SlideShare a Scribd company logo
1 of 28
Download to read offline
1 Hydrostatics
For all relevant problems Kkg/J287R = , kg/N81.9g =
1/1 [ ]Pa?pp 0A =−
1/2 [ ]Pa?pp 21 =−
1/3 Section 1-2: 3
12 m/kg3.1=ρ
Section 3-4: 3
34 m/kg1.1=ρ
[ ]Pa?pp 14 =−
1/4 Pa10p 5
0 ≈ (for the calculation of ρ )
Outside (air): C0T1
o
=
In chimney (smoke):



=
≈
C250T
mmHg760p
2
2
o
[ ]Pa?pp 21 =−
Hydrostatics 4
1/5 The figure shows a vertical section of a gas pipe. At the lower tap
there is an overpressure of 500 Pa. How big is the overpressure at the
upper tap?
There is no flow in the pipe.
3
gas
3
air
m/kg7.0
m/kg2.1
=ρ
=ρ
1/6
kgK/J288R
air
m/kg2.1
m/N10p
0z 3
0
25
0
=







=ρ
=
=
a.) [ ]K?T0 =
b.) [ ]Pa?pA = ,
if the temperature is constant for m2000z0 <≤ .
1/7 25
A m/N105.0p ⋅=
air
m/kg25.1
m/N10p
0z 3
0
25
0








=ρ
=
=
[ ]m?zA = if the temperature is constant for Azz0 <≤ .
1/8 The vehicle is filled with oil.
[ ]Pa?pp
s/m3a
m/kg950
0A
2
3
oil
=−
=
=ρ
Hydrostatics 5
1/9 The vehicle is filled with oil.
[ ]2
0A
3
oil
s/m?a
Pa0pp
m/kg950
=
=−
=ρ
1/10 The tank wagon shown in the figure is taking a
curve with a centripetal acceleration of 2
s/m3a = .
The tank is filled with water.
a.) How high will climb the water surface on the
A-B side?
b.) How big force will affect the A-B side,
when the vehicle is 1.6 m long?
1/11 Where are the both surfaces of the liquid
situated if the pipe accelerates to the left
with an acceleration of
2
g
a = ?
1/12 min/11000n =
[ ]Pa?pp
m/kg1000
0A
3
water
=−
=ρ
Hydrostatics 6
1/13 The pipe is filled with water.
Pa10p 5
0 =
How high angular velocity is needed to
a.) reach Pa108.0p 5
A ⋅= ?
b.) empty the A-B section and have pressure of
Pa108.0 5
⋅ in it?
1/14 Effect of gravity is negligible.
?pp
min/16000n
m/kg800
0A
3
=−
=
=ρ
1/15 Effect of gravity is negligible.
[ ]Pa?pp
m/kg800
m/kg1000
s/1100
0A
3
oil
3
water
=−
=ρ
=ρ
=ω
1/16 What area does an ice-floe have, which can carry a person weighing 736 N? The thickness
of the ice-floe is 10 cm and its density is 900 kg/m3
?
1/17 The rope is weightless.
N200G
mm300r
m/kg1000
m/kg2300
Sphere
Sphere
3
Water
3
Cube
=
=
=ρ
=ρ
[ ]2
m/s?a =
surface at
standstill
Kinematics 9
2/5 Calculate the circulation along the dashed line.
2
r
2
v =
[ ]s/m? 2
=Γ
2/6
[ ] [ ]2
Akonv
1
s/m?a
.const
s/m20v
=
=ρ
=
3 Bernoulli Equation
3/1 Pa103p 5
t ⋅=
[ ]s/m?v
Pa10p 5
0
=
=
3/2 s/m10v =
[ ]Pa?pp
m/kg10
s/m4u
0A
33
=−
=ρ
=
3/3 Friction losses are negligible.
[ ]s/m?v
m/kg2.1
2
3
=
=ρ
3/4 Steady flow with
min/m1.0q 3
V = .
[ ]m?h =
Bernoulli Equation 11
3/5 Pa106.1p 5
1 ⋅=
[ ]s/m?q
Pa102.1p
3
V
5
2
=
⋅=
3/6
2
sm12a =
[ ]s/m?q
Pa105.0p
Pa10p
3
V
5
t
5
0
=
⋅=
=
3/7 s/125=ω
[ ]s/m?w =
(w: relative velocity)
3/8 s/m3w =
[ ]s/1?=ω
(w: relative velocity)
Bernoulli Equation 12
3/9 25
0 m/N10p =
[ ]2
A
A
A
s/m?a
s/m4v
0p
=
=
=
3/10 Pa10p 5
0 =
Pa109.0p 5
1 ⋅=
Friction losses are
negligible.
a.) How big is the starting
acceleration ’a’ when
opening the tap?
b.) [ ]m?H = in case of steady flow?
3/11 How big is the starting acceleration
in point B when opening the tap?
3/12 How big is the starting acceleration at the
end of the pipe?
0v
)reoverpressu(m/N102p 24
t
=
⋅=
Bernoulli Equation 13
3/13 s/m1v =
2
s/m1a =
Friction is negligible. How big
force is needed to push the
piston?
3/14 h/km72u =
s/m4v =
Friction is negligible.
a.) [ ]s/m?q 3
V =
b.) How big power is needed to move the pipe?
3/15 3
alc m/kg800=ρ
[ ]s/m?v
m/kg2.1 3
air
=
=ρ
3/16 The inner diameter of an orifice flowmeter is mm200d = . Flow coefficient 7.0=α
Compressibility factor 1=ε . The measured difference pressure is 2
m/N600p =∆ .
3
m/kg3.1=ρ .
[ ]s/m?q 3
V =
3/17 Width of the flow is 1 m.
a.) Construct the velocity distribution diagram
along the vertical line over the outlet.
b.) Calculate the flow rate [ ]s/mq 3
V !
Bernoulli Equation 14
3/18 Irrotational, horizontal, two-dimensional flow.
s/m5v
m8.0r
m5.0r
0
2
1
=
=
=
a.) What kind of velocity distribution has
developed in the arc?
b.) [ ]Pa?pp BA =−
c.) ?
r
r
f
2
v
pp
1
2
2
0
BA






=
ρ
−
(Draw a diagram!)
RESULTS
1 Hydrostatics
1/1 2
0 6200 m/NppA =−
1/2 2
21 m/N12360pp =−
1/3 2
14 m/N392pp =−
1/4 2
21 m/N486pp =−
1/5 The overpressure at the upper
tap is 600 Pa.
1/6
a.) K
R
p
T 290
0
0
0 =
ρ
=
b.) g
p
p
g
dz
dp
0
0
ρ−=ρ−=
A
p
p
z
p
g
p
dpA
0
0
0
ρ
−=∫
A
A
z
p
g
p
p
ln
0
0
0
ρ
−=
25
107880 m/N.pA ⋅=
1/7 m5650h =
Results 28
1/8 23
0 10237 m/N.ppA ⋅=−
1/9 2
452 s/m.a =
1/10 a) m422.0h =
b) NF 1400=
1/11 The surface at the left side is situated at the left lower corner, the other surface in the right
vertical section at a height of 100 mm.
1/12 Volumes are the same in standstill and rotation:
1
2
0
2
2
1
zrzR π=π
Points of equivalent potential:
2
12
22
1
2
0
2 ω
==
ω
−⋅
gz
r;
r
zg
After substitution:
m.
g
z
Rzz
gz
zR 2360
2
2
1 0
112
1
0
2
=ω=
ω
=
2
22
0 14300
2
m/N
R
zgpp AA =




 ω
−ρ−=−
1/13 After writing the equation
const
r
gzp +




 ω
−ρ−=
2
22
.
for the both known points (surfaces in the left and the right section), the angular velocity can
be calculated.
a.) s/. 1421=ω
b.) s/. 1324=ω
1/14 Equation const
r
gzp +




 ω
−ρ−=
2
22
written for the surface of the fluid:
2
22
0
0
ω
ρ−=
r
p.const
[ ] 252
0
2
A
2
0A m/N107.19rr
2
pp ⋅=−
ω
ρ=−
Results 31
[ ] 2
5
42
Aconvective
5
4
1
2
1
convective
3
2
11
s/m132
8.0
05.0
075.0
05.0202
a
x
r
r
rv2
x
v
va
x
r
r
2
rv
x
r
r
v
x
v
−=
⋅
−=
∆
∆
−=
∂
∂
=
∆
∆




−=
∂
∂
∂
∂
=
∂
∂
3 Bernoulli Equation
3/1 hg
p
2
vp 0
2
t
⋅+
ρ
+=
ρ
s/m8.19v =
3/2 ( ) Pa108.1uv
2
pp 42
0A ⋅=−
ρ
=−
3/3 s/m4.7v1
50
100
v
2
hg
4
2
water =⇒








−




ρ
=⋅⋅ρ
3/4
m141.0
g2
A
q
h
V
==
3/5 s/m793.0q 3
V =
3/6 ( )
2
vp
hag
p 2
0t
+
ρ
=⋅++
ρ
s/m00589.0q 3
v =
3/7 Observing in an absolute co-ordinate system, the flow is irrotational ( 0vrot = ). In a co-
ordinate system rotating with the pipe, ω= 2wrot , so the term sdwrotw∫ × is equal to
sdw2∫ ω× , the Coriolis force term. ( w – relative velocity) The Bernoulli equation can be
written after simplifying the terms above:
Results 32
( )
2
r
hg
2
v
2
r
2
r 22
2
2
2
22
1
2
1 ω
−⋅+=
ω
−
ω−
Point 1 is situated on the water surface on an arbitrary radius r1 , point 2 at the upper end of
the pipe.
s/m8.10v2 =
3/8 s/124=ω
3/9 ∫ ∂
∂
+⋅+=
ρ
A
0
2
A0
sd
t
v
hg
2
vp
2
A
AA
A
0
s/m1.24a
m3alasd
t
v
=
⋅=⋅=
∂
∂
∫
3/10 a.) [ ] s/m55.6a 0t ==
b.) m52.1H =
3/11 BB
B
A
a5.75
20
5
10asd
t
v
=





