SlideShare a Scribd company logo
1 of 19
Download to read offline
SOLUTION TO CHAPTER 4 EXERCISES: SLURRY TRANSPORT
EXERCISE 4.1
Samples of a phosphate slurry mixture are analyzed in a lab. The following data describe
the relationship between the shear stress and the shear rate:
Shear Rate,γ& ( Shear Stress,
)
1
sec−
τ ( )
Pa
25 38
75 45
125 48
175 51
225 53
325 55.5
425 58
525 60
625 62
725 63.2
825 64.3
The slurry mixture is non-Newtonian. If it is considered a power-law slurry, what is the
relationship of the viscosity to the shear rate?
SOLUTION TO EXERCISE 4.1:
First prepare a plot of log(shear stress) versus log (shear rate).
n
k
τ γ
= &
log log log
k n
τ γ
= + &
Shear Rate Shear Stress Log (Shear Stress) Log (Shear Rate)
25 38 1.58 1.40
75 45 1.65 1.88
125 48 1.68 2.10
175 51 1.71 2.24
225 53 1.72 2.35
325 55.5 1.74 2.51
425 58 1.76 2.63
525 60 1.78 2.72
625 62 1.79 2.80
725 63.2 1.80 2.86
825 64.3 1.81 2.92
From this plot
1
Slope = 0.15
Intercept = 1.37
Hence,
Slope 0.15
n
= =
Intercept log 1.37
k
= =
k = 23.4 Ns0.15
/m2
0.15
23.4
τ γ
∴ = & with γ& in 1
sec−
and τ in Pa
and
0.85
app 23.4
τ
μ γ
γ
−
= = &
&
Problem 4.1
0
10
20
30
40
50
60
70
0 200 400 600 800 1000
Shear Rate
Shear
Stress
Problem 4.1
1.55
1.6
1.65
1.7
1.75
1.8
1.85
0 1 2 3 4
Log (Shear Rate)
Log
(Shear
Stress)
2
EXERCISE 4.2:
Verify equation 4.7
SOLUTION TO EXERCISE 4.2:
r
z
For one-dimensional, fully-developed, laminar flow in a pipe, the z − component of the
momentum balance simplifies to the differential equation
( )
1
rz
p
O r
z r r
τ
∂ ∂
= − +
∂ ∂
For a power-law fluid
d
d
n
z
rz
v
k
r
τ
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
Hence,
d
d
d d
n
z
v
P k
O r
L r r r
⎡ ⎤
Δ ⎛ ⎞
= + + ⎢ ⎥
⎜ ⎟
⎝ ⎠
⎢ ⎥
⎣ ⎦
Here
p
z
∂
−
∂
has been replaced by
P
L
Δ
+ since the pressure gradient is constant.
Integrating once,
1 d
2 d
n
z
C v
r P
k L r r
Δ ⎛ ⎞
− + = ⎜ ⎟
⎝ ⎠
must equal to zero since the velocity gradient is zero at
1
C 0
r = .
Integrating again,
1
1 1
2
1
2
1
n
n
z
P r
C v
Lk
n
+
Δ
⎛ ⎞
− +
⎜ ⎟
⎛ ⎞
⎝ ⎠ +
⎜ ⎟
⎝ ⎠
=
Applying the boundary condition that 0
z
v = at r R
=
1 1
1 1
1
1
2
n n
n
z
P R r
v
n
kL
n
+ +
⎡ ⎤
⎢ ⎥
Δ −
⎛ ⎞
⎢ ⎥
= +⎜ ⎟ +
⎛ ⎞
⎝ ⎠ ⎢ ⎥
⎜ ⎟
⎢ ⎥
⎝ ⎠
⎣ ⎦
3
The average velocity is equal to
AV
v
AV 2
0
2
R
z
v rv
R
= ∫ dr
Hence
1 1
1 3
1
2
AV 2
0
2
n+1 3 1 1
2
2
n
R
n n
n
P R r r
v
n n
R kL
n n
+ +
⎡ ⎤
⎢ ⎥
Δ
⎛ ⎞
⎢ ⎥
= −
⎜ ⎟ + +
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎝ ⎠ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎢ ⎥
⎝ ⎠ ⎝ ⎠⎝ ⎠
⎣ ⎦
and
( )
1 1
3
AV 2
2
2 2 3
n
n
P n
v R
R kL n
+
⎡ ⎤
⎛ ⎞
Δ
⎛ ⎞
= ⎢ ⎥
⎜ ⎟
⎜ ⎟ ⎜ ⎟
+
⎝ ⎠ ⎢ ⎥
⎝ ⎠
⎣ ⎦
1
Simplifying with
2
D
R
=
( )
1
AV
4 2 3
n
PD Dn
v
kL n
Δ
⎛ ⎞
= ⎜ ⎟
+
⎝ ⎠ 1
EXERCISE 4.3:
Verify equation 4.28
SOLUTION TO EXERCISE 4.3:
r
z
For one-dimensional, fully-developed laminar flow in a pipe, the z − component of the
momentum balance simplifies to the differential equation
( )
1
rz
P
O r
z r r
τ
∂ ∂
= − +
∂ ∂
For any fluid
4
( )
Pr d
dr
rz
r
L
τ
Δ
− =
Integrating,
Pr
2
rz
L
τ
Δ
− = since rz
τ must be finite at 0
r =
For pipe flow
d
d
z
rz y p
v
r
τ τ μ
= − + since
d
d
z
v
r
is negative for pipe flow
Hence,
d
Pr
2 d
z
y p
v
L r
τ μ
Δ
− = − +
Rearranging,
d
Pr
2 d
y z
p p
v
L r
τ
μ μ
Δ
− + =
Integrating,
2
2
Pr
4
y
z
p p
r
C v
L
τ
μ μ
Δ
− + + =
Apply the boundary condition 0
z
v = r R
=
2
2
P
4
y
p p
R
R
C
L
τ
μ μ
Δ
− + = −
( ) ( )
2 2
P r
4
y
z
p p
R r R
v
L
τ
μ μ
Δ − −
∴ = +
This velocity profile is valid for *
R r R
≤ ≤ . For the plug flow region ,
*
r R
≤
d
0
d
z
v
r
= .
In the plug flow region, the velocity is constant and
*
2
rz y
PR
L
τ τ
Δ
− = =
5
The plug flow velocity can be found by substituting this expression for y
τ into the
velocity profile.
( ) ( )
2 *2 * *
P P
4 2
z
p p
R R R R
v
L L
μ μ
Δ − Δ −
= +
R
( )
2
*
P
4
z
p
R R
v
L
μ
Δ −
∴ = for *
0 r R
≤ ≤
Both velocity regions must be integrated to determine the average velocity .
AV
v
( ) ( ) ( )
*
*
2
* 2 2
AV 2 2
0
2 2
d
4 4
R R
y
p p
R
P P
v R R r r R r r
R L R L
τ
μ μ μ
⎡ ⎤
Δ Δ
= − + − + −
⎢ ⎥
⎢ ⎥
⎣ ⎦
∫ ∫ d
p
R r r
Integrating,
4
2 * *
AV
4 1
1
8 3 3
p
PR R R
v
L R R
μ
⎡ ⎤
⎛ ⎞ ⎛ ⎞
Δ
= − +
⎢ ⎥
⎜ ⎟ ⎜ ⎟
⎢ ⎥
⎝ ⎠ ⎝ ⎠
⎣ ⎦
or
4
0
AV
0 0
4 1
1
4 3 3
y y
p
R
v
τ τ
τ
μ τ τ
⎡ ⎤
⎛ ⎞
⎢ ⎥
= − + ⎜ ⎟
⎢ ⎥
⎝ ⎠
⎣ ⎦
where 0
τ is the wall shear stress
0
2
R P
L
τ
Δ
=
EXERCISE 4.4
A slurry behaving as a pseudoplastic fluid is flowing through a smooth round tube having
an inside diameter of 5 cm at an average velocity of 8.5 m/s. The density of the slurry is
900 kg/m3
and its flow index and consistency index are n = 0.3 and k = 3.0 Ns0.3
/m2
.
Calculate the pressure drop for a) 50 m length of horizontal pipe and b) 50 m length of
vertical pipe with the flow moving against gravity.
6
SOLUTION TO EXERCISE 4.4:
First check if the flow is laminar or turbulent
( )
