SlideShare a Scribd company logo
FAST 7
1
→ / fujii@cr.scphys.kyoto-u.ac.jp
Max Malacari, Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath,
Miroslav Hrabovsky, Dusan Mandat, John Matthews, Xiaochen Ni, Libor Nozka, Miroslav Palatka,
Miroslav Pech, Paolo Privitera, Petr Schovanek, Radomir Smida, Stan Thomas, Petr Travnicek
2019 3 15 74
2
✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles
✦ Huge target volume ⇒ Fluorescence detector (FD) array
Fine pixelated camera
Low-cost and simplified telescope
Too expensive to cover a huge area
Single or few pixels and smaller optics
Fluorescence detector Array of Single-pixel Telescopes
Segmented mirror telescope
Variable angles of elevation – steps.
15 deg 45 deg
3
✦ Each telescope: 4 PMTs, 30°×30° field-of-view (FoV)
✦ Reference design: 1 m2 aperture, 15°×15° FoV per
photo-multiplier tube (PMT)
✦ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV
✦ Deploy on a triangle grid with 20 km spacing, like
“Surface Detector Array”
✦ With 500 stations, a ground coverage is 150,000 km2
✦ Both northern/southern observatories
20 km
Fluorescence detector Array of Single-pixel Telescopes
ce Detectors
ope Array:700 km2
ale) 3
Pierre Auger: 3000 km2 Telescope Array:700 km2
(not drawn to scale) 3
TA
700 km2
Auger
3000 km2
56 EeV
(same scale)
16
56 EeV zenith 500
1
2
3
1
3 2
PhotonsatdiaphragmPhotonsatdiaphragm
Photonsatdiaphragm
60 stations
17,000 km2
5 years: 5100 events (E > 57 EeV),
650 events (E > 100 EeV)1 EeV = 1018 eV
Reference: T. Fujii et al., Astropart.Phys. 74 (2016) 64-72
www.fast-project.org
4
FAST fluorescence telescope
Reference: D. Mandat et al., JINST 12, T07001 (2017)
Wavelength [nm]
260 280 300 320 340 360 380 400 420
Efficiency[%]
0
10
20
30
40
50
60
70
80
90
100
Mirror reflectivity
Filter transmission
Total efficiency
Figure 5. The typical spectral reflectance of the FAST mirror between 260 nm and 420 nm, along w
spectral transmission of the UV band-pass filter. The resultant total optical e ciency is shown in blac
filter used on the Cherenkov telescope of the MAGIC [18] observatory. The filter is constructed
a number of small segments in order to fit the FAST prototype’s octagonal aperture. The indiv
segments are fit together using brass “U” and “H” profiles, resulting in an aperture of 1 m2 in
6 Telescope support structure
The telescope’s mechanical support structure was built from commercially available alum
profiles. This allows for straightforward assembly/disassembly, and easy packing and transpo
to their light weight, while also providing an extremely stable and rigid platform for the
✦ 4 PMTs (20 cm, 8 dynodes R5912-03MOD, base
E7694-01)
✦ 1 m2 aperture of the UV band-pass filter (ZWB3),
segmented mirror of 1.6 m diameter
✦ 3 telescopes has been installed at TA site in October 2018
✦ Total 515 hours by March 2019
✦ 1 telescope to be installed at Auger site in 2019
Scan limit
~65 deg.
ement Systemck: Collection Efficiency
Laser position rotate azimuth with different steps in zenith
In the direction of
the center of
PMT curvature
laser intensity is
normalized at 0°
ed with 2D scan of relative QE over PMT surface
45°
0°
57°
in the following plots,
Earth magnetic field is
Result
• Relative sensitivity of
R5912-03 (ZT0163)
• Normalized to the center
region (zenith <3°) for each
azimuthal bin
• Local minimum due to the
1st dynode structure
• Observed uniformity is as
same as R5912-100 (see
backup)
S/N : ZT0163
Azimuth 0° : 1st dynode
Zenith angle
Azimuthal angle
Non-uniformity of PMT
5
By a courtesy of the IceCube group in Chiba University, especially thank to Dr. Yuya Makino
3
/ D-Egg cathode uniformity measurement
1ns, λ=400 nm)
1°& azimuth 5° => ~5000 points over the cathode
the center
ed to evaluate the PMT response
Scan system
inside Helmholtz cage
Scan limit
~65 deg.
mity Measurement SystemPerformance check: Collection Efficiency
Laser position rotate azimuth with different steps in zenith
In the direction of
the center of
PMT curvature
laser intensity is
normalized at 0°
Collection efficiency (CE) is evaluated with 2D scan of relative QE over PMT surface
45°
0°
57°
8
in the following plots,
Earth magnetic field is
cancelled with
Helmholtz coil
✦ Less-sensitive area due to 1st dynode location
✦ To be included in the detector simulation
FAST observation
6
✦ Start a remote controlling
observation with three FAST
telescopes from October 2018
✦ Synchronized operation with
the external trigger from
Telescope Array fluorescence
detector (TAFD)
✦ 80% FoV of TAFD
TAFD FoV (12 telescopes)
FAST FoV (3 telescopes)
5. Run a Minuit SIMPLEX fitter to
determine the optimal aerosol
horizontal attenuation length and
scale height, letting the absolute
calibration float (the shape of the
trace should be more heavily
dependent on the atmospheric
composition than its
normalisation)
Time bins [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.e.N
0
5
10
15
20
25
260 CLF shots from 2018/09/12 05:27:04.764472000
Summed trace
PMT 4
PMT 5
PMT 6
PMT 7
260 CLF shots from 2018/09/12 05:27:04.764472000
Time bins [100 ns]
0 100 200 300 400 500 600 700 800 900 1000
/100nsp.e.N
0
5
10
15
20
25 Measured trace
Best fit
= 0.51 kmaerH
= 16.28 kmaerL
Norm. = 0.76
VAOD = 0.03
/ndf = 0.922χ
NOTES:
- Hmix is not currently being used

