SlideShare a Scribd company logo
1 of 26
Download to read offline
Data sparse approximation of the
Karhunen-Lo`eve expansion
A. Litvinenko, joint work with B. Khoromskij and H. G. Matthies
Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig,
0531-391-3008, litvinen@tu-bs.de
December 5, 2008
Outline
Introduction
KLE
Hierarchical Matrices
Low Kronecker rank approximation
Application
Outline
Introduction
KLE
Hierarchical Matrices
Low Kronecker rank approximation
Application
Stochastic PDE
We consider
− div(κ(x, ω)∇u) = f(x, ω) in G,
u = 0 on ∂G,
with stochastic coefficients κ(x, ω), x ∈ G ⊆ Rd
and ω belongs to the
space of random events Ω.
Figure: Examples of computational domains G with a non-rectangular grid.
Covariance functions
The random field f(x, ω) requires to specify its spatial correl. structure
covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))],
Let h =
3
i=1 h2
i /ℓ2
i , where hi := xi − yi, i = 1, 2, 3, ℓi are cov.
lengths.
Examples: Gaussian cov(h) = exp(−h2
), exponential
cov(h) = exp(−h),
Outline
Introduction
KLE
Hierarchical Matrices
Low Kronecker rank approximation
Application
KLE
The Karhunen-Lo`eve expansion is the series
κ(x, ω) = µk (x) +
∞
i=1
λi φi (x)ξi (ω), where
ξi (ω) are uncorrelated random variables and φi are basis functions in
L2
(G).
Eigenpairs λi , φi are the solution of
Tφi = λi φi , φi ∈ L2
(G), i ∈ N, where.
T : L2
(G) → L2
(G),
(Tφ)(x) := G covk (x, y)φ(y)dy.
Discrete eigenvalue problem
Let
Wij :=
k,m G
bi (x)bk (x)dxCkm
G
bj (y)bm(y)dy,
Mij =
G
bi (x)bj (x)dx.
Then we solve
W φh
ℓ = λℓMφh
ℓ , where W := MCM
Approximate C and M in
◮ the H-matrix format
◮ low Kronecker rank format
and use the Lanczos method to compute m largest eigenvalues.
Outline
Introduction
KLE
Hierarchical Matrices
Low Kronecker rank approximation
Application
Examples of H-matrix approximates of
cov(x, y) = e−2|x−y|
25 20
20 20
20 16
20 16
20 20
16 16
20 16
16 16
4 4
20 4 32
4 4
16 4 32
4 20
4 4
4 16
4 4
32 32
20 20
20 20 32
32 32
4 3
4 4 32
20 4
16 4 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
20 16
4 4
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4
20 4 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
4 20
4 4 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
20 20
20 20 32
32 32
4 4
20 4 32
32 32
4 20
4 4 32
32 32
20 20
20 20 32
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4 44 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
4 4
4 4 4
4 4
32 4
32 32 4
4 4
4 4
4 4
4 4 4
4
32 4
32 32
4 4
4 4
4 4
4 4
4 4 4
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
4 4
4 4
4 4
4 4
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
4
4 4
4 4
4 4
4 4
4 4
32 32
4 32 4
4
4 3
4 4
4 4
4 4
4
32 32
4 32
4 4
4
4 4
4 4
4 4
4 4
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
4
4 4
4 4
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
32 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
32 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 4
32 32
32 4
32 4
32 4
32 32
32 4
32 4
32 32
4 32
32 32
4 32
32 32
4 4
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
25 11
11 20 12
13
20 11
9 16
13
13
20 11
11 20 13
13 32
13
13
20 8
10 20 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
20 10
10 20 12
12 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
32 13
13 32
13
13
20 9
9 20 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
Figure: H-matrix approximations ˜C ∈ Rn×n
, n = 322
, with standard (left) and
weak (right) admissibility block partitionings. The biggest dense (dark) blocks
∈ Rn×n
, max. rank k = 4 left and k = 13 right.
H - matrices: numerics
To assemble low-rank blocks use ACA [Bebendorf et al. ].
Dependence of the computational time and storage requirements of
˜C on the rank k, n = 322
.
k time (sec.) memory (MB) C− ˜C 2
C 2
2 0.04 2 3.5e − 5
6 0.1 4 1.4e − 5
9 0.14 5.4 1.4e − 5
12 0.17 6.8 3.1e − 7