( )
2.3
1.7
1.3
*
0.3
*
6464 0.3 2.3 1
Re
1.9
1.9
Re 2345
transition
transition
× ⎛ ⎞
= ⎜ ⎟
⎝ ⎠
=
*
Re at flow conditions,
( )
1.7
0.3
0.3
3
*
0.3
2
kg m
8 900 0.05 m 8.5
0.3
m s
Re
Ns 3.8
3.0
m
⎛ ⎞ ⎛ ⎞
× × ×
⎜ ⎟ ⎜ ⎟
⎡ ⎤
⎝ ⎠ ⎝ ⎠
= ⎢ ⎥
⎣ ⎦
* *
Re 17340 Re turbulent
transition
= > ⇒
The friction factor f
f is given by
( )
* 2
0.75
1 4 0
log Re n
f
f
f
n
.4
f n
−
= −
Solving for f
f with and
*
Re 17340
= 0.3
n = , yields
0.0026
f
f =
a) the pressure drop for horizontal flow is then
2
2 f m A
L
V
p f v
D
ρ
Δ =
( ) ( )
2
3
kg 50m m
2 0.0026 900 8.5
s
m 0.05m
p
⎛ ⎞⎛ ⎞⎛ ⎞
Δ = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
⎝ ⎠⎝ ⎠
7
2
kN
338
m
p
Δ =
b) the pressure drop for vertical flow is given by
f
m
p
h z
g
ρ
Δ
− = − + Δ
or
2
2
m f m f m AV m
L
p gh g z f v g z
D
ρ ρ ρ ρ
⎛ ⎞
Δ = + Δ = + Δ
⎜ ⎟
⎝ ⎠
( ) ( )
2
3 3
kg 50m kg m
2 0.0026 900 8.5 900 9.8 50m
m 0.05m m s
m
p
s
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
Δ = +
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
2
2
kN
779
m
p
Δ =
EXERCISE 4.5
The concentration of a water-based slurry sample is to be found by drying the slurry in an
oven. Determine the slurry weight concentration given the following data:
Weight of container plus dry solids 0.31kg
Weight of container plus slurry 0.48kg
Weight of container 0.12kg
Determine the density of the slurry if the solid specific gravity is 3.0.
SOLUTION TO EXERCISE 4.5:
Weight of dry solids = 0.31-0.12 = 0.19kg
Weight of slurry = 0.48-0.12 = 0.36kg
Concentration of solids by weight =
0.19
0.53
0.36
=
The density of the slurry is found by
8
3 3
3
1 0.53 0.47
kg kg
3000 1000
m m
kg
1546
m
m
m
ρ
ρ
= +
=
EXERCISE 4.6
A coal-water slurry has a specific gravity of 1.3. If the specific gravity of coal is 1.65,
what is the weight percent of coal in the slurry? What is the volume percent coal?
SOLUTION TO EXERCISE 4.6:
( )
1
1 w
w
m s f
C
C
ρ ρ ρ
−
= +
( )
1
1
1.3 1.65 1.0
w
w
C
C −
= +
Solving for ,
w
C
0.586
w
C =
mass coal
mass slurry
w
C =
Volume fraction coal = w m
s
C ρ
ρ
Volume fraction coal =
( )( )
0.586 1.3
0.46
1.65
=
EXERCISE 4.7
The following rheology test results were obtained for a mineral slurry containing 60
percent solids by weight. Which rheological model describes the slurry and what are the
appropriate rheological properties for this slurry?
9
Rate of Shear (1/s) Shear Stress (Pa)
0 4.0
0.1 4.03
1 4.2
10 5.3
15 5.8
25 6.7
40 7.8
45 8.2
SOLUTION TO EXERCISE 4.7:
The shear stress at zero shear rate is 4.0 Pa. Hence, this slurry exhibits yield stress equal
to 4.0 Pa. In order to determine whether the slurry behaves as a Bingham fluid or if it
follows the Herschel-Bulkley model, we need to plot y
τ τ
− versus shear rate.
(Pa)
y
τ τ
− Shear Rate (1/s)
0 0
0.03 0.1
0.2 1
1.3 10
1.8 15
2.7 25
3.8 40
4.2 45
A plot of y
τ τ
− versus shear rate on an arithmetric scale is not linear. However, a plot
of y
τ τ
− versus shear rate on a log-log scale is linear (the data for zero shear rate is
excluded)
n
y k
τ τ γ
− = &
( )
ln ln ln
y k n
τ τ γ
− = + &
10
( )
ln y
τ τ
− lnγ& Shear Rate
-3.51 -2.30 0.1
-1.61 0 1
+0.26 +2.30 10
+0.59 +2.71 15
+0.99 +3.22 25
+1.34 +3.69 40
+1.44 +3.81 45
Slope = 0.81 = n
Intercept = -1.62 =lnk
0.81
2
Ns
0.20
m
k
∴ =
EXERCISE 4.8
A mud slurry is drained from a tank through a 50 ft. long horizontal plastic hose. The
hose has an elliptical cross-section, with a major axis of 4 inches and a minor axis of 2
inches. The open end of the hose is 10 feet below the level in the tank. The mud is a
Bingham plastic with a yield stress of 100 dynes/cm2
, a plastic viscosity of 50cp, and a
density of 1.4 g/cm3
.
a) At what velocity will water drain from the hose?
b) At what velocity will the mud drain from the hose?
SOLUTION TO EXERCISE 4.8:
Applying the modified Bernoulli equation to the system between points “1” and “2”,
11
2
AV
0
2
f
v
h z
g
⎧ ⎫
= + + Δ + Δ⎨ ⎬
⎩ ⎭
or,
2
AV
2 1
0
2
f
v
h z z
g
= + + − +
where 2
2
AV
2 f
f
h
f L
h v
g D
⎛ ⎞
= ⎜ ⎟
⎝ ⎠
and 2 1 3.048 m
z z
− = −
Need to determine the hydraulic diameter of the pipe with the elliptical cross-section:
4 cross-sectional area
wetted perimeter
h
D =
2a
2b
( )( )
( )
( )( )( )
2 2
2 2
4
2
2
4 2 in 1 in
2.53 in 0.0643 m
4 in 1 in
2
2
h
h
πab
D
a b
D
π
=
+
= = =
+
Plugging in numbers (SI units),
( )
2
2 AV
AV
2 2
2 15.24 m
0 3.048 m
m m
0.0643 m
9.8 2 9.8
s s
f
f v
v
⎛ ⎞
= − +
⎜ ⎟
⎛ ⎞
⎝ ⎠
⎜ ⎟
⎝ ⎠
(*)
2
AV AV
0 0.051 3.048 48.3 f
v
= − + 2
f v
12
Solution Procedure:
AV
1) Calculate
2) Guess velocity
3) Calculate Re
4) Find from Figure 6.
5) Check governing equation (*)
6) If governing equation is not satisfied, guess a new velocity
AV
f
He
v
f
v
( )
2
2 3 2
2
2
kg kg
1400 0.0643 m 10
m m
kg
0.050
m s
23,153
m h y
p
D
He
He
ρ τ
μ
⎛ ⎞ ⎛
⎜ ⎟ ⎜
s
⎞
⎟
⋅
⎝ ⎠ ⎝
= =
⎛ ⎞
⎜ ⎟