+=
∂
∂
∫
[ ] 2
0tB s/m31.1a ==
3/12 [ ] 2
0t2 s/m94.7a ==
3/13 N451F =
3/14 a) The Bernoulli-Equation has to be written between the surface point (1) and the pipe’s
outlet point (2), in a co-ordinate system moving with the pipe. It means that s/m24v1 = .
From the Bernoulli-equation:
s/m116.0qs/m4.23v 3
V2 =⇒=
b) the power is necessary to lift the water and to increase its kinetic energy. The change
of the kinetic energy must be calculated with the absolute velocity ’v’.
kW85.8
2
vv
hgqP
2
1
2
2
V =




 −
+⋅⋅ρ= .
3/15 s/m36
p2
v
air
=
ρ
∆⋅
=
Results 33
3/16 s/m67.0
p2
4
d
q
2
V =
ρ
∆π
ε⋅α=
3/17 Because the stream lines leaving the outlet are straight and
parallel, there is only a hydrostatic pressure variation along
the vertical axis. It follows that the outlet velocity is
constant.
s/m15.3q 3
V = .
3/18 a) in the arc
r
K
v = , because 0vrot = .
b)
1
2
12
r
r12
mean
r
r
ln
rr
K
dr
r
K
rr
1
v
2
1
−
=
−
= ∫ Because of continuity: 0mean vv =
( )
2.3
r
r
ln
rrv
K
1
2
12mean
=
−
=⇒
s/m4.6
r
K
v,s/m4
r
K
v
1
B
2
A ====⇒
From the Bernoulli-equation:
( ) Pa1025.1vv
2
pp 42
A
2
BBA ⋅=−
ρ
=−
c.)
( )
22
3
2
0
A
2
0
B
2
0
BA
n
1n
nln
1n
...
...
v
v
v
v
v
2
pp
+−
=
=





−





=
ρ
−
with
1
2
r
r
n =
Results 34
4 Integral Momentum Equation
4/1 N12100Fx =
4/2 After writing the Bernoulli equation for points situated upstream and downstream the blade
we get the result:
12 vv =
4/3 N510F = , direction 45° from the horizontal plane (’Northeast’)
4/4 N109F =
4/5 N57F =
4/6 N14G =
4/7 The integral momentum equation written for a control surface including only the plate and
the upper end of the jet:
vvAvAG 00
2
⋅⋅⋅ρ=⋅⋅ρ=
with v, the speed at the lower surface of the control surface.
According to the Bernoulli equation:
hg2vv
2
0 ⋅⋅−=
s/m55.4v0 =
4/8 Write the integral momentum equation for both
directions x and y:
a) N636F =
b) 8.5A/A 21 =
Solution with constructing the momentum rate
vectors:
(It has to be considered that
2
2
2
1
2
0 vAvAvA ⋅⋅ρ+⋅⋅ρ=⋅⋅ρ )
1
1 FLUID STATICS, RELATIVE EQUILIBRIUM OF MOVING FLUIDS
1.1 Determine the gravity force W that can be sustained by the force F acting on
the piston of the Figure.
F= 1 MN
E
0
"U
E
E
0
~
II
"U
1
0= 240 mm diam
• • I
w
.. · ~ ,.... , ..'-~
. ' ._, .. .. .... "' . ". ,-  .._ • . . ' ' • ;.. I
,.. ~ . . ' ' ..
• • ' • • . ._ I
" .. ,,... .. . . "'  .- - . • • • -, - • • • I
 .. I  " • - _,,,,,..,, ... :'J· .,.,, ..... ··
' - ·. . •' -- 0 ·1 . . . ' . ' ._,• , -. • ·, ' . . I ~ ' '.. . , . ,... - • ,,
.- ..·,.. '..<.·-::.-:• :.:.''_-...._-: :·. __.._:: ,'
Hydraulic Jack
1.2 Neglecting the mass of the container find the force F tending to lift the circular
top AB.
...
"" f.h= l m
•.
'
· .
...,.
.... 3 3
:~ 9 =-10 kg Im
.·J--;...-" •
,.
'..::
.....·.·...
....
:7
·'.,,
·.~
1.3 For isothermal air at O°C, determine the pressure and density at H = 3000 m
when the pressure is p0
= 0.1 MPa abs at sea level (gas constant
R =287 Nm/(kgK) ).
1.4 In the Figure the liquids at A and B are water (p) and the manometer liquid is
oil (pJ.
h1 = 300 mm; h2 = 200 mm; h3 = 600 mm
Find pressure difference PA - Ps .
..
...~·~
.,
~ --........
1.5 h1 =1.3 m; h2 = 1.5 m; h3 =1 m
Find the gauge pressure in point A
i; h1
.. h2
..~
·;
2
p
0
Mercury
(q =13600kg lm'>
m
1.6 The ratio of cistern diameter to tube diameter is 10. When the air in the tank is
at atmospheric pressure, the free surface in the tube is at position 1. When the
cistern is pressurized, the liquid in the tube moves 20 mm Y=200 mm} up the
tube from position 1 to position 2. What is the cistern pressure that causes
this deflection? The density of the liquid is p =800 kg/mJ .
3
Cistern
1.7 Find the gauge difference N111 in the U-tube if the water level in the container is
raised by ,1/-1 =1.5 m (see the Figure).
- - - - - - - - - - - - - - Water
=-=-=-=-=--=--=-=-=-=-=-=-=-=-lqw=-1000 kg/~)_-_- _-_ - _-_- ~w- _- _-_-_- _- -
- - -- --- ------,____------- - - -- -- --- ---
A
A'
E
c.C>
If)
0
0
1.8 An aquarium at Marineland has a window as shown.
Find:
Mercury 3
{qm= 13600 kg/m ) t.h
11
(a) The resultant force from seawater (p =1015 kg/m3) on the window, F
(b) The line of action of the resultant force, in metre below the water surface, k.
45
SOLUTIONS TO CHAPTER 1
1.1 The pressure p can be considered to be constant in the container:
Solving for W, yields
1.2 The gauge pressure (pAB - pc) at the inner side of the top is
1.3 Equation of hydrostatics for this barotropic fluid:
gz+P =canst
where for isothermal change of state P = Po
P Po
pd
P= J..!£.= Poln.E._
p0
P Po Po
Hence
gz+ PoIn .E._ =const
Po Po
Boundary condition: p =p0
at z =0, so canst= 0
Solving the equation for p yields the variation of pressure with elevation
p=Po exp(-_JJ_z)RTO
Then
46
P1 =p(z =H) =p0 exp(-_J/_H)=0.687kPa
RTO
From the perfect gas law
Hence
P1 = p(z = H) =A= 0.8764 kg/ m3
RT0
1.4 PA - Pw9h, - Po9h2 +Pw9h3 = Pa
PA -Pa =-1373.4 Pa
1.5 PA - Po9h1 +Pw9h2- Pm9h3 =Po
PA -Po= Q (p0 h1 +pmh3-pwh2)=1.3018 X 105
Pa
1.6. Continuity: eAt= NIAC. Then .6.h =eA, =2 mm
4
Pcistem =pg(f sin a+NI) =261.24 Pa
1.7 PA=Pe
Po +pgH = Po+Pm9'1h1
where H is the height of the water column above point A.
When the level of the water in the container is raised by .6.H: pi =p9
.
(2)
Combining equations (1) and (2), yields
(1)
1.8
1.9
47
p +gz =const =Po +gd
p p
Hence the gauge pressure: p• =p - p0
=pg(d - z)
(a) F =p/A =pg(d-zc)ab;
where C is the centroid of area of the window,
Zc =d - c- a/ 2
F =Fx =5.3769 kN
(b) The moment of the resultant force is equated to the moment of
distributed forces about the axis A-A
whence
k =0.65 m
wh3
I }2 h 13
y =H - k= -r-+y = + H - -= - m
P A Ye c wh(H-~) 2 6
k = H-yp =5 16 m.
1.10 The moment at A have to be equal in magnitude to the moment of the
resultant of individual forces acting on the gate.
The gauge pressure distribution in the fluid: p - p0 =pg(H- z)
17
3 APPUCATON OF BERNOULLI'S EQUATION
3.1 Air flows steadily and at low speed through a horizontal nozzle, discharging to
the atmosphere. At the nozzle inlet, the area is 0.1 m2
• At the nozzle exit the
area is 0.02 m2
. The flow is essentially incompressible, and frictional effects
are negligible. Determine the gauge pressure required at the nozzle inlet to
produce an outlet speed of 50 m/s. (p=1 .23 kg/m3
)
ICD
I
%,
At =- 0.1m
3.2 Neglecting losses determine the discharge Q in the Figure.
(p1 =750 kg/m3
; p2 =1 OOO kg/m3
; h1
=1 m; h2
=1.5 m; d=0.1 m)
Large
t ank
lnrniscible
fluids
z - - - - - - h 2 - - -
-- 9 - -- --- · -2 - - - --
_- - - x -- - - - - - - - - - -
v
--- - - - - --
3.3 A glass tube with a 90° bend is open at both ends. It is inserted into a flowing
stream of oil so that one opening is directed upstream and the other is
directed upward. Oil inside the tube is 50 mm higher than the surface of the
flowing oil. Determine the velocity measured by the tube.
p
atm
18
- - - - -
3.4 Water may be considered to flow without friction through the siphon. The
water flow rate is 0.03 m3
/sec, its temperature is 20 °C, and the pipe diameter
is 75 mm. Compute the maximum allowable height h, so that the pressure at
point A is above the vapour pressure of the water. (Pv = 2.5kPa;
p = 998.2 kg/m3
; Patm =100.5 kPa)
A
•
h
0
D=75mrn
- _ - _ - - - - q -_ - - -
Large tank
3.5 A smoothly contoured nozzle is connected to the end of a garden nose. At the
nozzle inlet where the velocity is negligible, the water pressure is 160 kPa
(gauge). Pressure at the nozzle exit is atmospheric. Assuming that the water
remains in a single stream that has negligible aerodynamic drag, estimate the
maximum height above the nozzle outlet that the stream could reach.
19
h
3.6 Two probes are often combined, as in the pitot-static tube in the Figure. The
inner tube is used to measure the the stagnation pressure at point B while the
static pressure at C is sensed by the small holes in the outer tube. In flow
fields where the static pressure variation in the streamwise direction is small,
the pitot-static tube may be used to infer the velocity at point A in the flow, by
assuring PA =Pc- (Note that when PA:.i: Pc· this procedure will give erroneous
results).
(p=l000kg/m3
; Pm =13600kg/m3
; .1h=300mm)
Static pressure holes
Flow ~·--0 - - - - - - --
A ~ > v
E-
20
3.7 Water flows in a circular pipe. At one section the diameter is 0.3 m, the static
pressure is 260 kPa (gauge). the velocity is 3 m/s, and the elevation is 10 m
above ground level. The elevation at a section downstream is O m, and the
pipe diameter is 0.15 m. Find the gauge pressure at the downstream section if
frictional effects may be neglected.
3.8 An airspeed indicator used frequently on World War II aircraft consisted of a
converging-diverging duct as shown in the Figure. The diameter of the duct at
2 is three-quarters of the entrance diameter at 1. The differential pressure
gauge records a pressure of 4000 Pa, and the density of the air is 1 kg/m3
.
The air flow is steady, incompressible, inviscid and irrotational. Determine the
airspeed U.
u
3.9 A large tank contains air, gasoline ( PG =680 kg / m3
}, light oil
( p0 =800 kg / m3
) and water. The pressure p of the air is 150 kPa gauge. If we
neglect friction, what is the mass flow mof oil from a 20-mm-diameter jet?
( .. 2m
1
.. .. " . . .·. .. ..
- - Gasoline- - -
~.""··~~:·.·.·-·:;
... ~· ' .0 1l , .. . ._ .
I ' ' •
- - - - qG -- - - _:::
' .  . .. ..... .
t - ',;' :' '
.  ' .
'. ·.~ :,"' ·' . . .  .
-_-_-_-_- _s--=-- -_-_- _c -=--_---=-
-_-_- ---water-- - -
-- --- - - -- -----------
21
3.10 For the venturi meter and manometer installation shown in the Figure
determine the volume rate of flow for the manometer reading .1h.
Data: 01 =200mm; 02 =150mm; z1 = 1m; z2 =1.3m; .1h = 0.2m;
p=1000kg/m3
; Pm=13600kg/m
3
......__ __ A ~s -~L---z= O
'Sm
3.11 Neglecting losses and surface tension effects, derive an equation for the
water surface r of the jet of the Figure in terms of y/H.
- ---- 1--- ---- - --- -------- - - - - ------
H
..11. 2r
3.12 Neglecting losses, calculate R in terms of H for the Figure.
22
p I
a.m
E
- - - - - vlarge tank- -- - - - - -- - -- - - - - - - - -,...
H
>----
0
3
q =-1000 kg /m !'--.
t-A I B
•
""' - 3
~ -3000 kg/m
m
3.13 The tank shown in the Figure has a well-rounded orifice with area Aj = 7cm2
•
At the time t=O, the water level is at height H=2 m. Develop an expression for
the water height, z1, at any later time, t. The cross-sectional area of the tank is
A= 0.7 m2. You can neglect frictional effects, and the quasi-steady form of
the Bernoulli's equation can be used.
H
- Tank area - -
3.14 The tank with hemisphere shape has a well rounded orifice with area
Ai= 0.01 m2
• At time t=O the water level is at height R=2 m. Develop an
23
expression for the water height, z1 , at any later time, t. Determine time T,
belonging to z1 = R/2. You can neglect the unsteady term in the Bernoulli's
equation.
3.1 Basic equations
Bernoulli's equation:
Equation of continuity:
69
SOLUTIONS TO CHAPTER 3
P v 2 p v2
_1 +gz +-1-=_g_+gz +-2-
p 1 2 p 2 2
Since z1 = z2
, the combination of equations (1) and (2) yields
3.2 Basic equation:
P v2
- +gz +- =canst
p 2
Application of equation (1) between points 1 and 2:
P v 2 p v2
_1 +gh2+ -1- = atm +-
P2 2 P2 2
Application of equation (1) between points 0 and 1:
P v 2 p 2
atm +g(fli +h2) +-o- =-1 +gh2 +~
~ 2 ~ 2
v1 =V0 =0 here.
Equation of continuity:
d21r
Q=-V
4
The combination of equations (2)-(4), yields
(1)
(2)
(1)
(2)
(3)
(4)
3.3
3.4
70
Apply Bernoulli's equation between points 1 and 2:
From the hydrostatic pressure variation:
P1 =Patm +pgh and P2 =Pa1m +pg(h +'111)
Hence
Combining equations (1)and (2), yields
Bernoulli's equation between points Oand A:
From the equation of continuity:
v2 8Q2
2- 04 rr2
The combination of equations (i) and (2), yields
8Q2
h =Po-Pv - =7.604m
p D4rr2g
(1)
(2)
(1)
(2)
3.5
3.6
3.7
3.8
71
Neglecting friction write the Bernoulli's equation between points 1 and 2:
whence
P1=Potm +gH
p p
H = p1 -Patm =16.310m
pg
Apply Bernoulli's equation between points A and B:
Apply hydrostatic equation for the two limbs of the U-tube:
Taking into account that PA= Pc and combining equations (1) and (2). yield
Application of the Bernoulli's equation and the equation of continuity, yields
p2 =p, +pg{z2 -z,)+ ~[1-(~J]=2906kPa
The combination of the Bernoulli's equation and the equation of continuity
written between points 1 and 2, yields
(1)
(2)
3.9
72
Bernoulli's equation between points C-D:
Pc= Po+~ +g/2
Po Po 2
Equation of hydrostatics between points A and B:
Equation of continuity:
. d27r
m=pv-o 4
Taking into account that p8 =Pc and the combination of equations (1) -(3),
yields
3.10
Bernoulli's equation:
Equation of continuity:
P v 2 p v 2
_1 +gz +-1-=2 +gz +-2-
p 1 2 p 2 2
Equation of hydrostatics for the two limbs of the U-tube:
(1)
(2)
(3)
(1)
(2)
(3)
73
The combination of equations (1)-(3), yields
3.11
0 = D12te
4
& _7
(£)'-1
2gLlh = 0.02653 m' /s
Application of the Bernoulli's equation between points 1 and 2, and 1 and 3,
yield
V3 =.J2g(H+y)
Equation of continuity between points 2 and 3 (neglecting jet contraction):
Combination of equations (1)-(3) gives
r=--2.. 1+l...
d ( )--0.25
2 H
3.12
Bernoulli's equation between points 0 and E:
Equation of hydrostatics for the two limbs of the U-tube (PA =p8 ):
(1)
(2)
(3)
Patm+pgH =Po +(Pm-p)gR (2)
Combination of equations (1) and (2), yields
R =0 ( for an arbitrary value of H )
74
3.13
Bernoulli's equation for points 1 and 2, yields
Equation of continuity:
The definition of v1:
dz1
v =--
1 dt
Combination of equations (1) and (2) gives
2g r:;-
2 .yz,
(~) -1
Combination of equations (3) and (4) can be integrated finally to give
3.14
Jii-~
2
2
2
~ t =(1.414213562 - 0.002214725t)2
(~) -1
(1)
(2)
(3)
(4)
The method of solution is the same as in Problem 3.13. The only difference is
that the cross-sectional area of the tank varies with z1
A1 =(2Rz1 -z/ )ir
The relation between z1 and t is obtained as follows
Ti =213.70 sec

