SlideShare a Scribd company logo
1 of 38
Download to read offline
1
Application of H-matrices for solving
multiscale problems
Litvinenko Alexander,
Dissertation work
Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften,
Leipzig, 10 August, 2006.
www.hlib.org www.mis.mpg.de
2
H-matrices
Integral
Equations,
BEM3D
Parallel Impl.
of H-matrices
Helmholz
Equation
Convection-
Diffusion
Problems
Multigrid+
H-matrices
H-Matrix Approximation of
sign(A), exp(A), etc
Aposteriory Err. Est.+
efficient H-matrix update
Lyapunov, Riccati
Equations
DD methods
Schur Complement
Methods
Hierarchical
Domain
Decomposition
for Multiscale
Problems
*
3D Skin problem*
Multidimensional
Problems
Fig. 1 – Main directions of applications H-matrices. The sym-
bol refers to the projects in which I took part.
3
Contents
1. Examples of multiscale problems
2. Multiscale methods
3. HDD method
4. Hierarchical matrices
5. Application of H-matrices to HDD
6. Complexity and storage of HDD
7. Modifications of HDD
– Two scales
– Truncation of the small scales
8. Numerical results
4
Example of multiscale problems
(a)macroscopic scale (b)microscopic scale
Different scales in a porous medium.[Bastian 99].
10 s
-6
10 s
-3
10 s
0
10 s
3
10 m
-12
10 m
-9
10 m
-6
10 m
-3
Atom Protein Cell Tissue
molecular events
(ion channel gating)
diffusion cell
signalling
mitosis
Example of time and length scales for modeling tumor growth.[Alarcon,
Byrne, Maini 05]
5
0,6
0,2
-0,6
0,4
0
x
621
-0,4
-0,2
3 4 50
Fig. 2 – Fine properties of the solution are out of interest.
6
Multiscale methods
The equation is :
− (a(x) u) = f in Ω,
u = 0 on ∂Ω.
(1)
Homegenisation [Babuska 75], [Bensoussan, Lions, Papanicolau 78],
[Jikov, Kozlov, Oleinik 94]
Solution is
uε
(x) = u0(x) + εu1(x,
x
ε
) + O(ε2
).
u0 is the solution of the homogenized equation
a∗
u0 = f in Ω, u0 = 0 on ∂Ω, (2)
Resonance effect in MsFEM [T.Hou, X. Wu 97]
u − uh
0,Ω = O(h2
+ ε/h). (3)
Heterogeneous multiscale method [Weinan E, B.Engquist 03]
7
Problem setup
The Poisson problem : find u ∈ H1
(Ω) s.t. :



1≤i,j≤2
∂
∂xi
ai,j(x)
∂
∂xj
u = f in Ω
u = g on Γ
(4)
where ai,j ∈ L∞
(Ω) such A(x) = (ai,j)i,j=1,...,d satisfies
0 < λ ≤ λmin(A(x)) ≤ λmax(A(x)) ≤ λ , ∀x ∈ Ω.
⇒ Oscillatory or jumping coefficients are allowed.
8
The idea of HDD
Find operators : Bh, Ch s.t.
uh = Bhfh + Chgh, (5)
where fh is the rhs and gh the Dirichlet-boundary values.
Composed matrix (Bh, Ch) is the ’inverse’ of the stiffness
matrix Ah.
Complete inverse (Bh, Ch) is too much of information. We
might be interested only in few functionals of the solution.
Example : we want to know uh(fh, gh) only for fh in a smaller
space VH ⊂ Vh.
9
Domain decomposition tree TTh
FE discretisation : triangulation Th, Ω = ∪t∈Th
t.
1
2
3
4
5
6
7
9
10
11
12
13
14
15
8
5
6
7
11
12
13
14
15
8
1
2
3
4
5
6
7
9
10
3
4
1
9
10
......
5
6
11
12
13
14
15
6
7
11
15
8
......
2
6
2
6
• Ω is the root of the tree,
• TTh
is a binary tree,
• if ω ∈ TTh
has two sons
ω1, ω2 ∈ TTh
: ω = ω1 ∪ ω2
and γω = ∂ω1 ∩ ∂ω2,
• ω ∈ TTh
is a leaf, if and only
if ω ∈ Th.
10
Notations
Let ω ∈ TTh
, ω = ω1 ∪ ω2.
Γω,1 := ∂ω ∩ ω1, Γω,2 := ∂ω ∩ ω2 and γω := ∂ω1∂ω = ∂ω2∂ω
ω 1 ω 2
ωPSfrag replacements
∂
γω
Γω,1 Γω,2
Γω
I = I(Ω) = set of all vertices of ¯Ω.
I(ω) = {i ∈ I ; xi ∈ ω}.
11
Discretisation
Let ω ∈ TTh
. Denote dω := (fi)i∈I(ω) , (gi)i∈I(∂ω) . Define the
following discrete problem in the variational form :



aω(uh, bj) = (fω, bj)L2(ω) ∀ j ∈ I(
◦
ω),
uh(xj) = gj ∀ j ∈ I(∂ω).
(6)
a(bi, bj) =
Ω
α(x)( bi, bj)dx, (f, bj) =
suppbj
fbjdx.
12
1. Mapping Ψω
Ψω(d) = (Ψω(dω))i∈I(∂ω) with (Ψω(dω))i = aω(uh, bi) − (fω, bi)L2(ω) ,
Ψωdω = Ψf
ωfω + Ψg
ωgω.
2. Mapping Φω
(Φω(dω))i := uh(xi) , ∀i ∈ I(γω).
Hence, Φω(dω) is the trace of uh on γω.
Goal of HDD is to build the set
of mappings : {Φ0, Φ1, Φ2, ..., Φn} which
than produce sequentially the solution on
{γω0 , γω1 , γω2 ..., γωn }.
ω
ω
ω
1
2
xj
γ ω
xj
13
Construction of the mappings Ψω and Φω
Let ω1 and ω2 be two sons of ω ∈ TTh
. Let dω1 and dω2 the
data associated to ω1 and ω2 s.t. :
• (consistency conditions for the Dirichlet data)
g1,i = g2,i , ∀i ∈ I(ω1) ∩ I(ω2), (7)
• (consistency conditions for the right-hand side)
f1,i = f2,i , ∀i ∈ I(ω1) ∩ I(ω2). (8)
Let uω1 and uω2 be the local FE solutions of the problem (6)
for the data dω1
, dω2
.
14
ω
ω
ω
1
2
xj
γ ω
xj
If uω1 , uω2 satisfy to the Neu-
mann condition
γ
Ψω1 (dω1 ) + γ
Ψω2 (dω2 ) = 0,
Then, uω defined by
uω(xi) :=



uω1 (xi) for i ∈ I(ω1)
uω2 (xi) for i ∈ I(ω2)
(9)
is solution of (6) for the data dω := (fω, gω) given by
fω :=