⋅
⎝ ⎠
=
⎠
Solution via iterative procedure for water:
( )
3
5
AV
kg m
1000 0.0643 m 3.65
m s
3.65 m s Re 2.3 10
kg
0.001
m s
Dv
v
ρ
μ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
= = = =
⎛ ⎞
⎜ ⎟
⋅
⎝ ⎠
×
5
(Re 2.3 10 ;smooth tube) 0.0037
f
f = × =
Solution via iterative procedure for mud:
( )
3
3
AV
kg m
1400 3.2 0.0643 m
m m s
3.2 Re 5.7 10
kg
s 0.05
m s
v
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
= = = ×
⋅
3 4
(Re 5.7 10 ; 2.3 10 ) 0.005
f
f He
= × = × ≅
13
EXERCISE 4.9
A coal slurry is found to behave as a power-law fluid with a flow index 0.3, a specific
gravity 1.5, and an apparent viscosity of 70cp at a shear rate 100s-1
.
a) What volumetric flow rate of this fluid would be required to reach turbulent flow in a
1/2 in. I.D. smooth pipe which is 15 ft. long?
b) What is the pressure drop (in Pa) in the pipe under these conditions?
SOLUTION TO EXERCISE 4.9:
a) First, calculate
*
transition for n = 0.3
Re
( )
( )
( )
( )
( )
2 0.3
2 0.3
*
1 0.3
transition 0.3
*
transition
6464 0.3 1
Re 2 0.3
1 3 0.3
1 3 0.3
Re 2340
−
+
⎛ ⎞
⎜ ⎟
+
⎝ ⎠
⎛ ⎞
= + ⎜ ⎟
+
+ ⎝ ⎠
=
Also, need to calculate , the consistency index
k
1
app
n
k
μ γ −
= &
0.7
kg 100
0.07
m s s
k
−
⎛ ⎞
= ⎜ ⎟
⋅ ⎝ ⎠
1.7
kg
1.76
ms
k
∴ =
Applying equation 4.19, the average velocity in the smooth pipe can be found.
( )
2
* AV
8
Re
6 2
n
n n
mD v n
k n
ρ −
⎡ ⎤
= ⎢ ⎥
+
⎣ ⎦
( )
( )
0.3 1.7
0.3
AV
3
1.7
kg
8 1500 0.0127 m
0.3
m
2340=
kg 6 0.3 2
1.76
ms
v
⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎝ ⎠
⎜ ⎟
+
⎝ ⎠
Solving for AV
v
14
AV
m
1.61
s
v =
The volumetric flow rate Q is then
( )
2
2
AV C
3
4
m 0.0254 m
1.61 0.5 in
s 1 in
(Cross-Sectional Area, A )
4
m
2.0 10
s
Q v
π
−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
= ⋅ =
= ×
b)
2
AV
2 f m
L
p f v
D
ρ
⎛ ⎞
Δ = ⎜ ⎟
⎝ ⎠
*
16
0.007
Re
f
f = =
( )
2
3
kg 4.572 m m
2 0.007 1500 1.61
m 0.0127 m s
19600 Pa
p
p
⎛ ⎞⎛ ⎞⎛
Δ = ⎜ ⎟⎜ ⎟⎜
⎝ ⎠⎝ ⎠⎝
Δ =
⎞
⎟
⎠
EXERCISE 4.10
A mud slurry is draining from the bottom of a large tank through a 1 m long vertical pipe
that is 1 cm I.D. The open end of the pipe is 4 m below the level in the tank. The mud
behaves as a Bingham plastic with a yield stress of 10 N/m2
, an apparent viscosity of 0.04
kg/m⋅s, and a density of 1500 kg/m3
. At what velocity will the mud slurry drain from the
hose?
15
SOLUTION TO EXERCISE 4.10:
Applying the modified Bernoulli equation to the system above
2
2
AV
2 1
2
f
v
h z z
g
− = − +
Assuming the flow is laminar, the head loss due to pipe friction is given by
3 2
f
m
p p
h
g
ρ
−
=
Applying equation 4.30,
2
AV
2
32 16
3
p y
f
m
v L L
D D
h
g
μ τ
ρ
+
=
( )( )
( )
( )
( )
2
AV 2
2
3 2
AV
kg N
32 0.04 1 m 16 10 1 m
m s m
3 0.01 m
0.01 m
kg m
1500 9.8
m s
0.87 0.36
f
f
v
h
h v
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⋅
⎝ ⎠ ⎝ ⎠
+
=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
= +
16
Plugging this head loss back into the modified Bernoulli equation,
( )
2
AV
AV
0.87 0.36 4
2 9.8
v
v
− − = − +
Rearranging,
( ) ( )
2
AV AV
2
AV
0 71.3 17.1
17.1 17.1 4 71.3
2
v v
v
= − + +
− ± − −
=
AV
m
3.5
s
v = (other solution yields a negative velocity)
Check original assumption to see if flow is laminar
( )
3
AV
kg m
1500 3.5 0.01 m
m s
Re 1300
kg
0.04
m s
m
p
v D
ρ
μ
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
= = =
⎛ ⎞
⎜ ⎟
⋅
⎝ ⎠
∴ Flow is laminar and original assumption is correct.
EXERCISE 4.11
A mud slurry is draining in laminar flow from the bottom of a large tank through a 5 m
long horizontal pipe that is 1 cm inside diameter. The open end of the pipe is 5 m below
the level in the tank. The mud is a Bingham plastic with a yield stress of 15 N/m2
, an
apparent viscosity of 0.06 kg/ms, and a density of 2000 kg/m3
. At what velocity will the
mud slurry drain from the hose?
17
SOLUTION TO EXERCISE 4.11:
Applying the modified Bernoulli equation to the system above
2
AV
2 1
2
f
v
h z z
g
− = − +
Assuming the flow is laminar, the head loss due to pipe friction is given by
( )( )
( )
( )
( )
2
2
2
AV
2
3 2
AV 2
2
3 2
AV
32 16
3
kg N
32 0.06 5 m 16 15 5 m
m s m
3 0.01 m
0.01 m
kg m
2000 9.8
m s
4.90 2.04
p y
f
m m
f
f
v L L
p p D D
h
g g
v
h
h v
μ τ
ρ ρ
+
−
= =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⋅
⎝ ⎠ ⎝ ⎠
+
=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
= +
18
Plugging this head loss back into the modified Bernoulli equation,
2
2
AV
AV
2
4.9 2.04 5
m
2 9.8
s
v
v
− − = − +
⎛ ⎞
⎜ ⎟
⎝ ⎠
Rearranging,
( ) ( )
2
AV AV
2
AV
96.0 58 0
96 96 4 58
2
v v
v
+ − =
− ± − −
=
AV
m
0.6
s
v = (other solution yields a negative velocity)
Check original assumption to see if flow is laminar
( )
3
AV
kg m
2000 0.6 0.01 m
m s
Re
kg
0.06
m s
m
p
v D
ρ
μ
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
= =
⎛ ⎞
⎜ ⎟
⋅
⎝ ⎠
⇒ flow is laminar
Re 200
=
19