More Related Content

What's hot

Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatWajahat Ullah
 
6 stress on trusses
6 stress on trusses6 stress on trusses
6 stress on trussesaero103
 
Chapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionChapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionDaniel Nunes
 
Simple and Compound Interest
Simple and Compound InterestSimple and Compound Interest
Simple and Compound InterestHector Tibo
 
Simple Stress: Normal Stress
Simple Stress: Normal StressSimple Stress: Normal Stress
Simple Stress: Normal StressLk Rigor
 
Mechanics of Materials 8th Edition Hibbeler Solutions Manual
Mechanics of Materials 8th Edition Hibbeler Solutions ManualMechanics of Materials 8th Edition Hibbeler Solutions Manual
Mechanics of Materials 8th Edition Hibbeler Solutions Manualqitiwe
 
Solucion tutoria 8 2017
Solucion tutoria 8   2017Solucion tutoria 8   2017
Solucion tutoria 8 2017Steven Jimenez
 
134269040 beer-mechanics-of-materials-5e-solutions-chapter-4
134269040 beer-mechanics-of-materials-5e-solutions-chapter-4134269040 beer-mechanics-of-materials-5e-solutions-chapter-4
134269040 beer-mechanics-of-materials-5e-solutions-chapter-4Lucas Cirigliano
 
Siemens internship Certificate
Siemens internship CertificateSiemens internship Certificate
Siemens internship CertificateSOUMYA PANDA
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler samplezammok
 
Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)meritonberisha50702
 

What's hot (20)

Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
6 stress on trusses
6 stress on trusses6 stress on trusses
6 stress on trusses
 
Chapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solutionChapter 6-structural-analysis-8th-edition-solution
Chapter 6-structural-analysis-8th-edition-solution
 
01 01 chapgere[1]
01 01 chapgere[1]01 01 chapgere[1]
01 01 chapgere[1]
 
Simple and Compound Interest
Simple and Compound InterestSimple and Compound Interest
Simple and Compound Interest
 
Simple Stress: Normal Stress
Simple Stress: Normal StressSimple Stress: Normal Stress
Simple Stress: Normal Stress
 
