SlideShare a Scribd company logo
1 of 12
Download to read offline
Initial covariance matrix for the Kalman Filter
Alexander Litvinenko
Group of Raul Tempone, SRI UQ, and Group of David Keyes,
Extreme Computing Research Center KAUST
Center for Uncertainty
Quantification
ntification Logo Lock-up
http://sri-uq.kaust.edu.sa/
4*
Two variants
Either we assume that matrix of snapshots is given
[q(x, θ1), ..., q(x, θnq )]
Or we assume that the covariance function is of a certain type:
The Mat´ern class of covariance functions is defined as
C(r) := Cν, (r) =
2σ2
Γ(ν)
r
2
ν
Kν
r
, (1)
Center for Uncertainty
Quantification
tion Logo Lock-up
2 / 12
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0
0.05
0.1
0.15
0.2
0.25
Matern covariance (nu=1)
σ=0.5, l=0.5
σ=0.5, l=0.3
σ=0.5, l=0.2
σ=0.5, l=0.1
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0
0.05
0.1
0.15
0.2
0.25
nu=0.15
nu=0.3
nu=0.5
nu=1
nu=2
nu=30
Figure : Matern function for different parameters (computed in sglib).
Center for Uncertainty
Quantification
tion Logo Lock-up
3 / 12
4*
Types of Matern covariance
Cν=3/2(r) = −
√
2νr Γ(p + 1)
Γ(2p + 1)
p
i=0
(p + i)!
i!(p − i)!
(
√
8νr
)p−i
. (2)
The most interesting cases are ν = 3/2:
Cν=3/2(r) = 1 +
√
3r
exp −
√
3r
(3)
and ν = 5/2, for which
Cν=5/2(r) = 1 +
√
5r
+
5r2
3 2
exp −
√
5r
(4)
Center for Uncertainty
Quantification
tion Logo Lock-up
4 / 12
4*
Comparison
[q(x, θ1), ..., q(x, θnq )] ≈ ABT
.
n rank k size, MB t, sec. ε max
i=1..10
|λi − ˜λi |, i ε2
for ˜C C ˜C C ˜C
4.0 · 103
10 48 3 0.8 0.08 7 · 10−3
7.0 · 10−2
, 9 2.0 · 10−4
1.05 · 104
18 439 19 7.0 0.4 7 · 10−4
5.5 · 10−2
, 2 1.0 · 10−4
2.1 · 104
25 2054 64 45.0 1.4 1 · 10−5
5.0 · 10−2
, 9 4.4 · 10−6
Table : Accuracy of H-matrix approximation, l1 = l3 = 0.1, l2 = 0.5.
Center for Uncertainty
Quantification
tion Logo Lock-up
5 / 12
4*
Storage cost and computing time
k size, MB t, sec.
1 1548 33
2 1865 42
3 2181 50
4 2497 59
6 nem -
k size, MB t, sec.
4 463 11
8 850 22
12 1236 32
16 1623 43
20 nem -
Table : Dependence of the computing time and storage requirement on
the H-matrix rank k, l1 = 0.1, l2 = 0.5, n = 2.3 · 105
. (right) l1 = 0.1,
l2 = 0.5, l3 = 0.1, n = 4.61 · 105
.
Center for Uncertainty
Quantification
tion Logo Lock-up
6 / 12
4*
Examples of H-matrix approximation
25 20
20 20
20 16
20 16
20 20
16 16
20 16
16 16
19 20
20 19 32
19 19
16 16 32
19 20
20 19
19 16
19 16
32 32
20 20
20 20 32
32 32
20 19
19 19 32
20 19
16 16 32
32 20
32 32
20 32
32 32
32 20
32 32
20 19
19 19
20 16
19 16
32 32
20 32
32 32
32 32
20 32
32 32
20 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
20 20
20 19
20 20 32
32 32 20
20 20
32 20
32 32 20
20 20
32 32
20 32 20
20 20
32 32
32 32 20
20
20 20
19 20 32
32 32
20 20
20
32 20
32 32
20 20
20
32 32
20 32
20 20
20
32 32
32 32
20 20
20 20
20 20 32
32 32
20 19
20 19 32
32 32
20 20
19 19 32
32 32
20 20
20 20 32
32 32
32 20
32 32
32 20
32 32
32 20
32 32
32 20
32 32
32 32
20 32
32 32
20 32
32 32
20 32
32 32
20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
20 20
20 20 2019 20
20 20 32
32 32
32 20
32 32
20 32
32 32
32 20
32 32
20 20
20 20
20 20
20 20 20
20 20
32 20
32 32 20
20 20
20 20
20 20
20 20 20
20
32 20
32 32
20 20
20 20
20 20
20 20
20 20 20
32 20
32 32
32 20
32 32
32 20
32 32
32 20
32 32
20 20
20 20
20 20
20 20
19 20
20 20 32
32 32
20 32
32 32
32 32
20 32
32 32
20 32
20
20 20
20 20
20 20
20 20
20 20
32 32
20 32 20
20
20 20
20 20
20 20
20 20
20
32 32
20 32
20 20
20
20 20
20 20
20 20
20 20
32 32
20 32
