SlideShare a Scribd company logo
1 of 28
Download to read offline
Identification of unknown parameters and prediction
with hierarchical matrices. Comparison with ML
methods.
Alexander Litvinenko1,
(joint work with V. Berikov2, M. Genton3, D. Keyes3, R.
Kriemann4, and Y. Sun3)
UNCECOMP 2021
1RWTH Aachen, Germany, 2Novosibirsk Staate University, 3KAUST, Saudi Arabia,
4MPI for Mathematics in the Sciences in Leipzig, Germany
4
*
Analysis of large datasets and prediction
Goal: analyse a large dataset
Need to use a dense cov. matrix C of size 2, 000, 000 × 2, 000, 000
3
2
4 2
9
2
4 2
17
2
2
4 2
7 3 2
18 17
10 10
2
5 2
8
2
4 2
10 3 3 2
32
14 10
18 10
36 28
3
6
2
4 2
14
2
4 2
5 2
4 2
14 18
14 18
2
4 2
8
2
5 3
19
2
4 2
6 3
6 3
65
32
19 21
18 18
29 29
61 61
2
5 3
7 3 2
5 2
18
3
6 3
6 3
17 17
12 12
3 2
7
2
4 2
2
12 3
2
4 2
32
17 12
12 12
29 29
2
5
3 2
7
2
4 2
12
2
5 3
10 10
19 12
3 3 2
10
2
5 2
5 2
4 2
119
65
32
10 15
10 19
27 27
54 54
118 118
2
5
3
4 2
15
2
5 3
11
3
6 3
15 17
10 10
2
4 2
8
2
4 2
10
3 2
3
21
14 10
7 7
33 27
2
4 3 3 2
7 3
8 7
14 7
2
3
8
2
4 2
7 3 2
10
2
5 2
59
21
8 18
8 12
21 29
59 54
3
6 3 2
5 2
12
2
5 3 2
18 12
11 11
3 2
7
3
5 2
11
2
5 3
25
9 9
16 11
30 29
3
3
9
3
4 2
6 3
9 16
9 16
3 2
4 2
7 3 2
16
3 2
7
2
4 2
121
119
59
25
18 16
10 10
25 34
59 59
119 118
80 119
2
4
2
4 2
9
2
4 2
10
3
4 2
19 10
15 10
2
5
3 2
7 3 2
15
3
4 2
5 2
31
15 15
16 15
32 34
3 2
4 2
4 2
15
2
4 3 2
5 2
15 16
15 16
2
5 3 2
12
3
6 3
20
3 2
7 3 2
6 3
58
27
18 18
9 9
31 31
66 67
2
5
3 2
6 3
9
2
4 2
12 9
18 9
3
6 3
12
3
4 2
9
2
4 2
27
12 16
12 19
27 31
3 2
3
6 3
16
2
5
2
4 2
6 3
16 20
8 8
2
4 2
7 3 2
7 3 2
8
2
3
115
58
30
15 8
15 8
28 28
57 57
119 119
2
5
2
4 2
2
15
2
4 2
6 3
9 9
15 15
3 3
9
2
5
3 2
7 3 2
27
9 16
9 11
30 28
3
5 2
5 2
11
2
5 2
16 11
13 11
3 3 2
7 3 2
13
2
5
2
4 2
48
25
5 5
17 13
23 23
58 57
2
5
2
4 2
5 2
6 3
5 8
5 15
2 3
8
3 2
2
6 3
25
8 15
8 9
25 23
2
5 3
6 3
7 3 2
9
2
4 2
15 9
23 9
3
3
6 3
15
2
4 2
5 2
10
2
5 2
90
122
115
48
32
15 15
15 17
33 33
48 60
115 119
81 234
56 89
3 2
7
2
4 2
15
3
4 2
7 3 2
15 17
6 6
2
5
2
5 3
11
2
5 3
6 3
30
11 6
19 6
30 30
3
5 2
11
3 2
7 3 2
5 2
11 13
11 17
2
4 2
5 2
13
3
5 2
6 3
65
30
13 17
13 17
30 30
61 60
2
4
3
6 3
5 2
21
2
4
2
4 2
12
3
6 3
20 20
14 14
2
4 2
8
2
4 2
3
14
2
5 2
4 2
32
17 14
15 14
29 29
2
4 2
8
2
4 2
15
2
5
2
5 2
10 10
17 15
2
5 2
10
3
6
2
4 2
5 2
125
75
32
10 18
10 19
32 29
69 61
125 134
2
5
3 2
6 3
18
3 2
6 3
8
2
4 2
17 17
18 19
2
4 2
8
2
4 2
17
3
6 3 2
6 3
39
17 19
17 18
25 25
3 2
7
2
4 2
11
2
4 3 2
18
3
6
3
6 3
10 10
15 15
3 2
3
10
2
4 3
5 2
65
30
10 15
10 12
35 25
69 69
2
4 2
9
2
4 2
12 2
2
5 2
18 12
14 12
2
5 2
10
2
4 3 2
14
3
6
2
4 2
30
15 14
16 14
30 35
2
4 2
6 3
15
3 2
4 2
5 2
15 15
15 16
2
4 2
5 2
2
15
3
6 3
8
2
4 2
3
227
111
61
31
15 21
15 16
24 24
50 50
116 116
81 224
3
6 3
9
2
4 2
16
2
5 2
6 2
19 16
5 5
2
5 3
8
2
4 2
5 2
23
16 5
7 5
27 24
3
6
2
5 2
7
2
3
10 7
16 7
3
4 2
10
3
6
3
5 2
54
23
10 17
10 11
23 25
61 50
2
2
7
2
5 3
11
2
5 2
13 11
12 11
3
2
5 2
12
2
4
2
4 2
29
13 12
13 12
27 25
2
5
2
5 2
15
2
5
3 2
7
2
4 2
15 18
9 9
2
5 2
5 2
3
9
2
4 2
111
54
33
18 9
12 9
22 22
54 59
110 110
3 2
7
2
4 2
6 3
12
2
5 3 2
9 9
13 12
2
4 2
9
3 2
6 3
33
9 13
9 13
22 22
3 2
6 3
9
2
4 2
15
2
4 2
6 3
12 12
10 10
2
2
6 3
10
2
4 2
49
23
7 7
12 10
26 22
55 59
3
7
3
2
4 2
4 2
7 8
7 16
3 2
8
3
6 3
6 3
23
8 15
8 11
23 26
3
2
7 3 2
11
2
4 2
3
12 11
15 11
3 2
5 2
12
2
4 2
6 3
8
2
4 2
We show how to:
1. reduce storage cost from 32TB to 16 GB
2. approximate Cholesky factorisation of C, its determinant,
inverse in 8 minutes on modern desktop computer.
3. make prediction
2
4
*
The structure of the talk
1. Motivation: improve statistical models, data analysis,
prediction
2. Identification of unknown parameters via maximizing Gaussian
log-likelihood (MLE)
3. Tools: Hierarchical matrices [Hackbusch 1999]
4. Matérn covariance function, joint Gaussian log-likelihood
5. Error analysis
6. Prediction at new locations
7. Comparison with machine learning methods
3
4
*
Identifying unknown parameters
Given:
Let s1, . . . , sn be locations.
Z = {Z(s1), . . . , Z(sn)}>, where Z(s) is a Gaussian random field
indexed by a spatial location s ∈ Rd , d ≥ 1.
Assumption: Z has mean zero and stationary parametric
covariance function, e.g. Matérn:
C(θ) =
2σ2
Γ(ν)
 r
2`
ν
Kν
r
`