- Hmol is set to 8 km

- Lmol is set to 14.2 km at sea-level,
suitable for a laser of 355 nm
wavelength

- Jitter in laser energy not yet taken
into account

- Telescope PSF not yet taken into
account

- PMT collection efficiency non-
uniformity not yet taken into account
PRELIMINARY
Vertical laser event (280 shot average)
Vertical laser
at a distance
of 21 km
Azimuth [deg]
Elevation[deg]
Azimuth [deg]
Elevation[deg]
-2018/05/15
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
250
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
150 200 250 300 350 400 450 500
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
0
50
100
150
200
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
200 250 300 350 400
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
4 / 9
UHECR event
7
FAST waveform + reconstruction result by top-down method
(Data, simulation by best-fit parameters)
FAST result (Preliminary)
Zenith Azimuth Core(X) Core(Y) Xmax Energy
59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV
+0.4 +0.5 +0.2 +0.2 +10 +0.3
-0.7 -1.5 -0.2 -0.2 -10 -0.7
TAFD (Preliminary)
Energy: 19.0 EeV
Impact param.: 6.1 km
5− 0 5 10 15 20
East-West core [km]
20−
15−
10−
5−
0
5
North-Southcore[km]
TAFD events
1 hit PMT (FAST)
Multi-hit PMTs
Coincidence search between TA FD and FAST
8
✦ Data period: 2018/Oct/06 - 2019/Jan/14, 52 hours, 3 telescopes
✦ Event number: 492 (TA FD) -> 236 (bracketed Xmax, zenith < 55° cuts) -> 37 (signals in FAST)
✦ FAST signal criteria: Signal duration > 500 ns, Signal/noise > 6σ
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
1
10
Impactparameter[km]
TAFD events
1 hit PMT (FAST)
Multi-hit PMTs
✦ FAST
Reconstructing UHECRs
9
16 16.5 17 17.5 18 18.5 19 19.5 20
log(E(eV))
2
10
3
10
4
10
5
10
6
10
s]µTime-averagebrightness[pe/
TAFD events
1 hit PMT (FAST)
Multi-hit PMTs
✦ ~50h -> 5 events (>1018 eV, multi-hit PMT events)
✦ Expected event rate: 900 h/yr (duty-cycle 10%)
✦ -> 90 events/yr (>1018 eV), 14 events/yr (>1019 eV)
Best fit comparison (Preliminary - SIMPLEX only)
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN 30−
20−
10−
0
10
20
30
40
50
Data
Simulation
0 200 40
/100nspeN
30−
20−
10−
0
10
20
30
40
50
0 200 40
/100nspeN
30−
20−
10−
0
10
20
30
40
50
3 / 15
Best fit comparison (Preliminary - SIMPLEX only)
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
Time bin [100 ns]
0 200 400 600 800 1000
/100nspeN
30−
20−
10−
0
10
20
30
40
50
Data
Simulation
3 / 15
Event 124: log10(E(eV)): 17.89, Zen: 36.5◦
, Azi: -143.6◦
,
Core(8.99, -8.59), Rp: 8.66, Psi: 98.0◦
, Xmax: 746 g/cm2
FoV(408 - 1051), Date: 20190111, Time: 07:31:09.035427893
Event 125: log10(E(eV)): 17.49, Zen: 28.8◦
, Azi: 149.2◦
,
Core(16.10, -8.53), Rp: 3.23, Psi: 62.6◦
, Xmax: 678 g/cm2
FoV(793 - 987), Date: 20190111, Time: 07:31:45.062399586
Event 126: log10(E(eV)): 17.73, Zen: 51.8◦
, Azi: -132.2◦
,
Core(10.75, -12.29), Rp: 5.00, Psi: 127.2◦