32 32
20 32
32 32
20 32
32 32
20 32
20
20 20
20 20
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
19 19
20 20 32
32 32
32 20
32 32
20 32
32 32
32 20
32 32
19 20
19 20 32
32 32
20 32
32 32
32 32
20 32
32 32
20 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
20 20
32 32
32 32 20
20 20
32 20
32 32 20
20 20
32 32
20 32 20
20 20
32 32
32 32 20
20
32 32
32 32
20 20
20
32 20
32 32
20 20
20
32 32
20 32
20 20
20
32 32
32 32
20 20
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 20
32 32
32 20
32 20
32 20
32 32
32 20
32 20
32 32
20 32
32 32
20 32
32 32
20 20
32 32
20 20
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
25 9
9 20 9
9
20 7
7 16
9
9
20 9
9 20 9
9 32
9
9
20 9
9 20 9
9 32 9
9
32 9
9 32
9
9
20 9
9 20 9
9 32 9
9
20 9
9 20 9
9 32
9
9
32 9
9 32 9
9
32 9
9 32
9
9
20 9
9 20 9
9 32 9
9
32 9
9 32
9
9
20 9
9 20 9
9 32 9
9
32 9
9 32
9
9
32 9
9 32 9
9
32 9
9 32
9
9
32 9
9 32 9
9
32 9
9 32
Center for Uncertainty
Quantification
tion Logo Lock-up
7 / 12
4*
Kullback-Leibler divergence (KLD)
DKL(P Q) is measure of the information lost when distribution Q
is used to approximate P:
DKL(P Q) =
i
P(i) ln
P(i)
Q(i)
, DKL(P Q) =
∞
−∞
p(x) ln
p(x)
q(x)
dx,
where p, q densities of P and Q. For miltivariate normal
distributions (µ0, Σ0) and (µ1, Σ1)
2DKL(N0 N1) = tr(Σ−1
1 Σ0)+(µ1 −µ0)T
Σ−1
1 (µ1 −µ0)−k −ln
det Σ0
det Σ1
Center for Uncertainty
Quantification
tion Logo Lock-up
8 / 12
4*
Convergence of KLD with increasing the rank k
k KLD C − CH
2 C(CH
)−1
− I 2
L = 0.25 L = 0.75 L = 0.25 L = 0.75 L = 0.25 L = 0.75
5 0.51 2.3 4.0e-2 0.1 4.8 63
6 0.34 1.6 9.4e-3 0.02 3.4 22
8 5.3e-2 0.4 1.9e-3 0.003 1.2 8
10 2.6e-3 0.2 7.7e-4 7.0e-4 6.0e-2 3.1
12 5.0e-4 2e-2 9.7e-5 5.6e-5 1.6e-2 0.5
15 1.0e-5 9e-4 2.0e-5 1.1e-5 8.0e-4 0.02
20 4.5e-7 4.8e-5 6.5e-7 2.8e-7 2.1e-5 1.2e-3
50 3.4e-13 5e-12 2.0e-13 2.4e-13 4e-11 2.7e-9
Table : Dependence of KLD on the approximation H-matrix rank k,
Matern covariance with parameters L = {0.25, 0.75} and ν = 0.5,
domain G = [0, 1]2
, C(L=0.25,0.75) 2 = {212, 568}.
Center for Uncertainty
Quantification
tion Logo Lock-up
9 / 12
4*
Convergence of KLD with increasing the rank k
k KLD C − CH
2 C(CH
)−1
− I 2
L = 0.25 L = 0.75 L = 0.25 L = 0.75 L = 0.25 L = 0.75
5 nan nan 0.05 6e-2 2.1e+13 1e+28
10 10 10e+17 4e-4 5.5e-4 276 1e+19
15 3.7 1.8 1.1e-5 3e-6 112 4e+3
18 1.2 2.7 1.2e-6 7.4e-7 31 5e+2
20 0.12 2.7 5.3e-7 2e-7 4.5 72
30 3.2e-5 0.4 1.3e-9 5e-10 4.8e-3 20
40 6.5e-8 1e-2 1.5e-11 8e-12 7.4e-6 0.5
50 8.3e-10 3e-3 2.0e-13 1.5e-13 1.5e-7 0.1
Table : Dependence of KLD on the approximation H-matrix rank k,
Matern covariance with parameters L = {0.25, 0.75} and ν = 1.5,
domain G = [0, 1]2
, C(L=0.25,0.75) 2 = {720, 1068}.
Center for Uncertainty
Quantification
tion Logo Lock-up
10 / 12
4*
Application of large covariance matrices
1. Kriging estimate ˆs := Csy C−1
yy y
2. Estimation of variance ˆσ, is the diagonal of conditional cov.
matrix Css|y = diag Css − Csy C−1
yy Cys ,
3. Gestatistical optimal design ϕA := n−1traceCss|y ,
ϕC := cT Css − Csy C−1
yy Cys c,
Center for Uncertainty
Quantification
tion Logo Lock-up
11 / 12
4*
Mean and variance in the rank-k format
u :=
1
Z
Z
i=1
ui =
1
Z
Z
i=1
A · bi = Ab. (5)
Cost is O(k(Z + n)).
C =
1
Z − 1
WcWT
c ≈
1
Z − 1
UkΣkΣT
k UT
k . (6)
Cost is O(k2(Z + n)).
Lemma: Let W − Wk 2 ≤ ε, and uk be a rank-k approximation
of the mean u. Then a) u − uk ≤ ε√
Z
,
b) C − Ck ≤ 1
Z−1ε2.
Center for Uncertainty
Quantification
tion Logo Lock-up
12 / 12

