SlideShare a Scribd company logo
MetaPhotonics Lab
1
2021.01.27
Optical True Time Delay Lines
MetaPhotonics Research Lab
MetaPhotonics Lab
2
Outline
 Group index dispersion curve
 Time of flight method to calculate the group delay
 Explain Time of flight method
 Cantor V3
 Meander line optical delay line
 Meander line optical delay line (with Ring resonator)
 Fabrication
MetaPhotonics Lab
3
Dispersion curve (Using Center frequency)
(1)
 Confinement decreases for longer wavelength
 Overall increase of group index value
MetaPhotonics Lab
4
Time of flight
 Wavelength = 1400 to 1700 nm
 Pulse length = 37.054 um
MetaPhotonics Lab
5
 Wavelength = 1550 nm
 Pulse length = 1.73 um
Time of flight (Narrow Bandwidth)
MetaPhotonics Lab
6
 Cantor V3 (Cell number = 1)
Cell 1
Length = 34.9 um
 Objective function: max_value = group_delay*1E4 + 1*A;
MetaPhotonics Lab
7
0.67ps
 Cantor V3 (Cell number = 1) Group delay
Group index = 5.74
MetaPhotonics Lab
8
 Cantor V3 (Cell number = 1) (1400nm to 1700nm)
0.76 ps
0.14 ps
∇time = 0.62ps
Group index = 5.74
MetaPhotonics Lab
9
 Cantor V3 (Cell number = 1) Center frequency =
1550nm, Bandwidth = 2.45nm
4.74 ps
4.13 ps
∇time = 0.61ps
MetaPhotonics Lab
10
74%
 Cantor V3 (Cell number = 1)
MetaPhotonics Lab
11
 Cantor V3 (Cell number = 3)
Cell 1 Cell 2 Cell 3
Length = 104.7 um
 Objective function: max_value = group_delay*1E4 + 1*A;
MetaPhotonics Lab
12
1.99 ps
 Cantor V3 (Cell number = 3) (Group delay)
MetaPhotonics Lab
13
 Cantor V3, cell number = 3 (1400nm to 1700nm)
2 ps
0.14 ps
∇time = 1.86 ps
Group index = 5.68
MetaPhotonics Lab
14
 Cantor V3, cell number = 3 (center frequency = 1550nm, Bandwidth = 12.15nm)
3.02 ps
1.18 ps
∇time = 1.84 ps
Group index = 5.68
MetaPhotonics Lab
15
36.8%
MetaPhotonics Lab
16
0.72 ps 1.18 ps
∇time = 0.46 ps
 Time of Flight (Straight Waveguide)
Length = 34.9 um
Group index = 3.95 um
 Center frequency = 1550nm
 Bandwidth = 12.17nm
MetaPhotonics Lab
17
Structure
Meander Lines for Optical Time Delay
MetaPhotonics Lab
18
Meander Lines: Motivation
 Meander lines were chosen for analysis for 2 main reasons:
1. It’s easier to apply homogeneous heat using rectangular titanium heaters.
2. In the straight waveguide part of the meander lines, the optimized cantor waveguide
structure can be used to enhance the group delay even more.
3. Possibility of adding ring resonator (like a pulley) inside the bend region of the structure.
MetaPhotonics Lab
19
Choosing the Right Bending Radius
MetaPhotonics Lab
20
1) 3um Bending Radius
• Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1400-1700 nm
MetaPhotonics Lab
21
Simulation 3um Bending Radius
Transmission in zoomed in vertical axis
• Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1400-1700 nm
Output Transmission
MetaPhotonics Lab
22
Transmission in zoomed in vertical axis
• Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1548.53 – 1551.47 nm
Output Transmission
Simulation 3um Bending Radius Narrow Bandwidth
MetaPhotonics Lab
23
E-field Vs Time
• Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1548.53 – 1551.47 nm
Simulation 3um Bending Radius Narrow Bandwidth
0.71 ps
MetaPhotonics Lab
24
Simulation 3um Bending Radius
• Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1400-1700 nm
E-field
MetaPhotonics Lab
25
2) Simulation 3.5 um Bending Radius
• Mesh Size: 20 nm, Simulation time: 7000 fs, Source Wavelength: 1400-1700 nm
MetaPhotonics Lab
26
• Mesh Size: 20 nm, Simulation time: 7000 fs, Source Wavelength: 1400-1700 nm
Simulation 3.5 um Bending Radius
Output Transmission
MetaPhotonics Lab
27
Transmission in zoomed in vertical axis
• Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Output Transmission
Simulation 3.5 um Bending Radius Narrow Bandwidth
MetaPhotonics Lab
28
E-field Vs Time
• Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Simulation 3.5 um Bending Radius Narrow Bandwidth
0.778 ps
MetaPhotonics Lab
29
• Mesh Size: 20 nm, Simulation time: 7000 fs, Source Wavelength: 1400-1700 nm
Simulation 3.5 um Bending Radius
E-field
MetaPhotonics Lab
30
3) Simulation 4 um Bending Radius
• Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1400 - 1700 nm
MetaPhotonics Lab
31
Simulation 4 um Bending Radius
• Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1400 - 1700 nm
Output Transmission
MetaPhotonics Lab
32
Output Transmission
Transmission in zoomed in vertical axis
• Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Simulation 4 um Bending Radius Narrow Bandwidth
MetaPhotonics Lab
33
E-field Vs Time
• Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Simulation 4 um Bending Radius Narrow Bandwidth
0.795 ps
MetaPhotonics Lab
34
E-field
Simulation 4 um Bending Radius
• Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1400 - 1700 nm
MetaPhotonics Lab
35
4) Simulation 5 um Bending Radius
• Mesh Size: 21 nm, Simulation time: 10,000 fs.
MetaPhotonics Lab
36
Output Transmission
Transmission in zoomed in vertical axis
• Mesh Size: 21 nm, Simulation time: 10,000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Simulation 5 um Bending Radius Narrow Bandwidth
MetaPhotonics Lab
37
E-field Vs Time
• Mesh Size: 21 nm, Simulation time: 10,000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Simulation 5 um Bending Radius Narrow Bandwidth