, Xmax: 714 g/cm2
FoV(147 - 1359), Date: 20190111, Time: 07:37:45.527151858
Event 130: log10(E(eV)): 18.41, Zen: 32.2◦
, Azi: -54.6◦
,
Core(2.47, -14.21), Rp: 13.58, Psi: 112.7◦
, Xmax: 767 g/cm2
FoV(250 - 992), Date: 20190111, Time: 07:57:39.818536954
Event 131: log10(E(eV)): 19.05, Zen: 5.2◦
, Azi: 106.0◦
,
Core(8.73, -9.26), Rp: 8.70, Psi: 85.0◦
, Xmax: 770 g/cm2
FoV(413 - 854), Date: 20190111, Time: 08:12:13.261375409
Event 132: log10(E(eV)): 17.56, Zen: 13.4◦
, Azi: 8.8◦
,
Core(13.92, -13.60), Rp: 3.43, Psi: 82.3◦
, Xmax: 798 g/cm2
FoV(684 - 891), Date: 20190111, Time: 08:21:34.318143429
TAFD (Preliminary)
Energy: 11.2 EeV
Impact param.: 8.7 km
Energy:10.3±2.8 EeV, Xmax: 830±13 g/cm2
FAST (preliminary)
Pierre Auger: 3000 km
(not drawn to scale) 3
	 5	
Fig. 4. Solution 2: Pour a new concrete foundation just north of the existing
MIDAS pad.
Manpower requirements
The FAST and Auger collaboration members listed above would travel to
Malargüe to install and set up the FAST telescope. Installation is expected to
take approximately one week, based on the time required for installation of the
first three prototypes at TA (the third prototype installation also included
construction of the enclosure).
Following the initial setup campaign, the telescope would be operated remotely
via an ethernet link without any required local manpower. However, in case of a
power outage at Los Leones, although our telescope will shut down
FAST installation at Auger site
10
FD (Los Leones)
Lidar dome
MIDAS
Lidar dome
✦ Verification of the FAST sensitivity
and detection efficiency.
✦ Study on systematic uncertainties
✦ Cross-calibration of the energy and
Xmax scales between TA and Auger
✦ A comparison between the extinction
properties (molecular and aerosol) of
the TA and Auger atmospheres
GAP-2018-XXX DRAFT
MIDAS
FAST
Approval, hut construction
11
2018/Nov/15
2019/Feb/13
Approval in Auger Staking
Construction
A hut being constructed at Argentina
12
Status of HUT - FAST@Auger
18- 19.2.2019
2019/Mar/05
2019/Feb/20
1st FAST telescope at Auger site to be installed in April, 2019
Summary and future plans
✦ Started a stable observation with three FAST telescopes at TA site
✦ Preliminary reconstruction result: geometry, Xmax and energy
✦ An expected event rate with three telescopes
✦ 90 events/yr (>1018 eV), 14 events/yr (>1019 eV)
✦ Require more simulation studies:
✦ Resolution and aperture estimations
✦ Include calibration factors in simulation (PMT gain, mirror reflectance,
filter transmittance, camera temperature, cloud ratio, atmospheric
transparency etc...)
✦ Plan to install a FAST telescope at Auger site in April 2019
13
14

More Related Content

What's hot

Hyperspectral Imaging Camera using Wavefront
Hyperspectral Imaging Camera using WavefrontHyperspectral Imaging Camera using Wavefront
Hyperspectral Imaging Camera using Wavefront
??? ?????
 