f1,i for i ∈ I(ω1)
f2,i for i ∈ I(ω2)
gω :=



g1,i for i ∈ I(∂ω1)
g2,i for i ∈ I(∂ω2)
15
γ
Ψγ
ω1
+ γ
Ψγ
ω2
gγ = −Ψf
ω1
f1 − ΨΓ
ω1
g1,Γ − Ψf
ω2
f2 − ΨΓ
ω2
g2,Γ.
We set
M := −( γ
Ψγ
ω1
+ γ
Ψγ
ω2
),
compute M−1
and solve for gγ :
gγ = M−1
(Ψf
ω1
f1 + ΨΓ
ω1
g1,Γ + Ψf
ω2
f2 + ΨΓ
ω2
g2,Γ).
For given mappings Ψω1 , Ψω2 , defined on the sons ω1, ω2, we
can compute Φω and Ψω for the father ω. This recursion
process ends as soon as ω = Ω.
16
Hierarchical Process
1. Leaves to Root
1. Compute Ψω on all leaves (3 × 3 matrices).
2. Recursion from the leaves to the root :
(a) Compute and store Φω and Ψω from Ψω1 , Ψω2 .
(b) Delete Ψω1 , Ψω2 .
2. Root to Leaves
1. Given dω = (fω, gω), compute the solution uh on the
interior boundary γω by Φω (dω).
2. Build the data dω1 = (fω1 , gω1 ), dω2 = (fω2 , gω2 ) from
dω = (fω, gω) and gγ := Φω (dω).
17
Rank-k matrices
1. R ∈ Rn×m
, R = ABT
, where
A ∈ Rn×k
, B ∈ Rm×k
, k min(n, m).
The storage A and B is k(n + m)
instead of n · m.
=
A
B
T
*
R
k
k
n
m
n
m
H-matrices (Hackbusch ’98)
2. Grid → cluster tree (TI) → blockclus-
ter tree (TI×J ) + admissibility condition
→ admissible partitioning → H-matrix →
H-matrix arithmetics .
4 2
2 2 3
3 3
4 2
2 2
4 2
2 2
4
18
3. Let I := I(Ω), t, s ∈ TI, (t × s) ∈ TI×I.
Admissibility : max{diam(t), diam(s)} ≤ η · dist(t, s).
if(adm=true) then M|t×s is a rank-k matrix block
if(adm=false) then divide M|t×s further or define as a dense
matrix block.
Q
Qt
S
dist H=
t
s
...
I
I
I I
I
I
I I I I
I
1
1
2
2
11 12 21 22
I11
I12
I21
I22
19
Definition 0.1 H(TI×J , k) := {M ∈ RI×J
| rank(M |t×s) ≤ k for
all admissible leaves t × s of TI×J }.
n := max(|I|, |J|, |K|).
Operation Sequential Compl. Parallel Complexity
(R.Kriemann 2005)
building(M) N = O(n log n) N
p + O(|V (T)L(T)|)
storage(M) N = O(kn log n) N
Mx N = O(kn log n) N
p
αM ⊕ βM N = O(k2
n log n) N
p
αM M ⊕ βM N = O(k2
n log2
n) N
p + O(Csp(T)|V (T)|)
M−1
N = O(k2
n log2
n) N
p + O(nn2
min)
LU N = O(k2
n log2
n) N
H-LU N = O(k2
n log2
n) N
p + O(k2
n log2
n
n1/d )
20
Application of H-matrices to HDD
Let ω = ω1 ∪ ω2, γω = ∂ω1∂ω.
Suppose Ψg
ω1
, Ψg
ω2
→ Ψg
ω =: A and Ψf
ω1
, Ψf
ω2
→ Ψf
ω =: F.


A11 A12
A21 A22




x1
x2

 =


F1
F2

 b.
Eliminate internal nodal points :