0.868 ps
MetaPhotonics Lab
38
E-field
Simulation 5 um Bending Radius
• Mesh Size: 21 nm, Simulation time: 10,000 fs, Source Wavelength: 1400 - 1700 nm
MetaPhotonics Lab
39
• Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1400 - 1700 nm
Comparison of Transmission Spectra
MetaPhotonics Lab
40
4) Simulation of a Long Structure with 3.5 um Bending Radius
• Mesh Size: 25 nm, Simulation time: 35,000 fs
 Bending radius: 3.5 µm
 Length of the structure: 142 µm
 Width of the structure: 19 µm
 Area: 2698 µm2
 Total travelling distance : Approx. 479.675 µm
MetaPhotonics Lab
41
• Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1400 - 1700 nm
Comparison of Transmission Spectra
MetaPhotonics Lab
42
Output Transmission
Transmission in zoomed in vertical axis
• Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Simulation of a Long Structure with 3.5 um Bending Radius
MetaPhotonics Lab
43
E-field Vs Time
• Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Simulation of a Long Structure with 3.5 um Bending Radius
Distance (um) Delay (ps)
51.9925 0.66516
122.0875 1.55062
192.1825 2.437
262.2775 3.353
332.3725 4.26
402.4675 5.163
479.2625 6.143
MetaPhotonics Lab
44
• Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1548.53 - 1551.47 nm
Simulation of a Long Structure with 3.5 um Bending Radius
MetaPhotonics Lab
45
E-field Map
Simulation of a Long Structure with 3.5 um Bending Radius
MetaPhotonics Lab
46
 Increase the number of loops to increase time delay up to 200 ps.
 Add Ti heaters to implement thermo-optic effect for active time tuning.
Future Work to Do
Meander Lines for Optical Time Delay
MetaPhotonics Lab
47
Pulley-type ring resonators
Ref: Chen, C. C., Cai, D. P., & Lee, C. C. Fine tune of pulley-type ring resonators.
 Achieving high Q-factor by increasing the radius of the microring
 Reduce bending loss
 Efficient coupling of light to the ring
 Tuning the bus waveguide width
 Gap width
MetaPhotonics Lab
48
Pulley-type ring resonators (E field)
 Radius of the ring= 4.56 um
 Gap = 0.15 um
 Circumference = 28.65 um
 Bending radius = 4.89 um
 Group index = 61.78
MetaPhotonics Lab
49
Pulley-type ring resonators (Group Delay and Transmission)
MetaPhotonics Lab
50
Meander line optical delay line using ring resonator (Multiple ring) Transmission
MetaPhotonics Lab
51
Applied Nanotools Canada Fabrication Characteristics
Critical Dimension (Resolution) 70 nm
Layout file accepted GDSII
Basic Passive Layout 4-5 Weeks
With addition of metal 7 weeks
With deep trenches for edge couples 9 weeks
Fabrication Timeline:
MetaPhotonics Lab
52
Applied Nanotools Canada Fabrication Characteristics
MetaPhotonics Lab
53
Applied Nanotools Canada Fabrication Characteristics
Device Layer Exposure Area
1 mm2 5 mm2 7 mm2
Cost [CAD (KRW)] Total [CAD (KRW)]
Basic Passive Structure 1515 (1,442,280) 1515 (1,442,280) 3515 (3,346,280) 4515 (4,298,280)
With addition of top 2.2 um oxide claddi
ng
+110 (+104,720) 1625 (1,547,000) 3625 (3,451,000) 4625 (4,403,000)
With tri-layer metallization (Ti/W, Alumin
ium, and oxide cladding)
+1100 (+1,047,200) 2725 (2,594,200) 4725 (4,498,200) 5725 (5,450,200)
With Deep Trench for Edge Coupled De
vices
+650 (+618,800) 3375 (3,213,000) 5375 (5,117,000) 6375 (6,069,000)
Fabrication Costs
MetaPhotonics Lab
54
Other Characteristics
They offer a process module called "Deep Trench" that will expose edge facets for edge coupling.
They do not offer edge coupler packaging, but they can offer fiber packaging of vertical grating
couplers instead using a fiber array block.
All of the silicon should be on a single GDS layer (Layer 1). There is no partial etch available in MPW
runs, only full-etch silicon. Partial etch levels can be provided in a dedicated run.
Titanium heaters are also fabricable, except that our heater material is TiW (200 nm thickness) and
the minimum trace size is 3 microns.
Doping/Ion implantation is NOT POSSIBLE
MetaPhotonics Lab
55
IMEC Fabrication Characteristics
Critical Dimension (Resolution) 130 nm
Layout file accepted GDSII
Passive Layout 9 Months
Active Layout Structure 1 Year
Fabrication Timeline:
MetaPhotonics Lab
56
IMEC Fabrication Characteristics
Metal heaters are included in the passive (above) layout.
Cost:
Price
1 block (5.15mm x 5.15mm) 11,600 Euros (15,655,360 KRW)
Half Block (5.15mm x 2.5 mm) 6,100 Euros (8,232,560 KRW)
MetaPhotonics Lab
57
Cornerstone Fabrication Characteristics
Critical Dimension (Resolution) 130 nm
Layout file accepted GDSII
MetaPhotonics Lab
58
Cornerstone Fabrication Characteristics
Cost:
Price
Half block (5.5mm x 4.9mm) with heaters 11,700 Euros (15,790,320 KRW)
Full Block (11.47mm x 4.9 mm) with heaters 17,100 Euros (23,078,160 KRW)
Metal heaters are included in the passive (above) layout.
MetaPhotonics Lab
59
Summary
Facilities Cost (won)
Chip size
(mm2)
Active device Critical dimension (nm) Period (weeks) Packaging
ANT 4.5 million 5
Ion implantation (x)
Metallization (o)
70 7 ~ 9
Provide vertical
coupling
IMEC 15 million 5
Metallization (o)
Ion implantation
(Possible but with extra
charges)
130 nm
48 Weeks (Active)
36 Weeks (Passive)
Provide Fiber
coupling
Cornerstone 15.7 million 5
Metallization (o)
Ion implantation
(Possible but with extra
charges)
130 nm N/A
Provide Fiber
coupling