+ τ2
I, θ = (σ2
, ν, `, τ2
).
To identify: unknown parameters θ := (σ2, ν, `, τ2).
4
4
*
Identifying unknown parameters
Statistical inference about θ is then based on the Gaussian
log-likelihood function:
L(C(θ)) = L(θ) = −
n
2
log(2π) −
1
2
log|C(θ)| −
1
2
Z
C(θ)−1
Z, (1)
where the covariance matrix C(θ) has entries
C(si − sj ; θ), i, j = 1, . . . , n.
The maximum likelihood estimator of θ is the value b
θ that
maximizes (1).
5
4
*
H-matrix approximations of C, L and C−1
43
13
28
14 34
10 5
9 15
44
13
29
13 35
14 7
5 14
50
14 62
15 6
6 15
60
15
31
17 44
13
14 6
7 14
3 13 6
5
16
12 8
7 15
3 15
34
11 31
16 59
13 6
7 12
58
15 51
16 7
6 16
31
15 39
12
36
14 40
15 6
6 17
32
14 40
10 7
7 10
41
16 35
5
13 8
6
9
10 7
7 9
3 10
1 5 6
6
6
8
8 7
8 8
3 9 7
7
9
8 6
7 7
3 9
1 6
47
12 51
15 7
7 15
38
17 34
17
34
15 32
13 7
7
10
9 7
6 9
3 10
56
14 46
14 7
8 12
64
15 57
9 6
6 8
16 8
7 14
3
9 5
5 9
9
7
15
16 6
5 14
2
9 6
6 8
54
16 30
10 5
7 8
32
15 33
14 5
8 16
34
14 35
9 6
7 9
34
15 31
17 6
7 15
60
15
34
14 28
15 6
7 13
29
13 35
16 54
2 1
1 2
14
12 6
9 12
2 12 6
9
8 6
6 8
16 9
6 13
3 16
1 1
1
2 1
1 2
1 6
1 1
1 6
1
1
2 1
1 3
7 6
6 9
15 6
7 14
2
9 6
6 8
8
5
8 5
7 9
14 6
8 15
2 14
1 1
1 1
3 1
1 2
56
16
31
12 32
12 6
10 14
55
16
35
14 43
15 8
7
9
5 8
4 9
3 10
41
16 28
15
30
16 38
14 7
6 17
36
11 38
8 8
6 9
40
17 36
13
13 7
7 15
3 14 8
6
12
16 6
6 13
2 16
60
17
29
14 35
11 6
6 17
54
15 67
14 6
6 16
36
14 39
18 59
14 6
7 17
52
14 58
6
9
9 8
6 8
3 10 7
8 17
1 5 5
7
6
15 7
9 13
1 5
61
13 59
13 6
6 13
37
16 38
15 58
13 5
4 16
31
13 33
18 59
12 6
7 12
74
15 63
15
15 7
7 17
3
9 6
6 9
7
7
9 6
6 8
15 7
7 14
1 14
51
15
42
13 37
13 7
6 14
59
16 54
14 8
6 16
36
14 37
19 57
14 7
6 10
52
13 65
43
13
28
13 34
10 5
9 15
44
13
29
13 35
14 7
5 14
50
14 62
14 6
6 14
60
15
31
16 44
13
14 8
7 14
3 13 5
5
17
11 7
7 15
2 15
34
11 31
16 59
13 6
7 12
58
15 51
16 7
6 16
31
15 39
12
36
14 40
15 5
6 17
32
14 40
10 7
7 10
41
17 35
5
13 8
6
9
10 7
7 9
3 10
1 5 5
6
5
9
8 7
8 8
3 9 7
7
10
8 5
7 7
4 9
1 5
47
12 51
15 7
7 15
38
16 34
16
34
15 32
13 8
7
12
8 6
6 9
3 10
56
14 46
14 8
8 12
64
15 57
11 6
6 8
15 9
7 14
3
10 5
5 9
7
7
16
16 7
5 15
2
9 6
6 9
54
15 30
10 5
7 8
32
14 33
13 5
8 16
34
14 35
9 6
7 9
34
15 31
17 5
7 15
60
15
34
13 28
14 5
7 13
29
13 35
15 54
1 1
1 2
14
12 6
9 11
2 12 5
9
9 5
6 8
16 10
6 13
3 16
1 2 1
1 2
1 6
1
1 6
1
1
2 1
1 2
8 5
6 9
15 8
7 14
3
9 6
6 8
8
5
9 5
7 9
14 7
8 15
2 14
1 1
1
2 1
1 1
56
15
31
12 32
12 6
10 13
55
16
35
14 43
15 8
7
10
5 9
4 9
3 10
41
16 28
9 4
8 7
30
16 38
14 7
6 17
36
11 38
8 8
6 9
40
17 36
13
13 6
7 15
3 14 8
6
13
16 6
6 13
1 16
60
16
29
14 35
11 8
6 17
54
15 67
13 5
6 16
36
14 39
17 59
14 6
7 17
52
14 58
6
10
9 8
6 8
3 10 7
8 16
1 4 5
7
5
15 6
9 13
1 5
61
13 59
12 6
6 13
37
16 38
15 58
13 5
4 16
31
12 33
18 59
12 5
7 12
74
14 63
14
15 8
7 18
2
10 6
6 8
5
7
11 6
6 8
15 6
7 14
2 14
51
15
42
13 37
12 8
6 14
59
15 54
13 8
6 15
36
13 37
19 57
15 6
6 10
52
13 65
H-matrix approximations of the exponential covariance matrix
(left), its hierarchical Cholesky factor L̃ (middle), and the zoomed
upper-left corner of the matrix (right), n = 4000, ` = 0.09,
ν = 0.5, σ2 = 1.
6
4
*
What will change after H-matrix approximation?
Approximate C by CH
1. How the eigenvalues of C and CH differ ?
2. How det(C) differs from det(CH) ?
3. How L differs from LH ? [Mario Bebendorf et al]
4. How C−1 differs from (CH)−1 ? [Mario Bebendorf et al]
5. How L̃(θ, k) differs from L(θ)?
6. What is optimal H-matrix rank?
7. How θH differs from θ?
For theory, estimates for the rank and accuracy see works of
Bebendorf, Grasedyck, Le Borne, Hackbusch,...
7
4
*
Details of the parameter identification
To maximize the log-likelihood function we use the Brent’s method
(combining bisection method, secant method and inverse quadratic
interpolation) or any other.
1. C(θ) ≈ e
C(θ, ε).
2. e
C(θ, k) = e
L(θ, k)e
L(θ, k)T
3. ZT e
C−1Z = ZT (e
Le
LT )−1Z = vT · v, where v is a solution of
e
L(θ, k)v(θ) := Z.
log det{e
C} = log det{e
Le
LT
} = log det{
n
Y
i=1
λ2
i } = 2
n
X
i=1
logλi ,
e
L(θ, k) = −
n
2
log(2π) −
n
X
i=1
log{e
Lii (θ, k)} −
1
2
(v(θ)T
· v(θ)). (2)
8
Dependence of log-likelihood ingredients on parameters, n = 4225.
k = 8 in the first row and k = 16 in the second.
9
4
*
Remark: stabilization with nugget
To avoid instability in computing Cholesky, we add: e
Cm = e
C + τ2I.
Let λi be eigenvalues of e
C, then eigenvalues of e
Cm will be λi + τ2,
log det(e
Cm) = log
Qn
i=1(λi + τ2) =
Pn
i=1 log(λi + τ2).
(left) Dependence of the negative log-likelihood on parameter `
with nuggets {0.01, 0.005, 0.001} for the Gaussian covariance.
(right) Zoom of the left figure near minimum; n = 2000 random
points from moisture example, rank k = 14, τ2 = 1, ν = 0.5.
10
4
*
Error analysis
Theorem (1)
Let e
C be an H-matrix approximation of matrix C ∈ Rn×n such that
ρ(e
C−1
C − I) ≤ ε  1.
Then
|log det C − log det e
C| ≤ −nlog(1 − ε), (3)
Proof: See [Ballani, Kressner 14] and [Ipsen 05].
Remark: factor n is pessimistic and is not really observed
numerically.
11
4
*
Error in the log-likelihood
Theorem (2)
Let e
C ≈ C ∈ Rn×n and Z be a vector, kZk ≤ c0 and kC−1k ≤ c1.
Let ρ(e
C−1C − I) ≤ ε  1. Then it holds
| e
L(θ) − L(θ)| =
1
2
(log|C| − log|e
C|) +
1
2
|ZT