GAS@IGARSS2011.ppt
GAS@IGARSS2011.pptGAS@IGARSS2011.ppt
GAS@IGARSS2011.ppt
grssieee
 

What's hot (20)

A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
Fluorescence technique - FAST
Fluorescence technique - FASTFluorescence technique - FAST
Fluorescence technique - FAST
 
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
Latest results of ultra-high-energy cosmic ray measurements with prototypes o...
 
Future Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE PhotonFuture Prospects on UHECR and UHE Photon
Future Prospects on UHECR and UHE Photon
 
The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -The FAST Project - Next Generation UHECR Observatory -
The FAST Project - Next Generation UHECR Observatory -
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
透明結構物形貌量測技術發展趨勢
透明結構物形貌量測技術發展趨勢透明結構物形貌量測技術發展趨勢
透明結構物形貌量測技術發展趨勢
 
기상위성 자료처리를 위한 Python 기반의 Pytroll 활용하기
기상위성 자료처리를 위한 Python 기반의 Pytroll 활용하기기상위성 자료처리를 위한 Python 기반의 Pytroll 활용하기
기상위성 자료처리를 위한 Python 기반의 Pytroll 활용하기
 
Imaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black HoleImaging the Unseen: Taking the First Picture of a Black Hole
Imaging the Unseen: Taking the First Picture of a Black Hole
 
Gupta Roy MS Thesis Defense
Gupta Roy MS Thesis DefenseGupta Roy MS Thesis Defense
Gupta Roy MS Thesis Defense
 
SSC13-IV-8
SSC13-IV-8SSC13-IV-8
SSC13-IV-8
 
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...Gefran controls used for evaluating the focusing performance of mirrors in Ch...
Gefran controls used for evaluating the focusing performance of mirrors in Ch...
 
Kumar, Pramod: Local-scale atmospheric inversion for the estimation of the lo...
Kumar, Pramod: Local-scale atmospheric inversion for the estimation of the lo...Kumar, Pramod: Local-scale atmospheric inversion for the estimation of the lo...
Kumar, Pramod: Local-scale atmospheric inversion for the estimation of the lo...
 
Reserve estimation using kappa
Reserve estimation using kappaReserve estimation using kappa
Reserve estimation using kappa
 
Hyperspectral Imaging Camera using Wavefront
Hyperspectral Imaging Camera using WavefrontHyperspectral Imaging Camera using Wavefront
Hyperspectral Imaging Camera using Wavefront
 
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
 
Evaluation of geometrical parameters of buildings from SAR images
Evaluation of geometrical parameters of buildings from SAR imagesEvaluation of geometrical parameters of buildings from SAR images
Evaluation of geometrical parameters of buildings from SAR images
 
Goddard-DR-2010
Goddard-DR-2010Goddard-DR-2010
Goddard-DR-2010
 
GAS@IGARSS2011.ppt
GAS@IGARSS2011.pptGAS@IGARSS2011.ppt
GAS@IGARSS2011.ppt
 
Optical volume holograms and their applications
Optical volume holograms and their applicationsOptical volume holograms and their applications
Optical volume holograms and their applications
 

Similar to FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告

APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublishedAPE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
Rainer Wilhelm
 
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
grssieee
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
Nir Morgulis
 
Lasdab dasmaseeting 2_27_1_2022_100pm.pptx
Lasdab dasmaseeting 2_27_1_2022_100pm.pptxLasdab dasmaseeting 2_27_1_2022_100pm.pptx
Lasdab dasmaseeting 2_27_1_2022_100pm.pptx
RabiulIslamSikder
 
EVALUATION OF CALIBRATION ACCURACY WITH HPS (HONGIK POLARIMETRIC SCATTEROMETE...
EVALUATION OF CALIBRATION ACCURACY WITH HPS (HONGIK POLARIMETRIC SCATTEROMETE...EVALUATION OF CALIBRATION ACCURACY WITH HPS (HONGIK POLARIMETRIC SCATTEROMETE...
EVALUATION OF CALIBRATION ACCURACY WITH HPS (HONGIK POLARIMETRIC SCATTEROMETE...
grssieee
 
VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2
Stefano Coltellacci
 

Similar to FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告 (20)

Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
Observing ultra-high energy cosmic rays with prototypes of the Fluorescence d...
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
An Alternative Energy Technology to Nigeria’s Energy Problem
An Alternative Energy Technology to Nigeria’s Energy ProblemAn Alternative Energy Technology to Nigeria’s Energy Problem
An Alternative Energy Technology to Nigeria’s Energy Problem
 