More Related Content

Similar to Lasdab dasmaseeting 2_27_1_2022_100pm.pptx

Ippen nes osa 9-15-11
Ippen nes osa 9-15-11Ippen nes osa 9-15-11
Ippen nes osa 9-15-11
nishmoh
 
foto multiplicador de silicio
foto multiplicador de siliciofoto multiplicador de silicio
foto multiplicador de silicio
HERRERAGAVINOLORIANG
 
A New Compact Design and Comparative Study of Circular Patch Antenna with Dif...
A New Compact Design and Comparative Study of Circular Patch Antenna with Dif...A New Compact Design and Comparative Study of Circular Patch Antenna with Dif...
A New Compact Design and Comparative Study of Circular Patch Antenna with Dif...
IRJET Journal
 
Restricted Launch Polymer Multimode Waveguides for Board-level Optical Interc...
Restricted Launch Polymer Multimode Waveguides for Board-level Optical Interc...Restricted Launch Polymer Multimode Waveguides for Board-level Optical Interc...
Restricted Launch Polymer Multimode Waveguides for Board-level Optical Interc...
Jian Chen
 
DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
    DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE    DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
Prateek Kumar
 
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
Designing of Rectangular Microstrip Patch Antenna for C-Band  ApplicationDesigning of Rectangular Microstrip Patch Antenna for C-Band  Application
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
IJMER
 
An Optimization Of Circularly Polarized Knight’s Helm Shaped Patch Antenna Fo...
An Optimization Of Circularly Polarized Knight’s Helm Shaped Patch Antenna Fo...An Optimization Of Circularly Polarized Knight’s Helm Shaped Patch Antenna Fo...
An Optimization Of Circularly Polarized Knight’s Helm Shaped Patch Antenna Fo...
IOSR Journals
 
C010111117
C010111117C010111117
C010111117
IOSR Journals
 
Novel route to high quality ablation in a range of materials with a 400 w sin...
Novel route to high quality ablation in a range of materials with a 400 w sin...Novel route to high quality ablation in a range of materials with a 400 w sin...
Novel route to high quality ablation in a range of materials with a 400 w sin...
JK Lasers
 
PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005
David Dahan
 
Mattson-RTP-3000.pdf
Mattson-RTP-3000.pdfMattson-RTP-3000.pdf
Mattson-RTP-3000.pdf
ACAllen2
 
Pulse laser micro polishing
Pulse laser micro polishingPulse laser micro polishing
Pulse laser micro polishing
Slidegiant
 
LSS - Defense - 12-1-2014
LSS - Defense - 12-1-2014LSS - Defense - 12-1-2014
LSS - Defense - 12-1-2014
Les Sheffield
 
Printed Yagi uda Antenna
Printed Yagi uda AntennaPrinted Yagi uda Antenna
Printed Yagi uda Antenna
Harshpreet Singh
 
Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under No...
Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under No...Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under No...
Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under No...
Avishek Patra
 
Probe Feed Micro strip Antenna design
Probe Feed Micro strip Antenna designProbe Feed Micro strip Antenna design
Probe Feed Micro strip Antenna design
Abhishek Sainkar
 
Design of spiral labyrinth microstrip antenna for DVB-T application
Design of spiral labyrinth microstrip antenna for DVB-T applicationDesign of spiral labyrinth microstrip antenna for DVB-T application
Design of spiral labyrinth microstrip antenna for DVB-T application
TELKOMNIKA JOURNAL
 
