SlideShare a Scribd company logo
1 of 12
CHAPTER 6
(Power Series Method)
Review of Power Series
 


2
210
0
)()()( axcaxccaxc
n
n
n is a power series in power of (x-a),
where ,, 10 cc are real (complex ) constant and “a” is the centre of the
series.
 


2
210
0
xcxccxc
n
n
n is a power series in x with centre at 0 (Maclaurin
series).
 

N
n
n
nN axcxS
0
)()( is called nth partial sum.
 If 

LxSN
N
)(lim series is convergent otherwise divergent.
 Each Series is always convergent at its centre.
 If



0
)(
n
n
n axc converges for all points in Rax  then
i. The region Rax  is called region of convergence. R is called
radius of convergence.
ii. If R = 0 then series converges only at its centre. If R =  then series
converges everywhere or x . In other situation R can be any finite
positive real number.
iii. Rax  is called circle or interval of convergence.
x- Real or x-Complex
NOTE: If a series converges for Rax  then it must be divergent
for Rax  and for Rax  , it may converge at every point or on
some points or may not converge at all.
HOW TO FIND RADIUS OF CONVERGENCE R?
Ratio Test:
Find L
c
c
axc
axc
n
n
n
n
n
n
n
n


 




1
1
1
limlim )(
)(
i. The radius of convergence is
L
R
1

ii. If Rax  || then the test is inclusive
iii. If Rax  || so series diverges
iv. If Rax  || so series converges
Example: Find radius and region of convergence for the series
(i) 

1
2
n
n
n
x
n
(ii) 



1
2
)3(
)!(
)!2(
n
n
x
n
n
Sol: (i)
1
2
,
2 1
1




n
c
n
c
n
n
n
n
2
11
22
1
2
2)1(
2
limlim
1



 

 L
RL
n
n
n
n
n
n
n
n
and region of convergence is
2
1
x
(ii) 212
))!1((
)22(
,
)!(
)!2(


 
n
n
c
n
n
c nn
4
11
4
)1(
)12)(22(
)!2())!1((
)!()!22(
22
2
limlim 





 L
R
n
nn
nn
nn
nn
and region of convergence is
4
1
3 x
 Within region of convergence, series converges absolutely and uniformly.
It can be differentiated and integrated term by term and resulting series has
the same radius as well as region of convergence. In case R > 0 then the
corresponding power series always represents an analytic function.
 A function f is analytic at a point a if it can be represented by a power
series in )( ax  with a positive or infinite radius of convergence.
 Term wise addition: 

0
)(
n
n
n axa 



0
)(
n
n
n axb =



0
))((
n
n
nn axba
 Term wise multiplication:


0
)(
n
n
n axa 



0
)(
n
n
n axb = n
nnn
n
n axbabababa )}({ 02211
0
0  



 Series addition: in order o perform addition 

ln
n
n axc )( 



km
m
m axb )( given
series should satisfy nmkl  and,
If the series correspond to a function say
0
0( ) ( )n
n
n
f x c x x


 
 Then the radius of convergence is the distance of the closest singular point
from the centre of the series.
Example: 11
1
1
0
2





Rxxx
x n
n
POWER SERIES METHOD
(Basic method to solve LDE)
 Let a differential equation be in standard form
) 0( ( )y yP x Q x y    .
 A point “x0” is called ordinary point if P(x) and Q(x) are analytic at “x0”,
otherwise the point “x0” will be called singular (Regular, Irregular).
Examples:
Standard form ) 0( ( )y yP x Q x y   
1. '' ' s n 0ix
y y ye x  
2. '' ' ln 0x
y y ye x  
 THEORM 6.1
Existence of power series solutions:
If 0xx  is an ordinary point of the differential equation 0)()("  yxQyxPy ,
We can always find two linearly independent solutions in the form of power
series centered at x0 that is 



0
0 )(
n
n
n xxcy .
A series solution converges at least on some interval Rxx  0 , where R is
the distance from 0x to the closest singular point.
 A solution of the form 