17 0.23 9.3 6.3e − 8
The time for dense matrix C is 3.3 sec. and the storage 140 MB.
H - matrices: numerics
k size, MB t, sec.
1 1548 33
2 1865 42
3 2181 50
4 2497 59
6 nem -
k size, MB t, sec.
4 463 11
8 850 22
12 1236 32
16 1623 43
20 nem -
Table: Computing times and storage requirements on the H-matrix rank k for
the exp. cov. function. (left) standard admissibility condition, geometry
shown in Fig. 1 (middle), l1 = 0.1, l2 = 0.5, n = 2.3 · 105
. (right) weak
admissibility condition, geometry shown in Fig. 1 (right), l1 = 0.1, l2 = 0.5,
l3 = 0.1, n = 4.61 · 105
.
H - matrices: numerics
k 2.4 · 104
3.5 · 104
6.8 · 104
2.3 · 105
t1 t2 t1 t2 t1 t2 t1 t2
3 3 · 10−3
0.2 6.0 · 10−3
0.4 1 · 10−2
1 5.0 · 10−2
4
6 6 · 10−3
0.4 1.1 · 10−2
0.7 2 · 10−2
2 9.0 · 10−2
7
9 8 · 10−3
0.5 1.5 · 10−2
1.0 3 · 10−2
3 1.3 · 10−1
11
full 0.62 2.48 10 140
Table: t1- computing times (in sec.) required for an H-matrix and dense
matrix vector multiplication, t2 - times to set up ˜C ∈ Rn×n
.
H - matrices: numerics
exponential cov(h) = exp(−h),
The cov. matrix C ∈ Rn×n
, n = 652
.
ℓ1 ℓ2
C− ˜C 2
C 2
0.01 0.02 3 · 10−2
0.1 0.2 8 · 10−3
1 2 2.8 · 10−6
m - eigenvalues
matrix info (MB, sec.) m
n k ˜C, MB ˜C, sec. 2 5 10 20 40 80
2.4 · 104
4 12 0.2 0.6 0.9 1.3 2.3 4.2 8
6.8 · 104
8 95 2 2.4 3.8 5.6 8.4 18.0 28
2.3 · 105
12 570 11 10.0 17.0 24.0 39.0 70.0 150
Table: Time required for computing m eigenpairs of the exp. cov. function
with l1 = l3 = 0.1, l3 = 0.5. The geometry is shown in Fig. 1 (right).
Outline
Introduction
KLE
Hierarchical Matrices
Low Kronecker rank approximation
Application
Sparse tensor decompositions of kernels
cov(x, y) = cov(x − y)
We want to approximate C ∈ RN×N
, N = nd
by
Cr =
r
k=1
V 1
k ⊗ ... ⊗ V d
k
such that C − Cr ≤ ε. The storage of C is O(N2
) = O(n2d
) and the
storage of Cr is O(rdn2
).
To define V i
k use SVD.
Approximate all V i
k in the H-matrix format ⇒ HKT format.
See basic arithmetics in [Hackbusch, Khoromskij, Tyrtyshnikov].
Tensor approximation
W φh
ℓ = λℓMφh
ℓ , where W := MCM.
Approximate
M ≈
d
ν=1
M(1)
ν ⊗ M(2)
ν , C ≈
q
ν=1
C(1)
ν ⊗ C(2)
ν , φ ≈
r
ν=1
φ(1)
ν ⊗ φ(2)
ν ,
where M
(j)
ν , C
(j)
ν ∈ Rn×n
, φ(j)
ν ∈ Rn
,
Example: for mass matrix M ∈ RN×N
holds
M = M(1)
⊗ I + I ⊗ M(1)
, where M(1)
∈ Rn×n
is one-dimensional mass matrix.
Hypothesis: the Kronecker rank of M stays small even for a more
general domain with non-regular grid.
Suppose C = q
ν=1 C
(1)
ν ⊗ C
(2)
ν and φ = r
j=1 φ
(1)
j ⊗ φ
(2)
j . Then
tensor vector product is defined as
Cφ =
q
ν=1
r
j=1
(C(1)
ν φ
(1)
j ) ⊗ (C(2)
ν φ
(2)
j ).
The complexity is O(qrkn log n).
Numerical examples of tensor approximations
Gaussian kernel exp(−h2
) has the Kroneker rank 1.
The exponen. kernel exp(−h) can be approximated by a tensor with
low Kroneker rank
r 1 2 3 4 5 6 10
C−Cr ∞
C ∞
11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8
C−Cr 2
C 2
6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
Example
Let G = [0, 1]2
, Lh the stiffness matrix computed with the five-point
formula. Then Lh 2 ≤ 8h−2
cos2
(πh/2) < 8h−2
.
Lemma
The (n − 1)2
eigenvectors of Lh are uνµ (1 ≤ ν, µ ≤ n − 1):
uνµ(x, y) = sin(νπx) sin(µπy), (x, y) ∈ Gh.
The corresponding eigenvalues are
λνµ = 4h−2
(sin2
(νπh/2) + sin2
(µπh/2)), 1 ≤ ν, µ ≤ n − 1.
Use Lanczos method with the matrix in the HKT format to compute
eigenpairs of
Lhvi = λi vi , i = 1..N.
Then we compare the computed eigenpairs with the analytically
known eigenpairs.
Outline
Introduction
KLE
Hierarchical Matrices
Low Kronecker rank approximation
Application
Higher order moments
Let operator K be deterministic and
Ku(θ) =
α∈J
Ku(α)
Hα(θ) = ˜f(θ) =
α∈J
f(α)
Hα(θ), with
u(α)
= [u
(α)
1 , ..., u
(α)
N ]T
. Projecting onto each Hα obtain
Ku(α)
= f(α)
.
The KLE of f(θ) is
f(θ) = f +
ℓ
λℓφℓ(θ)fℓ =
ℓ α
λℓφ
(α)
ℓ Hα(θ)fℓ
=
α
Hα(θ)f(α)
,
where f(α)
= ℓ
√
λℓφ
(α)
ℓ fℓ.
The 3-rd moment of u is
M
(3)
u = E