More Related Content

What's hot

Chapter03.pure substance
Chapter03.pure substanceChapter03.pure substance
Chapter03.pure substancePASRINIVASAN_79
 
Impact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyImpact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyJameel Academy
 
Reporte practica 3 Caída de presión en lechos empacados
Reporte practica 3 Caída de presión en lechos empacadosReporte practica 3 Caída de presión en lechos empacados
Reporte practica 3 Caída de presión en lechos empacadosBeyda Rolon
 
EES for Thermodynamics
EES for ThermodynamicsEES for Thermodynamics
EES for ThermodynamicsNaveed Rehman
 
Cooling Towers - An Extensive Approach
Cooling Towers - An Extensive ApproachCooling Towers - An Extensive Approach
Cooling Towers - An Extensive ApproachNoaman Ahmed
 
205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactoresMelanieQuiroz6
 
Matlab for Chemical Engineering
Matlab for Chemical EngineeringMatlab for Chemical Engineering
Matlab for Chemical EngineeringDebarun Banerjee
 
P 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizadosP 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizadosLucero Gallegos González
 
Graphical methods for 2 d heat transfer
Graphical methods for 2 d heat transfer Graphical methods for 2 d heat transfer
Graphical methods for 2 d heat transfer Arun Sarasan
 
Episode 53 : Computer Aided Process Engineering
Episode 53 :  Computer Aided Process EngineeringEpisode 53 :  Computer Aided Process Engineering
Episode 53 : Computer Aided Process EngineeringSAJJAD KHUDHUR ABBAS
 
Diaps 2do parcial (1)
Diaps 2do parcial (1)Diaps 2do parcial (1)
Diaps 2do parcial (1)KloDgAr
 
Chapter 4 Couette-Poiseuille flow.pdf
Chapter 4 Couette-Poiseuille flow.pdfChapter 4 Couette-Poiseuille flow.pdf
Chapter 4 Couette-Poiseuille flow.pdfkhaledmatoug1
 
Fluid mechanics Lab Report
Fluid mechanics Lab ReportFluid mechanics Lab Report
Fluid mechanics Lab ReportMuhammad Bilal
 

What's hot (20)

Tension superficial uni
Tension superficial uniTension superficial uni
Tension superficial uni
 
Chapter03.pure substance
Chapter03.pure substanceChapter03.pure substance
Chapter03.pure substance
 