20191101 Wang Invited Talk at APTSE (Thermal Energy Harvesting and Conversion)
20191101 Wang Invited Talk at APTSE (Thermal Energy Harvesting and Conversion)20191101 Wang Invited Talk at APTSE (Thermal Energy Harvesting and Conversion)
20191101 Wang Invited Talk at APTSE (Thermal Energy Harvesting and Conversion)
 
Commissioning of Truebeam LINAC
Commissioning of Truebeam LINACCommissioning of Truebeam LINAC
Commissioning of Truebeam LINAC
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublishedAPE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
APE_IM_Article_AppliedOptics_Vol47_No29_Oct10_2008_AsPublished
 
13 edler isc konstanz
13 edler isc konstanz13 edler isc konstanz
13 edler isc konstanz
 
Ad beam test_redalice.2017
Ad beam test_redalice.2017Ad beam test_redalice.2017
Ad beam test_redalice.2017
 
TWEEP2015_SFernandez
TWEEP2015_SFernandezTWEEP2015_SFernandez
TWEEP2015_SFernandez
 
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
A coupled Electromagnetic-Mechanical analysis of next generation Radio Telesc...
 
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
DEVELOPMENT OF HIGH TEMPERATURE NOISE SOURCE (HTS) FOR ADVANCED MICROWAVE SCA...
 
Simulating X-ray Observations with yt
Simulating X-ray Observations with ytSimulating X-ray Observations with yt
Simulating X-ray Observations with yt
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Lasdab dasmaseeting 2_27_1_2022_100pm.pptx
Lasdab dasmaseeting 2_27_1_2022_100pm.pptxLasdab dasmaseeting 2_27_1_2022_100pm.pptx
Lasdab dasmaseeting 2_27_1_2022_100pm.pptx
 
Time-resolved mirrorless scintillation detector @ KSMPRS2018
Time-resolved mirrorless scintillation detector @ KSMPRS2018Time-resolved mirrorless scintillation detector @ KSMPRS2018
Time-resolved mirrorless scintillation detector @ KSMPRS2018
 
EVALUATION OF CALIBRATION ACCURACY WITH HPS (HONGIK POLARIMETRIC SCATTEROMETE...
EVALUATION OF CALIBRATION ACCURACY WITH HPS (HONGIK POLARIMETRIC SCATTEROMETE...EVALUATION OF CALIBRATION ACCURACY WITH HPS (HONGIK POLARIMETRIC SCATTEROMETE...
EVALUATION OF CALIBRATION ACCURACY WITH HPS (HONGIK POLARIMETRIC SCATTEROMETE...
 
VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2
 

More from Toshihiro FUJII

FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
Toshihiro FUJII
 

More from Toshihiro FUJII (7)

FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
FAST Experiment 16 : Machine learning with the Fluorescence detector Array of...
 
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
FAST実験17: FASTミニアレイ建設に向けた進捗報告(日本物理学会2024年春季大会)
 
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
FAST実験14:新型大気蛍光望遠鏡による南北半球での極高エネルギー宇宙線観測と自立稼働へ向けた開発研究
 
20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf20220906_FAST_JPS_nagasawa.pdf
20220906_FAST_JPS_nagasawa.pdf
 
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
Atmospheric monitoring with the Fluorescence detector Array of Single-pixel T...
 
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
Future ground arrays for ultrahigh-energy cosmic rays: recent updates and per...
 
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 

Recently uploaded

platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
muralinath2
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
PirithiRaju
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
Michel Dumontier
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
Cherry
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdfPests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
PirithiRaju
 

Recently uploaded (20)

Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
 
Shuaib Y-basedComprehensive mahmudj.pptx
Shuaib Y-basedComprehensive mahmudj.pptxShuaib Y-basedComprehensive mahmudj.pptx
Shuaib Y-basedComprehensive mahmudj.pptx
 
SAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniquesSAMPLING.pptx for analystical chemistry sample techniques
SAMPLING.pptx for analystical chemistry sample techniques
 
Microbial Type Culture Collection (MTCC)
Microbial Type Culture Collection (MTCC)Microbial Type Culture Collection (MTCC)
Microbial Type Culture Collection (MTCC)
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
 
FAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable PredictionsFAIR & AI Ready KGs for Explainable Predictions
FAIR & AI Ready KGs for Explainable Predictions
 