0
0 )(
n
n
n xxcy is said to be a solution about the
ordinary point x0
Example: Using Power series method solve 0 yy
Sol:
i. Assume 



0n
n
n xcy is a solution then





1
1
n
n
nnxcy , 




2
2
)1(
n
n
n xnncy .
ii. 0)1(
2 0
2
 






n n
n
n
n
n xcxnncyy
iii. Change k = n-2 in 1st term, k = n in 2nd term
 




 0)1)(2(
0 0
2
k k
k
k
k
k xcxkkc







,2,1,0
)2)(1(
0)2)(1(
2
2
k
kk
c
c
cckk
k
k
kk
Recurrence formula
iv. Let thencandc 01 10  using Recurrence formula
0
!4
1
0,
!2
1
54
32




cc
cc
 4
2
1
!4
1
!2
1 x
x
y
Next y2 :
Let thencandc 10 10  using Recurrence formula
11 c
6.5.4
1
0
3.2
1
,0
54
32



cc
cc
 5
3
2
6.5.4
1
3.2
x
x
xy
Hence, 2211 yCyCy  that is basically
xCxCy sincos 21 
Example: Using Power series method solve 022  yyxy
Sol:
i. Assume 



0n
n
n xay is a solution then 




1
1
n
n
nnxcy , 




2
2
)1(
n
n
n xnncy
022)1(22
2 1 0
12
  








n n n
n
n
n
n
n
n xcnxcxxnncyyxy
022)1(
2 1 0
2
  








n n n
n
n
n
n
n
n xcnxcxnnc
Change k = n-2 in 1st term, k = n in 2nd and 3rd terms
  






 022)1)(2(
0 1 0
2
k k k
k
k
k
k
k
k xckxcxkkc
   






 022)1)(2(1.2
1 1 1
022
k k k
k
k
k
k
k
k xcckxcxkkcc
 


 0)22)1)(2(({22
1
202
k
k
kkk xckckkccc
0202 022 cccc  (1)
,...3,2,1
2
2
0)22()1)(2(
2
2







kc
k
c
ckckk
kk
kk
(2)
Relation (2) is known as Recurrence Formula.
ii. Let thencandc 01 10  using Recurrence formula
0
7
2
6
1
6
1
0
5
2
2
1
2
1
0
2
3
,1
5746
3524
1302



cccc
cccc
cccc
...
6
1
2
1
1 642
1  xxxy
Now, let thencandc 10 10  using Recurrence formula, we get
2211
53
2
35
4
3
2
yCyCyxxxy 
Example: Find two series solution at x = 0 for 0 yyey x
i. Assume 



0n
n
n xay is a solution then 




1
1
n
n
nnxcy , 




2
2
)1(
n
n
n xnncy .
ii. 0)
!2
1()1(
2 1 0
2
2
  








n n n
n
n
n
n
n
n xcnxc
x
xxnnc
 
    







0......432
...
!4!3!2
1...201262
3
3
2
210
3
4
2
321
432
3
5
2
432
xcxcxccxcxcxcc
xxx
xxcxcxcc
 
  








tcoefficiencomparingxcxcxcc
xcccxccc
xcxcxcc
0...
...)32
2
1
()2(
...201262
3
3
2
210
3
321211
3
5
2
432
)(0123
2
1
)(026
)(02
4321
1213
012
iiicccc
iicccc
iccc



Let 

 ,0,
6
1
,
2
1
01 43210 ccccandc
 32
1
6
1
2
1
1 xxy
Now let 

 ,
24
1
,
6
1
,
2
1
10 43210 ccccandc
 432
2
24
1
6
1
2
1
xxxxy
Hence, 2211 yCyCy 
Section 6.2:
Solution about Singular Points
Given
) 0( ( )y yP x Q x y   
 The point x0 is called regular singular point if the functions p(x) = (x – x0) P(x)
and
2
0( ) ( )) (q x x x Q x  are both analytic at x = x0.
Otherwise irregular singular point
Definition
A function, f(x), is called analytic at x= x0
if the Taylor series for f(x) about x= x0
has a positive radius of convergence (series exist), if x0 = 0 we have Maclaurin
series.
 The point x = x0 is a regular singular point if (x – x0) has at most power 1 in
the denominator of P(x) and at most power 2 in the denominator of Q (x).
) 0( ( )y yP x Q x y   
Example:
3 2
3 2
3 3 3
3
0
first put theEq.instander form
0
0
0 poin
4 3
4 3
4
.
3
t
y y y
y y y
y y y
x x
x
x
x
x x x
x x
irregular
   