ESMRMB 2009 congress e-poster presentation
ESMRMB 2009 congress e-poster presentationESMRMB 2009 congress e-poster presentation
ESMRMB 2009 congress e-poster presentation
Bartvandebank
 
méthode electrique et methode magnétique dans la prospection géophysique.ppt
méthode electrique et methode magnétique dans la prospection géophysique.pptméthode electrique et methode magnétique dans la prospection géophysique.ppt
méthode electrique et methode magnétique dans la prospection géophysique.ppt
yassinetiaret
 
Talk g siringo_laboca_spie20080626_last
Talk g siringo_laboca_spie20080626_lastTalk g siringo_laboca_spie20080626_last
Talk g siringo_laboca_spie20080626_last
Jennifer Wirtz
 

Similar to Lasdab dasmaseeting 2_27_1_2022_100pm.pptx (20)

Ippen nes osa 9-15-11
Ippen nes osa 9-15-11Ippen nes osa 9-15-11
Ippen nes osa 9-15-11
 
foto multiplicador de silicio
foto multiplicador de siliciofoto multiplicador de silicio
foto multiplicador de silicio
 
A New Compact Design and Comparative Study of Circular Patch Antenna with Dif...
A New Compact Design and Comparative Study of Circular Patch Antenna with Dif...A New Compact Design and Comparative Study of Circular Patch Antenna with Dif...
A New Compact Design and Comparative Study of Circular Patch Antenna with Dif...
 
Restricted Launch Polymer Multimode Waveguides for Board-level Optical Interc...
Restricted Launch Polymer Multimode Waveguides for Board-level Optical Interc...Restricted Launch Polymer Multimode Waveguides for Board-level Optical Interc...
Restricted Launch Polymer Multimode Waveguides for Board-level Optical Interc...
 
DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
    DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE    DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
DESIGN OF RECTANGULAR PATCH ANTEENA USING METAMATERIAL SUBSTRATE
 
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
Designing of Rectangular Microstrip Patch Antenna for C-Band  ApplicationDesigning of Rectangular Microstrip Patch Antenna for C-Band  Application
Designing of Rectangular Microstrip Patch Antenna for C-Band Application
 
An Optimization Of Circularly Polarized Knight’s Helm Shaped Patch Antenna Fo...
An Optimization Of Circularly Polarized Knight’s Helm Shaped Patch Antenna Fo...An Optimization Of Circularly Polarized Knight’s Helm Shaped Patch Antenna Fo...
An Optimization Of Circularly Polarized Knight’s Helm Shaped Patch Antenna Fo...
 
C010111117
C010111117C010111117
C010111117
 
Novel route to high quality ablation in a range of materials with a 400 w sin...
Novel route to high quality ablation in a range of materials with a 400 w sin...Novel route to high quality ablation in a range of materials with a 400 w sin...
Novel route to high quality ablation in a range of materials with a 400 w sin...
 
PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005PhD Seminar David Dahan 2005
PhD Seminar David Dahan 2005
 
Mattson-RTP-3000.pdf
Mattson-RTP-3000.pdfMattson-RTP-3000.pdf
Mattson-RTP-3000.pdf
 
Pulse laser micro polishing
Pulse laser micro polishingPulse laser micro polishing
Pulse laser micro polishing
 
LSS - Defense - 12-1-2014
LSS - Defense - 12-1-2014LSS - Defense - 12-1-2014
LSS - Defense - 12-1-2014
 
Printed Yagi uda Antenna
Printed Yagi uda AntennaPrinted Yagi uda Antenna
Printed Yagi uda Antenna
 
Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under No...
Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under No...Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under No...
Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under No...
 
Probe Feed Micro strip Antenna design
Probe Feed Micro strip Antenna designProbe Feed Micro strip Antenna design
Probe Feed Micro strip Antenna design
 
Design of spiral labyrinth microstrip antenna for DVB-T application
Design of spiral labyrinth microstrip antenna for DVB-T applicationDesign of spiral labyrinth microstrip antenna for DVB-T application
Design of spiral labyrinth microstrip antenna for DVB-T application
 
ESMRMB 2009 congress e-poster presentation
ESMRMB 2009 congress e-poster presentationESMRMB 2009 congress e-poster presentation
ESMRMB 2009 congress e-poster presentation
 
méthode electrique et methode magnétique dans la prospection géophysique.ppt
méthode electrique et methode magnétique dans la prospection géophysique.pptméthode electrique et methode magnétique dans la prospection géophysique.ppt
méthode electrique et methode magnétique dans la prospection géophysique.ppt
 
Talk g siringo_laboca_spie20080626_last
Talk g siringo_laboca_spie20080626_lastTalk g siringo_laboca_spie20080626_last
Talk g siringo_laboca_spie20080626_last
 

Recently uploaded

ZAPATILLAS 2 X 110 ABRIL.pdf compra economico
ZAPATILLAS 2 X 110 ABRIL.pdf compra economicoZAPATILLAS 2 X 110 ABRIL.pdf compra economico
ZAPATILLAS 2 X 110 ABRIL.pdf compra economico
jhonguerrerobarturen
 
一比一原版(Columbia毕业证)哥伦比亚大学毕业证如何办理
一比一原版(Columbia毕业证)哥伦比亚大学毕业证如何办理一比一原版(Columbia毕业证)哥伦比亚大学毕业证如何办理
一比一原版(Columbia毕业证)哥伦比亚大学毕业证如何办理
asuzyq
 