A11 − A12A−1
22 A21 0
A21 A22




x1
x2

 =


F1 − A12A−1
22 F2
F2

 b.
Ψg
ωx1 := (A11 − A12A−1
22 A21)x1 = (F1 − A12A−1
22 F2)b = Ψf
ωb
x2 = A−1
22 F2b − A−1
22 A21x1 =: Φf
ωb + Φg
ωx1,
21
13 4
4 4
5
5 8 5
5 8
2
2
8 5
5 16 5
5 8
5
5
8 5
5
16 5
5 8
1
1
8 5
5
8 5
5 15
5
5
16 5
5 15
Matrix Ψg with the weak admissibility condition
9 3
8 3
3 3
8 3
8 3
3 3
8 3
8 3
3
3 9
3 8
3 3
3 8
3 8
3 3
3 8
3 8
3 3
3 3
8 3 3
3
3 3
3 3
3 8 3
3
8 3
3 3
3
3 3
3 3
3 3
3
3
3
3
3 8
3 3
3
3 3
3 3
8 3
8 3
3 3
8 3
8 3
3 3
3 3
3 3
3 3
3 3
3
3 3
3 3
3 3
8 3
12 8
3 3
12 8
4 4
3 8
3 3
3 3
3 3
4 4
3 8
3 3
3 3
3 3
3 3
8 3
3 8
3 3
3 8
3 8 8
3 3
3
3
3 8
3 3
3
3 8
3 8
3 3
3 8
3 3
3 3
3
3 3
3 3
3 8
3
3 3
3 3
3 8
3 8
3 3
3 8
3 3
3 3
3 3
3 8
3 3
8 8
3 3
3 3
3 8
4 4
3 8
8 8
3 3
8 8
4 4
8 8
8 3
8 3
8 3
8 3 8
3
8 3
3 3
8 3
8 3
3
8 3
7 3
3
3
9 8
9 8 8
8
1
8 8
8 8
8 3
8 8
8 3
8 8
8 8
3 8
8 8
3 8
3 3
3 3
8 3
3 3
8 3
3 8
3 3
3 8
3 3
3 3
8 3
8 8
8 3
8 8
8 8
3 7
8 8
3 7
3 8
3 3
8 3
3 3
3 3
Matrix Ψf with the standard admissibility condition
22
Building (Ψg
ω)H
∈ R512×512
from (Ψg
ω1
)H
and (Ψg
ω2
)H
∈ R384×384
.
25 5
5 8
6
6 16 6
6 16
6
6 32 7
7 32
1
1
32 6
6
16 6
6 32 6
6 16
6
6 32
11
11
32 6
6
16 6
6
32 5
5 16
6
6 32
1
1
32 6
6
32 5
5
16 6
6
16 5
5 31
25
5 8
6 16
6 16
6 32
7 32
32
16
32
16
32
6
32
6
16
6
32
5 16
6 32
32
32
16
16
31
19
32
5 32
6
32
5 31
25
8
16
16
32
32
1
32
6
16
6 32
6 16
6 32
5
32
16
32
16
32
1
32
6
32
5
16
6
16
5 31
20
32
5 32
6
32
5 31
25 7
7 8
9
9 16 10
10 16
11
11 32 18
18 32
15
15
32 17
17
16 10
10
32 8
8 16
11
11 32
19
19
32 11
11 32 14
14
32 12
12 31
17 8
8 16 11
11
16 8
8 32 10
10 16
17
17 32
14
14
32 16
16
17 6
6 16 9
9
16 10
10
16 8
8 31
20
20
32 12
12 32 13
13
32 11
11 31
25 5
5 8
6
6 16 6
6 16
6
6 32 7
7 32
1
1
32 6
6
16 6
6 32 6
6 16
6
6 32
11
11
32 6
6
16 6
6
32 5
5 16
6
6 32
1
1
32 6
6
32 5
5
16 6
6
16 5
5 31
32
32
32 10
10 32 12
12
32 10
10 31
PSfrag replacements
(Ψg
ω1
)H
(Ψg
ω2
)H
(Ψg
ω1
)H
|I×I
(Ψg
ω2
)H
|I×I
(Ψg
ω)H
∈ H(TI×I, k)
˜H
23
Complexity and storage
storage complexity
Ψg
- O(k3√
nhnH log
√
nhnH)
Ψf
- O(k3√
nhnH log2 √
nhnH)
Φg
O(k
√
nhnH) O(k2√
nhnH)
Φf
O(k2√
nhnH log2 √
nhnH) O(k3√
nhnH log
√
nhnH)
24
Prolongation of the right-hand side on the fine grid
h H, fH ∈ VH ⊂ Vh is given ⇒ to build fh.
Mappings Ψf
, Φf
can be compressed.
H h
.
=
g replacements
Φfh
ωΦfH
ω Ph←H
ω
25
Truncation of the small scales :
S(Φω) = S(Φg
ω) + S(Φf
ω) = O(k2√
nhnH log
√
nhnH).
Ω
h
HPSfrag replacements
T≥H
Th
TTh
T<H
Th
Fig. 3 – Domain decomposition tree TTh
and its parts.
26
Numeric results
27
(left) Skin problem, (right) model of a cell.
a b
c
Lipid layer
α
β
0 10.25 0.75
0.5
1
4h
[Khoromskij, Wittum 02]
28
α
ucg−˜u 2
ucg 2
ucg − ˜u ∞ ucg − ˜u A
1.0 6.6 ∗ 10−9
7.1 ∗ 10−10
2.3 ∗ 10−7
10−1
2.0 ∗ 10−8
1.4 ∗ 10−8
2.0 ∗ 10−6
10−2
6.6 ∗ 10−8
2.6 ∗ 10−7
1.7 ∗ 10−5
10−3
7.4 ∗ 10−7
1.8 ∗ 10−5
4.2 ∗ 10−4
10−4
4.2 ∗ 10−6
1.8 ∗ 10−3
1.4 ∗ 10−2
10−5
7.0 ∗ 10−5
2.3 ∗ 10−1
9.0 ∗ 10−1
Tab. 1 – Dependence of absolute and relative errors on α.
1292
dofs, εk = 10−8
, β = 1.0, residium Au − f = 10−10
,
A = 1.22 ∗ 105
.
29
ε
ucg−˜u 2
ucg 2
ucg − ˜u ∞ ucg − ˜u A
10−6
4.4 ∗ 10−1
6.67 ∗ 102
1.1 ∗ 103
10−8
7.27 ∗ 10−5
2.3 ∗ 10−1
9.0 ∗ 10−1
10−10
5.1 ∗ 10−7
1.0 ∗ 10−3
3.0 ∗ 10−3
10−12
3.9 ∗ 10−9
1.2 ∗ 10−5
2.9 ∗ 10−5
10−14
1.2 ∗ 10−11
6.6 ∗ 10−7
1.2 ∗ 10−7
10−16
1.6 ∗ 10−12
1.1 ∗ 10−8
1.7 ∗ 10−8
Tab. 2 – Dependence of absolute and relative errors on εk. 1292
dofs, α = 10−5
, β = 1.0, residium Au − f = 10−10
,
A 2 = 1.22 ∗ 105
.
ε is responsible for the H-matrix approximation accuracy.
σk ≤ εσ1.
30
dofs Φg,Φf ,h,Kb Φg,Φf ,H=0.5,Kb Φg,Φf ,H=0.125,Kb
332 2.45 ∗ 102, 4 ∗ 102 9.1 ∗ 10, 1.7 ∗ 102 2 ∗ 102, 2.8 ∗ 102
652 1.1 ∗ 103, 2.4 ∗ 103 2.9 ∗ 102, 1.2 ∗ 103 7.9 ∗ 102, 1.8 ∗ 103
1292 5 ∗ 103, 1.4 ∗ 104 6.8 ∗ 102, 8 ∗ 103 2.6 ∗ 103, 1.2 ∗ 104
2562 2.1 ∗ 104, 7.86 ∗ 104 1.4 ∗ 103, 4.1 ∗ 104 7.4 ∗ 103, 6.9 ∗ 104
Tab. 3 – Dependence of memory requirements for Φg
and Φf
on numbers of dofs and size of the interface, f = 4, nmin = 12,
u = x2
+ y2
and k = 7.
31
Storage
ε LLT (Mb) HDD(Mb) (A−1)H(Mb)
10−3 13.3 19.7 51.0
10−4 14.7 20.1 64.0
10−5 16.0 20.4 75.2
10−6 17.2 20.6 87.4
Tab. 4 – Dependence of memory requirements on ε, 1292
dofs.
32
dofs HDD pre,LLT ,cg Inv(A) pre,LLT
332 0.19 0.1=0.03+0.02+0.04 0.24 0.11=0.03+0.08
652 0.96 0.6=0.2+0.1+0.26 3.54 0.5=0.2+0.3
1292 5.6 5=2.6+0.6+1.8 65.8 4.7=2.7+2.0
2572 36.1 53=38.0+3.4+11.4 - 50=38.2+11.7
5122 218 - - -
Tab. 5 – Comparison of times for the skin problem with
α(x, y) = 10−5
, ε = εcg = 10−8
.
33
Oscillatory coefficients
global k ˜u40 − ˜uk 2 / ˜u40 2 ˜u40 − ˜uk ∞
2 7 7 ∗ 10−2
4 2 ∗ 10−2 1.8 ∗ 10−3
6 5.4 ∗ 10−4 4.5 ∗ 10−5
8 6.6 ∗ 10−5 6.3 ∗ 10−6
10 7.6 ∗ 10−6 9 ∗ 10−7
Tab. 6 – α(x, y) = 1 + 0.5sin(50x)sin(50y)
ω u40 − ˜uk 2 / u40 2 u40 − ˜uk ∞
10 1.65 ∗ 10−4 1.76 ∗ 10−5
50 1.8 ∗ 10−4 1.9 ∗ 10−5
450 7.7 ∗ 10−4 10−4
Tab. 7 – 2572
Dofs, f = 1, α(x, y) = 1 + 0.5sin(ωx)sin(ωy).
34
Ω
α
β
0.1 0.2 0.8 0.9
0.1
0.2
0.8
0.9
Fig. 4 – Domain Ω = (0, 1)2
with jumping coefficients α and β.
35
ε Au − f 2 cg ; HDD(sec)
ucg−˜u 2
˜u 2
ucg − ˜u ∞
10−4
2 ∗ 10−4
5.3 ; 8.9 6.7 ∗ 10−1
1.4
10−6
4.8 ∗ 10−7
5.0 ; 10.1 1.8 ∗ 10−4
9.5 ∗ 10−4
10−8
1.4 ∗ 10−8
5.7 ; 11.5 1.1 ∗ 10−6
1.48 ∗ 10−5
10−10
1.45 ∗ 10−8
6.7 ; 12.3 5.3 ∗ 10−7
10−5
10−12
1.2 ∗ 10−8
7.4 ; 13.5 5.2 ∗ 10−7
10−5
Tab. 8 – Dependence of the relative and absolute errors on ε,
˜u is HDD solution from ε, α = 10, β = 0.01, 1292
dofs.
36
Properties of HDD :
1. HDD computes uh := Bhfh + Chgh or uh := BHfH + Chgh.
2. Bh, BH and Ch have H-matrix format.
3. The complexities are O(k2
nh log3
nh) and
O(k2√
nhnH log3 √
nhnH).
4. The storages are O(knh log2
nh) and
O(k
√
nhnH log2 √
nhnH).
5. HDD computes functionals of the solution :
(a) Neumann data ∂uh
∂n at the boundary,
(b) mean values ω
uhdx, ω ⊂ Ω, the solution at a point,
the solution in a small subdomain ω,
(c) flux C
u−→n dx, where C is a curve in Ω.
37
6. HDD for multiple right-hand sides and multiple Dirichlet
data.
7. HDD can easily be parallelized.
8. Problems with repeated patterns.
38
Thanks for your attention !