C−1
− e
C−1

Z|
≤ −
1
2
· nlog(1 − ε) +
1
2
|ZT

C−1
C − e
C−1
C

C−1
Z|
≤ −
1
2
· nlog(1 − ε) +
1
2
c2
0 · c1 · ε.
12
4
*
H-matrix approximation
ε accuracy in each sub-block, n = 16641, ν = 0.5,
c.r.=compression ratio.
ε |log|C| − log|e
C|| |
log|C|−log|e
C|
log|e
C|
| kC − e
CkF
kC−e
Ck2
kCk2
kI − (e
Le
L
)−1
Ck2 c.r. in %
` = 0.0334
1e-1 3.2e-4 1.2e-4 7.0e-3 7.6e-3 2.9 9.16
1e-2 1.6e-6 6.0e-7 1.0e-3 6.7e-4 9.9e-2 9.4
1e-4 1.8e-9 7.0e-10 1.0e-5 7.3e-6 2.0e-3 10.2
1e-8 4.7e-13 1.8e-13 1.3e-9 6e-10 2.1e-7 12.7
` = 0.2337
1e-4 9.8e-5 1.5e-5 8.1e-5 1.4e-5 2.5e-1 9.5
1e-8 1.45e-9 2.3e-10 1.1e-8 1.5e-9 4e-5 11.3
log|C| = 2.63 for ` = 0.0334 and log|C| = 6.36 for ` = 0.2337.
13
4
*
Boxplots for unknown parameters
Moisture data example. Boxplots for the 100 estimates of (`, ν,
σ2), respectively, when n = 32K, 16K, 8K, 4K, 2K. H-matrix with
a fixed rank k = 11. Green horizontal lines denote 25% and 75%
quantiles for n = 32K.
14
4
*
How much memory is needed?
0 0.5 1 1.5 2 2.5
ℓ, ν = 0.325, σ2
= 0.98
5
5.5
6
6.5
size,
in
bytes
×10 6
1e-4
1e-6
0.2 0.4 0.6 0.8 1 1.2 1.4
ν, ℓ = 0.58, σ2
= 0.98
5.2
5.4
5.6
5.8
6
6.2
6.4
6.6
size,
in
bytes
×10 6
1e-4
1e-6
(left) Dependence of the matrix size on the covariance length `,
and (right) the smoothness ν for two different H-accuracies
ε = {10−4, 10−6}
15
4
*
Error convergence
0 10 20 30 40 50 60 70 80 90 100
−25
−20
−15
−10
−5
0
rank k
log(rel.
error)
Spectral norm, L=0.1, nu=1
Frob. norm, L=0.1
Spectral norm, L=0.2
Frob. norm, L=0.2
Spectral norm, L=0.5
Frob. norm, L=0.5
0 10 20 30 40 50 60 70 80 90 100
−16
−14
−12
−10
−8
−6
−4
−2
0
rank k
log(rel.
error)
Spectral norm, L=0.1, nu=0.5
Frob. norm, L=0.1
Spectral norm, L=0.2
Frob. norm, L=0.2
Spectral norm, L=0.5
Frob. norm, L=0.5
Convergence of the H-matrix approximation errors for covariance
lengths {0.1, 0.2, 0.5}; (left) ν = 1 and (right) ν = 0.5,
computational domain [0, 1]2.
16
4
*
How log-likelihood depends on n?
ν
0 0.1 0.2 0.3 0.4 0.5 0.6
−L
10 3
10 4
10 5
2000
4000
8000
16000
32000
Figure: Dependence of negative log-likelihood function on different
number of locations n = {2000, 4000, 8000, 16000, 32000} in log-scale.
17
4
*
Time and memory for parallel H-matrix approximation
Maximal # cores is 40, ν = 0.325, ` = 0.64, σ2 = 0.98
n C̃ L̃L̃
time size kB/dof time size kI − (L̃L̃
)−1
C̃k2
sec. MB sec. MB
32.000 3.3 162 5.1 2.4 172.7 2.4 · 10−3
128.000 13.3 776 6.1 13.9 881.2 1.1 · 10−2
512.000 52.8 3420 6.7 77.6 4150 3.5 · 10−2
2.000.000 229 14790 7.4 473 18970 1.4 · 10−1
Dell Station, 20 × 2 cores, 128 GB RAM, bought in 2013 for
10.000 USD.
18
4
*
Prediction
Let Z = (Z1, Z2) has mean zero and a stationary covariance, Z1 -
known, Z2 unknown.
C =