原版定做(penn毕业证书)美国宾夕法尼亚大学毕业证文凭学历证书原版一模一样
原版定做(penn毕业证书)美国宾夕法尼亚大学毕业证文凭学历证书原版一模一样原版定做(penn毕业证书)美国宾夕法尼亚大学毕业证文凭学历证书原版一模一样
原版定做(penn毕业证书)美国宾夕法尼亚大学毕业证文凭学历证书原版一模一样
gpffo76j
 
UNIT V ACTIONS AND COMMANDS, FORMS AND CONTROLS.pptx
UNIT V ACTIONS AND COMMANDS, FORMS AND CONTROLS.pptxUNIT V ACTIONS AND COMMANDS, FORMS AND CONTROLS.pptx
UNIT V ACTIONS AND COMMANDS, FORMS AND CONTROLS.pptx
GOWSIKRAJA PALANISAMY
 
Impact of Fonts: in Web and Apps Design
Impact of Fonts:  in Web and Apps DesignImpact of Fonts:  in Web and Apps Design
Impact of Fonts: in Web and Apps Design
contactproperweb2014
 
定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样
qo1as76n
 
一比一原版(UW毕业证)西雅图华盛顿大学毕业证如何办理
一比一原版(UW毕业证)西雅图华盛顿大学毕业证如何办理一比一原版(UW毕业证)西雅图华盛顿大学毕业证如何办理
一比一原版(UW毕业证)西雅图华盛顿大学毕业证如何办理
kecekev
 
Branding de la empresa de Bolt- 2024.pdf
Branding de la empresa de Bolt- 2024.pdfBranding de la empresa de Bolt- 2024.pdf
Branding de la empresa de Bolt- 2024.pdf
PabloMartelLpez
 
Storytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design ProcessStorytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design Process
Chiara Aliotta
 
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANEEASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
Febless Hernane
 
Heuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdfHeuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdf
Jaime Brown
 
Top Interior Designers in Bangalore.pdf1
Top Interior Designers in Bangalore.pdf1Top Interior Designers in Bangalore.pdf1
Top Interior Designers in Bangalore.pdf1
Decomart Studio
 
Timeless Principles of Good Design
Timeless Principles of Good DesignTimeless Principles of Good Design
Timeless Principles of Good Design
Carolina de Bartolo
 
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdfSECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
eloprejohn333
 
Connect Conference 2022: Passive House - Economic and Environmental Solution...
Connect Conference 2022: Passive House -  Economic and Environmental Solution...Connect Conference 2022: Passive House -  Economic and Environmental Solution...
Connect Conference 2022: Passive House - Economic and Environmental Solution...
TE Studio
 
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptxUNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
GOWSIKRAJA PALANISAMY
 
PDF SubmissionDigital Marketing Institute in Noida
PDF SubmissionDigital Marketing Institute in NoidaPDF SubmissionDigital Marketing Institute in Noida
PDF SubmissionDigital Marketing Institute in Noida
PoojaSaini954651
 
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdfAHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
talaatahm
 
Revolutionizing the Digital Landscape: Web Development Companies in India
Revolutionizing the Digital Landscape: Web Development Companies in IndiaRevolutionizing the Digital Landscape: Web Development Companies in India
Revolutionizing the Digital Landscape: Web Development Companies in India
amrsoftec1
 
ARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdfARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdf
Knight Moves
 

Recently uploaded (20)

ZAPATILLAS 2 X 110 ABRIL.pdf compra economico
ZAPATILLAS 2 X 110 ABRIL.pdf compra economicoZAPATILLAS 2 X 110 ABRIL.pdf compra economico
ZAPATILLAS 2 X 110 ABRIL.pdf compra economico
 
一比一原版(Columbia毕业证)哥伦比亚大学毕业证如何办理
一比一原版(Columbia毕业证)哥伦比亚大学毕业证如何办理一比一原版(Columbia毕业证)哥伦比亚大学毕业证如何办理
一比一原版(Columbia毕业证)哥伦比亚大学毕业证如何办理
 
原版定做(penn毕业证书)美国宾夕法尼亚大学毕业证文凭学历证书原版一模一样
原版定做(penn毕业证书)美国宾夕法尼亚大学毕业证文凭学历证书原版一模一样原版定做(penn毕业证书)美国宾夕法尼亚大学毕业证文凭学历证书原版一模一样
原版定做(penn毕业证书)美国宾夕法尼亚大学毕业证文凭学历证书原版一模一样
 
UNIT V ACTIONS AND COMMANDS, FORMS AND CONTROLS.pptx
UNIT V ACTIONS AND COMMANDS, FORMS AND CONTROLS.pptxUNIT V ACTIONS AND COMMANDS, FORMS AND CONTROLS.pptx
UNIT V ACTIONS AND COMMANDS, FORMS AND CONTROLS.pptx
 
Impact of Fonts: in Web and Apps Design
Impact of Fonts:  in Web and Apps DesignImpact of Fonts:  in Web and Apps Design
Impact of Fonts: in Web and Apps Design
 