   
   
 
…………………………………..
.int3,0
0)3(
poregularx
yyxx


………………………………….
iii.
irregularxregularx
yxyxyxx
5&0
0)25(4)5( 222


NOTE: The power series method is applicable at ordinary points but fails at
regular singular points. At regular singular points, Frobenius’ method,
which is basically an extension of power series method, helps to find the
solution.
 It possible to obtain the indicial equation in advance of substituting





0n
rn
n xay into the differential equation, the general indicial equation is
0)1( 00  qrprr where 00 qandp are given by the definition of
p(x) and q(x).
Example
Find the indicial equation and indicial roots of the differential equation 3xy'' + y' - y = 0.
Sol:
Since x = 0 is a regular singular point of the differential equation
3xy’’ + y’ – y =0
We try a solution of the form





0n
rn
nxcy .
Or
Then xp(x) = 3
1 and x2
q(x) = - 3
1 x. Hence p0 = 3
1 and q0 = 0.
Hence the indicial equation is
r(r – 1) + 3
1
r + 0 = 0  r (3r-2) = 0
NOTE: If r1 and r2 are the roots of indicial equation then
Case 1: 2121 rrandrr  is negative integer then solution will be












 



 0
2
0
1
21
n
n
n
r
n
n
n
r
xbxcxaxcy
Case 2: 2121 rrandrr  is a positive integer then solution will be












 



 0
12
0
11
21
ln
n
n
n
r
n
n
n
r
xbxxCyyandxaxcy
𝑦 = 𝑐1 𝑦1 + 𝑐2 𝑦2
Case 3: rrr  21 then




















1
12
0
0
1
ln
0,
n
n
n
r
n
n
n
r
xbxxyy
axaxy
𝑦 = 𝑐1 𝑦1 + 𝑐2 𝑦2
NOTE: If 1y is known, method of reduction of order may be used to get




2
1
12
y
e
yy
pdx
Example :
0)13()1(  yyxyxxSolve
Sol: Assume







00 n
rn
n
n
n
n
r
xaxaxy is a solution.
n r
n
n r
n
y a (x r)x &
y a (n r)(n r )x
 
 
  
    


1
2
1
x(x )y ( x )y y     1 3 1 0
 





0)()(3
)1)(()1)((
1
1
rn
n
rn
n
rn
n
rn
n
rn
n
xaxarnxarn
xarnrnxarnrn
 
  )(0)()1)((
1)(3)1)((
1
Axarnrnrn
xarnrnrn
rn
n
rn
n






 
  )(0)()1)((
1)(3)1)((
1
Axarnrnrn
xarnrnrn
rn
n
rn
n






Indicial Equation: Take n = 0 and select coefficient (except na ) of the smallest
power of x we get 0)1(  rrr the indicial equation. Roots of indicial
equation are r = 0 , 0 (double root)
Now we need Recurrence Formula:
In (A), take r = 0 
 
  )(0)()1)((
1)(3)1)((
1
Axarnrnrn
xarnrnrn
rn
n
rn
n






    0)()1)((1)(3)1)(( 1
  n
n
n
n xannnxannn
Taking n = k in 1st term and n -1 = k in 2nd term, we get
   k k
k k(k)(k ) (k) a x (k )(k) (k ) a x         11 3 1 1 1 0
k k
a a a
a a
   
1
1
0 1 2
r n
n
y x a x x ( x x x ) if x
x
          

0 2 3
1
1
1 1
1
Now
?2 y
Use the reduction formula:




2
1
12
y
e
yy
pdx
x(x )y ( x )y y     1 3 1 0
 




 2
)1)(ln(
1
21
)1(
13
)( xxpdx
xxxx
x
xP
x
x
dx
xx
dx
xx
x
x
dx
x
e
xy
e
yy
xxpdx
















1
ln1
1
1
)1(
)1(
1
1
)1(
11
1
2
2
2
)1)(ln(
2
1
12
2
2211 ycycy 

More Related Content

What's hot (20)

Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONSDIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS
 
C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)C.v.n.m (m.e. 130990119004-06)
C.v.n.m (m.e. 130990119004-06)
 
eigenvalue
eigenvalueeigenvalue
eigenvalue
 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
 
Linear differential equation of second order
Linear differential equation of second orderLinear differential equation of second order
Linear differential equation of second order
 
Taylor's and Maclaurin series
Taylor's and Maclaurin seriesTaylor's and Maclaurin series
Taylor's and Maclaurin series
 
Introduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions ManualIntroduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions Manual
 
Real analysis
Real analysis Real analysis
Real analysis
 
Lagrange
LagrangeLagrange
Lagrange
 
Power series
Power seriesPower series
Power series
 
Metric space
Metric spaceMetric space
Metric space
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
topology definitions
 topology definitions topology definitions
topology definitions
 
Ch05 4
Ch05 4Ch05 4
Ch05 4
 
Eigen values and eigen vectors
Eigen values and eigen vectorsEigen values and eigen vectors
Eigen values and eigen vectors
 
Vector Spaces
Vector SpacesVector Spaces
Vector Spaces
 
Power series & Radius of convergence
Power series & Radius of convergencePower series & Radius of convergence
Power series & Radius of convergence
 

Similar to Ch6 series solutions algebra

On Application of Power Series Solution of Bessel Problems to the Problems of...
On Application of Power Series Solution of Bessel Problems to the Problems of...On Application of Power Series Solution of Bessel Problems to the Problems of...
On Application of Power Series Solution of Bessel Problems to the Problems of...BRNSS Publication Hub
 
MASSS_Presentation_20160209
MASSS_Presentation_20160209MASSS_Presentation_20160209
MASSS_Presentation_20160209Yimin Wu
 
Pydata Katya Vasilaky
Pydata Katya VasilakyPydata Katya Vasilaky
Pydata Katya Vasilakyknv4
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptshivamvadgama50
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAlbert Jose
 
Assignment no4
Assignment no4Assignment no4
Assignment no4Ali Baig
 
Maths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayMaths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayDr. Asish K Mukhopadhyay
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfhabtamu292245
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidelarunsmm
 

Similar to Ch6 series solutions algebra (20)

Ch05 2
Ch05 2Ch05 2
Ch05 2
 
Ch05 7
Ch05 7Ch05 7
Ch05 7
 
Ch05 1
Ch05 1Ch05 1
Ch05 1
 
03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf
 
03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf03_AJMS_209_19_RA.pdf
03_AJMS_209_19_RA.pdf
 
On Application of Power Series Solution of Bessel Problems to the Problems of...
On Application of Power Series Solution of Bessel Problems to the Problems of...On Application of Power Series Solution of Bessel Problems to the Problems of...
On Application of Power Series Solution of Bessel Problems to the Problems of...
 
160280102042 c3 aem
160280102042 c3 aem160280102042 c3 aem
160280102042 c3 aem
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
Ch07 5
Ch07 5Ch07 5
Ch07 5
 
MASSS_Presentation_20160209
MASSS_Presentation_20160209MASSS_Presentation_20160209
MASSS_Presentation_20160209
 
Pydata Katya Vasilaky
Pydata Katya VasilakyPydata Katya Vasilaky
Pydata Katya Vasilaky
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
 
Ch05 5
Ch05 5Ch05 5
Ch05 5
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Ch05 3
Ch05 3Ch05 3
Ch05 3
 
Amity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notesAmity university sem ii applied mathematics ii lecturer notes
Amity university sem ii applied mathematics ii lecturer notes
 