More Related Content

What's hot

Comparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsComparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsBigMC
 
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)KINGSHUKMUKHERJEE11
 
Ba32759764
Ba32759764Ba32759764
Ba32759764IJMER
 
On πgθ-Homeomorphisms in Topological Spaces
On πgθ-Homeomorphisms in Topological SpacesOn πgθ-Homeomorphisms in Topological Spaces
On πgθ-Homeomorphisms in Topological SpacesIJMER
 
Tugasmatematikakelompok 150715235527-lva1-app6892
Tugasmatematikakelompok 150715235527-lva1-app6892Tugasmatematikakelompok 150715235527-lva1-app6892
Tugasmatematikakelompok 150715235527-lva1-app6892drayertaurus
 
Pc12 sol c04_4-2
Pc12 sol c04_4-2Pc12 sol c04_4-2
Pc12 sol c04_4-2Garden City
 
A common fixed point of integral type contraction in generalized metric spacess
A  common fixed point of integral type contraction in generalized metric spacessA  common fixed point of integral type contraction in generalized metric spacess
A common fixed point of integral type contraction in generalized metric spacessAlexander Decker
 
Fixed point result in menger space with ea property
Fixed point result in menger space with ea propertyFixed point result in menger space with ea property
Fixed point result in menger space with ea propertyAlexander Decker
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptestGarden City
 
Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otckjalili
 
Stability criterion of periodic oscillations in a (2)
Stability criterion of periodic oscillations in a (2)Stability criterion of periodic oscillations in a (2)
Stability criterion of periodic oscillations in a (2)Alexander Decker
 
Some properties of gi closed sets in topological space.docx
Some properties of gi  closed sets in topological space.docxSome properties of gi  closed sets in topological space.docx
Some properties of gi closed sets in topological space.docxAlexander Decker
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Sebastian De Haro
 
Tugasmatematikakelompok
TugasmatematikakelompokTugasmatematikakelompok
Tugasmatematikakelompokgundul28
 
Tugas matematika kelompok
Tugas matematika kelompokTugas matematika kelompok
Tugas matematika kelompokachmadtrybuana
 
Pgrw-closed map in a Topological Space
Pgrw-closed map in a Topological SpacePgrw-closed map in a Topological Space
Pgrw-closed map in a Topological SpaceIOSRJM
 

What's hot (19)

Comparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering modelsComparing estimation algorithms for block clustering models
Comparing estimation algorithms for block clustering models
 
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)Mac331 complex analysis_mfa_week6_16-10-20 (1)
Mac331 complex analysis_mfa_week6_16-10-20 (1)
 
Lectures4 8
Lectures4 8Lectures4 8
Lectures4 8
 
Ba32759764
Ba32759764Ba32759764
Ba32759764
 
On πgθ-Homeomorphisms in Topological Spaces
On πgθ-Homeomorphisms in Topological SpacesOn πgθ-Homeomorphisms in Topological Spaces
On πgθ-Homeomorphisms in Topological Spaces
 
Tugasmatematikakelompok 150715235527-lva1-app6892
Tugasmatematikakelompok 150715235527-lva1-app6892Tugasmatematikakelompok 150715235527-lva1-app6892
Tugasmatematikakelompok 150715235527-lva1-app6892
 
Pc12 sol c04_4-2
Pc12 sol c04_4-2Pc12 sol c04_4-2
Pc12 sol c04_4-2
 
A common fixed point of integral type contraction in generalized metric spacess
A  common fixed point of integral type contraction in generalized metric spacessA  common fixed point of integral type contraction in generalized metric spacess
A common fixed point of integral type contraction in generalized metric spacess
 
Fixed point result in menger space with ea property
Fixed point result in menger space with ea propertyFixed point result in menger space with ea property
Fixed point result in menger space with ea property
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptest
 
Linear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otcLinear algebra-solutions-manual-kuttler-1-30-11-otc
Linear algebra-solutions-manual-kuttler-1-30-11-otc
 
Stability criterion of periodic oscillations in a (2)
Stability criterion of periodic oscillations in a (2)Stability criterion of periodic oscillations in a (2)
Stability criterion of periodic oscillations in a (2)
 
Some properties of gi closed sets in topological space.docx
Some properties of gi  closed sets in topological space.docxSome properties of gi  closed sets in topological space.docx
Some properties of gi closed sets in topological space.docx
 
Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3Instantons and Chern-Simons Terms in AdS4/CFT3
Instantons and Chern-Simons Terms in AdS4/CFT3
 
Tugasmatematikakelompok
TugasmatematikakelompokTugasmatematikakelompok
Tugasmatematikakelompok
 
Digital text
Digital  textDigital  text
Digital text
 
Tugas matematika kelompok
Tugas matematika kelompokTugas matematika kelompok
Tugas matematika kelompok
 
Pgrw-closed map in a Topological Space
Pgrw-closed map in a Topological SpacePgrw-closed map in a Topological Space
Pgrw-closed map in a Topological Space
 