Design of condenser
Design of condenserDesign of condenser
Design of condenser
 
Impact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyImpact Of Jet | Jameel Academy
Impact Of Jet | Jameel Academy
 
Reporte practica 3 Caída de presión en lechos empacados
Reporte practica 3 Caída de presión en lechos empacadosReporte practica 3 Caída de presión en lechos empacados
Reporte practica 3 Caída de presión en lechos empacados
 
EES for Thermodynamics
EES for ThermodynamicsEES for Thermodynamics
EES for Thermodynamics
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
Cooling Towers - An Extensive Approach
Cooling Towers - An Extensive ApproachCooling Towers - An Extensive Approach
Cooling Towers - An Extensive Approach
 
205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores205938300 problemas-de-diseno-de-reactores
205938300 problemas-de-diseno-de-reactores
 
Matlab for Chemical Engineering
Matlab for Chemical EngineeringMatlab for Chemical Engineering
Matlab for Chemical Engineering
 
3. Steady state heat transfer in a slab
3. Steady state heat transfer in a slab3. Steady state heat transfer in a slab
3. Steady state heat transfer in a slab
 
P 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizadosP 2 Caìda de presiòn en lechos empacados y fluidizados
P 2 Caìda de presiòn en lechos empacados y fluidizados
 
Graphical methods for 2 d heat transfer
Graphical methods for 2 d heat transfer Graphical methods for 2 d heat transfer
Graphical methods for 2 d heat transfer
 
Transport phenomena
Transport phenomenaTransport phenomena
Transport phenomena
 
Episode 53 : Computer Aided Process Engineering
Episode 53 :  Computer Aided Process EngineeringEpisode 53 :  Computer Aided Process Engineering
Episode 53 : Computer Aided Process Engineering
 
Diaps 2do parcial (1)
Diaps 2do parcial (1)Diaps 2do parcial (1)
Diaps 2do parcial (1)
 
Ch 6b 2nd law
Ch 6b  2nd lawCh 6b  2nd law
Ch 6b 2nd law
 
Chapter 4 Couette-Poiseuille flow.pdf
Chapter 4 Couette-Poiseuille flow.pdfChapter 4 Couette-Poiseuille flow.pdf
Chapter 4 Couette-Poiseuille flow.pdf
 
2.4 Plate efficiencies
2.4 Plate efficiencies2.4 Plate efficiencies
2.4 Plate efficiencies
 
Fluid mechanics Lab Report
Fluid mechanics Lab ReportFluid mechanics Lab Report
Fluid mechanics Lab Report
 

Similar to Rhodes solutions-ch4

Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΒατάτζης .
 
Foundationeng deep-foundations_ps
Foundationeng deep-foundations_psFoundationeng deep-foundations_ps
Foundationeng deep-foundations_psİsimsiz Kahraman
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandroTarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandroAlejandro Cabrera
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSalehkhanovic
 
Dinamica estructural 170614215831
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831Miguel Ángel
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 

Similar to Rhodes solutions-ch4 (20)

FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
 
Ans1
Ans1Ans1
Ans1
 
Examen termo final
Examen termo finalExamen termo final
Examen termo final
 
Selectionmec6 (1)
Selectionmec6 (1)Selectionmec6 (1)
Selectionmec6 (1)
 
Solucionario_Felder.pdf
Solucionario_Felder.pdfSolucionario_Felder.pdf
Solucionario_Felder.pdf
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Drift flux
Drift fluxDrift flux
Drift flux
 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19
 
Foundationeng deep-foundations_ps
Foundationeng deep-foundations_psFoundationeng deep-foundations_ps
Foundationeng deep-foundations_ps
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
Solutions fox
Solutions   foxSolutions   fox
Solutions fox
 
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandroTarea 5 hidraulica iii-cabrera arias roberto alejandro
Tarea 5 hidraulica iii-cabrera arias roberto alejandro
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chin
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
Dinamica estructural 170614215831
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Examination in open channel flow
Examination in open channel flowExamination in open channel flow
Examination in open channel flow
 
problemas resueltos
problemas resueltosproblemas resueltos
problemas resueltos
 

Recently uploaded

VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 

Recently uploaded (20)

VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 

Rhodes solutions-ch4

  • 1. SOLUTION TO CHAPTER 4 EXERCISES: SLURRY TRANSPORT EXERCISE 4.1 Samples of a phosphate slurry mixture are analyzed in a lab. The following data describe the relationship between the shear stress and the shear rate: Shear Rate,γ& ( Shear Stress, ) 1 sec− τ ( ) Pa 25 38 75 45 125 48 175 51 225 53 325 55.5 425 58 525 60 625 62 725 63.2 825 64.3 The slurry mixture is non-Newtonian. If it is considered a power-law slurry, what is the relationship of the viscosity to the shear rate? SOLUTION TO EXERCISE 4.1: First prepare a plot of log(shear stress) versus log (shear rate). n k τ γ = & log log log k n τ γ = + & Shear Rate Shear Stress Log (Shear Stress) Log (Shear Rate) 25 38 1.58 1.40 75 45 1.65 1.88 125 48 1.68 2.10 175 51 1.71 2.24 225 53 1.72 2.35 325 55.5 1.74 2.51 425 58 1.76 2.63 525 60 1.78 2.72 625 62 1.79 2.80 725 63.2 1.80 2.86 825 64.3 1.81 2.92 From this plot 1
  • 2. Slope = 0.15 Intercept = 1.37 Hence, Slope 0.15 n = = Intercept log 1.37 k = = k = 23.4 Ns0.15 /m2 0.15 23.4 τ γ ∴ = & with γ& in 1 sec− and τ in Pa and 0.85 app 23.4 τ μ γ γ − = = & & Problem 4.1 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 Shear Rate Shear Stress Problem 4.1 1.55 1.6 1.65 1.7 1.75 1.8 1.85 0 1 2 3 4 Log (Shear Rate) Log (Shear Stress) 2
  • 3. EXERCISE 4.2: Verify equation 4.7 SOLUTION TO EXERCISE 4.2: r z For one-dimensional, fully-developed, laminar flow in a pipe, the z − component of the momentum balance simplifies to the differential equation ( ) 1 rz p O r z r r τ ∂ ∂ = − + ∂ ∂ For a power-law fluid d d n z rz v k r τ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ Hence, d d d d n z v P k O r L r r r ⎡ ⎤ Δ ⎛ ⎞ = + + ⎢ ⎥ ⎜ ⎟ ⎝ ⎠ ⎢ ⎥ ⎣ ⎦ Here p z ∂ − ∂ has been replaced by P L Δ + since the pressure gradient is constant. Integrating once, 1 d 2 d n z C v r P k L r r Δ ⎛ ⎞ − + = ⎜ ⎟ ⎝ ⎠ must equal to zero since the velocity gradient is zero at 1 C 0 r = . Integrating again, 1 1 1 2 1 2 1 n n z P r C v Lk n + Δ ⎛ ⎞ − + ⎜ ⎟ ⎛ ⎞ ⎝ ⎠ + ⎜ ⎟ ⎝ ⎠ = Applying the boundary condition that 0 z v = at r R = 1 1 1 1 1 1 2 n n n z P R r v n kL n + + ⎡ ⎤ ⎢ ⎥ Δ − ⎛ ⎞ ⎢ ⎥ = +⎜ ⎟ + ⎛ ⎞ ⎝ ⎠ ⎢ ⎥ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎣ ⎦ 3
  • 4. The average velocity is equal to AV v AV 2 0 2 R z v rv R = ∫ dr Hence 1 1 1 3 1 2 AV 2 0 2 n+1 3 1 1 2 2 n R n n n P R r r v n n R kL n n + + ⎡ ⎤ ⎢ ⎥ Δ ⎛ ⎞ ⎢ ⎥ = − ⎜ ⎟ + + ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎝ ⎠ ⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦ and ( ) 1 1 3 AV 2 2 2 2 3 n n P n v R R kL n + ⎡ ⎤ ⎛ ⎞ Δ ⎛ ⎞ = ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ + ⎝ ⎠ ⎢ ⎥ ⎝ ⎠ ⎣ ⎦ 1 Simplifying with 2 D R = ( ) 1 AV 4 2 3 n PD Dn v kL n Δ ⎛ ⎞ = ⎜ ⎟ + ⎝ ⎠ 1 EXERCISE 4.3: Verify equation 4.28 SOLUTION TO EXERCISE 4.3: r z For one-dimensional, fully-developed laminar flow in a pipe, the z − component of the momentum balance simplifies to the differential equation ( ) 1 rz P O r z r r τ ∂ ∂ = − + ∂ ∂ For any fluid 4
  • 5. ( ) Pr d dr rz r L τ Δ − = Integrating, Pr 2 rz L τ Δ − = since rz τ must be finite at 0 r = For pipe flow d d z rz y p v r τ τ μ = − + since d d z v r is negative for pipe flow Hence, d Pr 2 d z y p v L r τ μ Δ − = − + Rearranging, d Pr 2 d y z p p v L r τ μ μ Δ − + = Integrating, 2 2 Pr 4 y z p p r C v L τ μ μ Δ − + + = Apply the boundary condition 0 z v = r R = 2 2 P 4 y p p R R C L τ μ μ Δ − + = − ( ) ( ) 2 2 P r 4 y z p p R r R v L τ μ μ Δ − − ∴ = + This velocity profile is valid for * R r R ≤ ≤ . For the plug flow region , * r R ≤ d 0 d z v r = . In the plug flow region, the velocity is constant and * 2 rz y PR L τ τ Δ − = = 5
  • 6. The plug flow velocity can be found by substituting this expression for y τ into the velocity profile. ( ) ( ) 2 *2 * * P P 4 2 z p p R R R R v L L μ μ Δ − Δ − = + R ( ) 2 * P 4 z p R R v L μ Δ − ∴ = for * 0 r R ≤ ≤ Both velocity regions must be integrated to determine the average velocity . AV v ( ) ( ) ( ) * * 2 * 2 2 AV 2 2 0 2 2 d 4 4 R R y p p R P P v R R r r R r r R L R L τ μ μ μ ⎡ ⎤ Δ Δ = − + − + − ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ∫ ∫ d p R r r Integrating, 4 2 * * AV 4 1 1 8 3 3 p PR R R v L R R μ ⎡ ⎤ ⎛ ⎞ ⎛ ⎞ Δ = − + ⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ or 4 0 AV 0 0 4 1 1 4 3 3 y y p R v τ τ τ μ τ τ ⎡ ⎤ ⎛ ⎞ ⎢ ⎥ = − + ⎜ ⎟ ⎢ ⎥ ⎝ ⎠ ⎣ ⎦ where 0 τ is the wall shear stress 0 2 R P L τ Δ = EXERCISE 4.4 A slurry behaving as a pseudoplastic fluid is flowing through a smooth round tube having an inside diameter of 5 cm at an average velocity of 8.5 m/s. The density of the slurry is 900 kg/m3 and its flow index and consistency index are n = 0.3 and k = 3.0 Ns0.3 /m2 . Calculate the pressure drop for a) 50 m length of horizontal pipe and b) 50 m length of vertical pipe with the flow moving against gravity. 6