C11 C12
C21 C22,

We compute predicted values
Z2 = C21C−1
11 Z1
Z2 has the conditional distribution with the mean value C21C−1
11 Z1
and the covariance matrix C22 − C21C−1
11 C12.
19
4
*
2021 KAUST Competition
We participated in 2021 KAUST Competition on Spatial
Statistics for Large Datasets.
You can download the datasets and look the final results here
https://cemse.kaust.edu.sa/stsds/
2021-kaust-competition-spatial-statistics-large-datasets
20
4
*
Prediction
Prediction for two datasets. The yellow points at 900.000 locations
were used for training and the blue points were predicted at
100.000 new locations.
21
4
*
Machine learning methods to make prediction
k-nearest neighbours (kNN): For each point x find its k nearest
neighbors x1, . . . , xk, and set: ŷ(x) = 1
k
Pk
i=1 yi .
Random Forest (RF): a large number of decision (or regression)
trees are generated independently on random sub-samples of data.
The final decision for x is calculated over the ensemble of trees by
averaging the predicted outcomes.
Deep Neural Network (DNN): fully connected neural network
Input layer consists of two neurons (input feature dimensionality),
and output layer consists of one neuron (predicted feature
dimensionality).
22
4
*
Prediction by kNN
Prediction obtained by the kNN method. The yellow points at
900.000 locations were used for training and the blue points were
predicted at 100.000 new locations. One can see a very well
alignment of both.
23
4
*
Conclusion
I With H-matrices you can approximate Matérn covariance
matrices, Gaussian log-likelihoods, identify unknown
parameters and make predictions
I MLE estimate and predictions depend on H-matrix accuracy
I parameter identification problem has multiple solutions
I Investigated dependence of H-matrix approximation error on
the estimated parameters
I Each of ML methods needs fine-tuning stage to optimize its
hyperparameters or architecture.
24
4
*
Open questions and TODOs
I The Gaussian log-likelihood function has some drawbacks for
very large matrices
I How to skip/avoid redundant data?
I A good starting point for optimization is needed
I a “preconditioner” (a simple cov. matrix) is needed
I H-matrices become expensive for large number of parameters
to be identified
I error estimates are needed
4
*
Literature
All tests are reproducible
https://github.com/litvinen/large_random_fields.git
1. A. Litvinenko, R. Kriemann, M.G. Genton, Y. Sun, D.E. Keyes, HLIBCov:
Parallel hierarchical matrix approximation of large covariance matrices
and likelihoods with applications in parameter identification, MethodsX 7,
100600, 2020
2. A. Litvinenko, Y. Sun, M.G. Genton, D.E. Keyes, Likelihood
approximation with hierarchical matrices for large spatial datasets,
Computational Statistics  Data Analysis 137, 115-132, 2019
3. A. Litvinenko, R. Kriemann, V. Berikov, Identification of unknown
parameters and prediction with hierarchical matrices, look arXiv and
ResearchGate, March 2021
4. M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander,
Iterative algorithms for the post-processing of high-dimensional data,
Journal of Computational Physics 410, 109396, 2020
26
4
*
Literature
5. A. Litvinenko, D. Keyes, V. Khoromskaia, B.N. Khoromskij, H.G.
Matthies, Tucker tensor analysis of Matérn functions in spatial statistics,
Computational Methods in Applied Mathematics 19 (1), 101-122, 2019
6. B. N. Khoromskij, A. Litvinenko, H.G. Matthies, Application of
hierarchical matrices for computing the Karhunen-Loéve expansion,
Computing 84 (1-2), 49-67, 31, 2009
7. W. Nowak, A. Litvinenko, Kriging and spatial design accelerated by
orders of magnitude: Combining low-rank covariance approximations with
FFT-techniques, Mathematical Geosciences 45 (4), 411-435, 2013
8. M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander,
Efficient analysis of high dimensional data in tensor formats, Sparse Grids
and Applications, 31-56, Springer, Berlin, 2013
27
4
*
Acknowledgement
V. Berikov was supported by the state contract of the Sobolev
Institute of Mathematics (project no 0314-2019-0015), and by
RFBR grant 19-29-01175.
A. Litvinenko was supported by funding from the Alexander von
Humboldt Foundation.
28

More Related Content

What's hot

1603 plane sections of real and complex tori
1603 plane sections of real and complex tori1603 plane sections of real and complex tori
1603 plane sections of real and complex toriDr Fereidoun Dejahang
 
T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1askiitians
 
Cpt 5 synthesis of linkages
Cpt 5 synthesis of linkagesCpt 5 synthesis of linkages
Cpt 5 synthesis of linkagesMohit Jain
 
The sexagesimal foundation of mathematics
The sexagesimal foundation of mathematicsThe sexagesimal foundation of mathematics
The sexagesimal foundation of mathematicsMichielKarskens
 
AA Section 7-7/7-8
AA Section 7-7/7-8AA Section 7-7/7-8
AA Section 7-7/7-8Jimbo Lamb
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Lina Manriquez
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltossialalsi
 
Miguel angel 2
Miguel angel 2Miguel angel 2
Miguel angel 2Miguel
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integrationmusadoto
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manualMahrukh Khalid
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式Junpei Tsuji
 
Juj pahang 2014 add math spm k1 set 2 skema
Juj pahang 2014 add math spm k1 set 2 skemaJuj pahang 2014 add math spm k1 set 2 skema
Juj pahang 2014 add math spm k1 set 2 skemaCikgu Pejal
 
Math 6 (Please download first to activate the different animation settings)
Math 6 (Please download first to activate the different animation  settings)Math 6 (Please download first to activate the different animation  settings)
Math 6 (Please download first to activate the different animation settings)Eddie Abug
 
Communication systems solution manual 5th edition
Communication systems solution manual 5th editionCommunication systems solution manual 5th edition
Communication systems solution manual 5th editionTayeen Ahmed
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
Nvo formulario
Nvo formularioNvo formulario
Nvo formulariototo3957
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualamirhosseinozgoli
 

What's hot (20)

1603 plane sections of real and complex tori
1603 plane sections of real and complex tori1603 plane sections of real and complex tori
1603 plane sections of real and complex tori
 
M112rev
M112revM112rev
M112rev
 
T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1T.I.M.E. JEE Advanced 2013 Solution Paper1
T.I.M.E. JEE Advanced 2013 Solution Paper1
 
Cpt 5 synthesis of linkages
Cpt 5 synthesis of linkagesCpt 5 synthesis of linkages
Cpt 5 synthesis of linkages
 
The sexagesimal foundation of mathematics
The sexagesimal foundation of mathematicsThe sexagesimal foundation of mathematics
The sexagesimal foundation of mathematics
 
AA Section 7-7/7-8
AA Section 7-7/7-8AA Section 7-7/7-8
AA Section 7-7/7-8
 
Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)Potencias resueltas 1eso (1)
Potencias resueltas 1eso (1)
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Miguel angel 2
Miguel angel 2Miguel angel 2
Miguel angel 2
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integration
 
Puteri de matrici
Puteri de matriciPuteri de matrici
Puteri de matrici
 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
 
Complexos 2
Complexos 2Complexos 2
Complexos 2
 
合同数問題と保型形式
合同数問題と保型形式合同数問題と保型形式
合同数問題と保型形式
 
Juj pahang 2014 add math spm k1 set 2 skema
Juj pahang 2014 add math spm k1 set 2 skemaJuj pahang 2014 add math spm k1 set 2 skema
Juj pahang 2014 add math spm k1 set 2 skema
 
Math 6 (Please download first to activate the different animation settings)
Math 6 (Please download first to activate the different animation  settings)Math 6 (Please download first to activate the different animation  settings)
Math 6 (Please download first to activate the different animation settings)
 
Communication systems solution manual 5th edition
Communication systems solution manual 5th editionCommunication systems solution manual 5th edition
Communication systems solution manual 5th edition
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Nvo formulario
Nvo formularioNvo formulario
Nvo formulario
 
communication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manualcommunication-systems-4th-edition-2002-carlson-solution-manual
communication-systems-4th-edition-2002-carlson-solution-manual
 

Similar to Identification of unknown parameters and prediction with hierarchical matrices. Comparison with ML methods.

Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Alexander Litvinenko
 
Hierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesHierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesAlexander Litvinenko
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
Nelson maple pdf
Nelson maple pdfNelson maple pdf
Nelson maple pdfNelsonP23
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewAlexander Litvinenko
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationAlexander Litvinenko
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...Alexander Litvinenko
 
Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...Alexander Litvinenko
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
Complete Factoring Rules.ppt
Complete Factoring Rules.pptComplete Factoring Rules.ppt
Complete Factoring Rules.pptJasmin679773
 
Complete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.pptComplete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.pptElmabethDelaCruz2
 
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020KyuhanLee4
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfJulio Banks
 
Poster litvinenko genton_ying_hpcsaudi17
Poster litvinenko genton_ying_hpcsaudi17Poster litvinenko genton_ying_hpcsaudi17
Poster litvinenko genton_ying_hpcsaudi17Alexander Litvinenko
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007Demetrio Ccesa Rayme
 

Similar to Identification of unknown parameters and prediction with hierarchical matrices. Comparison with ML methods. (20)

Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
Application of Parallel Hierarchical Matrices in Spatial Statistics and Param...
 
Hierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesHierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matrices
 
Talk litvinenko prior_cov
Talk litvinenko prior_covTalk litvinenko prior_cov
Talk litvinenko prior_cov
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
Nelson maple pdf
Nelson maple pdfNelson maple pdf
Nelson maple pdf
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an Overview
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...
 
Control charts
Control chartsControl charts
Control charts
 
Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Complete Factoring Rules.ppt
Complete Factoring Rules.pptComplete Factoring Rules.ppt
Complete Factoring Rules.ppt
 
Complete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.pptComplete Factoring Rules in Grade 8 Math.ppt
Complete Factoring Rules in Grade 8 Math.ppt
 
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
"SSumM: Sparse Summarization of Massive Graphs", KDD 2020
 
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdfMathcad - CMS (Component Mode Synthesis) Analysis.pdf
Mathcad - CMS (Component Mode Synthesis) Analysis.pdf
 
Poster litvinenko genton_ying_hpcsaudi17
Poster litvinenko genton_ying_hpcsaudi17Poster litvinenko genton_ying_hpcsaudi17
Poster litvinenko genton_ying_hpcsaudi17
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semana 11 numeros complejos ii álgebra-uni ccesa007
Semana 11   numeros complejos ii   álgebra-uni ccesa007Semana 11   numeros complejos ii   álgebra-uni ccesa007
Semana 11 numeros complejos ii álgebra-uni ccesa007
 

More from Alexander Litvinenko

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdfAlexander Litvinenko
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityAlexander Litvinenko
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfAlexander Litvinenko
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfAlexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleAlexander Litvinenko
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonAlexander Litvinenko
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Alexander Litvinenko
 

More from Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in Houston
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
 
Talk litvinenko gamm19
Talk litvinenko gamm19Talk litvinenko gamm19
Talk litvinenko gamm19
 

Recently uploaded

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
 

Recently uploaded (20)

Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
 

Identification of unknown parameters and prediction with hierarchical matrices. Comparison with ML methods.