定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样定制美国西雅图城市大学毕业证学历证书原版一模一样
定制美国西雅图城市大学毕业证学历证书原版一模一样
 
一比一原版(UW毕业证)西雅图华盛顿大学毕业证如何办理
一比一原版(UW毕业证)西雅图华盛顿大学毕业证如何办理一比一原版(UW毕业证)西雅图华盛顿大学毕业证如何办理
一比一原版(UW毕业证)西雅图华盛顿大学毕业证如何办理
 
Branding de la empresa de Bolt- 2024.pdf
Branding de la empresa de Bolt- 2024.pdfBranding de la empresa de Bolt- 2024.pdf
Branding de la empresa de Bolt- 2024.pdf
 
Storytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design ProcessStorytelling For The Web: Integrate Storytelling in your Design Process
Storytelling For The Web: Integrate Storytelling in your Design Process
 
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANEEASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
EASY TUTORIAL OF HOW TO USE CAPCUT BY: FEBLESS HERNANE
 
Heuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdfHeuristics Evaluation - How to Guide.pdf
Heuristics Evaluation - How to Guide.pdf
 
Top Interior Designers in Bangalore.pdf1
Top Interior Designers in Bangalore.pdf1Top Interior Designers in Bangalore.pdf1
Top Interior Designers in Bangalore.pdf1
 
Timeless Principles of Good Design
Timeless Principles of Good DesignTimeless Principles of Good Design
Timeless Principles of Good Design
 
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdfSECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
SECURING BUILDING PERMIT CITY OF CALOOCAN.pdf
 
Connect Conference 2022: Passive House - Economic and Environmental Solution...
Connect Conference 2022: Passive House -  Economic and Environmental Solution...Connect Conference 2022: Passive House -  Economic and Environmental Solution...
Connect Conference 2022: Passive House - Economic and Environmental Solution...
 
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptxUNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
UNIT IV-VISUAL STYLE AND MOBILE INTERFACES.pptx
 
PDF SubmissionDigital Marketing Institute in Noida
PDF SubmissionDigital Marketing Institute in NoidaPDF SubmissionDigital Marketing Institute in Noida
PDF SubmissionDigital Marketing Institute in Noida
 
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdfAHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
AHMED TALAAT ARCHITECTURE PORTFOLIO .pdf
 
Revolutionizing the Digital Landscape: Web Development Companies in India
Revolutionizing the Digital Landscape: Web Development Companies in IndiaRevolutionizing the Digital Landscape: Web Development Companies in India
Revolutionizing the Digital Landscape: Web Development Companies in India
 
ARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdfARENA - Young adults in the workplace (Knight Moves).pdf
ARENA - Young adults in the workplace (Knight Moves).pdf
 