α,β,γ
u(α)
⊗ u(β)
⊗ u(γ)
HαHβHγ

 =
α,β,γ
u(α)
⊗u(β)
⊗u(γ)
cα,β,γ,
cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = c
(γ)
α,β · γ!, and
c
(γ)
α,β :=
α!β!
(g − α)!(g − β)!(g − γ)!
, g := (α + β + γ)/2.
Using u(α)
= K−1
f(α)
= ℓ
√
λℓφ
(α)
ℓ K−1
fℓ and uℓ := K−1
fℓ,
obtain
M
(3)
u =
p,q,r
tp,q,r up ⊗ uq ⊗ ur , where
tp,q,r := λpλqλr
α,β,γ
φ
(α)
p φ
(β)
q φ
(γ)
r cα,β,γ.
Literature
1. B.N. Khoromskij, A.Litvinenko, H. G. Matthies, Application of
hierarchical matrices for computing the Karhunen-Lo`eve
expansion, Computing, 2008, Springer Wien,
http://dx.doi.org/10.1007/s00607-008-0018-3
2. B.N. Khoromskij, A.Litvinenko, Data Sparse Computation of the
Karhunen-Lo`eve Expansion, 2008, AIP Conference Proceedings,
1048-1, pp. 311-314.
3. H. G. Matthies, Uncertainty Quantification with Stochastic Finite
Elements, Encyclopedia of Computational Mechanics, Wiley,
2007.
4. W. Hackbusch, B. N. Khoromskij, S. A. Sauter, and E. E.
Tyrtyshnikov, Use of Tensor Formats in Elliptic Eigenvalue
Problems, Preprint 78/2008, MPI for mathematics in Leipzig.
Thank you for your attention!
Questions?

More Related Content

What's hot

Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theoremJamesMa54
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Bagalkot
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex planeAmit Amola
 
Number theoretic-rsa-chailos-new
Number theoretic-rsa-chailos-newNumber theoretic-rsa-chailos-new
Number theoretic-rsa-chailos-newChristos Loizos
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el apMARCELOCHAVEZ23
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
MinFill_Presentation
MinFill_PresentationMinFill_Presentation
MinFill_PresentationAnna Lasota
 
countor integral
countor integralcountor integral
countor integralSheril Shah
 
Analytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesAnalytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesmmasdeu
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIRai University
 

What's hot (17)

Talk litvinenko prior_cov
Talk litvinenko prior_covTalk litvinenko prior_cov
Talk litvinenko prior_cov
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Maths04
Maths04Maths04
Maths04
 
Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)
 
Integration in the complex plane
Integration in the complex planeIntegration in the complex plane
Integration in the complex plane
 