0210 ch 2 day 10
0210 ch 2 day 100210 ch 2 day 10
0210 ch 2 day 10
 

Viewers also liked

My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005Alexander Litvinenko
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 
2012 금융수학 겨울학교 - FM 210 Mhz
2012 금융수학 겨울학교 - FM 210 Mhz2012 금융수학 겨울학교 - FM 210 Mhz
2012 금융수학 겨울학교 - FM 210 MhzKyunghoon Kim
 
Connection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problemsConnection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problemsAlexander Litvinenko
 
Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications Alexander Litvinenko
 
Application of hierarchical matrices for partial inverse
Application of hierarchical matrices for partial inverseApplication of hierarchical matrices for partial inverse
Application of hierarchical matrices for partial inverseAlexander Litvinenko
 
Tensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsTensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsAlexander Litvinenko
 
A small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesA small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesAlexander Litvinenko
 
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Alexander Litvinenko
 
Litvinenko low-rank kriging +FFT poster
Litvinenko low-rank kriging +FFT  posterLitvinenko low-rank kriging +FFT  poster
Litvinenko low-rank kriging +FFT posterAlexander Litvinenko
 
Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsAlexander Litvinenko
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
Hierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesHierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesAlexander Litvinenko
 
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Alexander Litvinenko
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Alexander Litvinenko
 
Scalable hierarchical algorithms for stochastic PDEs and UQ
Scalable hierarchical algorithms for stochastic PDEs and UQScalable hierarchical algorithms for stochastic PDEs and UQ
Scalable hierarchical algorithms for stochastic PDEs and UQAlexander Litvinenko
 

Viewers also liked (20)

My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
2012 금융수학 겨울학교 - FM 210 Mhz
2012 금융수학 겨울학교 - FM 210 Mhz2012 금융수학 겨울학교 - FM 210 Mhz
2012 금융수학 겨울학교 - FM 210 Mhz
 
Connection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problemsConnection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problems
 
Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications
 
Application of hierarchical matrices for partial inverse
Application of hierarchical matrices for partial inverseApplication of hierarchical matrices for partial inverse
Application of hierarchical matrices for partial inverse
 
Tensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsTensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEs
 
A small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesA small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleagues
 
My PhD on 4 pages
My PhD on 4 pagesMy PhD on 4 pages
My PhD on 4 pages
 
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
 
add_2_diplom_main
add_2_diplom_mainadd_2_diplom_main
add_2_diplom_main
 
Litvinenko low-rank kriging +FFT poster
Litvinenko low-rank kriging +FFT  posterLitvinenko low-rank kriging +FFT  poster
Litvinenko low-rank kriging +FFT poster
 
Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problems
 
RS
RSRS
RS
 
Litvinenko nlbu2016
Litvinenko nlbu2016Litvinenko nlbu2016
Litvinenko nlbu2016
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Hierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesHierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matrices
 
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
 
Scalable hierarchical algorithms for stochastic PDEs and UQ
Scalable hierarchical algorithms for stochastic PDEs and UQScalable hierarchical algorithms for stochastic PDEs and UQ
Scalable hierarchical algorithms for stochastic PDEs and UQ
 

Similar to Application H-matrices for solving PDEs with multi-scale coefficients, jumping and strongly oscillatory coefficients

Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Daisuke Yoneoka
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Alexander Litvinenko
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceAlexander Decker
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionAlexander Litvinenko
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...Alexander Decker
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...Alexander Decker
 
New Insights and Perspectives on the Natural Gradient Method
New Insights and Perspectives on the Natural Gradient MethodNew Insights and Perspectives on the Natural Gradient Method
New Insights and Perspectives on the Natural Gradient MethodYoonho Lee
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 
Tensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationTensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationAlexander Litvinenko
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon informationFrank Nielsen
 
Group theory notes
Group theory notesGroup theory notes
Group theory notesmkumaresan
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Alexander Litvinenko
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyFrank Nielsen
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Pierre Jacob
 

Similar to Application H-matrices for solving PDEs with multi-scale coefficients, jumping and strongly oscillatory coefficients (20)

Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9Murphy: Machine learning A probabilistic perspective: Ch.9
Murphy: Machine learning A probabilistic perspective: Ch.9
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
QMC: Operator Splitting Workshop, Perturbed (accelerated) Proximal-Gradient A...
 
Slides
SlidesSlides
Slides
 
Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
New Insights and Perspectives on the Natural Gradient Method
New Insights and Perspectives on the Natural Gradient MethodNew Insights and Perspectives on the Natural Gradient Method
New Insights and Perspectives on the Natural Gradient Method
 
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
MUMS Opening Workshop - An Overview of Reduced-Order Models and Emulators (ED...
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Tensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantificationTensor Train data format for uncertainty quantification
Tensor Train data format for uncertainty quantification
 
The dual geometry of Shannon information
The dual geometry of Shannon informationThe dual geometry of Shannon information
The dual geometry of Shannon information
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...Estimation of the score vector and observed information matrix in intractable...
Estimation of the score vector and observed information matrix in intractable...
 

More from Alexander Litvinenko

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdfAlexander Litvinenko
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityAlexander Litvinenko
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfAlexander Litvinenko
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfAlexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Alexander Litvinenko
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Alexander Litvinenko
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Alexander Litvinenko
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowAlexander Litvinenko
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowAlexander Litvinenko
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsAlexander Litvinenko
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleAlexander Litvinenko
 

More from Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 

Recently uploaded

An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 

Recently uploaded (20)

An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 

Application H-matrices for solving PDEs with multi-scale coefficients, jumping and strongly oscillatory coefficients