Lasdab dasmaseeting 2_27_1_2022_100pm.pptx

  • 1. MetaPhotonics Lab 1 2021.01.27 Optical True Time Delay Lines MetaPhotonics Research Lab
  • 2. MetaPhotonics Lab 2 Outline  Group index dispersion curve  Time of flight method to calculate the group delay  Explain Time of flight method  Cantor V3  Meander line optical delay line  Meander line optical delay line (with Ring resonator)  Fabrication
  • 3. MetaPhotonics Lab 3 Dispersion curve (Using Center frequency) (1)  Confinement decreases for longer wavelength  Overall increase of group index value
  • 4. MetaPhotonics Lab 4 Time of flight  Wavelength = 1400 to 1700 nm  Pulse length = 37.054 um
  • 5. MetaPhotonics Lab 5  Wavelength = 1550 nm  Pulse length = 1.73 um Time of flight (Narrow Bandwidth)
  • 6. MetaPhotonics Lab 6  Cantor V3 (Cell number = 1) Cell 1 Length = 34.9 um  Objective function: max_value = group_delay*1E4 + 1*A;
  • 7. MetaPhotonics Lab 7 0.67ps  Cantor V3 (Cell number = 1) Group delay Group index = 5.74
  • 8. MetaPhotonics Lab 8  Cantor V3 (Cell number = 1) (1400nm to 1700nm) 0.76 ps 0.14 ps ∇time = 0.62ps Group index = 5.74
  • 9. MetaPhotonics Lab 9  Cantor V3 (Cell number = 1) Center frequency = 1550nm, Bandwidth = 2.45nm 4.74 ps 4.13 ps ∇time = 0.61ps
  • 10. MetaPhotonics Lab 10 74%  Cantor V3 (Cell number = 1)
  • 11. MetaPhotonics Lab 11  Cantor V3 (Cell number = 3) Cell 1 Cell 2 Cell 3 Length = 104.7 um  Objective function: max_value = group_delay*1E4 + 1*A;
  • 12. MetaPhotonics Lab 12 1.99 ps  Cantor V3 (Cell number = 3) (Group delay)
  • 13. MetaPhotonics Lab 13  Cantor V3, cell number = 3 (1400nm to 1700nm) 2 ps 0.14 ps ∇time = 1.86 ps Group index = 5.68
  • 14. MetaPhotonics Lab 14  Cantor V3, cell number = 3 (center frequency = 1550nm, Bandwidth = 12.15nm) 3.02 ps 1.18 ps ∇time = 1.84 ps Group index = 5.68
  • 16. MetaPhotonics Lab 16 0.72 ps 1.18 ps ∇time = 0.46 ps  Time of Flight (Straight Waveguide) Length = 34.9 um Group index = 3.95 um  Center frequency = 1550nm  Bandwidth = 12.17nm
  • 18. MetaPhotonics Lab 18 Meander Lines: Motivation  Meander lines were chosen for analysis for 2 main reasons: 1. It’s easier to apply homogeneous heat using rectangular titanium heaters. 2. In the straight waveguide part of the meander lines, the optimized cantor waveguide structure can be used to enhance the group delay even more. 3. Possibility of adding ring resonator (like a pulley) inside the bend region of the structure.
  • 19. MetaPhotonics Lab 19 Choosing the Right Bending Radius
  • 20. MetaPhotonics Lab 20 1) 3um Bending Radius • Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1400-1700 nm
  • 21. MetaPhotonics Lab 21 Simulation 3um Bending Radius Transmission in zoomed in vertical axis • Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1400-1700 nm Output Transmission
  • 22. MetaPhotonics Lab 22 Transmission in zoomed in vertical axis • Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1548.53 – 1551.47 nm Output Transmission Simulation 3um Bending Radius Narrow Bandwidth
  • 23. MetaPhotonics Lab 23 E-field Vs Time • Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1548.53 – 1551.47 nm Simulation 3um Bending Radius Narrow Bandwidth 0.71 ps
  • 24. MetaPhotonics Lab 24 Simulation 3um Bending Radius • Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1400-1700 nm E-field
  • 25. MetaPhotonics Lab 25 2) Simulation 3.5 um Bending Radius • Mesh Size: 20 nm, Simulation time: 7000 fs, Source Wavelength: 1400-1700 nm
  • 26. MetaPhotonics Lab 26 • Mesh Size: 20 nm, Simulation time: 7000 fs, Source Wavelength: 1400-1700 nm Simulation 3.5 um Bending Radius Output Transmission
  • 27. MetaPhotonics Lab 27 Transmission in zoomed in vertical axis • Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1548.53 - 1551.47 nm Output Transmission Simulation 3.5 um Bending Radius Narrow Bandwidth
  • 28. MetaPhotonics Lab 28 E-field Vs Time • Mesh Size: 20 nm, Simulation time: 9000 fs, Source Wavelength: 1548.53 - 1551.47 nm Simulation 3.5 um Bending Radius Narrow Bandwidth 0.778 ps
  • 29. MetaPhotonics Lab 29 • Mesh Size: 20 nm, Simulation time: 7000 fs, Source Wavelength: 1400-1700 nm Simulation 3.5 um Bending Radius E-field
  • 30. MetaPhotonics Lab 30 3) Simulation 4 um Bending Radius • Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1400 - 1700 nm
  • 31. MetaPhotonics Lab 31 Simulation 4 um Bending Radius • Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1400 - 1700 nm Output Transmission
  • 32. MetaPhotonics Lab 32 Output Transmission Transmission in zoomed in vertical axis • Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1548.53 - 1551.47 nm Simulation 4 um Bending Radius Narrow Bandwidth
  • 33. MetaPhotonics Lab 33 E-field Vs Time • Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1548.53 - 1551.47 nm Simulation 4 um Bending Radius Narrow Bandwidth 0.795 ps
  • 34. MetaPhotonics Lab 34 E-field Simulation 4 um Bending Radius • Mesh Size: 20 nm, Simulation time: 10,000 fs, Source Wavelength: 1400 - 1700 nm
  • 35. MetaPhotonics Lab 35 4) Simulation 5 um Bending Radius • Mesh Size: 21 nm, Simulation time: 10,000 fs.
  • 36. MetaPhotonics Lab 36 Output Transmission Transmission in zoomed in vertical axis • Mesh Size: 21 nm, Simulation time: 10,000 fs, Source Wavelength: 1548.53 - 1551.47 nm Simulation 5 um Bending Radius Narrow Bandwidth
  • 37. MetaPhotonics Lab 37 E-field Vs Time • Mesh Size: 21 nm, Simulation time: 10,000 fs, Source Wavelength: 1548.53 - 1551.47 nm Simulation 5 um Bending Radius Narrow Bandwidth 0.868 ps