Number theoretic-rsa-chailos-new
Number theoretic-rsa-chailos-newNumber theoretic-rsa-chailos-new
Number theoretic-rsa-chailos-new
 
Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
MinFill_Presentation
MinFill_PresentationMinFill_Presentation
MinFill_Presentation
 
F.Y.B.Sc(2013 pattern) Old Question Papers:Dr.Kshirsagar
F.Y.B.Sc(2013 pattern) Old Question Papers:Dr.KshirsagarF.Y.B.Sc(2013 pattern) Old Question Papers:Dr.Kshirsagar
F.Y.B.Sc(2013 pattern) Old Question Papers:Dr.Kshirsagar
 
Escola naval 2015
Escola naval 2015Escola naval 2015
Escola naval 2015
 
countor integral
countor integralcountor integral
countor integral
 
Analytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curvesAnalytic construction of points on modular elliptic curves
Analytic construction of points on modular elliptic curves
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 

Viewers also liked

Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsAlexander Litvinenko
 
My PhD talk "Application of H-matrices for computing partial inverse"
My PhD talk "Application of H-matrices for computing partial inverse"My PhD talk "Application of H-matrices for computing partial inverse"
My PhD talk "Application of H-matrices for computing partial inverse"Alexander Litvinenko
 
Litvinenko low-rank kriging +FFT poster
Litvinenko low-rank kriging +FFT  posterLitvinenko low-rank kriging +FFT  poster
Litvinenko low-rank kriging +FFT posterAlexander Litvinenko
 
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Alexander Litvinenko
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005Alexander Litvinenko
 
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Alexander Litvinenko
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Alexander Litvinenko
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Alexander Litvinenko
 
Scalable hierarchical algorithms for stochastic PDEs and UQ
Scalable hierarchical algorithms for stochastic PDEs and UQScalable hierarchical algorithms for stochastic PDEs and UQ
Scalable hierarchical algorithms for stochastic PDEs and UQAlexander Litvinenko
 
Minimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian updateMinimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian updateAlexander Litvinenko
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Alexander Litvinenko
 
Internal Communications 2007 / 2nd Place / Vide. Veselība. Drošība
Internal Communications 2007 / 2nd Place / Vide. Veselība. Drošība Internal Communications 2007 / 2nd Place / Vide. Veselība. Drošība
Internal Communications 2007 / 2nd Place / Vide. Veselība. Drošība Baltic PR Awards
 
6.13 standard prestasi dunia seni visual kssr tahun 1 (1)
6.13 standard prestasi dunia seni visual kssr tahun 1 (1)6.13 standard prestasi dunia seni visual kssr tahun 1 (1)
6.13 standard prestasi dunia seni visual kssr tahun 1 (1)marshiza
 
Activitats tema 5
Activitats  tema 5Activitats  tema 5
Activitats tema 5Barbaraeg00
 

Viewers also liked (20)

Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problems
 
My PhD on 4 pages
My PhD on 4 pagesMy PhD on 4 pages
My PhD on 4 pages
 
My PhD talk "Application of H-matrices for computing partial inverse"
My PhD talk "Application of H-matrices for computing partial inverse"My PhD talk "Application of H-matrices for computing partial inverse"
My PhD talk "Application of H-matrices for computing partial inverse"
 
Litvinenko low-rank kriging +FFT poster
Litvinenko low-rank kriging +FFT  posterLitvinenko low-rank kriging +FFT  poster
Litvinenko low-rank kriging +FFT poster
 
RS
RSRS
RS
 
Litvinenko nlbu2016
Litvinenko nlbu2016Litvinenko nlbu2016
Litvinenko nlbu2016
 
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
 
add_2_diplom_main
add_2_diplom_mainadd_2_diplom_main
add_2_diplom_main
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
 
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
Application H-matrices for solving PDEs with multi-scale coefficients, jumpin...
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
 
Scalable hierarchical algorithms for stochastic PDEs and UQ
Scalable hierarchical algorithms for stochastic PDEs and UQScalable hierarchical algorithms for stochastic PDEs and UQ
Scalable hierarchical algorithms for stochastic PDEs and UQ
 
Minimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian updateMinimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian update
 
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
Computation of Electromagnetic Fields Scattered from Dielectric Objects of Un...
 