More Related Content

What's hot

Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Alexander Litvinenko
 
Trial pahang 2014 spm add math k2 dan skema [scan]
Trial pahang 2014 spm add math k2 dan skema [scan]Trial pahang 2014 spm add math k2 dan skema [scan]
Trial pahang 2014 spm add math k2 dan skema [scan]Cikgu Pejal
 
Trial kedah 2014 spm add math k2 skema
Trial kedah 2014 spm add math k2 skemaTrial kedah 2014 spm add math k2 skema
Trial kedah 2014 spm add math k2 skemaCikgu Pejal
 
Trial terengganu 2014 spm add math k2 skema
Trial terengganu 2014 spm add math k2 skemaTrial terengganu 2014 spm add math k2 skema
Trial terengganu 2014 spm add math k2 skemaCikgu Pejal
 
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...Jialin LIU
 
Parallel Coordinate Descent Algorithms
Parallel Coordinate Descent AlgorithmsParallel Coordinate Descent Algorithms
Parallel Coordinate Descent AlgorithmsShaleen Kumar Gupta
 
Miguel angel 2
Miguel angel 2Miguel angel 2
Miguel angel 2Miguel
 
Lecture note4coordinatedescent
Lecture note4coordinatedescentLecture note4coordinatedescent
Lecture note4coordinatedescentXudong Sun
 