  • 1. Identification of unknown parameters and prediction with hierarchical matrices. Comparison with ML methods. Alexander Litvinenko1, (joint work with V. Berikov2, M. Genton3, D. Keyes3, R. Kriemann4, and Y. Sun3) UNCECOMP 2021 1RWTH Aachen, Germany, 2Novosibirsk Staate University, 3KAUST, Saudi Arabia, 4MPI for Mathematics in the Sciences in Leipzig, Germany
  • 2. 4 * Analysis of large datasets and prediction Goal: analyse a large dataset Need to use a dense cov. matrix C of size 2, 000, 000 × 2, 000, 000 3 2 4 2 9 2 4 2 17 2 2 4 2 7 3 2 18 17 10 10 2 5 2 8 2 4 2 10 3 3 2 32 14 10 18 10 36 28 3 6 2 4 2 14 2 4 2 5 2 4 2 14 18 14 18 2 4 2 8 2 5 3 19 2 4 2 6 3 6 3 65 32 19 21 18 18 29 29 61 61 2 5 3 7 3 2 5 2 18 3 6 3 6 3 17 17 12 12 3 2 7 2 4 2 2 12 3 2 4 2 32 17 12 12 12 29 29 2 5 3 2 7 2 4 2 12 2 5 3 10 10 19 12 3 3 2 10 2 5 2 5 2 4 2 119 65 32 10 15 10 19 27 27 54 54 118 118 2 5 3 4 2 15 2 5 3 11 3 6 3 15 17 10 10 2 4 2 8 2 4 2 10 3 2 3 21 14 10 7 7 33 27 2 4 3 3 2 7 3 8 7 14 7 2 3 8 2 4 2 7 3 2 10 2 5 2 59 21 8 18 8 12 21 29 59 54 3 6 3 2 5 2 12 2 5 3 2 18 12 11 11 3 2 7 3 5 2 11 2 5 3 25 9 9 16 11 30 29 3 3 9 3 4 2 6 3 9 16 9 16 3 2 4 2 7 3 2 16 3 2 7 2 4 2 121 119 59 25 18 16 10 10 25 34 59 59 119 118 80 119 2 4 2 4 2 9 2 4 2 10 3 4 2 19 10 15 10 2 5 3 2 7 3 2 15 3 4 2 5 2 31 15 15 16 15 32 34 3 2 4 2 4 2 15 2 4 3 2 5 2 15 16 15 16 2 5 3 2 12 3 6 3 20 3 2 7 3 2 6 3 58 27 18 18 9 9 31 31 66 67 2 5 3 2 6 3 9 2 4 2 12 9 18 9 3 6 3 12 3 4 2 9 2 4 2 27 12 16 12 19 27 31 3 2 3 6 3 16 2 5 2 4 2 6 3 16 20 8 8 2 4 2 7 3 2 7 3 2 8 2 3 115 58 30 15 8 15 8 28 28 57 57 119 119 2 5 2 4 2 2 15 2 4 2 6 3 9 9 15 15 3 3 9 2 5 3 2 7 3 2 27 9 16 9 11 30 28 3 5 2 5 2 11 2 5 2 16 11 13 11 3 3 2 7 3 2 13 2 5 2 4 2 48 25 5 5 17 13 23 23 58 57 2 5 2 4 2 5 2 6 3 5 8 5 15 2 3 8 3 2 2 6 3 25 8 15 8 9 25 23 2 5 3 6 3 7 3 2 9 2 4 2 15 9 23 9 3 3 6 3 15 2 4 2 5 2 10 2 5 2 90 122 115 48 32 15 15 15 17 33 33 48 60 115 119 81 234 56 89 3 2 7 2 4 2 15 3 4 2 7 3 2 15 17 6 6 2 5 2 5 3 11 2 5 3 6 3 30 11 6 19 6 30 30 3 5 2 11 3 2 7 3 2 5 2 11 13 11 17 2 4 2 5 2 13 3 5 2 6 3 65 30 13 17 13 17 30 30 61 60 2 4 3 6 3 5 2 21 2 4 2 4 2 12 3 6 3 20 20 14 14 2 4 2 8 2 4 2 3 14 2 5 2 4 2 32 17 14 15 14 29 29 2 4 2 8 2 4 2 15 2 5 2 5 2 10 10 17 15 2 5 2 10 3 6 2 4 2 5 2 125 75 32 10 18 10 19 32 29 69 61 125 134 2 5 3 2 6 3 18 3 2 6 3 8 2 4 2 17 17 18 19 2 4 2 8 2 4 2 17 3 6 3 2 6 3 39 17 19 17 18 25 25 3 2 7 2 4 2 11 2 4 3 2 18 3 6 3 6 3 10 10 15 15 3 2 3 10 2 4 3 5 2 65 30 10 15 10 12 35 25 69 69 2 4 2 9 2 4 2 12 2 2 5 2 18 12 14 12 2 5 2 10 2 4 3 2 14 3 6 2 4 2 30 15 14 16 14 30 35 2 4 2 6 3 15 3 2 4 2 5 2 15 15 15 16 2 4 2 5 2 2 15 3 6 3 8 2 4 2 3 227 111 61 31 15 21 15 16 24 24 50 50 116 116 81 224 3 6 3 9 2 4 2 16 2 5 2 6 2 19 16 5 5 2 5 3 8 2 4 2 5 2 23 16 5 7 5 27 24 3 6 2 5 2 7 2 3 10 7 16 7 3 4 2 10 3 6 3 5 2 54 23 10 17 10 11 23 25 61 50 2 2 7 2 5 3 11 2 5 2 13 11 12 11 3 2 5 2 12 2 4 2 4 2 29 13 12 13 12 27 25 2 5 2 5 2 15 2 5 3 2 7 2 4 2 15 18 9 9 2 5 2 5 2 3 9 2 4 2 111 54 33 18 9 12 9 22 22 54 59 110 110 3 2 7 2 4 2 6 3 12 2 5 3 2 9 9 13 12 2 4 2 9 3 2 6 3 33 9 13 9 13 22 22 3 2 6 3 9 2 4 2 15 2 4 2 6 3 12 12 10 10 2 2 6 3 10 2 4 2 49 23 7 7 12 10 26 22 55 59 3 7 3 2 4 2 4 2 7 8 7 16 3 2 8 3 6 3 6 3 23 8 15 8 11 23 26 3 2 7 3 2 11 2 4 2 3 12 11 15 11 3 2 5 2 12 2 4 2 6 3 8 2 4 2 We show how to: 1. reduce storage cost from 32TB to 16 GB 2. approximate Cholesky factorisation of C, its determinant, inverse in 8 minutes on modern desktop computer. 3. make prediction 2
  • 3. 4 * The structure of the talk 1. Motivation: improve statistical models, data analysis, prediction 2. Identification of unknown parameters via maximizing Gaussian log-likelihood (MLE) 3. Tools: Hierarchical matrices [Hackbusch 1999] 4. Matérn covariance function, joint Gaussian log-likelihood 5. Error analysis 6. Prediction at new locations 7. Comparison with machine learning methods 3
  • 4. 4 * Identifying unknown parameters Given: Let s1, . . . , sn be locations. Z = {Z(s1), . . . , Z(sn)}>, where Z(s) is a Gaussian random field indexed by a spatial location s ∈ Rd , d ≥ 1. Assumption: Z has mean zero and stationary parametric covariance function, e.g. Matérn: C(θ) = 2σ2 Γ(ν) r 2` ν Kν r ` + τ2 I, θ = (σ2 , ν, `, τ2 ). To identify: unknown parameters θ := (σ2, ν, `, τ2). 4
  • 5. 4 * Identifying unknown parameters Statistical inference about θ is then based on the Gaussian log-likelihood function: L(C(θ)) = L(θ) = − n 2 log(2π) − 1 2 log|C(θ)| − 1 2 Z C(θ)−1 Z, (1) where the covariance matrix C(θ) has entries C(si − sj ; θ), i, j = 1, . . . , n. The maximum likelihood estimator of θ is the value b θ that maximizes (1). 5