2- Stress.pdf
2- Stress.pdf2- Stress.pdf
2- Stress.pdf
 
Mechanics of Materials 8th Edition Hibbeler Solutions Manual
Mechanics of Materials 8th Edition Hibbeler Solutions ManualMechanics of Materials 8th Edition Hibbeler Solutions Manual
Mechanics of Materials 8th Edition Hibbeler Solutions Manual
 
structure problems
structure problemsstructure problems
structure problems
 
Solucion tutoria 8 2017
Solucion tutoria 8   2017Solucion tutoria 8   2017
Solucion tutoria 8 2017
 
134269040 beer-mechanics-of-materials-5e-solutions-chapter-4
134269040 beer-mechanics-of-materials-5e-solutions-chapter-4134269040 beer-mechanics-of-materials-5e-solutions-chapter-4
134269040 beer-mechanics-of-materials-5e-solutions-chapter-4
 
Inter-Marksheet
Inter-MarksheetInter-Marksheet
Inter-Marksheet
 
12th Marksheet
12th Marksheet12th Marksheet
12th Marksheet
 
Siemens internship Certificate
Siemens internship CertificateSiemens internship Certificate
Siemens internship Certificate
 
Inertia formulas
Inertia formulasInertia formulas
Inertia formulas
 
Mom 3
Mom 3Mom 3
Mom 3
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
SSC Certificate
SSC CertificateSSC Certificate
SSC Certificate
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 
Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)Hibbeler Statics solution - Chapter 7 (2)
Hibbeler Statics solution - Chapter 7 (2)
 

Viewers also liked

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝHOME
 
ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΣΤΑ ΡΕΥΣΤΑ (ΛΥΜΕΝΑ) / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤ...
ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΣΤΑ ΡΕΥΣΤΑ (ΛΥΜΕΝΑ) / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤ...ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΣΤΑ ΡΕΥΣΤΑ (ΛΥΜΕΝΑ) / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤ...
ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΣΤΑ ΡΕΥΣΤΑ (ΛΥΜΕΝΑ) / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤ...HOME
 
20151127 ρευστα σε κινηση digital
20151127 ρευστα σε κινηση digital20151127 ρευστα σε κινηση digital
20151127 ρευστα σε κινηση digitalnmandoulidis
 
ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ- ΒΙΒΛΙΟ ΤΟΥ ΘΟΔΩΡΗ ΓΑΡΜΠΗ
ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ- ΒΙΒΛΙΟ ΤΟΥ ΘΟΔΩΡΗ ΓΑΡΜΠΗΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ- ΒΙΒΛΙΟ ΤΟΥ ΘΟΔΩΡΗ ΓΑΡΜΠΗ
ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ- ΒΙΒΛΙΟ ΤΟΥ ΘΟΔΩΡΗ ΓΑΡΜΠΗHOME
 
ΦΥΣΙΚΗ ΡΕΥΣΤΩΝ - ΒΙΒΛΙΟ ΔΡΥ
ΦΥΣΙΚΗ ΡΕΥΣΤΩΝ - ΒΙΒΛΙΟ  ΔΡΥΦΥΣΙΚΗ ΡΕΥΣΤΩΝ - ΒΙΒΛΙΟ  ΔΡΥ
ΦΥΣΙΚΗ ΡΕΥΣΤΩΝ - ΒΙΒΛΙΟ ΔΡΥHOME
 
ΕΚΠΛΗΚΤΙΚΗ ΘΕΩΡΙΑ ΡΕΥΣΤΩΝ: Από το Βιβλίο Φυσικής ΤΕΕ Α΄ Τάξη 1ου Κύκλου
ΕΚΠΛΗΚΤΙΚΗ ΘΕΩΡΙΑ ΡΕΥΣΤΩΝ: Από το Βιβλίο Φυσικής ΤΕΕ Α΄ Τάξη 1ου ΚύκλουΕΚΠΛΗΚΤΙΚΗ ΘΕΩΡΙΑ ΡΕΥΣΤΩΝ: Από το Βιβλίο Φυσικής ΤΕΕ Α΄ Τάξη 1ου Κύκλου
ΕΚΠΛΗΚΤΙΚΗ ΘΕΩΡΙΑ ΡΕΥΣΤΩΝ: Από το Βιβλίο Φυσικής ΤΕΕ Α΄ Τάξη 1ου ΚύκλουHOME
 
ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΡΕΥΣΤΩΝ / ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ
ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΡΕΥΣΤΩΝ / ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΡΕΥΣΤΩΝ / ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ
ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΡΕΥΣΤΩΝ / ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑHOME
 
ο άγιος παΐσιος ο αγιορείτης
ο άγιος παΐσιος ο αγιορείτηςο άγιος παΐσιος ο αγιορείτης
ο άγιος παΐσιος ο αγιορείτηςΒατάτζης .
 
ο μακαριστός ιάκωβος τσαλίκης
ο μακαριστός ιάκωβος τσαλίκηςο μακαριστός ιάκωβος τσαλίκης
ο μακαριστός ιάκωβος τσαλίκηςΒατάτζης .
 
20150706 ασκησεις υδροστατικης
20150706 ασκησεις υδροστατικης20150706 ασκησεις υδροστατικης
20150706 ασκησεις υδροστατικηςnmandoulidis
 
Fluida statik-dan-fluida-dinamik
Fluida statik-dan-fluida-dinamikFluida statik-dan-fluida-dinamik
Fluida statik-dan-fluida-dinamikHIMTI
 
H Παροχή και η Συνέχεια σε ένα Σωλήνα. Διονύσης Μάργαρης
H Παροχή και η Συνέχεια σε ένα Σωλήνα. Διονύσης ΜάργαρηςH Παροχή και η Συνέχεια σε ένα Σωλήνα. Διονύσης Μάργαρης
H Παροχή και η Συνέχεια σε ένα Σωλήνα. Διονύσης ΜάργαρηςHOME
 
Solucionario serway capitulo 15
Solucionario serway capitulo 15Solucionario serway capitulo 15
Solucionario serway capitulo 15franciscafloresg
 
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Ι. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Ι. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Ι. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Ι. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣHOME
 
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΙΙ. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΙΙ. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΙΙ. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΙΙ. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣHOME
 
Applications of bernoulli equation
Applications of bernoulli equationApplications of bernoulli equation
Applications of bernoulli equationIqbal Gem
 
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Thắng Nguyễn
 

Viewers also liked (17)

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
 
ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΣΤΑ ΡΕΥΣΤΑ (ΛΥΜΕΝΑ) / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤ...
ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΣΤΑ ΡΕΥΣΤΑ (ΛΥΜΕΝΑ) / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤ...ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΣΤΑ ΡΕΥΣΤΑ (ΛΥΜΕΝΑ) / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤ...
ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΣΤΑ ΡΕΥΣΤΑ (ΛΥΜΕΝΑ) / ΨΗΦΙΑΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤ...
 
20151127 ρευστα σε κινηση digital
20151127 ρευστα σε κινηση digital20151127 ρευστα σε κινηση digital
20151127 ρευστα σε κινηση digital
 
ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ- ΒΙΒΛΙΟ ΤΟΥ ΘΟΔΩΡΗ ΓΑΡΜΠΗ
ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ- ΒΙΒΛΙΟ ΤΟΥ ΘΟΔΩΡΗ ΓΑΡΜΠΗΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ- ΒΙΒΛΙΟ ΤΟΥ ΘΟΔΩΡΗ ΓΑΡΜΠΗ
ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ- ΒΙΒΛΙΟ ΤΟΥ ΘΟΔΩΡΗ ΓΑΡΜΠΗ
 
ΦΥΣΙΚΗ ΡΕΥΣΤΩΝ - ΒΙΒΛΙΟ ΔΡΥ
ΦΥΣΙΚΗ ΡΕΥΣΤΩΝ - ΒΙΒΛΙΟ  ΔΡΥΦΥΣΙΚΗ ΡΕΥΣΤΩΝ - ΒΙΒΛΙΟ  ΔΡΥ
ΦΥΣΙΚΗ ΡΕΥΣΤΩΝ - ΒΙΒΛΙΟ ΔΡΥ
 
ΕΚΠΛΗΚΤΙΚΗ ΘΕΩΡΙΑ ΡΕΥΣΤΩΝ: Από το Βιβλίο Φυσικής ΤΕΕ Α΄ Τάξη 1ου Κύκλου
ΕΚΠΛΗΚΤΙΚΗ ΘΕΩΡΙΑ ΡΕΥΣΤΩΝ: Από το Βιβλίο Φυσικής ΤΕΕ Α΄ Τάξη 1ου ΚύκλουΕΚΠΛΗΚΤΙΚΗ ΘΕΩΡΙΑ ΡΕΥΣΤΩΝ: Από το Βιβλίο Φυσικής ΤΕΕ Α΄ Τάξη 1ου Κύκλου
ΕΚΠΛΗΚΤΙΚΗ ΘΕΩΡΙΑ ΡΕΥΣΤΩΝ: Από το Βιβλίο Φυσικής ΤΕΕ Α΄ Τάξη 1ου Κύκλου
 
ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΡΕΥΣΤΩΝ / ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ
ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΡΕΥΣΤΩΝ / ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΡΕΥΣΤΩΝ / ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ
ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΡΕΥΣΤΩΝ / ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ
 
ο άγιος παΐσιος ο αγιορείτης
ο άγιος παΐσιος ο αγιορείτηςο άγιος παΐσιος ο αγιορείτης
ο άγιος παΐσιος ο αγιορείτης
 
ο μακαριστός ιάκωβος τσαλίκης
ο μακαριστός ιάκωβος τσαλίκηςο μακαριστός ιάκωβος τσαλίκης
ο μακαριστός ιάκωβος τσαλίκης
 
20150706 ασκησεις υδροστατικης
20150706 ασκησεις υδροστατικης20150706 ασκησεις υδροστατικης
20150706 ασκησεις υδροστατικης
 
Fluida statik-dan-fluida-dinamik
Fluida statik-dan-fluida-dinamikFluida statik-dan-fluida-dinamik
Fluida statik-dan-fluida-dinamik
 