  • 1. 1 Application of H-matrices for solving multiscale problems Litvinenko Alexander, Dissertation work Max-Planck-Institut f¨ur Mathematik in den Naturwissenschaften, Leipzig, 10 August, 2006. www.hlib.org www.mis.mpg.de
  • 2. 2 H-matrices Integral Equations, BEM3D Parallel Impl. of H-matrices Helmholz Equation Convection- Diffusion Problems Multigrid+ H-matrices H-Matrix Approximation of sign(A), exp(A), etc Aposteriory Err. Est.+ efficient H-matrix update Lyapunov, Riccati Equations DD methods Schur Complement Methods Hierarchical Domain Decomposition for Multiscale Problems * 3D Skin problem* Multidimensional Problems Fig. 1 – Main directions of applications H-matrices. The sym- bol refers to the projects in which I took part.
  • 3. 3 Contents 1. Examples of multiscale problems 2. Multiscale methods 3. HDD method 4. Hierarchical matrices 5. Application of H-matrices to HDD 6. Complexity and storage of HDD 7. Modifications of HDD – Two scales – Truncation of the small scales 8. Numerical results
  • 4. 4 Example of multiscale problems (a)macroscopic scale (b)microscopic scale Different scales in a porous medium.[Bastian 99]. 10 s -6 10 s -3 10 s 0 10 s 3 10 m -12 10 m -9 10 m -6 10 m -3 Atom Protein Cell Tissue molecular events (ion channel gating) diffusion cell signalling mitosis Example of time and length scales for modeling tumor growth.[Alarcon, Byrne, Maini 05]
  • 5. 5 0,6 0,2 -0,6 0,4 0 x 621 -0,4 -0,2 3 4 50 Fig. 2 – Fine properties of the solution are out of interest.
  • 6. 6 Multiscale methods The equation is : − (a(x) u) = f in Ω, u = 0 on ∂Ω. (1) Homegenisation [Babuska 75], [Bensoussan, Lions, Papanicolau 78], [Jikov, Kozlov, Oleinik 94] Solution is uε (x) = u0(x) + εu1(x, x ε ) + O(ε2 ). u0 is the solution of the homogenized equation a∗ u0 = f in Ω, u0 = 0 on ∂Ω, (2) Resonance effect in MsFEM [T.Hou, X. Wu 97] u − uh 0,Ω = O(h2 + ε/h). (3) Heterogeneous multiscale method [Weinan E, B.Engquist 03]
  • 7. 7 Problem setup The Poisson problem : find u ∈ H1 (Ω) s.t. :    1≤i,j≤2 ∂ ∂xi ai,j(x) ∂ ∂xj u = f in Ω u = g on Γ (4) where ai,j ∈ L∞ (Ω) such A(x) = (ai,j)i,j=1,...,d satisfies 0 < λ ≤ λmin(A(x)) ≤ λmax(A(x)) ≤ λ , ∀x ∈ Ω. ⇒ Oscillatory or jumping coefficients are allowed.
  • 8. 8 The idea of HDD Find operators : Bh, Ch s.t. uh = Bhfh + Chgh, (5) where fh is the rhs and gh the Dirichlet-boundary values. Composed matrix (Bh, Ch) is the ’inverse’ of the stiffness matrix Ah. Complete inverse (Bh, Ch) is too much of information. We might be interested only in few functionals of the solution. Example : we want to know uh(fh, gh) only for fh in a smaller space VH ⊂ Vh.
  • 9. 9 Domain decomposition tree TTh FE discretisation : triangulation Th, Ω = ∪t∈Th t. 1 2 3 4 5 6 7 9 10 11 12 13 14 15 8 5 6 7 11 12 13 14 15 8 1 2 3 4 5 6 7 9 10 3 4 1 9 10 ...... 5 6 11 12 13 14 15 6 7 11 15 8 ...... 2 6 2 6 • Ω is the root of the tree, • TTh is a binary tree, • if ω ∈ TTh has two sons ω1, ω2 ∈ TTh : ω = ω1 ∪ ω2 and γω = ∂ω1 ∩ ∂ω2, • ω ∈ TTh is a leaf, if and only if ω ∈ Th.
  • 10. 10 Notations Let ω ∈ TTh , ω = ω1 ∪ ω2. Γω,1 := ∂ω ∩ ω1, Γω,2 := ∂ω ∩ ω2 and γω := ∂ω1∂ω = ∂ω2∂ω ω 1 ω 2 ωPSfrag replacements ∂ γω Γω,1 Γω,2 Γω I = I(Ω) = set of all vertices of ¯Ω. I(ω) = {i ∈ I ; xi ∈ ω}.
  • 11. 11 Discretisation Let ω ∈ TTh . Denote dω := (fi)i∈I(ω) , (gi)i∈I(∂ω) . Define the following discrete problem in the variational form :    aω(uh, bj) = (fω, bj)L2(ω) ∀ j ∈ I( ◦ ω), uh(xj) = gj ∀ j ∈ I(∂ω). (6) a(bi, bj) = Ω α(x)( bi, bj)dx, (f, bj) = suppbj fbjdx.
  • 12. 12 1. Mapping Ψω Ψω(d) = (Ψω(dω))i∈I(∂ω) with (Ψω(dω))i = aω(uh, bi) − (fω, bi)L2(ω) , Ψωdω = Ψf ωfω + Ψg ωgω. 2. Mapping Φω (Φω(dω))i := uh(xi) , ∀i ∈ I(γω). Hence, Φω(dω) is the trace of uh on γω. Goal of HDD is to build the set of mappings : {Φ0, Φ1, Φ2, ..., Φn} which than produce sequentially the solution on {γω0 , γω1 , γω2 ..., γωn }. ω ω ω 1 2 xj γ ω xj
  • 13. 13 Construction of the mappings Ψω and Φω Let ω1 and ω2 be two sons of ω ∈ TTh . Let dω1 and dω2 the data associated to ω1 and ω2 s.t. : • (consistency conditions for the Dirichlet data) g1,i = g2,i , ∀i ∈ I(ω1) ∩ I(ω2), (7) • (consistency conditions for the right-hand side) f1,i = f2,i , ∀i ∈ I(ω1) ∩ I(ω2). (8) Let uω1 and uω2 be the local FE solutions of the problem (6) for the data dω1 , dω2 .