  • 6. 4 * H-matrix approximations of C, L and C−1 43 13 28 14 34 10 5 9 15 44 13 29 13 35 14 7 5 14 50 14 62 15 6 6 15 60 15 31 17 44 13 14 6 7 14 3 13 6 5 16 12 8 7 15 3 15 34 11 31 16 59 13 6 7 12 58 15 51 16 7 6 16 31 15 39 12 36 14 40 15 6 6 17 32 14 40 10 7 7 10 41 16 35 5 13 8 6 9 10 7 7 9 3 10 1 5 6 6 6 8 8 7 8 8 3 9 7 7 9 8 6 7 7 3 9 1 6 47 12 51 15 7 7 15 38 17 34 17 34 15 32 13 7 7 10 9 7 6 9 3 10 56 14 46 14 7 8 12 64 15 57 9 6 6 8 16 8 7 14 3 9 5 5 9 9 7 15 16 6 5 14 2 9 6 6 8 54 16 30 10 5 7 8 32 15 33 14 5 8 16 34 14 35 9 6 7 9 34 15 31 17 6 7 15 60 15 34 14 28 15 6 7 13 29 13 35 16 54 2 1 1 2 14 12 6 9 12 2 12 6 9 8 6 6 8 16 9 6 13 3 16 1 1 1 2 1 1 2 1 6 1 1 1 6 1 1 2 1 1 3 7 6 6 9 15 6 7 14 2 9 6 6 8 8 5 8 5 7 9 14 6 8 15 2 14 1 1 1 1 3 1 1 2 56 16 31 12 32 12 6 10 14 55 16 35 14 43 15 8 7 9 5 8 4 9 3 10 41 16 28 15 30 16 38 14 7 6 17 36 11 38 8 8 6 9 40 17 36 13 13 7 7 15 3 14 8 6 12 16 6 6 13 2 16 60 17 29 14 35 11 6 6 17 54 15 67 14 6 6 16 36 14 39 18 59 14 6 7 17 52 14 58 6 9 9 8 6 8 3 10 7 8 17 1 5 5 7 6 15 7 9 13 1 5 61 13 59 13 6 6 13 37 16 38 15 58 13 5 4 16 31 13 33 18 59 12 6 7 12 74 15 63 15 15 7 7 17 3 9 6 6 9 7 7 9 6 6 8 15 7 7 14 1 14 51 15 42 13 37 13 7 6 14 59 16 54 14 8 6 16 36 14 37 19 57 14 7 6 10 52 13 65 43 13 28 13 34 10 5 9 15 44 13 29 13 35 14 7 5 14 50 14 62 14 6 6 14 60 15 31 16 44 13 14 8 7 14 3 13 5 5 17 11 7 7 15 2 15 34 11 31 16 59 13 6 7 12 58 15 51 16 7 6 16 31 15 39 12 36 14 40 15 5 6 17 32 14 40 10 7 7 10 41 17 35 5 13 8 6 9 10 7 7 9 3 10 1 5 5 6 5 9 8 7 8 8 3 9 7 7 10 8 5 7 7 4 9 1 5 47 12 51 15 7 7 15 38 16 34 16 34 15 32 13 8 7 12 8 6 6 9 3 10 56 14 46 14 8 8 12 64 15 57 11 6 6 8 15 9 7 14 3 10 5 5 9 7 7 16 16 7 5 15 2 9 6 6 9 54 15 30 10 5 7 8 32 14 33 13 5 8 16 34 14 35 9 6 7 9 34 15 31 17 5 7 15 60 15 34 13 28 14 5 7 13 29 13 35 15 54 1 1 1 2 14 12 6 9 11 2 12 5 9 9 5 6 8 16 10 6 13 3 16 1 2 1 1 2 1 6 1 1 6 1 1 2 1 1 2 8 5 6 9 15 8 7 14 3 9 6 6 8 8 5 9 5 7 9 14 7 8 15 2 14 1 1 1 2 1 1 1 56 15 31 12 32 12 6 10 13 55 16 35 14 43 15 8 7 10 5 9 4 9 3 10 41 16 28 9 4 8 7 30 16 38 14 7 6 17 36 11 38 8 8 6 9 40 17 36 13 13 6 7 15 3 14 8 6 13 16 6 6 13 1 16 60 16 29 14 35 11 8 6 17 54 15 67 13 5 6 16 36 14 39 17 59 14 6 7 17 52 14 58 6 10 9 8 6 8 3 10 7 8 16 1 4 5 7 5 15 6 9 13 1 5 61 13 59 12 6 6 13 37 16 38 15 58 13 5 4 16 31 12 33 18 59 12 5 7 12 74 14 63 14 15 8 7 18 2 10 6 6 8 5 7 11 6 6 8 15 6 7 14 2 14 51 15 42 13 37 12 8 6 14 59 15 54 13 8 6 15 36 13 37 19 57 15 6 6 10 52 13 65 H-matrix approximations of the exponential covariance matrix (left), its hierarchical Cholesky factor L̃ (middle), and the zoomed upper-left corner of the matrix (right), n = 4000, ` = 0.09, ν = 0.5, σ2 = 1. 6
  • 7. 4 * What will change after H-matrix approximation? Approximate C by CH 1. How the eigenvalues of C and CH differ ? 2. How det(C) differs from det(CH) ? 3. How L differs from LH ? [Mario Bebendorf et al] 4. How C−1 differs from (CH)−1 ? [Mario Bebendorf et al] 5. How L̃(θ, k) differs from L(θ)? 6. What is optimal H-matrix rank? 7. How θH differs from θ? For theory, estimates for the rank and accuracy see works of Bebendorf, Grasedyck, Le Borne, Hackbusch,... 7
  • 8. 4 * Details of the parameter identification To maximize the log-likelihood function we use the Brent’s method (combining bisection method, secant method and inverse quadratic interpolation) or any other. 1. C(θ) ≈ e C(θ, ε). 2. e C(θ, k) = e L(θ, k)e L(θ, k)T 3. ZT e C−1Z = ZT (e Le LT )−1Z = vT · v, where v is a solution of e L(θ, k)v(θ) := Z. log det{e C} = log det{e Le LT } = log det{ n Y i=1 λ2 i } = 2 n X i=1 logλi , e L(θ, k) = − n 2 log(2π) − n X i=1 log{e Lii (θ, k)} − 1 2 (v(θ)T · v(θ)). (2) 8
  • 9. Dependence of log-likelihood ingredients on parameters, n = 4225. k = 8 in the first row and k = 16 in the second. 9
  • 10. 4 * Remark: stabilization with nugget To avoid instability in computing Cholesky, we add: e Cm = e C + τ2I. Let λi be eigenvalues of e C, then eigenvalues of e Cm will be λi + τ2, log det(e Cm) = log Qn i=1(λi + τ2) = Pn i=1 log(λi + τ2). (left) Dependence of the negative log-likelihood on parameter ` with nuggets {0.01, 0.005, 0.001} for the Gaussian covariance. (right) Zoom of the left figure near minimum; n = 2000 random points from moisture example, rank k = 14, τ2 = 1, ν = 0.5. 10
  • 11. 4 * Error analysis Theorem (1) Let e C be an H-matrix approximation of matrix C ∈ Rn×n such that ρ(e C−1 C − I) ≤ ε 1. Then |log det C − log det e C| ≤ −nlog(1 − ε), (3) Proof: See [Ballani, Kressner 14] and [Ipsen 05]. Remark: factor n is pessimistic and is not really observed numerically. 11
  • 12. 4 * Error in the log-likelihood Theorem (2) Let e C ≈ C ∈ Rn×n and Z be a vector, kZk ≤ c0 and kC−1k ≤ c1. Let ρ(e C−1C − I) ≤ ε 1. Then it holds | e L(θ) − L(θ)| = 1 2 (log|C| − log|e C|) + 1 2 |ZT C−1 − e C−1 Z| ≤ − 1 2 · nlog(1 − ε) + 1 2 |ZT C−1 C − e C−1 C C−1 Z| ≤ − 1 2 · nlog(1 − ε) + 1 2 c2 0 · c1 · ε. 12
  • 13. 4 * H-matrix approximation ε accuracy in each sub-block, n = 16641, ν = 0.5, c.r.=compression ratio. ε |log|C| − log|e C|| | log|C|−log|e C| log|e C| | kC − e CkF kC−e Ck2 kCk2 kI − (e Le L )−1 Ck2 c.r. in % ` = 0.0334 1e-1 3.2e-4 1.2e-4 7.0e-3 7.6e-3 2.9 9.16 1e-2 1.6e-6 6.0e-7 1.0e-3 6.7e-4 9.9e-2 9.4 1e-4 1.8e-9 7.0e-10 1.0e-5 7.3e-6 2.0e-3 10.2 1e-8 4.7e-13 1.8e-13 1.3e-9 6e-10 2.1e-7 12.7 ` = 0.2337 1e-4 9.8e-5 1.5e-5 8.1e-5 1.4e-5 2.5e-1 9.5 1e-8 1.45e-9 2.3e-10 1.1e-8 1.5e-9 4e-5 11.3 log|C| = 2.63 for ` = 0.0334 and log|C| = 6.36 for ` = 0.2337. 13
  • 14. 4 * Boxplots for unknown parameters Moisture data example. Boxplots for the 100 estimates of (`, ν, σ2), respectively, when n = 32K, 16K, 8K, 4K, 2K. H-matrix with a fixed rank k = 11. Green horizontal lines denote 25% and 75% quantiles for n = 32K. 14
  • 15. 4 * How much memory is needed? 0 0.5 1 1.5 2 2.5 ℓ, ν = 0.325, σ2 = 0.98 5 5.5 6 6.5 size, in bytes ×10 6 1e-4 1e-6 0.2 0.4 0.6 0.8 1 1.2 1.4 ν, ℓ = 0.58, σ2 = 0.98 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 size, in bytes ×10 6 1e-4 1e-6 (left) Dependence of the matrix size on the covariance length `, and (right) the smoothness ν for two different H-accuracies ε = {10−4, 10−6} 15