  • 7. SOLUTION TO EXERCISE 4.4: First check if the flow is laminar or turbulent ( ) ( ) 2.3 1.7 1.3 * 0.3 * 6464 0.3 2.3 1 Re 1.9 1.9 Re 2345 transition transition × ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ = * Re at flow conditions, ( ) 1.7 0.3 0.3 3 * 0.3 2 kg m 8 900 0.05 m 8.5 0.3 m s Re Ns 3.8 3.0 m ⎛ ⎞ ⎛ ⎞ × × × ⎜ ⎟ ⎜ ⎟ ⎡ ⎤ ⎝ ⎠ ⎝ ⎠ = ⎢ ⎥ ⎣ ⎦ * * Re 17340 Re turbulent transition = > ⇒ The friction factor f f is given by ( ) * 2 0.75 1 4 0 log Re n f f f n .4 f n − = − Solving for f f with and * Re 17340 = 0.3 n = , yields 0.0026 f f = a) the pressure drop for horizontal flow is then 2 2 f m A L V p f v D ρ Δ = ( ) ( ) 2 3 kg 50m m 2 0.0026 900 8.5 s m 0.05m p ⎛ ⎞⎛ ⎞⎛ ⎞ Δ = ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ 7
  • 8. 2 kN 338 m p Δ = b) the pressure drop for vertical flow is given by f m p h z g ρ Δ − = − + Δ or 2 2 m f m f m AV m L p gh g z f v g z D ρ ρ ρ ρ ⎛ ⎞ Δ = + Δ = + Δ ⎜ ⎟ ⎝ ⎠ ( ) ( ) 2 3 3 kg 50m kg m 2 0.0026 900 8.5 900 9.8 50m m 0.05m m s m p s ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ Δ = + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ 2 2 kN 779 m p Δ = EXERCISE 4.5 The concentration of a water-based slurry sample is to be found by drying the slurry in an oven. Determine the slurry weight concentration given the following data: Weight of container plus dry solids 0.31kg Weight of container plus slurry 0.48kg Weight of container 0.12kg Determine the density of the slurry if the solid specific gravity is 3.0. SOLUTION TO EXERCISE 4.5: Weight of dry solids = 0.31-0.12 = 0.19kg Weight of slurry = 0.48-0.12 = 0.36kg Concentration of solids by weight = 0.19 0.53 0.36 = The density of the slurry is found by 8
  • 9. 3 3 3 1 0.53 0.47 kg kg 3000 1000 m m kg 1546 m m m ρ ρ = + = EXERCISE 4.6 A coal-water slurry has a specific gravity of 1.3. If the specific gravity of coal is 1.65, what is the weight percent of coal in the slurry? What is the volume percent coal? SOLUTION TO EXERCISE 4.6: ( ) 1 1 w w m s f C C ρ ρ ρ − = + ( ) 1 1 1.3 1.65 1.0 w w C C − = + Solving for , w C 0.586 w C = mass coal mass slurry w C = Volume fraction coal = w m s C ρ ρ Volume fraction coal = ( )( ) 0.586 1.3 0.46 1.65 = EXERCISE 4.7 The following rheology test results were obtained for a mineral slurry containing 60 percent solids by weight. Which rheological model describes the slurry and what are the appropriate rheological properties for this slurry? 9
  • 10. Rate of Shear (1/s) Shear Stress (Pa) 0 4.0 0.1 4.03 1 4.2 10 5.3 15 5.8 25 6.7 40 7.8 45 8.2 SOLUTION TO EXERCISE 4.7: The shear stress at zero shear rate is 4.0 Pa. Hence, this slurry exhibits yield stress equal to 4.0 Pa. In order to determine whether the slurry behaves as a Bingham fluid or if it follows the Herschel-Bulkley model, we need to plot y τ τ − versus shear rate. (Pa) y τ τ − Shear Rate (1/s) 0 0 0.03 0.1 0.2 1 1.3 10 1.8 15 2.7 25 3.8 40 4.2 45 A plot of y τ τ − versus shear rate on an arithmetric scale is not linear. However, a plot of y τ τ − versus shear rate on a log-log scale is linear (the data for zero shear rate is excluded) n y k τ τ γ − = & ( ) ln ln ln y k n τ τ γ − = + & 10
  • 11. ( ) ln y τ τ − lnγ& Shear Rate -3.51 -2.30 0.1 -1.61 0 1 +0.26 +2.30 10 +0.59 +2.71 15 +0.99 +3.22 25 +1.34 +3.69 40 +1.44 +3.81 45 Slope = 0.81 = n Intercept = -1.62 =lnk 0.81 2 Ns 0.20 m k ∴ = EXERCISE 4.8 A mud slurry is drained from a tank through a 50 ft. long horizontal plastic hose. The hose has an elliptical cross-section, with a major axis of 4 inches and a minor axis of 2 inches. The open end of the hose is 10 feet below the level in the tank. The mud is a Bingham plastic with a yield stress of 100 dynes/cm2 , a plastic viscosity of 50cp, and a density of 1.4 g/cm3 . a) At what velocity will water drain from the hose? b) At what velocity will the mud drain from the hose? SOLUTION TO EXERCISE 4.8: Applying the modified Bernoulli equation to the system between points “1” and “2”, 11
  • 12. 2 AV 0 2 f v h z g ⎧ ⎫ = + + Δ + Δ⎨ ⎬ ⎩ ⎭ or, 2 AV 2 1 0 2 f v h z z g = + + − + where 2 2 AV 2 f f h f L h v g D ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ and 2 1 3.048 m z z − = − Need to determine the hydraulic diameter of the pipe with the elliptical cross-section: 4 cross-sectional area wetted perimeter h D = 2a 2b ( )( ) ( ) ( )( )( ) 2 2 2 2 4 2 2 4 2 in 1 in 2.53 in 0.0643 m 4 in 1 in 2 2 h h πab D a b D π = + = = = + Plugging in numbers (SI units), ( ) 2 2 AV AV 2 2 2 15.24 m 0 3.048 m m m 0.0643 m 9.8 2 9.8 s s f f v v ⎛ ⎞ = − + ⎜ ⎟ ⎛ ⎞ ⎝ ⎠ ⎜ ⎟ ⎝ ⎠ (*) 2 AV AV 0 0.051 3.048 48.3 f v = − + 2 f v 12