Assignment no4
Assignment no4Assignment no4
Assignment no4
 
Maths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K MukhopadhyayMaths iii quick review by Dr Asish K Mukhopadhyay
Maths iii quick review by Dr Asish K Mukhopadhyay
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Jacobi and gauss-seidel
Jacobi and gauss-seidelJacobi and gauss-seidel
Jacobi and gauss-seidel
 

Recently uploaded

Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)ChandrakantDivate1
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessorAshwiniTodkar4
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesRashidFaridChishti
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257subhasishdas79
 

Recently uploaded (20)

Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257Memory Interfacing of 8086 with DMA 8257
Memory Interfacing of 8086 with DMA 8257
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 

Ch6 series solutions algebra

  • 1. CHAPTER 6 (Power Series Method) Review of Power Series     2 210 0 )()()( axcaxccaxc n n n is a power series in power of (x-a), where ,, 10 cc are real (complex ) constant and “a” is the centre of the series.     2 210 0 xcxccxc n n n is a power series in x with centre at 0 (Maclaurin series).    N n n nN axcxS 0 )()( is called nth partial sum.  If   LxSN N )(lim series is convergent otherwise divergent.  Each Series is always convergent at its centre.  If    0 )( n n n axc converges for all points in Rax  then i. The region Rax  is called region of convergence. R is called radius of convergence. ii. If R = 0 then series converges only at its centre. If R =  then series converges everywhere or x . In other situation R can be any finite positive real number. iii. Rax  is called circle or interval of convergence. x- Real or x-Complex NOTE: If a series converges for Rax  then it must be divergent for Rax  and for Rax  , it may converge at every point or on some points or may not converge at all.
  • 2. HOW TO FIND RADIUS OF CONVERGENCE R? Ratio Test: Find L c c axc axc n n n n n n n n         1 1 1 limlim )( )( i. The radius of convergence is L R 1  ii. If Rax  || then the test is inclusive iii. If Rax  || so series diverges iv. If Rax  || so series converges Example: Find radius and region of convergence for the series (i)   1 2 n n n x n (ii)     1 2 )3( )!( )!2( n n x n n Sol: (i) 1 2 , 2 1 1     n c n c n n n n 2 11 22 1 2 2)1( 2 limlim 1        L RL n n n n n n n n and region of convergence is 2 1 x (ii) 212 ))!1(( )22( , )!( )!2(     n n c n n c nn 4 11 4 )1( )12)(22( )!2())!1(( )!()!22( 22 2 limlim        L R n nn nn nn nn and region of convergence is 4 1 3 x  Within region of convergence, series converges absolutely and uniformly. It can be differentiated and integrated term by term and resulting series has the same radius as well as region of convergence. In case R > 0 then the corresponding power series always represents an analytic function.  A function f is analytic at a point a if it can be represented by a power series in )( ax  with a positive or infinite radius of convergence.  Term wise addition:   0 )( n n n axa     0 )( n n n axb =    0 ))(( n n nn axba  Term wise multiplication:
  • 3.   0 )( n n n axa     0 )( n n n axb = n nnn n n axbabababa )}({ 02211 0 0       Series addition: in order o perform addition   ln n n axc )(     km m m axb )( given series should satisfy nmkl  and, If the series correspond to a function say 0 0( ) ( )n n n f x c x x      Then the radius of convergence is the distance of the closest singular point from the centre of the series. Example: 11 1 1 0 2      Rxxx x n n POWER SERIES METHOD (Basic method to solve LDE)  Let a differential equation be in standard form ) 0( ( )y yP x Q x y    .  A point “x0” is called ordinary point if P(x) and Q(x) are analytic at “x0”, otherwise the point “x0” will be called singular (Regular, Irregular). Examples: Standard form ) 0( ( )y yP x Q x y    1. '' ' s n 0ix y y ye x   2. '' ' ln 0x y y ye x    THEORM 6.1 Existence of power series solutions: If 0xx  is an ordinary point of the differential equation 0)()("  yxQyxPy , We can always find two linearly independent solutions in the form of power series centered at x0 that is     0 0 )( n n n xxcy .
  • 4. A series solution converges at least on some interval Rxx  0 , where R is the distance from 0x to the closest singular point.  A solution of the form     0 0 )( n n n xxcy is said to be a solution about the ordinary point x0 Example: Using Power series method solve 0 yy Sol: i. Assume     0n n n xcy is a solution then      1 1 n n nnxcy ,      2 2 )1( n n n xnncy . ii. 0)1( 2 0 2         n n n n n n xcxnncyy iii. Change k = n-2 in 1st term, k = n in 2nd term        0)1)(2( 0 0 2 k k k k k k xcxkkc        ,2,1,0 )2)(1( 0)2)(1( 2 2 k kk c c cckk k k kk Recurrence formula iv. Let thencandc 01 10  using Recurrence formula 0 !4 1 0, !2 1 54 32     cc cc  4 2 1 !4 1 !2 1 x x y Next y2 :
  • 5. Let thencandc 10 10  using Recurrence formula 11 c 6.5.4 1 0 3.2 1 ,0 54 32    cc cc  5 3 2 6.5.4 1 3.2 x x xy Hence, 2211 yCyCy  that is basically xCxCy sincos 21  Example: Using Power series method solve 022  yyxy Sol: i. Assume     0n n n xay is a solution then      1 1 n n nnxcy ,      2 2 )1( n n n xnncy 022)1(22 2 1 0 12            n n n n n n n n n xcnxcxxnncyyxy 022)1( 2 1 0 2            n n n n n n n n n xcnxcxnnc Change k = n-2 in 1st term, k = n in 2nd and 3rd terms           022)1)(2( 0 1 0 2 k k k k k k k k k xckxcxkkc            022)1)(2(1.2 1 1 1 022 k k k k k k k k k xcckxcxkkcc      0)22)1)(2(({22 1 202 k k kkk xckckkccc 0202 022 cccc  (1) ,...3,2,1 2 2 0)22()1)(2( 2 2        kc k c ckckk kk kk (2) Relation (2) is known as Recurrence Formula.
  • 6. ii. Let thencandc 01 10  using Recurrence formula 0 7 2 6 1 6 1 0 5 2 2 1 2 1 0 2 3 ,1 5746 3524 1302    cccc cccc cccc ... 6 1 2 1 1 642 1  xxxy Now, let thencandc 10 10  using Recurrence formula, we get 2211 53 2 35 4 3 2 yCyCyxxxy  Example: Find two series solution at x = 0 for 0 yyey x i. Assume     0n n n xay is a solution then      1 1 n n nnxcy ,      2 2 )1( n n n xnncy . ii. 0) !2 1()1( 2 1 0 2 2            n n n n n n n n n xcnxc x xxnnc               0......432 ... !4!3!2 1...201262 3 3 2 210 3 4 2 321 432 3 5 2 432 xcxcxccxcxcxcc xxx xxcxcxcc              tcoefficiencomparingxcxcxcc xcccxccc xcxcxcc 0... ...)32 2 1 ()2( ...201262 3 3 2 210 3 321211 3 5 2 432 )(0123 2 1 )(026 )(02 4321 1213 012 iiicccc iicccc iccc   
  • 7. Let    ,0, 6 1 , 2 1 01 43210 ccccandc  32 1 6 1 2 1 1 xxy Now let    , 24 1 , 6 1 , 2 1 10 43210 ccccandc  432 2 24 1 6 1 2 1 xxxxy Hence, 2211 yCyCy 