  • 16. 4 * Error convergence 0 10 20 30 40 50 60 70 80 90 100 −25 −20 −15 −10 −5 0 rank k log(rel. error) Spectral norm, L=0.1, nu=1 Frob. norm, L=0.1 Spectral norm, L=0.2 Frob. norm, L=0.2 Spectral norm, L=0.5 Frob. norm, L=0.5 0 10 20 30 40 50 60 70 80 90 100 −16 −14 −12 −10 −8 −6 −4 −2 0 rank k log(rel. error) Spectral norm, L=0.1, nu=0.5 Frob. norm, L=0.1 Spectral norm, L=0.2 Frob. norm, L=0.2 Spectral norm, L=0.5 Frob. norm, L=0.5 Convergence of the H-matrix approximation errors for covariance lengths {0.1, 0.2, 0.5}; (left) ν = 1 and (right) ν = 0.5, computational domain [0, 1]2. 16
  • 17. 4 * How log-likelihood depends on n? ν 0 0.1 0.2 0.3 0.4 0.5 0.6 −L 10 3 10 4 10 5 2000 4000 8000 16000 32000 Figure: Dependence of negative log-likelihood function on different number of locations n = {2000, 4000, 8000, 16000, 32000} in log-scale. 17
  • 18. 4 * Time and memory for parallel H-matrix approximation Maximal # cores is 40, ν = 0.325, ` = 0.64, σ2 = 0.98 n C̃ L̃L̃ time size kB/dof time size kI − (L̃L̃ )−1 C̃k2 sec. MB sec. MB 32.000 3.3 162 5.1 2.4 172.7 2.4 · 10−3 128.000 13.3 776 6.1 13.9 881.2 1.1 · 10−2 512.000 52.8 3420 6.7 77.6 4150 3.5 · 10−2 2.000.000 229 14790 7.4 473 18970 1.4 · 10−1 Dell Station, 20 × 2 cores, 128 GB RAM, bought in 2013 for 10.000 USD. 18
  • 19. 4 * Prediction Let Z = (Z1, Z2) has mean zero and a stationary covariance, Z1 - known, Z2 unknown. C = C11 C12 C21 C22, We compute predicted values Z2 = C21C−1 11 Z1 Z2 has the conditional distribution with the mean value C21C−1 11 Z1 and the covariance matrix C22 − C21C−1 11 C12. 19
  • 20. 4 * 2021 KAUST Competition We participated in 2021 KAUST Competition on Spatial Statistics for Large Datasets. You can download the datasets and look the final results here https://cemse.kaust.edu.sa/stsds/ 2021-kaust-competition-spatial-statistics-large-datasets 20
  • 21. 4 * Prediction Prediction for two datasets. The yellow points at 900.000 locations were used for training and the blue points were predicted at 100.000 new locations. 21
  • 22. 4 * Machine learning methods to make prediction k-nearest neighbours (kNN): For each point x find its k nearest neighbors x1, . . . , xk, and set: ŷ(x) = 1 k Pk i=1 yi . Random Forest (RF): a large number of decision (or regression) trees are generated independently on random sub-samples of data. The final decision for x is calculated over the ensemble of trees by averaging the predicted outcomes. Deep Neural Network (DNN): fully connected neural network Input layer consists of two neurons (input feature dimensionality), and output layer consists of one neuron (predicted feature dimensionality). 22
  • 23. 4 * Prediction by kNN Prediction obtained by the kNN method. The yellow points at 900.000 locations were used for training and the blue points were predicted at 100.000 new locations. One can see a very well alignment of both. 23
  • 24. 4 * Conclusion I With H-matrices you can approximate Matérn covariance matrices, Gaussian log-likelihoods, identify unknown parameters and make predictions I MLE estimate and predictions depend on H-matrix accuracy I parameter identification problem has multiple solutions I Investigated dependence of H-matrix approximation error on the estimated parameters I Each of ML methods needs fine-tuning stage to optimize its hyperparameters or architecture. 24
  • 25. 4 * Open questions and TODOs I The Gaussian log-likelihood function has some drawbacks for very large matrices I How to skip/avoid redundant data? I A good starting point for optimization is needed I a “preconditioner” (a simple cov. matrix) is needed I H-matrices become expensive for large number of parameters to be identified I error estimates are needed
  • 26. 4 * Literature All tests are reproducible https://github.com/litvinen/large_random_fields.git 1. A. Litvinenko, R. Kriemann, M.G. Genton, Y. Sun, D.E. Keyes, HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification, MethodsX 7, 100600, 2020 2. A. Litvinenko, Y. Sun, M.G. Genton, D.E. Keyes, Likelihood approximation with hierarchical matrices for large spatial datasets, Computational Statistics Data Analysis 137, 115-132, 2019 3. A. Litvinenko, R. Kriemann, V. Berikov, Identification of unknown parameters and prediction with hierarchical matrices, look arXiv and ResearchGate, March 2021 4. M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander, Iterative algorithms for the post-processing of high-dimensional data, Journal of Computational Physics 410, 109396, 2020 26
  • 27. 4 * Literature 5. A. Litvinenko, D. Keyes, V. Khoromskaia, B.N. Khoromskij, H.G. Matthies, Tucker tensor analysis of Matérn functions in spatial statistics, Computational Methods in Applied Mathematics 19 (1), 101-122, 2019 6. B. N. Khoromskij, A. Litvinenko, H.G. Matthies, Application of hierarchical matrices for computing the Karhunen-Loéve expansion, Computing 84 (1-2), 49-67, 31, 2009 7. W. Nowak, A. Litvinenko, Kriging and spatial design accelerated by orders of magnitude: Combining low-rank covariance approximations with FFT-techniques, Mathematical Geosciences 45 (4), 411-435, 2013 8. M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander, Efficient analysis of high dimensional data in tensor formats, Sparse Grids and Applications, 31-56, Springer, Berlin, 2013 27
  • 28. 4 * Acknowledgement V. Berikov was supported by the state contract of the Sobolev Institute of Mathematics (project no 0314-2019-0015), and by RFBR grant 19-29-01175. A. Litvinenko was supported by funding from the Alexander von Humboldt Foundation. 28