H Παροχή και η Συνέχεια σε ένα Σωλήνα. Διονύσης Μάργαρης
H Παροχή και η Συνέχεια σε ένα Σωλήνα. Διονύσης ΜάργαρηςH Παροχή και η Συνέχεια σε ένα Σωλήνα. Διονύσης Μάργαρης
H Παροχή και η Συνέχεια σε ένα Σωλήνα. Διονύσης Μάργαρης
 
Solucionario serway capitulo 15
Solucionario serway capitulo 15Solucionario serway capitulo 15
Solucionario serway capitulo 15
 
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Ι. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Ι. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Ι. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ Ι. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
 
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΙΙ. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΙΙ. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΙΙ. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΙΙ. - ΘΟΔΩΡΗΣ ΠΑΠΑΣΓΟΥΡΙΔΗΣ
 
Applications of bernoulli equation
Applications of bernoulli equationApplications of bernoulli equation
Applications of bernoulli equation
 
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
Solution manual fundamentals of fluid mechanics, 6th edition by munson (2009)
 

Similar to Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα

Examples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upExamples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upsyed ahmed taran
 
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docxechnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docxtidwellveronique
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)Raul Garcia
 
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Alamin Md
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4sbjhbsbd
 
JEE Main Mock Test - Physics
JEE Main Mock Test - Physics JEE Main Mock Test - Physics
JEE Main Mock Test - Physics Ednexa
 
Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxAathiraS10
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...KirkMcdowells
 
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualEngineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualVeronicaIngramss
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...Abrar Hussain
 
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioEdgar Ortiz Sánchez
 
Offshore well intermediate
Offshore well intermediateOffshore well intermediate
Offshore well intermediateG.Balachandran
 
thermo_5th_chap03p061.pdf
thermo_5th_chap03p061.pdfthermo_5th_chap03p061.pdf
thermo_5th_chap03p061.pdfAHADISRAQ
 
Axial fan design
Axial fan designAxial fan design
Axial fan designMert G
 

Similar to Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα (20)

Examples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2upExamples-Answers-all-Sections-2up
Examples-Answers-all-Sections-2up
 
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docxechnology and Economics ngineering 2002 Dr. Miklós Bla.docx
echnology and Economics ngineering 2002 Dr. Miklós Bla.docx
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)
 
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
JEE Main Mock Test - Physics
JEE Main Mock Test - Physics JEE Main Mock Test - Physics
JEE Main Mock Test - Physics
 
Ejercicios hidraulica
Ejercicios hidraulicaEjercicios hidraulica
Ejercicios hidraulica
 
problemas resueltos
problemas resueltosproblemas resueltos
problemas resueltos
 
Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptx
 
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
Fox and McDonalds Introduction to Fluid Mechanics 9th Edition Pritchard Solut...
 
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualEngineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
 
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
185817220 7e chapter5sm-final-newfrank-white-fluid-mechanics-7th-ed-ch-5-solu...
 
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
 
Offshore well intermediate
Offshore well intermediateOffshore well intermediate
Offshore well intermediate
 
thermo_5th_chap03p061.pdf
thermo_5th_chap03p061.pdfthermo_5th_chap03p061.pdf
thermo_5th_chap03p061.pdf
 
Ans1
Ans1Ans1
Ans1
 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
Axial fan design
Axial fan designAxial fan design
Axial fan design
 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 

More from Βατάτζης .

Γέροντος Πορφυρίου Καυσοκαλυβίτου - Βίος & Λόγοι
Γέροντος Πορφυρίου Καυσοκαλυβίτου - Βίος & ΛόγοιΓέροντος Πορφυρίου Καυσοκαλυβίτου - Βίος & Λόγοι
Γέροντος Πορφυρίου Καυσοκαλυβίτου - Βίος & ΛόγοιΒατάτζης .
 
Προφητείες & Ελλάδα
Προφητείες & ΕλλάδαΠροφητείες & Ελλάδα
Προφητείες & ΕλλάδαΒατάτζης .
 
Πρακτικές Συμβουλές Υγείας
Πρακτικές Συμβουλές Υγείας Πρακτικές Συμβουλές Υγείας
Πρακτικές Συμβουλές Υγείας Βατάτζης .
 
Μαθαίνω πώς να μελετώ
Μαθαίνω πώς να μελετώΜαθαίνω πώς να μελετώ
Μαθαίνω πώς να μελετώΒατάτζης .
 
Επιστημονική Μαρτυρία για το Άγιο Φώς
Επιστημονική Μαρτυρία για το Άγιο ΦώςΕπιστημονική Μαρτυρία για το Άγιο Φώς
Επιστημονική Μαρτυρία για το Άγιο ΦώςΒατάτζης .
 
Εξελικτική δημιουργία : Ένας χάρτινος πύργος που καίγεται. . .
Εξελικτική δημιουργία : Ένας χάρτινος πύργος που καίγεται. . .Εξελικτική δημιουργία : Ένας χάρτινος πύργος που καίγεται. . .
Εξελικτική δημιουργία : Ένας χάρτινος πύργος που καίγεται. . .Βατάτζης .
 
Δηλωση άρνησης δωρεάς οργάνων
Δηλωση άρνησης δωρεάς οργάνωνΔηλωση άρνησης δωρεάς οργάνων
Δηλωση άρνησης δωρεάς οργάνωνΒατάτζης .
 
Γνωστά φυτά με… άγνωστες θεραπευτικές ιδιότητες!
Γνωστά φυτά με… άγνωστες θεραπευτικές ιδιότητες!Γνωστά φυτά με… άγνωστες θεραπευτικές ιδιότητες!
Γνωστά φυτά με… άγνωστες θεραπευτικές ιδιότητες!Βατάτζης .
 
Φούρνοι μικροκυμάτων
Φούρνοι μικροκυμάτωνΦούρνοι μικροκυμάτων
Φούρνοι μικροκυμάτωνΒατάτζης .
 
τα καρκινικά κύτταρα τρέφονται
τα καρκινικά κύτταρα τρέφονταιτα καρκινικά κύτταρα τρέφονται
τα καρκινικά κύτταρα τρέφονταιΒατάτζης .
 
Μέγας Κωνσταντίνος και Ιστορική Αλήθεια
Μέγας Κωνσταντίνος και Ιστορική ΑλήθειαΜέγας Κωνσταντίνος και Ιστορική Αλήθεια
Μέγας Κωνσταντίνος και Ιστορική ΑλήθειαΒατάτζης .
 
Γέρων Πορφύριος Βίος & Λόγοι
Γέρων Πορφύριος Βίος & ΛόγοιΓέρων Πορφύριος Βίος & Λόγοι
Γέρων Πορφύριος Βίος & ΛόγοιΒατάτζης .
 
Κ. Μπαζαίος- Συνδυασμοί - Βιταμίνες
Κ. Μπαζαίος- Συνδυασμοί - ΒιταμίνεςΚ. Μπαζαίος- Συνδυασμοί - Βιταμίνες
Κ. Μπαζαίος- Συνδυασμοί - ΒιταμίνεςΒατάτζης .
 
ο Τρελλογιάννης της Αθήνας και Xαραλάμπης οι διά Χριστόν Σαλοί
ο Τρελλογιάννης της Αθήνας και Xαραλάμπης οι διά Χριστόν Σαλοίο Τρελλογιάννης της Αθήνας και Xαραλάμπης οι διά Χριστόν Σαλοί
ο Τρελλογιάννης της Αθήνας και Xαραλάμπης οι διά Χριστόν ΣαλοίΒατάτζης .
 
Σημεία των Καιρών - Γέροντας Παΐσιος
Σημεία των Καιρών - Γέροντας ΠαΐσιοςΣημεία των Καιρών - Γέροντας Παΐσιος
Σημεία των Καιρών - Γέροντας ΠαΐσιοςΒατάτζης .
 
ΕΠΙΤΟΜΗ ΠΡΟΦΗΤΕΙΩΝ ΓΕΡΟΝΤΟΣ ΠΑ
ΕΠΙΤΟΜΗ ΠΡΟΦΗΤΕΙΩΝ ΓΕΡΟΝΤΟΣ ΠΑΕΠΙΤΟΜΗ ΠΡΟΦΗΤΕΙΩΝ ΓΕΡΟΝΤΟΣ ΠΑ
ΕΠΙΤΟΜΗ ΠΡΟΦΗΤΕΙΩΝ ΓΕΡΟΝΤΟΣ ΠΑΒατάτζης .
 

More from Βατάτζης . (17)

Γέροντος Πορφυρίου Καυσοκαλυβίτου - Βίος & Λόγοι
Γέροντος Πορφυρίου Καυσοκαλυβίτου - Βίος & ΛόγοιΓέροντος Πορφυρίου Καυσοκαλυβίτου - Βίος & Λόγοι
Γέροντος Πορφυρίου Καυσοκαλυβίτου - Βίος & Λόγοι
 
ΕΡω τεύχος 20
ΕΡω τεύχος 20ΕΡω τεύχος 20
ΕΡω τεύχος 20
 
Προφητείες & Ελλάδα
Προφητείες & ΕλλάδαΠροφητείες & Ελλάδα
Προφητείες & Ελλάδα
 
Πρακτικές Συμβουλές Υγείας
Πρακτικές Συμβουλές Υγείας Πρακτικές Συμβουλές Υγείας
Πρακτικές Συμβουλές Υγείας
 
Μαθαίνω πώς να μελετώ
Μαθαίνω πώς να μελετώΜαθαίνω πώς να μελετώ
Μαθαίνω πώς να μελετώ
 
Επιστημονική Μαρτυρία για το Άγιο Φώς
Επιστημονική Μαρτυρία για το Άγιο ΦώςΕπιστημονική Μαρτυρία για το Άγιο Φώς
Επιστημονική Μαρτυρία για το Άγιο Φώς
 
Εξελικτική δημιουργία : Ένας χάρτινος πύργος που καίγεται. . .
Εξελικτική δημιουργία : Ένας χάρτινος πύργος που καίγεται. . .Εξελικτική δημιουργία : Ένας χάρτινος πύργος που καίγεται. . .
Εξελικτική δημιουργία : Ένας χάρτινος πύργος που καίγεται. . .
 