  • 14. 14 ω ω ω 1 2 xj γ ω xj If uω1 , uω2 satisfy to the Neu- mann condition γ Ψω1 (dω1 ) + γ Ψω2 (dω2 ) = 0, Then, uω defined by uω(xi) :=    uω1 (xi) for i ∈ I(ω1) uω2 (xi) for i ∈ I(ω2) (9) is solution of (6) for the data dω := (fω, gω) given by fω :=    f1,i for i ∈ I(ω1) f2,i for i ∈ I(ω2) gω :=    g1,i for i ∈ I(∂ω1) g2,i for i ∈ I(∂ω2)
  • 15. 15 γ Ψγ ω1 + γ Ψγ ω2 gγ = −Ψf ω1 f1 − ΨΓ ω1 g1,Γ − Ψf ω2 f2 − ΨΓ ω2 g2,Γ. We set M := −( γ Ψγ ω1 + γ Ψγ ω2 ), compute M−1 and solve for gγ : gγ = M−1 (Ψf ω1 f1 + ΨΓ ω1 g1,Γ + Ψf ω2 f2 + ΨΓ ω2 g2,Γ). For given mappings Ψω1 , Ψω2 , defined on the sons ω1, ω2, we can compute Φω and Ψω for the father ω. This recursion process ends as soon as ω = Ω.
  • 16. 16 Hierarchical Process 1. Leaves to Root 1. Compute Ψω on all leaves (3 × 3 matrices). 2. Recursion from the leaves to the root : (a) Compute and store Φω and Ψω from Ψω1 , Ψω2 . (b) Delete Ψω1 , Ψω2 . 2. Root to Leaves 1. Given dω = (fω, gω), compute the solution uh on the interior boundary γω by Φω (dω). 2. Build the data dω1 = (fω1 , gω1 ), dω2 = (fω2 , gω2 ) from dω = (fω, gω) and gγ := Φω (dω).
  • 17. 17 Rank-k matrices 1. R ∈ Rn×m , R = ABT , where A ∈ Rn×k , B ∈ Rm×k , k min(n, m). The storage A and B is k(n + m) instead of n · m. = A B T * R k k n m n m H-matrices (Hackbusch ’98) 2. Grid → cluster tree (TI) → blockclus- ter tree (TI×J ) + admissibility condition → admissible partitioning → H-matrix → H-matrix arithmetics . 4 2 2 2 3 3 3 4 2 2 2 4 2 2 2 4
  • 18. 18 3. Let I := I(Ω), t, s ∈ TI, (t × s) ∈ TI×I. Admissibility : max{diam(t), diam(s)} ≤ η · dist(t, s). if(adm=true) then M|t×s is a rank-k matrix block if(adm=false) then divide M|t×s further or define as a dense matrix block. Q Qt S dist H= t s ... I I I I I I I I I I I 1 1 2 2 11 12 21 22 I11 I12 I21 I22
  • 19. 19 Definition 0.1 H(TI×J , k) := {M ∈ RI×J | rank(M |t×s) ≤ k for all admissible leaves t × s of TI×J }. n := max(|I|, |J|, |K|). Operation Sequential Compl. Parallel Complexity (R.Kriemann 2005) building(M) N = O(n log n) N p + O(|V (T)L(T)|) storage(M) N = O(kn log n) N Mx N = O(kn log n) N p αM ⊕ βM N = O(k2 n log n) N p αM M ⊕ βM N = O(k2 n log2 n) N p + O(Csp(T)|V (T)|) M−1 N = O(k2 n log2 n) N p + O(nn2 min) LU N = O(k2 n log2 n) N H-LU N = O(k2 n log2 n) N p + O(k2 n log2 n n1/d )
  • 20. 20 Application of H-matrices to HDD Let ω = ω1 ∪ ω2, γω = ∂ω1∂ω. Suppose Ψg ω1 , Ψg ω2 → Ψg ω =: A and Ψf ω1 , Ψf ω2 → Ψf ω =: F.   A11 A12 A21 A22     x1 x2   =   F1 F2   b. Eliminate internal nodal points :   A11 − A12A−1 22 A21 0 A21 A22     x1 x2   =   F1 − A12A−1 22 F2 F2   b. Ψg ωx1 := (A11 − A12A−1 22 A21)x1 = (F1 − A12A−1 22 F2)b = Ψf ωb x2 = A−1 22 F2b − A−1 22 A21x1 =: Φf ωb + Φg ωx1,
  • 21. 21 13 4 4 4 5 5 8 5 5 8 2 2 8 5 5 16 5 5 8 5 5 8 5 5 16 5 5 8 1 1 8 5 5 8 5 5 15 5 5 16 5 5 15 Matrix Ψg with the weak admissibility condition 9 3 8 3 3 3 8 3 8 3 3 3 8 3 8 3 3 3 9 3 8 3 3 3 8 3 8 3 3 3 8 3 8 3 3 3 3 8 3 3 3 3 3 3 3 3 8 3 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 8 3 3 3 3 3 3 3 8 3 8 3 3 3 8 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 8 3 12 8 3 3 12 8 4 4 3 8 3 3 3 3 3 3 4 4 3 8 3 3 3 3 3 3 3 3 8 3 3 8 3 3 3 8 3 8 8 3 3 3 3 3 8 3 3 3 3 8 3 8 3 3 3 8 3 3 3 3 3 3 3 3 3 3 8 3 3 3 3 3 3 8 3 8 3 3 3 8 3 3 3 3 3 3 3 8 3 3 8 8 3 3 3 3 3 8 4 4 3 8 8 8 3 3 8 8 4 4 8 8 8 3 8 3 8 3 8 3 8 3 8 3 3 3 8 3 8 3 3 8 3 7 3 3 3 9 8 9 8 8 8 1 8 8 8 8 8 3 8 8 8 3 8 8 8 8 3 8 8 8 3 8 3 3 3 3 8 3 3 3 8 3 3 8 3 3 3 8 3 3 3 3 8 3 8 8 8 3 8 8 8 8 3 7 8 8 3 7 3 8 3 3 8 3 3 3 3 3 Matrix Ψf with the standard admissibility condition
  • 22. 22 Building (Ψg ω)H ∈ R512×512 from (Ψg ω1 )H and (Ψg ω2 )H ∈ R384×384 . 25 5 5 8 6 6 16 6 6 16 6 6 32 7 7 32 1 1 32 6 6 16 6 6 32 6 6 16 6 6 32 11 11 32 6 6 16 6 6 32 5 5 16 6 6 32 1 1 32 6 6 32 5 5 16 6 6 16 5 5 31 25 5 8 6 16 6 16 6 32 7 32 32 16 32 16 32 6 32 6 16 6 32 5 16 6 32 32 32 16 16 31 19 32 5 32 6 32 5 31 25 8 16 16 32 32 1 32 6 16 6 32 6 16 6 32 5 32 16 32 16 32 1 32 6 32 5 16 6 16 5 31 20 32 5 32 6 32 5 31 25 7 7 8 9 9 16 10 10 16 11 11 32 18 18 32 15 15 32 17 17 16 10 10 32 8 8 16 11 11 32 19 19 32 11 11 32 14 14 32 12 12 31 17 8 8 16 11 11 16 8 8 32 10 10 16 17 17 32 14 14 32 16 16 17 6 6 16 9 9 16 10 10 16 8 8 31 20 20 32 12 12 32 13 13 32 11 11 31 25 5 5 8 6 6 16 6 6 16 6 6 32 7 7 32 1 1 32 6 6 16 6 6 32 6 6 16 6 6 32 11 11 32 6 6 16 6 6 32 5 5 16 6 6 32 1 1 32 6 6 32 5 5 16 6 6 16 5 5 31 32 32 32 10 10 32 12 12 32 10 10 31 PSfrag replacements (Ψg ω1 )H (Ψg ω2 )H (Ψg ω1 )H |I×I (Ψg ω2 )H |I×I (Ψg ω)H ∈ H(TI×I, k) ˜H