  • 13. Solution Procedure: AV 1) Calculate 2) Guess velocity 3) Calculate Re 4) Find from Figure 6. 5) Check governing equation (*) 6) If governing equation is not satisfied, guess a new velocity AV f He v f v ( ) 2 2 3 2 2 2 kg kg 1400 0.0643 m 10 m m kg 0.050 m s 23,153 m h y p D He He ρ τ μ ⎛ ⎞ ⎛ ⎜ ⎟ ⎜ s ⎞ ⎟ ⋅ ⎝ ⎠ ⎝ = = ⎛ ⎞ ⎜ ⎟ ⋅ ⎝ ⎠ = ⎠ Solution via iterative procedure for water: ( ) 3 5 AV kg m 1000 0.0643 m 3.65 m s 3.65 m s Re 2.3 10 kg 0.001 m s Dv v ρ μ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ = = = = ⎛ ⎞ ⎜ ⎟ ⋅ ⎝ ⎠ × 5 (Re 2.3 10 ;smooth tube) 0.0037 f f = × = Solution via iterative procedure for mud: ( ) 3 3 AV kg m 1400 3.2 0.0643 m m m s 3.2 Re 5.7 10 kg s 0.05 m s v ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ = = = × ⋅ 3 4 (Re 5.7 10 ; 2.3 10 ) 0.005 f f He = × = × ≅ 13
  • 14. EXERCISE 4.9 A coal slurry is found to behave as a power-law fluid with a flow index 0.3, a specific gravity 1.5, and an apparent viscosity of 70cp at a shear rate 100s-1 . a) What volumetric flow rate of this fluid would be required to reach turbulent flow in a 1/2 in. I.D. smooth pipe which is 15 ft. long? b) What is the pressure drop (in Pa) in the pipe under these conditions? SOLUTION TO EXERCISE 4.9: a) First, calculate * transition for n = 0.3 Re ( ) ( ) ( ) ( ) ( ) 2 0.3 2 0.3 * 1 0.3 transition 0.3 * transition 6464 0.3 1 Re 2 0.3 1 3 0.3 1 3 0.3 Re 2340 − + ⎛ ⎞ ⎜ ⎟ + ⎝ ⎠ ⎛ ⎞ = + ⎜ ⎟ + + ⎝ ⎠ = Also, need to calculate , the consistency index k 1 app n k μ γ − = & 0.7 kg 100 0.07 m s s k − ⎛ ⎞ = ⎜ ⎟ ⋅ ⎝ ⎠ 1.7 kg 1.76 ms k ∴ = Applying equation 4.19, the average velocity in the smooth pipe can be found. ( ) 2 * AV 8 Re 6 2 n n n mD v n k n ρ − ⎡ ⎤ = ⎢ ⎥ + ⎣ ⎦ ( ) ( ) 0.3 1.7 0.3 AV 3 1.7 kg 8 1500 0.0127 m 0.3 m 2340= kg 6 0.3 2 1.76 ms v ⎛ ⎞ ⎜ ⎟ ⎛ ⎞ ⎝ ⎠ ⎜ ⎟ + ⎝ ⎠ Solving for AV v 14
  • 15. AV m 1.61 s v = The volumetric flow rate Q is then ( ) 2 2 AV C 3 4 m 0.0254 m 1.61 0.5 in s 1 in (Cross-Sectional Area, A ) 4 m 2.0 10 s Q v π − ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ = ⋅ = = × b) 2 AV 2 f m L p f v D ρ ⎛ ⎞ Δ = ⎜ ⎟ ⎝ ⎠ * 16 0.007 Re f f = = ( ) 2 3 kg 4.572 m m 2 0.007 1500 1.61 m 0.0127 m s 19600 Pa p p ⎛ ⎞⎛ ⎞⎛ Δ = ⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠⎝ Δ = ⎞ ⎟ ⎠ EXERCISE 4.10 A mud slurry is draining from the bottom of a large tank through a 1 m long vertical pipe that is 1 cm I.D. The open end of the pipe is 4 m below the level in the tank. The mud behaves as a Bingham plastic with a yield stress of 10 N/m2 , an apparent viscosity of 0.04 kg/m⋅s, and a density of 1500 kg/m3 . At what velocity will the mud slurry drain from the hose? 15
  • 16. SOLUTION TO EXERCISE 4.10: Applying the modified Bernoulli equation to the system above 2 2 AV 2 1 2 f v h z z g − = − + Assuming the flow is laminar, the head loss due to pipe friction is given by 3 2 f m p p h g ρ − = Applying equation 4.30, 2 AV 2 32 16 3 p y f m v L L D D h g μ τ ρ + = ( )( ) ( ) ( ) ( ) 2 AV 2 2 3 2 AV kg N 32 0.04 1 m 16 10 1 m m s m 3 0.01 m 0.01 m kg m 1500 9.8 m s 0.87 0.36 f f v h h v ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⋅ ⎝ ⎠ ⎝ ⎠ + = ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ = + 16
  • 17. Plugging this head loss back into the modified Bernoulli equation, ( ) 2 AV AV 0.87 0.36 4 2 9.8 v v − − = − + Rearranging, ( ) ( ) 2 AV AV 2 AV 0 71.3 17.1 17.1 17.1 4 71.3 2 v v v = − + + − ± − − = AV m 3.5 s v = (other solution yields a negative velocity) Check original assumption to see if flow is laminar ( ) 3 AV kg m 1500 3.5 0.01 m m s Re 1300 kg 0.04 m s m p v D ρ μ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ = = = ⎛ ⎞ ⎜ ⎟ ⋅ ⎝ ⎠ ∴ Flow is laminar and original assumption is correct. EXERCISE 4.11 A mud slurry is draining in laminar flow from the bottom of a large tank through a 5 m long horizontal pipe that is 1 cm inside diameter. The open end of the pipe is 5 m below the level in the tank. The mud is a Bingham plastic with a yield stress of 15 N/m2 , an apparent viscosity of 0.06 kg/ms, and a density of 2000 kg/m3 . At what velocity will the mud slurry drain from the hose? 17
  • 18. SOLUTION TO EXERCISE 4.11: Applying the modified Bernoulli equation to the system above 2 AV 2 1 2 f v h z z g − = − + Assuming the flow is laminar, the head loss due to pipe friction is given by ( )( ) ( ) ( ) ( ) 2 2 2 AV 2 3 2 AV 2 2 3 2 AV 32 16 3 kg N 32 0.06 5 m 16 15 5 m m s m 3 0.01 m 0.01 m kg m 2000 9.8 m s 4.90 2.04 p y f m m f f v L L p p D D h g g v h h v μ τ ρ ρ + − = = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ ⋅ ⎝ ⎠ ⎝ ⎠ + = ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ = + 18
  • 19. Plugging this head loss back into the modified Bernoulli equation, 2 2 AV AV 2 4.9 2.04 5 m 2 9.8 s v v − − = − + ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ Rearranging, ( ) ( ) 2 AV AV 2 AV 96.0 58 0 96 96 4 58 2 v v v + − = − ± − − = AV m 0.6 s v = (other solution yields a negative velocity) Check original assumption to see if flow is laminar ( ) 3 AV kg m 2000 0.6 0.01 m m s Re kg 0.06 m s m p v D ρ μ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ = = ⎛ ⎞ ⎜ ⎟ ⋅ ⎝ ⎠ ⇒ flow is laminar Re 200 = 19