Internal Communications 2007 / 2nd Place / Vide. Veselība. Drošība
Internal Communications 2007 / 2nd Place / Vide. Veselība. Drošība Internal Communications 2007 / 2nd Place / Vide. Veselība. Drošība
Internal Communications 2007 / 2nd Place / Vide. Veselība. Drošība
 
6.13 standard prestasi dunia seni visual kssr tahun 1 (1)
6.13 standard prestasi dunia seni visual kssr tahun 1 (1)6.13 standard prestasi dunia seni visual kssr tahun 1 (1)
6.13 standard prestasi dunia seni visual kssr tahun 1 (1)
 
Activitats tema 5
Activitats  tema 5Activitats  tema 5
Activitats tema 5
 

Similar to Data sparse approximation of the Karhunen-Loeve expansion

Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionAlexander Litvinenko
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationAlexander Litvinenko
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...Alexander Litvinenko
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsElvis DOHMATOB
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Alexander Litvinenko
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Amro Elfeki
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Alexander Litvinenko
 
A small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesA small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesAlexander Litvinenko
 
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...Alexander Litvinenko
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewAlexander Litvinenko
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesMaxim Eingorn
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceAlexander Decker
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3MuhannadSaleh
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...ieijjournal
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
K-means Clustering Algorithm with Matlab Source code
K-means Clustering Algorithm with Matlab Source codeK-means Clustering Algorithm with Matlab Source code
K-means Clustering Algorithm with Matlab Source codegokulprasath06
 

Similar to Data sparse approximation of the Karhunen-Loeve expansion (20)

Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
A small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesA small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleagues
 
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an Overview
 
AJMS_384_22.pdf
AJMS_384_22.pdfAJMS_384_22.pdf
AJMS_384_22.pdf
 
Second-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like MassesSecond-order Cosmological Perturbations Engendered by Point-like Masses
Second-order Cosmological Perturbations Engendered by Point-like Masses
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
2 random variables notes 2p3
2 random variables notes 2p32 random variables notes 2p3
2 random variables notes 2p3
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
K-means Clustering Algorithm with Matlab Source code
K-means Clustering Algorithm with Matlab Source codeK-means Clustering Algorithm with Matlab Source code
K-means Clustering Algorithm with Matlab Source code
 

More from Alexander Litvinenko

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdfAlexander Litvinenko
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityAlexander Litvinenko
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfAlexander Litvinenko
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfAlexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleAlexander Litvinenko
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonAlexander Litvinenko
 

More from Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in Houston
 

Recently uploaded

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 

Recently uploaded (20)

Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 

Data sparse approximation of the Karhunen-Loeve expansion

  • 1. Data sparse approximation of the Karhunen-Lo`eve expansion A. Litvinenko, joint work with B. Khoromskij and H. G. Matthies Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig, 0531-391-3008, litvinen@tu-bs.de December 5, 2008
  • 4. Stochastic PDE We consider − div(κ(x, ω)∇u) = f(x, ω) in G, u = 0 on ∂G, with stochastic coefficients κ(x, ω), x ∈ G ⊆ Rd and ω belongs to the space of random events Ω. Figure: Examples of computational domains G with a non-rectangular grid.
  • 5. Covariance functions The random field f(x, ω) requires to specify its spatial correl. structure covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))], Let h = 3 i=1 h2 i /ℓ2 i , where hi := xi − yi, i = 1, 2, 3, ℓi are cov. lengths. Examples: Gaussian cov(h) = exp(−h2 ), exponential cov(h) = exp(−h),
  • 7. KLE The Karhunen-Lo`eve expansion is the series κ(x, ω) = µk (x) + ∞ i=1 λi φi (x)ξi (ω), where ξi (ω) are uncorrelated random variables and φi are basis functions in L2 (G). Eigenpairs λi , φi are the solution of Tφi = λi φi , φi ∈ L2 (G), i ∈ N, where. T : L2 (G) → L2 (G), (Tφ)(x) := G covk (x, y)φ(y)dy.
  • 8. Discrete eigenvalue problem Let Wij := k,m G bi (x)bk (x)dxCkm G bj (y)bm(y)dy, Mij = G bi (x)bj (x)dx. Then we solve W φh ℓ = λℓMφh ℓ , where W := MCM Approximate C and M in ◮ the H-matrix format ◮ low Kronecker rank format and use the Lanczos method to compute m largest eigenvalues.
  • 10. Examples of H-matrix approximates of cov(x, y) = e−2|x−y| 25 20 20 20 20 16 20 16 20 20 16 16 20 16 16 16 4 4 20 4 32 4 4 16 4 32 4 20 4 4 4 16 4 4 32 32 20 20 20 20 32 32 32 4 3 4 4 32 20 4 16 4 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 20 16 4 4 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 20 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 4 20 4 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 20 20 20 20 32 32 32 4 4 20 4 32 32 32 4 20 4 4 32 32 32 20 20 20 20 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 44 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 4 4 4 3 4 4 4 4 4 4 4 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 4 4 4 4 4 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 32 32 32 4 32 4 32 4 32 32 32 4 32 4 32 32 4 32 32 32 4 32 32 32 4 4 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 11 11 20 12 13 20 11 9 16 13 13 20 11 11 20 13 13 32 13 13 20 8 10 20 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 20 10 10 20 12 12 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 32 13 13 32 13 13 20 9 9 20 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 Figure: H-matrix approximations ˜C ∈ Rn×n , n = 322 , with standard (left) and weak (right) admissibility block partitionings. The biggest dense (dark) blocks ∈ Rn×n , max. rank k = 4 left and k = 13 right.
  • 11. H - matrices: numerics To assemble low-rank blocks use ACA [Bebendorf et al. ]. Dependence of the computational time and storage requirements of ˜C on the rank k, n = 322 . k time (sec.) memory (MB) C− ˜C 2 C 2 2 0.04 2 3.5e − 5 6 0.1 4 1.4e − 5 9 0.14 5.4 1.4e − 5 12 0.17 6.8 3.1e − 7 17 0.23 9.3 6.3e − 8 The time for dense matrix C is 3.3 sec. and the storage 140 MB.
  • 12. H - matrices: numerics k size, MB t, sec. 1 1548 33 2 1865 42 3 2181 50 4 2497 59 6 nem - k size, MB t, sec. 4 463 11 8 850 22 12 1236 32 16 1623 43 20 nem - Table: Computing times and storage requirements on the H-matrix rank k for the exp. cov. function. (left) standard admissibility condition, geometry shown in Fig. 1 (middle), l1 = 0.1, l2 = 0.5, n = 2.3 · 105 . (right) weak admissibility condition, geometry shown in Fig. 1 (right), l1 = 0.1, l2 = 0.5, l3 = 0.1, n = 4.61 · 105 .
  • 13. H - matrices: numerics k 2.4 · 104 3.5 · 104 6.8 · 104 2.3 · 105 t1 t2 t1 t2 t1 t2 t1 t2 3 3 · 10−3 0.2 6.0 · 10−3 0.4 1 · 10−2 1 5.0 · 10−2 4 6 6 · 10−3 0.4 1.1 · 10−2 0.7 2 · 10−2 2 9.0 · 10−2 7 9 8 · 10−3 0.5 1.5 · 10−2 1.0 3 · 10−2 3 1.3 · 10−1 11 full 0.62 2.48 10 140 Table: t1- computing times (in sec.) required for an H-matrix and dense matrix vector multiplication, t2 - times to set up ˜C ∈ Rn×n .