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
Gliese 12 b, a temperate Earth-sized planet at 12 parsecs discovered with TES...
 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Penicillin...........................pptx
Penicillin...........................pptxPenicillin...........................pptx
Penicillin...........................pptx
 
Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...Multi-source connectivity as the driver of solar wind variability in the heli...
Multi-source connectivity as the driver of solar wind variability in the heli...
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdfPests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdfGEOLOGICAL FIELD REPORT  On  Kaptai Rangamati Road-Cut Section.pdf
GEOLOGICAL FIELD REPORT On Kaptai Rangamati Road-Cut Section.pdf
 

FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告

  • 1. FAST 7 1 → / fujii@cr.scphys.kyoto-u.ac.jp Max Malacari, Justin Albury, Jose Bellido, Ladislav Chytka, John Farmer, Petr Hamal, Pavel Horvath, Miroslav Hrabovsky, Dusan Mandat, John Matthews, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Radomir Smida, Stan Thomas, Petr Travnicek 2019 3 15 74
  • 2. 2 ✦ Target : > 1019.5 eV, ultra-high energy cosmic rays (UHECR) and neutral particles ✦ Huge target volume ⇒ Fluorescence detector (FD) array Fine pixelated camera Low-cost and simplified telescope Too expensive to cover a huge area Single or few pixels and smaller optics Fluorescence detector Array of Single-pixel Telescopes Segmented mirror telescope Variable angles of elevation – steps. 15 deg 45 deg
  • 3. 3 ✦ Each telescope: 4 PMTs, 30°×30° field-of-view (FoV) ✦ Reference design: 1 m2 aperture, 15°×15° FoV per photo-multiplier tube (PMT) ✦ Each station: 12 telescopes, 48 PMTs, 30°×360° FoV ✦ Deploy on a triangle grid with 20 km spacing, like “Surface Detector Array” ✦ With 500 stations, a ground coverage is 150,000 km2 ✦ Both northern/southern observatories 20 km Fluorescence detector Array of Single-pixel Telescopes ce Detectors ope Array:700 km2 ale) 3 Pierre Auger: 3000 km2 Telescope Array:700 km2 (not drawn to scale) 3 TA 700 km2 Auger 3000 km2 56 EeV (same scale) 16 56 EeV zenith 500 1 2 3 1 3 2 PhotonsatdiaphragmPhotonsatdiaphragm Photonsatdiaphragm 60 stations 17,000 km2 5 years: 5100 events (E > 57 EeV), 650 events (E > 100 EeV)1 EeV = 1018 eV Reference: T. Fujii et al., Astropart.Phys. 74 (2016) 64-72 www.fast-project.org
  • 4. 4 FAST fluorescence telescope Reference: D. Mandat et al., JINST 12, T07001 (2017) Wavelength [nm] 260 280 300 320 340 360 380 400 420 Efficiency[%] 0 10 20 30 40 50 60 70 80 90 100 Mirror reflectivity Filter transmission Total efficiency Figure 5. The typical spectral reflectance of the FAST mirror between 260 nm and 420 nm, along w spectral transmission of the UV band-pass filter. The resultant total optical e ciency is shown in blac filter used on the Cherenkov telescope of the MAGIC [18] observatory. The filter is constructed a number of small segments in order to fit the FAST prototype’s octagonal aperture. The indiv segments are fit together using brass “U” and “H” profiles, resulting in an aperture of 1 m2 in 6 Telescope support structure The telescope’s mechanical support structure was built from commercially available alum profiles. This allows for straightforward assembly/disassembly, and easy packing and transpo to their light weight, while also providing an extremely stable and rigid platform for the ✦ 4 PMTs (20 cm, 8 dynodes R5912-03MOD, base E7694-01) ✦ 1 m2 aperture of the UV band-pass filter (ZWB3), segmented mirror of 1.6 m diameter ✦ 3 telescopes has been installed at TA site in October 2018 ✦ Total 515 hours by March 2019 ✦ 1 telescope to be installed at Auger site in 2019