Δηλωση άρνησης δωρεάς οργάνων
Δηλωση άρνησης δωρεάς οργάνωνΔηλωση άρνησης δωρεάς οργάνων
Δηλωση άρνησης δωρεάς οργάνων
 
Γνωστά φυτά με… άγνωστες θεραπευτικές ιδιότητες!
Γνωστά φυτά με… άγνωστες θεραπευτικές ιδιότητες!Γνωστά φυτά με… άγνωστες θεραπευτικές ιδιότητες!
Γνωστά φυτά με… άγνωστες θεραπευτικές ιδιότητες!
 
Φούρνοι μικροκυμάτων
Φούρνοι μικροκυμάτωνΦούρνοι μικροκυμάτων
Φούρνοι μικροκυμάτων
 
τα καρκινικά κύτταρα τρέφονται
τα καρκινικά κύτταρα τρέφονταιτα καρκινικά κύτταρα τρέφονται
τα καρκινικά κύτταρα τρέφονται
 
Μέγας Κωνσταντίνος και Ιστορική Αλήθεια
Μέγας Κωνσταντίνος και Ιστορική ΑλήθειαΜέγας Κωνσταντίνος και Ιστορική Αλήθεια
Μέγας Κωνσταντίνος και Ιστορική Αλήθεια
 
Γέρων Πορφύριος Βίος & Λόγοι
Γέρων Πορφύριος Βίος & ΛόγοιΓέρων Πορφύριος Βίος & Λόγοι
Γέρων Πορφύριος Βίος & Λόγοι
 
Κ. Μπαζαίος- Συνδυασμοί - Βιταμίνες
Κ. Μπαζαίος- Συνδυασμοί - ΒιταμίνεςΚ. Μπαζαίος- Συνδυασμοί - Βιταμίνες
Κ. Μπαζαίος- Συνδυασμοί - Βιταμίνες
 
ο Τρελλογιάννης της Αθήνας και Xαραλάμπης οι διά Χριστόν Σαλοί
ο Τρελλογιάννης της Αθήνας και Xαραλάμπης οι διά Χριστόν Σαλοίο Τρελλογιάννης της Αθήνας και Xαραλάμπης οι διά Χριστόν Σαλοί
ο Τρελλογιάννης της Αθήνας και Xαραλάμπης οι διά Χριστόν Σαλοί
 
Σημεία των Καιρών - Γέροντας Παΐσιος
Σημεία των Καιρών - Γέροντας ΠαΐσιοςΣημεία των Καιρών - Γέροντας Παΐσιος
Σημεία των Καιρών - Γέροντας Παΐσιος
 
ΕΠΙΤΟΜΗ ΠΡΟΦΗΤΕΙΩΝ ΓΕΡΟΝΤΟΣ ΠΑ
ΕΠΙΤΟΜΗ ΠΡΟΦΗΤΕΙΩΝ ΓΕΡΟΝΤΟΣ ΠΑΕΠΙΤΟΜΗ ΠΡΟΦΗΤΕΙΩΝ ΓΕΡΟΝΤΟΣ ΠΑ
ΕΠΙΤΟΜΗ ΠΡΟΦΗΤΕΙΩΝ ΓΕΡΟΝΤΟΣ ΠΑ
 

Recently uploaded

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 

Recently uploaded (20)

Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 

Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα

  • 1.
  • 2. 1 Hydrostatics For all relevant problems Kkg/J287R = , kg/N81.9g = 1/1 [ ]Pa?pp 0A =− 1/2 [ ]Pa?pp 21 =− 1/3 Section 1-2: 3 12 m/kg3.1=ρ Section 3-4: 3 34 m/kg1.1=ρ [ ]Pa?pp 14 =− 1/4 Pa10p 5 0 ≈ (for the calculation of ρ ) Outside (air): C0T1 o = In chimney (smoke):    = ≈ C250T mmHg760p 2 2 o [ ]Pa?pp 21 =− Hydrostatics 4 1/5 The figure shows a vertical section of a gas pipe. At the lower tap there is an overpressure of 500 Pa. How big is the overpressure at the upper tap? There is no flow in the pipe. 3 gas 3 air m/kg7.0 m/kg2.1 =ρ =ρ 1/6 kgK/J288R air m/kg2.1 m/N10p 0z 3 0 25 0 =        =ρ = = a.) [ ]K?T0 = b.) [ ]Pa?pA = , if the temperature is constant for m2000z0 <≤ . 1/7 25 A m/N105.0p ⋅= air m/kg25.1 m/N10p 0z 3 0 25 0         =ρ = = [ ]m?zA = if the temperature is constant for Azz0 <≤ . 1/8 The vehicle is filled with oil. [ ]Pa?pp s/m3a m/kg950 0A 2 3 oil =− = =ρ
  • 3. Hydrostatics 5 1/9 The vehicle is filled with oil. [ ]2 0A 3 oil s/m?a Pa0pp m/kg950 = =− =ρ 1/10 The tank wagon shown in the figure is taking a curve with a centripetal acceleration of 2 s/m3a = . The tank is filled with water. a.) How high will climb the water surface on the A-B side? b.) How big force will affect the A-B side, when the vehicle is 1.6 m long? 1/11 Where are the both surfaces of the liquid situated if the pipe accelerates to the left with an acceleration of 2 g a = ? 1/12 min/11000n = [ ]Pa?pp m/kg1000 0A 3 water =− =ρ Hydrostatics 6 1/13 The pipe is filled with water. Pa10p 5 0 = How high angular velocity is needed to a.) reach Pa108.0p 5 A ⋅= ? b.) empty the A-B section and have pressure of Pa108.0 5 ⋅ in it? 1/14 Effect of gravity is negligible. ?pp min/16000n m/kg800 0A 3 =− = =ρ 1/15 Effect of gravity is negligible. [ ]Pa?pp m/kg800 m/kg1000 s/1100 0A 3 oil 3 water =− =ρ =ρ =ω 1/16 What area does an ice-floe have, which can carry a person weighing 736 N? The thickness of the ice-floe is 10 cm and its density is 900 kg/m3 ? 1/17 The rope is weightless. N200G mm300r m/kg1000 m/kg2300 Sphere Sphere 3 Water 3 Cube = = =ρ =ρ [ ]2 m/s?a = surface at standstill
  • 4. Kinematics 9 2/5 Calculate the circulation along the dashed line. 2 r 2 v = [ ]s/m? 2 =Γ 2/6 [ ] [ ]2 Akonv 1 s/m?a .const s/m20v = =ρ = 3 Bernoulli Equation 3/1 Pa103p 5 t ⋅= [ ]s/m?v Pa10p 5 0 = = 3/2 s/m10v = [ ]Pa?pp m/kg10 s/m4u 0A 33 =− =ρ = 3/3 Friction losses are negligible. [ ]s/m?v m/kg2.1 2 3 = =ρ 3/4 Steady flow with min/m1.0q 3 V = . [ ]m?h =
  • 5. Bernoulli Equation 11 3/5 Pa106.1p 5 1 ⋅= [ ]s/m?q Pa102.1p 3 V 5 2 = ⋅= 3/6 2 sm12a = [ ]s/m?q Pa105.0p Pa10p 3 V 5 t 5 0 = ⋅= = 3/7 s/125=ω [ ]s/m?w = (w: relative velocity) 3/8 s/m3w = [ ]s/1?=ω (w: relative velocity) Bernoulli Equation 12 3/9 25 0 m/N10p = [ ]2 A A A s/m?a s/m4v 0p = = = 3/10 Pa10p 5 0 = Pa109.0p 5 1 ⋅= Friction losses are negligible. a.) How big is the starting acceleration ’a’ when opening the tap? b.) [ ]m?H = in case of steady flow? 3/11 How big is the starting acceleration in point B when opening the tap? 3/12 How big is the starting acceleration at the end of the pipe? 0v )reoverpressu(m/N102p 24 t = ⋅=
  • 6. Bernoulli Equation 13 3/13 s/m1v = 2 s/m1a = Friction is negligible. How big force is needed to push the piston? 3/14 h/km72u = s/m4v = Friction is negligible. a.) [ ]s/m?q 3 V = b.) How big power is needed to move the pipe? 3/15 3 alc m/kg800=ρ [ ]s/m?v m/kg2.1 3 air = =ρ 3/16 The inner diameter of an orifice flowmeter is mm200d = . Flow coefficient 7.0=α Compressibility factor 1=ε . The measured difference pressure is 2 m/N600p =∆ . 3 m/kg3.1=ρ . [ ]s/m?q 3 V = 3/17 Width of the flow is 1 m. a.) Construct the velocity distribution diagram along the vertical line over the outlet. b.) Calculate the flow rate [ ]s/mq 3 V ! Bernoulli Equation 14 3/18 Irrotational, horizontal, two-dimensional flow. s/m5v m8.0r m5.0r 0 2 1 = = = a.) What kind of velocity distribution has developed in the arc? b.) [ ]Pa?pp BA =− c.) ? r r f 2 v pp 1 2 2 0 BA       = ρ − (Draw a diagram!)
  • 7. RESULTS 1 Hydrostatics 1/1 2 0 6200 m/NppA =− 1/2 2 21 m/N12360pp =− 1/3 2 14 m/N392pp =− 1/4 2 21 m/N486pp =− 1/5 The overpressure at the upper tap is 600 Pa. 1/6 a.) K R p T 290 0 0 0 = ρ = b.) g p p g dz dp 0 0 ρ−=ρ−= A p p z p g p dpA 0 0 0 ρ −=∫ A A z p g p p ln 0 0 0 ρ −= 25 107880 m/N.pA ⋅= 1/7 m5650h = Results 28 1/8 23 0 10237 m/N.ppA ⋅=− 1/9 2 452 s/m.a = 1/10 a) m422.0h = b) NF 1400= 1/11 The surface at the left side is situated at the left lower corner, the other surface in the right vertical section at a height of 100 mm. 1/12 Volumes are the same in standstill and rotation: 1 2 0 2 2 1 zrzR π=π Points of equivalent potential: 2 12 22 1 2 0 2 ω == ω −⋅ gz r; r zg After substitution: m. g z Rzz gz zR 2360 2 2 1 0 112 1 0 2 =ω= ω = 2 22 0 14300 2 m/N R zgpp AA =      ω −ρ−=− 1/13 After writing the equation const r gzp +      ω −ρ−= 2 22 . for the both known points (surfaces in the left and the right section), the angular velocity can be calculated. a.) s/. 1421=ω b.) s/. 1324=ω 1/14 Equation const r gzp +      ω −ρ−= 2 22 written for the surface of the fluid: 2 22 0 0 ω ρ−= r p.const [ ] 252 0 2 A 2 0A m/N107.19rr 2 pp ⋅=− ω ρ=−
  • 8. Results 31 [ ] 2 5 42 Aconvective 5 4 1 2 1 convective 3 2 11 s/m132 8.0 05.0 075.0 05.0202 a x r r rv2 x v va x r r 2 rv x r r v x v −= ⋅ −= ∆ ∆ −= ∂ ∂ = ∆ ∆     −= ∂ ∂ ∂ ∂ = ∂ ∂ 3 Bernoulli Equation 3/1 hg p 2 vp 0 2 t ⋅+ ρ += ρ s/m8.19v = 3/2 ( ) Pa108.1uv 2 pp 42 0A ⋅=− ρ =− 3/3 s/m4.7v1 50 100 v 2 hg 4 2 water =⇒         −     ρ =⋅⋅ρ 3/4 m141.0 g2 A q h V == 3/5 s/m793.0q 3 V = 3/6 ( ) 2 vp hag p 2 0t + ρ =⋅++ ρ s/m00589.0q 3 v = 3/7 Observing in an absolute co-ordinate system, the flow is irrotational ( 0vrot = ). In a co- ordinate system rotating with the pipe, ω= 2wrot , so the term sdwrotw∫ × is equal to sdw2∫ ω× , the Coriolis force term. ( w – relative velocity) The Bernoulli equation can be written after simplifying the terms above: Results 32 ( ) 2 r hg 2 v 2 r 2 r 22 2 2 2 22 1 2 1 ω −⋅+= ω − ω− Point 1 is situated on the water surface on an arbitrary radius r1 , point 2 at the upper end of the pipe. s/m8.10v2 = 3/8 s/124=ω 3/9 ∫ ∂ ∂ +⋅+= ρ A 0 2 A0 sd t v hg 2 vp 2 A AA A 0 s/m1.24a m3alasd t v = ⋅=⋅= ∂ ∂ ∫ 3/10 a.) [ ] s/m55.6a 0t == b.) m52.1H = 3/11 BB B A a5.75 20 5 10asd t v =      += ∂ ∂ ∫ [ ] 2 0tB s/m31.1a == 3/12 [ ] 2 0t2 s/m94.7a == 3/13 N451F = 3/14 a) The Bernoulli-Equation has to be written between the surface point (1) and the pipe’s outlet point (2), in a co-ordinate system moving with the pipe. It means that s/m24v1 = . From the Bernoulli-equation: s/m116.0qs/m4.23v 3 V2 =⇒= b) the power is necessary to lift the water and to increase its kinetic energy. The change of the kinetic energy must be calculated with the absolute velocity ’v’. kW85.8 2 vv hgqP 2 1 2 2 V =      − +⋅⋅ρ= . 3/15 s/m36 p2 v air = ρ ∆⋅ =
  • 9. Results 33 3/16 s/m67.0 p2 4 d q 2 V = ρ ∆π ε⋅α= 3/17 Because the stream lines leaving the outlet are straight and parallel, there is only a hydrostatic pressure variation along the vertical axis. It follows that the outlet velocity is constant. s/m15.3q 3 V = . 3/18 a) in the arc r K v = , because 0vrot = . b) 1 2 12 r r12 mean r r ln rr K dr r K rr 1 v 2 1 − = − = ∫ Because of continuity: 0mean vv = ( ) 2.3 r r ln rrv K 1 2 12mean = − =⇒ s/m4.6 r K v,s/m4 r K v 1 B 2 A ====⇒ From the Bernoulli-equation: ( ) Pa1025.1vv 2 pp 42 A 2 BBA ⋅=− ρ =− c.) ( ) 22 3 2 0 A 2 0 B 2 0 BA n 1n nln 1n ... ... v v v v v 2 pp +− = =      −      = ρ − with 1 2 r r n = Results 34 4 Integral Momentum Equation 4/1 N12100Fx = 4/2 After writing the Bernoulli equation for points situated upstream and downstream the blade we get the result: 12 vv = 4/3 N510F = , direction 45° from the horizontal plane (’Northeast’) 4/4 N109F = 4/5 N57F = 4/6 N14G = 4/7 The integral momentum equation written for a control surface including only the plate and the upper end of the jet: vvAvAG 00 2 ⋅⋅⋅ρ=⋅⋅ρ= with v, the speed at the lower surface of the control surface. According to the Bernoulli equation: hg2vv 2 0 ⋅⋅−= s/m55.4v0 = 4/8 Write the integral momentum equation for both directions x and y: a) N636F = b) 8.5A/A 21 = Solution with constructing the momentum rate vectors: (It has to be considered that 2 2 2 1 2 0 vAvAvA ⋅⋅ρ+⋅⋅ρ=⋅⋅ρ )
  • 10. 1 1 FLUID STATICS, RELATIVE EQUILIBRIUM OF MOVING FLUIDS 1.1 Determine the gravity force W that can be sustained by the force F acting on the piston of the Figure. F= 1 MN E 0 "U E E 0 ~ II "U 1 0= 240 mm diam • • I w .. · ~ ,.... , ..'-~ . ' ._, .. .. .... "' . ". ,- .._ • . . ' ' • ;.. I ,.. ~ . . ' ' .. • • ' • • . ._ I " .. ,,... .. . . "' .- - . • • • -, - • • • I .. I " • - _,,,,,..,, ... :'J· .,.,, ..... ·· ' - ·. . •' -- 0 ·1 . . . ' . ' ._,• , -. • ·, ' . . I ~ ' '.. . , . ,... - • ,, .- ..·,.. '..<.·-::.-:• :.:.''_-...._-: :·. __.._:: ,' Hydraulic Jack 1.2 Neglecting the mass of the container find the force F tending to lift the circular top AB. ... "" f.h= l m •. ' · . ...,. .... 3 3 :~ 9 =-10 kg Im .·J--;...-" • ,. '..:: .....·.·... .... :7 ·'.,, ·.~ 1.3 For isothermal air at O°C, determine the pressure and density at H = 3000 m when the pressure is p0 = 0.1 MPa abs at sea level (gas constant R =287 Nm/(kgK) ). 1.4 In the Figure the liquids at A and B are water (p) and the manometer liquid is oil (pJ. h1 = 300 mm; h2 = 200 mm; h3 = 600 mm Find pressure difference PA - Ps .
  • 11. .. ...~·~ ., ~ --........ 1.5 h1 =1.3 m; h2 = 1.5 m; h3 =1 m Find the gauge pressure in point A i; h1 .. h2 ..~ ·; 2 p 0 Mercury (q =13600kg lm'> m 1.6 The ratio of cistern diameter to tube diameter is 10. When the air in the tank is at atmospheric pressure, the free surface in the tube is at position 1. When the cistern is pressurized, the liquid in the tube moves 20 mm Y=200 mm} up the tube from position 1 to position 2. What is the cistern pressure that causes this deflection? The density of the liquid is p =800 kg/mJ .