Trident International Graphics Workshop2014 3/5
Trident International Graphics Workshop2014 3/5Trident International Graphics Workshop2014 3/5
Trident International Graphics Workshop2014 3/5Takao Wada
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltossialalsi
 

What's hot (14)

Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics Tucker tensor analysis of Matern functions in spatial statistics
Tucker tensor analysis of Matern functions in spatial statistics
 
Backtracking
BacktrackingBacktracking
Backtracking
 
Trial pahang 2014 spm add math k2 dan skema [scan]
Trial pahang 2014 spm add math k2 dan skema [scan]Trial pahang 2014 spm add math k2 dan skema [scan]
Trial pahang 2014 spm add math k2 dan skema [scan]
 
Trial kedah 2014 spm add math k2 skema
Trial kedah 2014 spm add math k2 skemaTrial kedah 2014 spm add math k2 skema
Trial kedah 2014 spm add math k2 skema
 
Trial terengganu 2014 spm add math k2 skema
Trial terengganu 2014 spm add math k2 skemaTrial terengganu 2014 spm add math k2 skema
Trial terengganu 2014 spm add math k2 skema
 
3D Geometry QA 5
3D Geometry QA 53D Geometry QA 5
3D Geometry QA 5
 
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...
A Mathematically Derived Number of Resamplings for Noisy Optimization (GECCO2...
 
Parallel Coordinate Descent Algorithms
Parallel Coordinate Descent AlgorithmsParallel Coordinate Descent Algorithms
Parallel Coordinate Descent Algorithms
 
Miguel angel 2
Miguel angel 2Miguel angel 2
Miguel angel 2
 
Lecture note4coordinatedescent
Lecture note4coordinatedescentLecture note4coordinatedescent
Lecture note4coordinatedescent
 
Tarea de Matematicas
Tarea de MatematicasTarea de Matematicas
Tarea de Matematicas
 
Reviewer in math i
Reviewer in math iReviewer in math i
Reviewer in math i
 
Trident International Graphics Workshop2014 3/5
Trident International Graphics Workshop2014 3/5Trident International Graphics Workshop2014 3/5
Trident International Graphics Workshop2014 3/5
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 

Viewers also liked

Viewers also liked (8)

Slideshare
SlideshareSlideshare
Slideshare
 
Kalmanfilter
KalmanfilterKalmanfilter
Kalmanfilter
 
Kalman filters
Kalman filtersKalman filters
Kalman filters
 
(DL hacks輪読) Deep Kalman Filters
(DL hacks輪読) Deep Kalman Filters(DL hacks輪読) Deep Kalman Filters
(DL hacks輪読) Deep Kalman Filters
 
Kalman filter implimention in mathlab
Kalman filter  implimention in mathlabKalman filter  implimention in mathlab
Kalman filter implimention in mathlab
 
Kalman Filter | Statistics
Kalman Filter | StatisticsKalman Filter | Statistics
Kalman Filter | Statistics
 
DIGITAL SIGNAL PROCESSING
DIGITAL SIGNAL PROCESSINGDIGITAL SIGNAL PROCESSING
DIGITAL SIGNAL PROCESSING
 
Dsp ppt
Dsp pptDsp ppt
Dsp ppt
 

Similar to Initial covariance matrix approximations for Kalman filters using H-matrices

Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Alexander Litvinenko
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...Alexander Litvinenko
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationAlexander Litvinenko
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Alexander Litvinenko
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionAlexander Litvinenko
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Alexander Litvinenko
 
Non-exhaustive, Overlapping K-means
Non-exhaustive, Overlapping K-meansNon-exhaustive, Overlapping K-means
Non-exhaustive, Overlapping K-meansDavid Gleich
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 
K-means Clustering Algorithm with Matlab Source code
K-means Clustering Algorithm with Matlab Source codeK-means Clustering Algorithm with Matlab Source code
K-means Clustering Algorithm with Matlab Source codegokulprasath06
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Alexander Litvinenko
 
Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsAlexander Litvinenko
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...Alexander Litvinenko
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 

Similar to Initial covariance matrix approximations for Kalman filters using H-matrices (20)

Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Slides
SlidesSlides
Slides
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Non-exhaustive, Overlapping K-means
Non-exhaustive, Overlapping K-meansNon-exhaustive, Overlapping K-means
Non-exhaustive, Overlapping K-means
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
K-means Clustering Algorithm with Matlab Source code
K-means Clustering Algorithm with Matlab Source codeK-means Clustering Algorithm with Matlab Source code
K-means Clustering Algorithm with Matlab Source code
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Control charts
Control chartsControl charts
Control charts
 
Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques Overview of sparse and low-rank matrix / tensor techniques
Overview of sparse and low-rank matrix / tensor techniques
 
Project_Report.pdf
Project_Report.pdfProject_Report.pdf
Project_Report.pdf
 
Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problems
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 

More from Alexander Litvinenko

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdfAlexander Litvinenko
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityAlexander Litvinenko
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfAlexander Litvinenko
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfAlexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleAlexander Litvinenko
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonAlexander Litvinenko
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Alexander Litvinenko
 

More from Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in Houston
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
 
Talk litvinenko gamm19
Talk litvinenko gamm19Talk litvinenko gamm19
Talk litvinenko gamm19
 

Recently uploaded

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 

Recently uploaded (20)