  • 5. Scan limit ~65 deg. ement Systemck: Collection Efficiency Laser position rotate azimuth with different steps in zenith In the direction of the center of PMT curvature laser intensity is normalized at 0° ed with 2D scan of relative QE over PMT surface 45° 0° 57° in the following plots, Earth magnetic field is Result • Relative sensitivity of R5912-03 (ZT0163) • Normalized to the center region (zenith <3°) for each azimuthal bin • Local minimum due to the 1st dynode structure • Observed uniformity is as same as R5912-100 (see backup) S/N : ZT0163 Azimuth 0° : 1st dynode Zenith angle Azimuthal angle Non-uniformity of PMT 5 By a courtesy of the IceCube group in Chiba University, especially thank to Dr. Yuya Makino 3 / D-Egg cathode uniformity measurement 1ns, λ=400 nm) 1°& azimuth 5° => ~5000 points over the cathode the center ed to evaluate the PMT response Scan system inside Helmholtz cage Scan limit ~65 deg. mity Measurement SystemPerformance check: Collection Efficiency Laser position rotate azimuth with different steps in zenith In the direction of the center of PMT curvature laser intensity is normalized at 0° Collection efficiency (CE) is evaluated with 2D scan of relative QE over PMT surface 45° 0° 57° 8 in the following plots, Earth magnetic field is cancelled with Helmholtz coil ✦ Less-sensitive area due to 1st dynode location ✦ To be included in the detector simulation
  • 6. FAST observation 6 ✦ Start a remote controlling observation with three FAST telescopes from October 2018 ✦ Synchronized operation with the external trigger from Telescope Array fluorescence detector (TAFD) ✦ 80% FoV of TAFD TAFD FoV (12 telescopes) FAST FoV (3 telescopes) 5. Run a Minuit SIMPLEX fitter to determine the optimal aerosol horizontal attenuation length and scale height, letting the absolute calibration float (the shape of the trace should be more heavily dependent on the atmospheric composition than its normalisation) Time bins [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.e.N 0 5 10 15 20 25 260 CLF shots from 2018/09/12 05:27:04.764472000 Summed trace PMT 4 PMT 5 PMT 6 PMT 7 260 CLF shots from 2018/09/12 05:27:04.764472000 Time bins [100 ns] 0 100 200 300 400 500 600 700 800 900 1000 /100nsp.e.N 0 5 10 15 20 25 Measured trace Best fit = 0.51 kmaerH = 16.28 kmaerL Norm. = 0.76 VAOD = 0.03 /ndf = 0.922χ NOTES: - Hmix is not currently being used - Hmol is set to 8 km - Lmol is set to 14.2 km at sea-level, suitable for a laser of 355 nm wavelength - Jitter in laser energy not yet taken into account - Telescope PSF not yet taken into account - PMT collection efficiency non- uniformity not yet taken into account PRELIMINARY Vertical laser event (280 shot average) Vertical laser at a distance of 21 km Azimuth [deg] Elevation[deg] Azimuth [deg] Elevation[deg]
  • 7. -2018/05/15 Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 250 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 Data Simulation Time bin [100 ns] 150 200 250 300 350 400 450 500 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 0 50 100 150 200 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 200 250 300 350 400 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 4 / 9 UHECR event 7 FAST waveform + reconstruction result by top-down method (Data, simulation by best-fit parameters) FAST result (Preliminary) Zenith Azimuth Core(X) Core(Y) Xmax Energy 59.8 deg -96.7 deg 7.9 km -9.0 km 842 g/cm2 17.3 EeV +0.4 +0.5 +0.2 +0.2 +10 +0.3 -0.7 -1.5 -0.2 -0.2 -10 -0.7 TAFD (Preliminary) Energy: 19.0 EeV Impact param.: 6.1 km
  • 8. 5− 0 5 10 15 20 East-West core [km] 20− 15− 10− 5− 0 5 North-Southcore[km] TAFD events 1 hit PMT (FAST) Multi-hit PMTs Coincidence search between TA FD and FAST 8 ✦ Data period: 2018/Oct/06 - 2019/Jan/14, 52 hours, 3 telescopes ✦ Event number: 492 (TA FD) -> 236 (bracketed Xmax, zenith < 55° cuts) -> 37 (signals in FAST) ✦ FAST signal criteria: Signal duration > 500 ns, Signal/noise > 6σ 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 1 10 Impactparameter[km] TAFD events 1 hit PMT (FAST) Multi-hit PMTs ✦ FAST