  • 8. Section 6.2: Solution about Singular Points Given ) 0( ( )y yP x Q x y     The point x0 is called regular singular point if the functions p(x) = (x – x0) P(x) and 2 0( ) ( )) (q x x x Q x  are both analytic at x = x0. Otherwise irregular singular point Definition A function, f(x), is called analytic at x= x0 if the Taylor series for f(x) about x= x0 has a positive radius of convergence (series exist), if x0 = 0 we have Maclaurin series.  The point x = x0 is a regular singular point if (x – x0) has at most power 1 in the denominator of P(x) and at most power 2 in the denominator of Q (x). ) 0( ( )y yP x Q x y    Example: 3 2 3 2 3 3 3 3 0 first put theEq.instander form 0 0 0 poin 4 3 4 3 4 . 3 t y y y y y y y y y x x x x x x x x x x irregular               ………………………………….. .int3,0 0)3( poregularx yyxx   …………………………………. iii. irregularxregularx yxyxyxx 5&0 0)25(4)5( 222   NOTE: The power series method is applicable at ordinary points but fails at regular singular points. At regular singular points, Frobenius’ method,
  • 9. which is basically an extension of power series method, helps to find the solution.  It possible to obtain the indicial equation in advance of substituting      0n rn n xay into the differential equation, the general indicial equation is 0)1( 00  qrprr where 00 qandp are given by the definition of p(x) and q(x). Example Find the indicial equation and indicial roots of the differential equation 3xy'' + y' - y = 0. Sol: Since x = 0 is a regular singular point of the differential equation 3xy’’ + y’ – y =0 We try a solution of the form      0n rn nxcy . Or Then xp(x) = 3 1 and x2 q(x) = - 3 1 x. Hence p0 = 3 1 and q0 = 0. Hence the indicial equation is r(r – 1) + 3 1 r + 0 = 0  r (3r-2) = 0 NOTE: If r1 and r2 are the roots of indicial equation then Case 1: 2121 rrandrr  is negative integer then solution will be                   0 2 0 1 21 n n n r n n n r xbxcxaxcy Case 2: 2121 rrandrr  is a positive integer then solution will be                   0 12 0 11 21 ln n n n r n n n r xbxxCyyandxaxcy 𝑦 = 𝑐1 𝑦1 + 𝑐2 𝑦2
  • 10. Case 3: rrr  21 then                     1 12 0 0 1 ln 0, n n n r n n n r xbxxyy axaxy 𝑦 = 𝑐1 𝑦1 + 𝑐2 𝑦2 NOTE: If 1y is known, method of reduction of order may be used to get     2 1 12 y e yy pdx Example : 0)13()1(  yyxyxxSolve Sol: Assume        00 n rn n n n n r xaxaxy is a solution. n r n n r n y a (x r)x & y a (n r)(n r )x               1 2 1 x(x )y ( x )y y     1 3 1 0        0)()(3 )1)(()1)(( 1 1 rn n rn n rn n rn n rn n xaxarnxarn xarnrnxarnrn     )(0)()1)(( 1)(3)1)(( 1 Axarnrnrn xarnrnrn rn n rn n      
  • 11.     )(0)()1)(( 1)(3)1)(( 1 Axarnrnrn xarnrnrn rn n rn n       Indicial Equation: Take n = 0 and select coefficient (except na ) of the smallest power of x we get 0)1(  rrr the indicial equation. Roots of indicial equation are r = 0 , 0 (double root) Now we need Recurrence Formula: In (A), take r = 0      )(0)()1)(( 1)(3)1)(( 1 Axarnrnrn xarnrnrn rn n rn n           0)()1)((1)(3)1)(( 1   n n n n xannnxannn Taking n = k in 1st term and n -1 = k in 2nd term, we get    k k k k(k)(k ) (k) a x (k )(k) (k ) a x         11 3 1 1 1 0 k k a a a a a     1 1 0 1 2 r n n y x a x x ( x x x ) if x x             0 2 3 1 1 1 1 1 Now ?2 y Use the reduction formula:
  • 12.     2 1 12 y e yy pdx x(x )y ( x )y y     1 3 1 0        2 )1)(ln( 1 21 )1( 13 )( xxpdx xxxx x xP x x dx xx dx xx x x dx x e xy e yy xxpdx                 1 ln1 1 1 )1( )1( 1 1 )1( 11 1 2 2 2 )1)(ln( 2 1 12 2 2211 ycycy 