  • 38. MetaPhotonics Lab 38 E-field Simulation 5 um Bending Radius • Mesh Size: 21 nm, Simulation time: 10,000 fs, Source Wavelength: 1400 - 1700 nm
  • 39. MetaPhotonics Lab 39 • Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1400 - 1700 nm Comparison of Transmission Spectra
  • 40. MetaPhotonics Lab 40 4) Simulation of a Long Structure with 3.5 um Bending Radius • Mesh Size: 25 nm, Simulation time: 35,000 fs  Bending radius: 3.5 µm  Length of the structure: 142 µm  Width of the structure: 19 µm  Area: 2698 µm2  Total travelling distance : Approx. 479.675 µm
  • 41. MetaPhotonics Lab 41 • Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1400 - 1700 nm Comparison of Transmission Spectra
  • 42. MetaPhotonics Lab 42 Output Transmission Transmission in zoomed in vertical axis • Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1548.53 - 1551.47 nm Simulation of a Long Structure with 3.5 um Bending Radius
  • 43. MetaPhotonics Lab 43 E-field Vs Time • Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1548.53 - 1551.47 nm Simulation of a Long Structure with 3.5 um Bending Radius Distance (um) Delay (ps) 51.9925 0.66516 122.0875 1.55062 192.1825 2.437 262.2775 3.353 332.3725 4.26 402.4675 5.163 479.2625 6.143
  • 44. MetaPhotonics Lab 44 • Mesh Size: 25 nm, Simulation time: 35,000 fs, Source Wavelength: 1548.53 - 1551.47 nm Simulation of a Long Structure with 3.5 um Bending Radius
  • 45. MetaPhotonics Lab 45 E-field Map Simulation of a Long Structure with 3.5 um Bending Radius
  • 46. MetaPhotonics Lab 46  Increase the number of loops to increase time delay up to 200 ps.  Add Ti heaters to implement thermo-optic effect for active time tuning. Future Work to Do Meander Lines for Optical Time Delay
  • 47. MetaPhotonics Lab 47 Pulley-type ring resonators Ref: Chen, C. C., Cai, D. P., & Lee, C. C. Fine tune of pulley-type ring resonators.  Achieving high Q-factor by increasing the radius of the microring  Reduce bending loss  Efficient coupling of light to the ring  Tuning the bus waveguide width  Gap width
  • 48. MetaPhotonics Lab 48 Pulley-type ring resonators (E field)  Radius of the ring= 4.56 um  Gap = 0.15 um  Circumference = 28.65 um  Bending radius = 4.89 um  Group index = 61.78
  • 49. MetaPhotonics Lab 49 Pulley-type ring resonators (Group Delay and Transmission)
  • 50. MetaPhotonics Lab 50 Meander line optical delay line using ring resonator (Multiple ring) Transmission
  • 51. MetaPhotonics Lab 51 Applied Nanotools Canada Fabrication Characteristics Critical Dimension (Resolution) 70 nm Layout file accepted GDSII Basic Passive Layout 4-5 Weeks With addition of metal 7 weeks With deep trenches for edge couples 9 weeks Fabrication Timeline:
  • 52. MetaPhotonics Lab 52 Applied Nanotools Canada Fabrication Characteristics
  • 53. MetaPhotonics Lab 53 Applied Nanotools Canada Fabrication Characteristics Device Layer Exposure Area 1 mm2 5 mm2 7 mm2 Cost [CAD (KRW)] Total [CAD (KRW)] Basic Passive Structure 1515 (1,442,280) 1515 (1,442,280) 3515 (3,346,280) 4515 (4,298,280) With addition of top 2.2 um oxide claddi ng +110 (+104,720) 1625 (1,547,000) 3625 (3,451,000) 4625 (4,403,000) With tri-layer metallization (Ti/W, Alumin ium, and oxide cladding) +1100 (+1,047,200) 2725 (2,594,200) 4725 (4,498,200) 5725 (5,450,200) With Deep Trench for Edge Coupled De vices +650 (+618,800) 3375 (3,213,000) 5375 (5,117,000) 6375 (6,069,000) Fabrication Costs
  • 54. MetaPhotonics Lab 54 Other Characteristics They offer a process module called "Deep Trench" that will expose edge facets for edge coupling. They do not offer edge coupler packaging, but they can offer fiber packaging of vertical grating couplers instead using a fiber array block. All of the silicon should be on a single GDS layer (Layer 1). There is no partial etch available in MPW runs, only full-etch silicon. Partial etch levels can be provided in a dedicated run. Titanium heaters are also fabricable, except that our heater material is TiW (200 nm thickness) and the minimum trace size is 3 microns. Doping/Ion implantation is NOT POSSIBLE
  • 55. MetaPhotonics Lab 55 IMEC Fabrication Characteristics Critical Dimension (Resolution) 130 nm Layout file accepted GDSII Passive Layout 9 Months Active Layout Structure 1 Year Fabrication Timeline:
  • 56. MetaPhotonics Lab 56 IMEC Fabrication Characteristics Metal heaters are included in the passive (above) layout. Cost: Price 1 block (5.15mm x 5.15mm) 11,600 Euros (15,655,360 KRW) Half Block (5.15mm x 2.5 mm) 6,100 Euros (8,232,560 KRW)
  • 57. MetaPhotonics Lab 57 Cornerstone Fabrication Characteristics Critical Dimension (Resolution) 130 nm Layout file accepted GDSII
  • 58. MetaPhotonics Lab 58 Cornerstone Fabrication Characteristics Cost: Price Half block (5.5mm x 4.9mm) with heaters 11,700 Euros (15,790,320 KRW) Full Block (11.47mm x 4.9 mm) with heaters 17,100 Euros (23,078,160 KRW) Metal heaters are included in the passive (above) layout.
  • 59. MetaPhotonics Lab 59 Summary Facilities Cost (won) Chip size (mm2) Active device Critical dimension (nm) Period (weeks) Packaging ANT 4.5 million 5 Ion implantation (x) Metallization (o) 70 7 ~ 9 Provide vertical coupling IMEC 15 million 5 Metallization (o) Ion implantation (Possible but with extra charges) 130 nm 48 Weeks (Active) 36 Weeks (Passive) Provide Fiber coupling Cornerstone 15.7 million 5 Metallization (o) Ion implantation (Possible but with extra charges) 130 nm N/A Provide Fiber coupling