  • 9. Reconstructing UHECRs 9 16 16.5 17 17.5 18 18.5 19 19.5 20 log(E(eV)) 2 10 3 10 4 10 5 10 6 10 s]µTime-averagebrightness[pe/ TAFD events 1 hit PMT (FAST) Multi-hit PMTs ✦ ~50h -> 5 events (>1018 eV, multi-hit PMT events) ✦ Expected event rate: 900 h/yr (duty-cycle 10%) ✦ -> 90 events/yr (>1018 eV), 14 events/yr (>1019 eV) Best fit comparison (Preliminary - SIMPLEX only) Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 0 200 40 /100nspeN 30− 20− 10− 0 10 20 30 40 50 0 200 40 /100nspeN 30− 20− 10− 0 10 20 30 40 50 3 / 15 Best fit comparison (Preliminary - SIMPLEX only) Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation Time bin [100 ns] 0 200 400 600 800 1000 /100nspeN 30− 20− 10− 0 10 20 30 40 50 Data Simulation 3 / 15 Event 124: log10(E(eV)): 17.89, Zen: 36.5◦ , Azi: -143.6◦ , Core(8.99, -8.59), Rp: 8.66, Psi: 98.0◦ , Xmax: 746 g/cm2 FoV(408 - 1051), Date: 20190111, Time: 07:31:09.035427893 Event 125: log10(E(eV)): 17.49, Zen: 28.8◦ , Azi: 149.2◦ , Core(16.10, -8.53), Rp: 3.23, Psi: 62.6◦ , Xmax: 678 g/cm2 FoV(793 - 987), Date: 20190111, Time: 07:31:45.062399586 Event 126: log10(E(eV)): 17.73, Zen: 51.8◦ , Azi: -132.2◦ , Core(10.75, -12.29), Rp: 5.00, Psi: 127.2◦ , Xmax: 714 g/cm2 FoV(147 - 1359), Date: 20190111, Time: 07:37:45.527151858 Event 130: log10(E(eV)): 18.41, Zen: 32.2◦ , Azi: -54.6◦ , Core(2.47, -14.21), Rp: 13.58, Psi: 112.7◦ , Xmax: 767 g/cm2 FoV(250 - 992), Date: 20190111, Time: 07:57:39.818536954 Event 131: log10(E(eV)): 19.05, Zen: 5.2◦ , Azi: 106.0◦ , Core(8.73, -9.26), Rp: 8.70, Psi: 85.0◦ , Xmax: 770 g/cm2 FoV(413 - 854), Date: 20190111, Time: 08:12:13.261375409 Event 132: log10(E(eV)): 17.56, Zen: 13.4◦ , Azi: 8.8◦ , Core(13.92, -13.60), Rp: 3.43, Psi: 82.3◦ , Xmax: 798 g/cm2 FoV(684 - 891), Date: 20190111, Time: 08:21:34.318143429 TAFD (Preliminary) Energy: 11.2 EeV Impact param.: 8.7 km Energy:10.3±2.8 EeV, Xmax: 830±13 g/cm2 FAST (preliminary)
  • 10. Pierre Auger: 3000 km (not drawn to scale) 3 5 Fig. 4. Solution 2: Pour a new concrete foundation just north of the existing MIDAS pad. Manpower requirements The FAST and Auger collaboration members listed above would travel to Malargüe to install and set up the FAST telescope. Installation is expected to take approximately one week, based on the time required for installation of the first three prototypes at TA (the third prototype installation also included construction of the enclosure). Following the initial setup campaign, the telescope would be operated remotely via an ethernet link without any required local manpower. However, in case of a power outage at Los Leones, although our telescope will shut down FAST installation at Auger site 10 FD (Los Leones) Lidar dome MIDAS Lidar dome ✦ Verification of the FAST sensitivity and detection efficiency. ✦ Study on systematic uncertainties ✦ Cross-calibration of the energy and Xmax scales between TA and Auger ✦ A comparison between the extinction properties (molecular and aerosol) of the TA and Auger atmospheres GAP-2018-XXX DRAFT MIDAS FAST
  • 12. A hut being constructed at Argentina 12 Status of HUT - FAST@Auger 18- 19.2.2019 2019/Mar/05 2019/Feb/20 1st FAST telescope at Auger site to be installed in April, 2019
  • 13. Summary and future plans ✦ Started a stable observation with three FAST telescopes at TA site ✦ Preliminary reconstruction result: geometry, Xmax and energy ✦ An expected event rate with three telescopes ✦ 90 events/yr (>1018 eV), 14 events/yr (>1019 eV) ✦ Require more simulation studies: ✦ Resolution and aperture estimations ✦ Include calibration factors in simulation (PMT gain, mirror reflectance, filter transmittance, camera temperature, cloud ratio, atmospheric transparency etc...) ✦ Plan to install a FAST telescope at Auger site in April 2019 13
  • 14. 14