  • 14. H - matrices: numerics exponential cov(h) = exp(−h), The cov. matrix C ∈ Rn×n , n = 652 . ℓ1 ℓ2 C− ˜C 2 C 2 0.01 0.02 3 · 10−2 0.1 0.2 8 · 10−3 1 2 2.8 · 10−6
  • 15. m - eigenvalues matrix info (MB, sec.) m n k ˜C, MB ˜C, sec. 2 5 10 20 40 80 2.4 · 104 4 12 0.2 0.6 0.9 1.3 2.3 4.2 8 6.8 · 104 8 95 2 2.4 3.8 5.6 8.4 18.0 28 2.3 · 105 12 570 11 10.0 17.0 24.0 39.0 70.0 150 Table: Time required for computing m eigenpairs of the exp. cov. function with l1 = l3 = 0.1, l3 = 0.5. The geometry is shown in Fig. 1 (right).
  • 17. Sparse tensor decompositions of kernels cov(x, y) = cov(x − y) We want to approximate C ∈ RN×N , N = nd by Cr = r k=1 V 1 k ⊗ ... ⊗ V d k such that C − Cr ≤ ε. The storage of C is O(N2 ) = O(n2d ) and the storage of Cr is O(rdn2 ). To define V i k use SVD. Approximate all V i k in the H-matrix format ⇒ HKT format. See basic arithmetics in [Hackbusch, Khoromskij, Tyrtyshnikov].
  • 18. Tensor approximation W φh ℓ = λℓMφh ℓ , where W := MCM. Approximate M ≈ d ν=1 M(1) ν ⊗ M(2) ν , C ≈ q ν=1 C(1) ν ⊗ C(2) ν , φ ≈ r ν=1 φ(1) ν ⊗ φ(2) ν , where M (j) ν , C (j) ν ∈ Rn×n , φ(j) ν ∈ Rn , Example: for mass matrix M ∈ RN×N holds M = M(1) ⊗ I + I ⊗ M(1) , where M(1) ∈ Rn×n is one-dimensional mass matrix. Hypothesis: the Kronecker rank of M stays small even for a more general domain with non-regular grid.
  • 19. Suppose C = q ν=1 C (1) ν ⊗ C (2) ν and φ = r j=1 φ (1) j ⊗ φ (2) j . Then tensor vector product is defined as Cφ = q ν=1 r j=1 (C(1) ν φ (1) j ) ⊗ (C(2) ν φ (2) j ). The complexity is O(qrkn log n).
  • 20. Numerical examples of tensor approximations Gaussian kernel exp(−h2 ) has the Kroneker rank 1. The exponen. kernel exp(−h) can be approximated by a tensor with low Kroneker rank r 1 2 3 4 5 6 10 C−Cr ∞ C ∞ 11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8 C−Cr 2 C 2 6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
  • 21. Example Let G = [0, 1]2 , Lh the stiffness matrix computed with the five-point formula. Then Lh 2 ≤ 8h−2 cos2 (πh/2) < 8h−2 . Lemma The (n − 1)2 eigenvectors of Lh are uνµ (1 ≤ ν, µ ≤ n − 1): uνµ(x, y) = sin(νπx) sin(µπy), (x, y) ∈ Gh. The corresponding eigenvalues are λνµ = 4h−2 (sin2 (νπh/2) + sin2 (µπh/2)), 1 ≤ ν, µ ≤ n − 1. Use Lanczos method with the matrix in the HKT format to compute eigenpairs of Lhvi = λi vi , i = 1..N. Then we compare the computed eigenpairs with the analytically known eigenpairs.
  • 23. Higher order moments Let operator K be deterministic and Ku(θ) = α∈J Ku(α) Hα(θ) = ˜f(θ) = α∈J f(α) Hα(θ), with u(α) = [u (α) 1 , ..., u (α) N ]T . Projecting onto each Hα obtain Ku(α) = f(α) . The KLE of f(θ) is f(θ) = f + ℓ λℓφℓ(θ)fℓ = ℓ α λℓφ (α) ℓ Hα(θ)fℓ = α Hα(θ)f(α) , where f(α) = ℓ √ λℓφ (α) ℓ fℓ.
  • 24. The 3-rd moment of u is M (3) u = E   α,β,γ u(α) ⊗ u(β) ⊗ u(γ) HαHβHγ   = α,β,γ u(α) ⊗u(β) ⊗u(γ) cα,β,γ, cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = c (γ) α,β · γ!, and c (γ) α,β := α!β! (g − α)!(g − β)!(g − γ)! , g := (α + β + γ)/2. Using u(α) = K−1 f(α) = ℓ √ λℓφ (α) ℓ K−1 fℓ and uℓ := K−1 fℓ, obtain M (3) u = p,q,r tp,q,r up ⊗ uq ⊗ ur , where tp,q,r := λpλqλr α,β,γ φ (α) p φ (β) q φ (γ) r cα,β,γ.
  • 25. Literature 1. B.N. Khoromskij, A.Litvinenko, H. G. Matthies, Application of hierarchical matrices for computing the Karhunen-Lo`eve expansion, Computing, 2008, Springer Wien, http://dx.doi.org/10.1007/s00607-008-0018-3 2. B.N. Khoromskij, A.Litvinenko, Data Sparse Computation of the Karhunen-Lo`eve Expansion, 2008, AIP Conference Proceedings, 1048-1, pp. 311-314. 3. H. G. Matthies, Uncertainty Quantification with Stochastic Finite Elements, Encyclopedia of Computational Mechanics, Wiley, 2007. 4. W. Hackbusch, B. N. Khoromskij, S. A. Sauter, and E. E. Tyrtyshnikov, Use of Tensor Formats in Elliptic Eigenvalue Problems, Preprint 78/2008, MPI for mathematics in Leipzig.
  • 26. Thank you for your attention! Questions?