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 

Initial covariance matrix approximations for Kalman filters using H-matrices

  • 1. Initial covariance matrix for the Kalman Filter Alexander Litvinenko Group of Raul Tempone, SRI UQ, and Group of David Keyes, Extreme Computing Research Center KAUST Center for Uncertainty Quantification ntification Logo Lock-up http://sri-uq.kaust.edu.sa/
  • 2. 4* Two variants Either we assume that matrix of snapshots is given [q(x, θ1), ..., q(x, θnq )] Or we assume that the covariance function is of a certain type: The Mat´ern class of covariance functions is defined as C(r) := Cν, (r) = 2σ2 Γ(ν) r 2 ν Kν r , (1) Center for Uncertainty Quantification tion Logo Lock-up 2 / 12
  • 3. −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 0 0.05 0.1 0.15 0.2 0.25 Matern covariance (nu=1) σ=0.5, l=0.5 σ=0.5, l=0.3 σ=0.5, l=0.2 σ=0.5, l=0.1 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 0 0.05 0.1 0.15 0.2 0.25 nu=0.15 nu=0.3 nu=0.5 nu=1 nu=2 nu=30 Figure : Matern function for different parameters (computed in sglib). Center for Uncertainty Quantification tion Logo Lock-up 3 / 12
  • 4. 4* Types of Matern covariance Cν=3/2(r) = − √ 2νr Γ(p + 1) Γ(2p + 1) p i=0 (p + i)! i!(p − i)! ( √ 8νr )p−i . (2) The most interesting cases are ν = 3/2: Cν=3/2(r) = 1 + √ 3r exp − √ 3r (3) and ν = 5/2, for which Cν=5/2(r) = 1 + √ 5r + 5r2 3 2 exp − √ 5r (4) Center for Uncertainty Quantification tion Logo Lock-up 4 / 12
  • 5. 4* Comparison [q(x, θ1), ..., q(x, θnq )] ≈ ABT . n rank k size, MB t, sec. ε max i=1..10 |λi − ˜λi |, i ε2 for ˜C C ˜C C ˜C 4.0 · 103 10 48 3 0.8 0.08 7 · 10−3 7.0 · 10−2 , 9 2.0 · 10−4 1.05 · 104 18 439 19 7.0 0.4 7 · 10−4 5.5 · 10−2 , 2 1.0 · 10−4 2.1 · 104 25 2054 64 45.0 1.4 1 · 10−5 5.0 · 10−2 , 9 4.4 · 10−6 Table : Accuracy of H-matrix approximation, l1 = l3 = 0.1, l2 = 0.5. Center for Uncertainty Quantification tion Logo Lock-up 5 / 12
  • 6. 4* Storage cost and computing time k size, MB t, sec. 1 1548 33 2 1865 42 3 2181 50 4 2497 59 6 nem - k size, MB t, sec. 4 463 11 8 850 22 12 1236 32 16 1623 43 20 nem - Table : Dependence of the computing time and storage requirement on the H-matrix rank k, l1 = 0.1, l2 = 0.5, n = 2.3 · 105 . (right) l1 = 0.1, l2 = 0.5, l3 = 0.1, n = 4.61 · 105 . Center for Uncertainty Quantification tion Logo Lock-up 6 / 12
  • 7. 4* Examples of H-matrix approximation 25 20 20 20 20 16 20 16 20 20 16 16 20 16 16 16 19 20 20 19 32 19 19 16 16 32 19 20 20 19 19 16 19 16 32 32 20 20 20 20 32 32 32 20 19 19 19 32 20 19 16 16 32 32 20 32 32 20 32 32 32 32 20 32 32 20 19 19 19 20 16 19 16 32 32 20 32 32 32 32 32 20 32 32 32 20 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 20 20 20 19 20 20 32 32 32 20 20 20 32 20 32 32 20 20 20 32 32 20 32 20 20 20 32 32 32 32 20 20 20 20 19 20 32 32 32 20 20 20 32 20 32 32 20 20 20 32 32 20 32 20 20 20 32 32 32 32 20 20 20 20 20 20 32 32 32 20 19 20 19 32 32 32 20 20 19 19 32 32 32 20 20 20 20 32 32 32 32 20 32 32 32 20 32 32 32 20 32 32 32 20 32 32 32 32 20 32 32 32 20 32 32 32 20 32 32 32 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 20 20 20 20 2019 20 20 20 32 32 32 32 20 32 32 20 32 32 32 32 20 32 32 20 20 20 20 20 20 20 20 20 20 20 32 20 32 32 20 20 20 20 20 20 20 20 20 20 20 32 20 32 32 20 20 20 20 20 20 20 20 20 20 20 32 20 32 32 32 20 32 32 32 20 32 32 32 20 32 32 20 20 20 20 20 20 20 20 19 20 20 20 32 32 32 20 32 32 32 32 32 20 32 32 32 20 32 20 20 20 20 20 20 20 20 20 20 20 32 32 20 32 20 20 20 20 20 20 20 20 20 20 20 32 32 