  • 12. 3 Cistern 1.7 Find the gauge difference N111 in the U-tube if the water level in the container is raised by ,1/-1 =1.5 m (see the Figure). - - - - - - - - - - - - - - Water =-=-=-=-=--=--=-=-=-=-=-=-=-=-lqw=-1000 kg/~)_-_- _-_ - _-_- ~w- _- _-_-_- _- - - - -- --- ------,____------- - - -- -- --- --- A A' E c.C> If) 0 0 1.8 An aquarium at Marineland has a window as shown. Find: Mercury 3 {qm= 13600 kg/m ) t.h 11 (a) The resultant force from seawater (p =1015 kg/m3) on the window, F (b) The line of action of the resultant force, in metre below the water surface, k.
  • 13. 45 SOLUTIONS TO CHAPTER 1 1.1 The pressure p can be considered to be constant in the container: Solving for W, yields 1.2 The gauge pressure (pAB - pc) at the inner side of the top is 1.3 Equation of hydrostatics for this barotropic fluid: gz+P =canst where for isothermal change of state P = Po P Po pd P= J..!£.= Poln.E._ p0 P Po Po Hence gz+ PoIn .E._ =const Po Po Boundary condition: p =p0 at z =0, so canst= 0 Solving the equation for p yields the variation of pressure with elevation p=Po exp(-_JJ_z)RTO
  • 14. Then 46 P1 =p(z =H) =p0 exp(-_J/_H)=0.687kPa RTO From the perfect gas law Hence P1 = p(z = H) =A= 0.8764 kg/ m3 RT0 1.4 PA - Pw9h, - Po9h2 +Pw9h3 = Pa PA -Pa =-1373.4 Pa 1.5 PA - Po9h1 +Pw9h2- Pm9h3 =Po PA -Po= Q (p0 h1 +pmh3-pwh2)=1.3018 X 105 Pa 1.6. Continuity: eAt= NIAC. Then .6.h =eA, =2 mm 4 Pcistem =pg(f sin a+NI) =261.24 Pa 1.7 PA=Pe Po +pgH = Po+Pm9'1h1 where H is the height of the water column above point A. When the level of the water in the container is raised by .6.H: pi =p9 . (2) Combining equations (1) and (2), yields (1)
  • 15. 1.8 1.9 47 p +gz =const =Po +gd p p Hence the gauge pressure: p• =p - p0 =pg(d - z) (a) F =p/A =pg(d-zc)ab; where C is the centroid of area of the window, Zc =d - c- a/ 2 F =Fx =5.3769 kN (b) The moment of the resultant force is equated to the moment of distributed forces about the axis A-A whence k =0.65 m wh3 I }2 h 13 y =H - k= -r-+y = + H - -= - m P A Ye c wh(H-~) 2 6 k = H-yp =5 16 m. 1.10 The moment at A have to be equal in magnitude to the moment of the resultant of individual forces acting on the gate. The gauge pressure distribution in the fluid: p - p0 =pg(H- z)
  • 16. 17 3 APPUCATON OF BERNOULLI'S EQUATION 3.1 Air flows steadily and at low speed through a horizontal nozzle, discharging to the atmosphere. At the nozzle inlet, the area is 0.1 m2 • At the nozzle exit the area is 0.02 m2 . The flow is essentially incompressible, and frictional effects are negligible. Determine the gauge pressure required at the nozzle inlet to produce an outlet speed of 50 m/s. (p=1 .23 kg/m3 ) ICD I %, At =- 0.1m 3.2 Neglecting losses determine the discharge Q in the Figure. (p1 =750 kg/m3 ; p2 =1 OOO kg/m3 ; h1 =1 m; h2 =1.5 m; d=0.1 m) Large t ank lnrniscible fluids z - - - - - - h 2 - - - -- 9 - -- --- · -2 - - - -- _- - - x -- - - - - - - - - - - v --- - - - - -- 3.3 A glass tube with a 90° bend is open at both ends. It is inserted into a flowing stream of oil so that one opening is directed upstream and the other is directed upward. Oil inside the tube is 50 mm higher than the surface of the flowing oil. Determine the velocity measured by the tube.
  • 17. p atm 18 - - - - - 3.4 Water may be considered to flow without friction through the siphon. The water flow rate is 0.03 m3 /sec, its temperature is 20 °C, and the pipe diameter is 75 mm. Compute the maximum allowable height h, so that the pressure at point A is above the vapour pressure of the water. (Pv = 2.5kPa; p = 998.2 kg/m3 ; Patm =100.5 kPa) A • h 0 D=75mrn - _ - _ - - - - q -_ - - - Large tank 3.5 A smoothly contoured nozzle is connected to the end of a garden nose. At the nozzle inlet where the velocity is negligible, the water pressure is 160 kPa (gauge). Pressure at the nozzle exit is atmospheric. Assuming that the water remains in a single stream that has negligible aerodynamic drag, estimate the maximum height above the nozzle outlet that the stream could reach.
  • 18. 19 h 3.6 Two probes are often combined, as in the pitot-static tube in the Figure. The inner tube is used to measure the the stagnation pressure at point B while the static pressure at C is sensed by the small holes in the outer tube. In flow fields where the static pressure variation in the streamwise direction is small, the pitot-static tube may be used to infer the velocity at point A in the flow, by assuring PA =Pc- (Note that when PA:.i: Pc· this procedure will give erroneous results). (p=l000kg/m3 ; Pm =13600kg/m3 ; .1h=300mm) Static pressure holes Flow ~·--0 - - - - - - -- A ~ > v E-
  • 19. 20 3.7 Water flows in a circular pipe. At one section the diameter is 0.3 m, the static pressure is 260 kPa (gauge). the velocity is 3 m/s, and the elevation is 10 m above ground level. The elevation at a section downstream is O m, and the pipe diameter is 0.15 m. Find the gauge pressure at the downstream section if frictional effects may be neglected. 3.8 An airspeed indicator used frequently on World War II aircraft consisted of a converging-diverging duct as shown in the Figure. The diameter of the duct at 2 is three-quarters of the entrance diameter at 1. The differential pressure gauge records a pressure of 4000 Pa, and the density of the air is 1 kg/m3 . The air flow is steady, incompressible, inviscid and irrotational. Determine the airspeed U. u 3.9 A large tank contains air, gasoline ( PG =680 kg / m3 }, light oil ( p0 =800 kg / m3 ) and water. The pressure p of the air is 150 kPa gauge. If we neglect friction, what is the mass flow mof oil from a 20-mm-diameter jet? ( .. 2m 1 .. .. " . . .·. .. .. - - Gasoline- - - ~.""··~~:·.·.·-·:; ... ~· ' .0 1l , .. . ._ . I ' ' • - - - - qG -- - - _::: ' . . .. ..... . t - ',;' :' ' . ' . '. ·.~ :,"' ·' . . . . -_-_-_-_- _s--=-- -_-_- _c -=--_---=- -_-_- ---water-- - - -- --- - - -- -----------
  • 20. 21 3.10 For the venturi meter and manometer installation shown in the Figure determine the volume rate of flow for the manometer reading .1h. Data: 01 =200mm; 02 =150mm; z1 = 1m; z2 =1.3m; .1h = 0.2m; p=1000kg/m3 ; Pm=13600kg/m 3 ......__ __ A ~s -~L---z= O 'Sm 3.11 Neglecting losses and surface tension effects, derive an equation for the water surface r of the jet of the Figure in terms of y/H. - ---- 1--- ---- - --- -------- - - - - ------ H ..11. 2r 3.12 Neglecting losses, calculate R in terms of H for the Figure.
  • 21. 22 p I a.m E - - - - - vlarge tank- -- - - - - -- - -- - - - - - - - -,... H >---- 0 3 q =-1000 kg /m !'--. t-A I B • ""' - 3 ~ -3000 kg/m m 3.13 The tank shown in the Figure has a well-rounded orifice with area Aj = 7cm2 • At the time t=O, the water level is at height H=2 m. Develop an expression for the water height, z1, at any later time, t. The cross-sectional area of the tank is A= 0.7 m2. You can neglect frictional effects, and the quasi-steady form of the Bernoulli's equation can be used. H - Tank area - - 3.14 The tank with hemisphere shape has a well rounded orifice with area Ai= 0.01 m2 • At time t=O the water level is at height R=2 m. Develop an
  • 22. 23 expression for the water height, z1 , at any later time, t. Determine time T, belonging to z1 = R/2. You can neglect the unsteady term in the Bernoulli's equation.
  • 23. 3.1 Basic equations Bernoulli's equation: Equation of continuity: 69 SOLUTIONS TO CHAPTER 3 P v 2 p v2 _1 +gz +-1-=_g_+gz +-2- p 1 2 p 2 2 Since z1 = z2 , the combination of equations (1) and (2) yields 3.2 Basic equation: P v2 - +gz +- =canst p 2 Application of equation (1) between points 1 and 2: P v 2 p v2 _1 +gh2+ -1- = atm +- P2 2 P2 2 Application of equation (1) between points 0 and 1: P v 2 p 2 atm +g(fli +h2) +-o- =-1 +gh2 +~ ~ 2 ~ 2 v1 =V0 =0 here. Equation of continuity: d21r Q=-V 4 The combination of equations (2)-(4), yields (1) (2) (1) (2) (3) (4)
  • 24. 3.3 3.4 70 Apply Bernoulli's equation between points 1 and 2: From the hydrostatic pressure variation: P1 =Patm +pgh and P2 =Pa1m +pg(h +'111) Hence Combining equations (1)and (2), yields Bernoulli's equation between points Oand A: From the equation of continuity: v2 8Q2 2- 04 rr2 The combination of equations (i) and (2), yields 8Q2 h =Po-Pv - =7.604m p D4rr2g (1) (2) (1) (2)
  • 25. 3.5 3.6 3.7 3.8 71 Neglecting friction write the Bernoulli's equation between points 1 and 2: whence P1=Potm +gH p p H = p1 -Patm =16.310m pg Apply Bernoulli's equation between points A and B: Apply hydrostatic equation for the two limbs of the U-tube: Taking into account that PA= Pc and combining equations (1) and (2). yield Application of the Bernoulli's equation and the equation of continuity, yields p2 =p, +pg{z2 -z,)+ ~[1-(~J]=2906kPa The combination of the Bernoulli's equation and the equation of continuity written between points 1 and 2, yields (1) (2)
  • 26. 3.9 72 Bernoulli's equation between points C-D: Pc= Po+~ +g/2 Po Po 2 Equation of hydrostatics between points A and B: Equation of continuity: . d27r m=pv-o 4 Taking into account that p8 =Pc and the combination of equations (1) -(3), yields 3.10 Bernoulli's equation: Equation of continuity: P v 2 p v 2 _1 +gz +-1-=2 +gz +-2- p 1 2 p 2 2 Equation of hydrostatics for the two limbs of the U-tube: (1) (2) (3) (1) (2) (3)
  • 27. 73 The combination of equations (1)-(3), yields 3.11 0 = D12te 4 & _7 (£)'-1 2gLlh = 0.02653 m' /s Application of the Bernoulli's equation between points 1 and 2, and 1 and 3, yield V3 =.J2g(H+y) Equation of continuity between points 2 and 3 (neglecting jet contraction): Combination of equations (1)-(3) gives r=--2.. 1+l... d ( )--0.25 2 H 3.12 Bernoulli's equation between points 0 and E: Equation of hydrostatics for the two limbs of the U-tube (PA =p8 ): (1) (2) (3) Patm+pgH =Po +(Pm-p)gR (2) Combination of equations (1) and (2), yields R =0 ( for an arbitrary value of H )
  • 28. 74 3.13 Bernoulli's equation for points 1 and 2, yields Equation of continuity: The definition of v1: dz1 v =-- 1 dt Combination of equations (1) and (2) gives 2g r:;- 2 .yz, (~) -1 Combination of equations (3) and (4) can be integrated finally to give 3.14 Jii-~ 2 2 2 ~ t =(1.414213562 - 0.002214725t)2 (~) -1 (1) (2) (3) (4) The method of solution is the same as in Problem 3.13. The only difference is that the cross-sectional area of the tank varies with z1 A1 =(2Rz1 -z/ )ir The relation between z1 and t is obtained as follows Ti =213.70 sec