008E 0.0008E E*0.0064/3 E*0.0032/3 E*0.0064/3 E*0.0032/3 CD 0.0003E 0.000675E 0.0016E 0.0008E 0.0036E 0.0018E CE 0.0008E 0.0008E E*0.0064/3 E*0.0032/3 E*0.0064/3 E*0.0032/3 EF E*0.0016/3 0.0012E E*0.0064/3 E*0.0032/3 0.0048E 0.0024E EG 0.0008E 0.0008E E*0.0064/3 E*0.0032/3 E*0.0064/3 E*0.0032/3 GH 0.0003E 0.000675E 0.0016E 0.0008E 0.0036E 0.0018E GB EA/L /L x I G 3 /L y 12EI 3 /L z 12EI Member 0.04E E*0.00360533333/9.6 0.0004E 0.0004E AB 0.04E E*0.00751249383/14.4 E*0.0016/9 0.0004E BC 0.04E E*0.00360533333/9.6 0.0004E 0.0004E CD 0.03E E*0.00751249383/19.2 0.000075E E*0.0216/128 CE 0.04E E*0.00360533333/9.6 0.0004E 0.0004E EF 0.04E E*0.00751249383/14.4 E*0.0016/9 0.0004E EG 0.04E E*0.00360533333/9.6 0.0004E 0.0004E GH 0.03E E*0.00751249383/19.2 0.000075E E*0.0216/128 GB [ F1 F2 F3 F4 F5 . . . F24] = [ K11 K12 K13 K14 K15 K16 . . . K124 K21 K22 K23 K24 K25 K26 . . . K224 K31 K32 K33 K34 K35 K36 . . . K324 K41 K42 K43 K44 K45 K46 . . . K424 K51 K52 K53 K54 K55 K56 . . . K524 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K241 K242 K243 K244 K245 K246 . . . K2424] [ D1 D2 D3 D4 D5 . . . D24] (F=KD)
  • 57. Stiffness Method (Matrix Structural Analysis) Ali Muhammad Shekha 56 D1=1 to obtain Row(1) D2=1 to obtain Row (2) D3=1 to obtain Row (3) 12𝐸𝐼𝑦 𝐿3 C 6𝐸𝐼𝑧 𝐿2 6𝐸𝐼𝑧 𝐿2 6𝐸𝐼𝑧 𝐿2 6𝐸𝐼𝑧 𝐿2 12𝐸𝐼𝑧 𝐿3 12𝐸𝐼𝑧 𝐿3 12𝐸𝐼𝑧 𝐿3 12𝐸𝐼𝑧 𝐿3 12𝐸𝐼𝑦 𝐿3 12𝐸𝐼𝑦 𝐿3 6𝐸𝐼𝑦 𝐿2 6𝐸𝐼𝑦 𝐿2 𝐸𝐴 𝐿 𝐸𝐴 𝐿 C 𝐸𝐴 𝐿 12𝐸𝐼𝑦 𝐿3 12𝐸𝐼𝑦 𝐿3 Row3= 𝐸𝐴 𝐿 1 Y A B X Z 12𝐸𝐼𝑧 𝐿3 12𝐸𝐼𝑧 𝐿3 6𝐸𝐼𝑦 𝐿2 𝐸𝐴 𝐿 C 6𝐸𝐼𝑦 𝐿2 6𝐸𝐼𝑦 𝐿2 Row1= [0.040475E 0 0 0 −0.0008E −0.0003E −0.04𝐸 0 0 0 0 0 0 0 0 0 0 0 −0.000075E 0 0 0 0 −0.0003E] [0 E ∗ 0.2752/9 0 0.0008E 0 E ∗ 0.0016/3 0 −E ∗ 0.0016/9 0 0 0 E ∗ 0.0016/3 0 0 0 0 0 0 0 −0.03E 0 0 0 0] B B Z A B Z X Y 6𝐸𝐼𝑧 𝐿2 6𝐸𝐼𝑧 𝐿2 Y X Z Global Axis 1 Y A B X Z Y A B X Z B G 1 1 B Z Y Z Y [0 0 E ∗ 5.1928/128 0.000675𝐸 −0.0012E 0 0 0 −0.0004E 0 −0.0012E 0 0 0 0 0 0 0 0 0 −E ∗ 0.0216/128 0.000675E 0 0] G Y Row2= Z Y C 1 Y A B X Z B G 1 1 B Z Y Z Y Y A B X Z B B G Z Y Z Y C 12𝐸𝐼𝑦 𝐿3 1 B G 1 B Z Y Z Y B B G Z Y Z Y C