20 32 20 20 20 20 20 20 20 20 20 20 20 32 32 20 32 32 32 20 32 32 32 20 32 32 32 20 32 20 20 20 20 20 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 19 19 20 20 32 32 32 32 20 32 32 20 32 32 32 32 20 32 32 19 20 19 20 32 32 32 20 32 32 32 32 32 20 32 32 32 20 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 20 20 32 32 32 32 20 20 20 32 20 32 32 20 20 20 32 32 20 32 20 20 20 32 32 32 32 20 20 32 32 32 32 20 20 20 32 20 32 32 20 20 20 32 32 20 32 20 20 20 32 32 32 32 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 20 32 32 32 20 32 20 32 20 32 32 32 20 32 20 32 32 20 32 32 32 20 32 32 32 20 20 32 32 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 9 9 20 9 9 20 7 7 16 9 9 20 9 9 20 9 9 32 9 9 20 9 9 20 9 9 32 9 9 32 9 9 32 9 9 20 9 9 20 9 9 32 9 9 20 9 9 20 9 9 32 9 9 32 9 9 32 9 9 32 9 9 32 9 9 20 9 9 20 9 9 32 9 9 32 9 9 32 9 9 20 9 9 20 9 9 32 9 9 32 9 9 32 9 9 32 9 9 32 9 9 32 9 9 32 9 9 32 9 9 32 9 9 32 9 9 32 Center for Uncertainty Quantification tion Logo Lock-up 7 / 12
  • 8. 4* Kullback-Leibler divergence (KLD) DKL(P Q) is measure of the information lost when distribution Q is used to approximate P: DKL(P Q) = i P(i) ln P(i) Q(i) , DKL(P Q) = ∞ −∞ p(x) ln p(x) q(x) dx, where p, q densities of P and Q. For miltivariate normal distributions (µ0, Σ0) and (µ1, Σ1) 2DKL(N0 N1) = tr(Σ−1 1 Σ0)+(µ1 −µ0)T Σ−1 1 (µ1 −µ0)−k −ln det Σ0 det Σ1 Center for Uncertainty Quantification tion Logo Lock-up 8 / 12
  • 9. 4* Convergence of KLD with increasing the rank k k KLD C − CH 2 C(CH )−1 − I 2 L = 0.25 L = 0.75 L = 0.25 L = 0.75 L = 0.25 L = 0.75 5 0.51 2.3 4.0e-2 0.1 4.8 63 6 0.34 1.6 9.4e-3 0.02 3.4 22 8 5.3e-2 0.4 1.9e-3 0.003 1.2 8 10 2.6e-3 0.2 7.7e-4 7.0e-4 6.0e-2 3.1 12 5.0e-4 2e-2 9.7e-5 5.6e-5 1.6e-2 0.5 15 1.0e-5 9e-4 2.0e-5 1.1e-5 8.0e-4 0.02 20 4.5e-7 4.8e-5 6.5e-7 2.8e-7 2.1e-5 1.2e-3 50 3.4e-13 5e-12 2.0e-13 2.4e-13 4e-11 2.7e-9 Table : Dependence of KLD on the approximation H-matrix rank k, Matern covariance with parameters L = {0.25, 0.75} and ν = 0.5, domain G = [0, 1]2 , C(L=0.25,0.75) 2 = {212, 568}. Center for Uncertainty Quantification tion Logo Lock-up 9 / 12
  • 10. 4* Convergence of KLD with increasing the rank k k KLD C − CH 2 C(CH )−1 − I 2 L = 0.25 L = 0.75 L = 0.25 L = 0.75 L = 0.25 L = 0.75 5 nan nan 0.05 6e-2 2.1e+13 1e+28 10 10 10e+17 4e-4 5.5e-4 276 1e+19 15 3.7 1.8 1.1e-5 3e-6 112 4e+3 18 1.2 2.7 1.2e-6 7.4e-7 31 5e+2 20 0.12 2.7 5.3e-7 2e-7 4.5 72 30 3.2e-5 0.4 1.3e-9 5e-10 4.8e-3 20 40 6.5e-8 1e-2 1.5e-11 8e-12 7.4e-6 0.5 50 8.3e-10 3e-3 2.0e-13 1.5e-13 1.5e-7 0.1 Table : Dependence of KLD on the approximation H-matrix rank k, Matern covariance with parameters L = {0.25, 0.75} and ν = 1.5, domain G = [0, 1]2 , C(L=0.25,0.75) 2 = {720, 1068}. Center for Uncertainty Quantification tion Logo Lock-up 10 / 12
  • 11. 4* Application of large covariance matrices 1. Kriging estimate ˆs := Csy C−1 yy y 2. Estimation of variance ˆσ, is the diagonal of conditional cov. matrix Css|y = diag Css − Csy C−1 yy Cys , 3. Gestatistical optimal design ϕA := n−1traceCss|y , ϕC := cT Css − Csy C−1 yy Cys c, Center for Uncertainty Quantification tion Logo Lock-up 11 / 12
  • 12. 4* Mean and variance in the rank-k format u := 1 Z Z i=1 ui = 1 Z Z i=1 A · bi = Ab. (5) Cost is O(k(Z + n)). C = 1 Z − 1 WcWT c ≈ 1 Z − 1 UkΣkΣT k UT k . (6) Cost is O(k2(Z + n)). Lemma: Let W − Wk 2 ≤ ε, and uk be a rank-k approximation of the mean u. Then a) u − uk ≤ ε√ Z , b) C − Ck ≤ 1 Z−1ε2. Center for Uncertainty Quantification tion Logo Lock-up 12 / 12