  • 23. 23 Complexity and storage storage complexity Ψg - O(k3√ nhnH log √ nhnH) Ψf - O(k3√ nhnH log2 √ nhnH) Φg O(k √ nhnH) O(k2√ nhnH) Φf O(k2√ nhnH log2 √ nhnH) O(k3√ nhnH log √ nhnH)
  • 24. 24 Prolongation of the right-hand side on the fine grid h H, fH ∈ VH ⊂ Vh is given ⇒ to build fh. Mappings Ψf , Φf can be compressed. H h . = g replacements Φfh ωΦfH ω Ph←H ω
  • 25. 25 Truncation of the small scales : S(Φω) = S(Φg ω) + S(Φf ω) = O(k2√ nhnH log √ nhnH). Ω h HPSfrag replacements T≥H Th TTh T<H Th Fig. 3 – Domain decomposition tree TTh and its parts.
  • 27. 27 (left) Skin problem, (right) model of a cell. a b c Lipid layer α β 0 10.25 0.75 0.5 1 4h [Khoromskij, Wittum 02]
  • 28. 28 α ucg−˜u 2 ucg 2 ucg − ˜u ∞ ucg − ˜u A 1.0 6.6 ∗ 10−9 7.1 ∗ 10−10 2.3 ∗ 10−7 10−1 2.0 ∗ 10−8 1.4 ∗ 10−8 2.0 ∗ 10−6 10−2 6.6 ∗ 10−8 2.6 ∗ 10−7 1.7 ∗ 10−5 10−3 7.4 ∗ 10−7 1.8 ∗ 10−5 4.2 ∗ 10−4 10−4 4.2 ∗ 10−6 1.8 ∗ 10−3 1.4 ∗ 10−2 10−5 7.0 ∗ 10−5 2.3 ∗ 10−1 9.0 ∗ 10−1 Tab. 1 – Dependence of absolute and relative errors on α. 1292 dofs, εk = 10−8 , β = 1.0, residium Au − f = 10−10 , A = 1.22 ∗ 105 .
  • 29. 29 ε ucg−˜u 2 ucg 2 ucg − ˜u ∞ ucg − ˜u A 10−6 4.4 ∗ 10−1 6.67 ∗ 102 1.1 ∗ 103 10−8 7.27 ∗ 10−5 2.3 ∗ 10−1 9.0 ∗ 10−1 10−10 5.1 ∗ 10−7 1.0 ∗ 10−3 3.0 ∗ 10−3 10−12 3.9 ∗ 10−9 1.2 ∗ 10−5 2.9 ∗ 10−5 10−14 1.2 ∗ 10−11 6.6 ∗ 10−7 1.2 ∗ 10−7 10−16 1.6 ∗ 10−12 1.1 ∗ 10−8 1.7 ∗ 10−8 Tab. 2 – Dependence of absolute and relative errors on εk. 1292 dofs, α = 10−5 , β = 1.0, residium Au − f = 10−10 , A 2 = 1.22 ∗ 105 . ε is responsible for the H-matrix approximation accuracy. σk ≤ εσ1.
  • 30. 30 dofs Φg,Φf ,h,Kb Φg,Φf ,H=0.5,Kb Φg,Φf ,H=0.125,Kb 332 2.45 ∗ 102, 4 ∗ 102 9.1 ∗ 10, 1.7 ∗ 102 2 ∗ 102, 2.8 ∗ 102 652 1.1 ∗ 103, 2.4 ∗ 103 2.9 ∗ 102, 1.2 ∗ 103 7.9 ∗ 102, 1.8 ∗ 103 1292 5 ∗ 103, 1.4 ∗ 104 6.8 ∗ 102, 8 ∗ 103 2.6 ∗ 103, 1.2 ∗ 104 2562 2.1 ∗ 104, 7.86 ∗ 104 1.4 ∗ 103, 4.1 ∗ 104 7.4 ∗ 103, 6.9 ∗ 104 Tab. 3 – Dependence of memory requirements for Φg and Φf on numbers of dofs and size of the interface, f = 4, nmin = 12, u = x2 + y2 and k = 7.
  • 31. 31 Storage ε LLT (Mb) HDD(Mb) (A−1)H(Mb) 10−3 13.3 19.7 51.0 10−4 14.7 20.1 64.0 10−5 16.0 20.4 75.2 10−6 17.2 20.6 87.4 Tab. 4 – Dependence of memory requirements on ε, 1292 dofs.
  • 32. 32 dofs HDD pre,LLT ,cg Inv(A) pre,LLT 332 0.19 0.1=0.03+0.02+0.04 0.24 0.11=0.03+0.08 652 0.96 0.6=0.2+0.1+0.26 3.54 0.5=0.2+0.3 1292 5.6 5=2.6+0.6+1.8 65.8 4.7=2.7+2.0 2572 36.1 53=38.0+3.4+11.4 - 50=38.2+11.7 5122 218 - - - Tab. 5 – Comparison of times for the skin problem with α(x, y) = 10−5 , ε = εcg = 10−8 .
  • 33. 33 Oscillatory coefficients global k ˜u40 − ˜uk 2 / ˜u40 2 ˜u40 − ˜uk ∞ 2 7 7 ∗ 10−2 4 2 ∗ 10−2 1.8 ∗ 10−3 6 5.4 ∗ 10−4 4.5 ∗ 10−5 8 6.6 ∗ 10−5 6.3 ∗ 10−6 10 7.6 ∗ 10−6 9 ∗ 10−7 Tab. 6 – α(x, y) = 1 + 0.5sin(50x)sin(50y) ω u40 − ˜uk 2 / u40 2 u40 − ˜uk ∞ 10 1.65 ∗ 10−4 1.76 ∗ 10−5 50 1.8 ∗ 10−4 1.9 ∗ 10−5 450 7.7 ∗ 10−4 10−4 Tab. 7 – 2572 Dofs, f = 1, α(x, y) = 1 + 0.5sin(ωx)sin(ωy).
  • 34. 34 Ω α β 0.1 0.2 0.8 0.9 0.1 0.2 0.8 0.9 Fig. 4 – Domain Ω = (0, 1)2 with jumping coefficients α and β.
  • 35. 35 ε Au − f 2 cg ; HDD(sec) ucg−˜u 2 ˜u 2 ucg − ˜u ∞ 10−4 2 ∗ 10−4 5.3 ; 8.9 6.7 ∗ 10−1 1.4 10−6 4.8 ∗ 10−7 5.0 ; 10.1 1.8 ∗ 10−4 9.5 ∗ 10−4 10−8 1.4 ∗ 10−8 5.7 ; 11.5 1.1 ∗ 10−6 1.48 ∗ 10−5 10−10 1.45 ∗ 10−8 6.7 ; 12.3 5.3 ∗ 10−7 10−5 10−12 1.2 ∗ 10−8 7.4 ; 13.5 5.2 ∗ 10−7 10−5 Tab. 8 – Dependence of the relative and absolute errors on ε, ˜u is HDD solution from ε, α = 10, β = 0.01, 1292 dofs.
  • 36. 36 Properties of HDD : 1. HDD computes uh := Bhfh + Chgh or uh := BHfH + Chgh. 2. Bh, BH and Ch have H-matrix format. 3. The complexities are O(k2 nh log3 nh) and O(k2√ nhnH log3 √ nhnH). 4. The storages are O(knh log2 nh) and O(k √ nhnH log2 √ nhnH). 5. HDD computes functionals of the solution : (a) Neumann data ∂uh ∂n at the boundary, (b) mean values ω uhdx, ω ⊂ Ω, the solution at a point, the solution in a small subdomain ω, (c) flux C u−→n dx, where C is a curve in Ω.
  • 37. 37 6. HDD for multiple right-hand sides and multiple Dirichlet data. 7. HDD can easily be parallelized. 8. Problems with repeated patterns.
  • 38. 38 Thanks for your attention !