Ruang vektor
Upcoming SlideShare
Loading in...5
×
 

Ruang vektor

on

  • 503 views

 

Statistics

Views

Total Views
503
Views on SlideShare
503
Embed Views
0

Actions

Likes
0
Downloads
8
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Ruang vektor Ruang vektor Presentation Transcript

  • Di Susun Oleh: Erni Astutiningsih D.S(08600035) Hulliyatul Jannah (10600055) Lulu’ Fajriyyatus Syifa (12600004) Rodlita ‘Aisyiyatana (1260040)
  • Vektor adalah obyek geometri yang memiliki besar dan arah. Vektor jika digambar dilambangkan dengan tanda panah (→).
  •  Definisi-1 Ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan anggota lain dalam himpunan itu.
  •  Definisi-2 Syarat agar V disebut sebagai ruang vektor : Jika vektor – vektor u , v ∈ V , maka vektor u + v ∈ V 2) u + v = v + u , v,u ∈ V 3) u + ( v + w ) = ( u + v ) + w 4) Ada 0 ∈ V sehingga 0 + u = u + 0 = u ,untuk semua u ∈ V , 0: vektor nol 1) 5) Untuk setiap u ∈ V terdapat – u ∈ V sehingga u + (– u ) = 0
  • 6) Untuk sembarang skalar k , jika u ∈ V maka ku ∈ V 7) k ( u + v ) = k u + k v , k sembarang skalar 8) (k + l) u = k u + l u , k dan l skalar 9) k( l u ) = ( kl ) u 10)1 u = u
  • =  Contoh 1 : Ruang Vektor matriks 2x2 Pada contoh ini , kita akan mengetahui mudahnya membuktikan aksiomaaksioma dengan urutan sebagai berikut: 1,6,2,3,7,8,9,4,5,dan 10. Misalakan: u= dan v=
  •  Contoh 2: Anggap V = R2, didefinisikan operasi penjumlahan dan perkalian skalar sebagai berikut: Jika u = (u1,u2) dan v = (v1,v2) , maka:  u + v = (u1 + v1, u2 + v2)  k (u) = (ku1,0) karena (0,0) R2 maka V ≠ Ø
  •  Contoh 3: Diberikan V = R2 dengan aturan sebagai berikut: (x,y) + (x’,y’) = (x + x’ + 1, y + y’ + 1) dan k (x,y) = (kx,ky) Selidiki apakah V = R2 memenuhi 10 aksioma!
  •  Teorema 5.1.1. anggap V adalah suatu ruang vektor, u suatu vektor dalam V, dan k suatu skalar; maka : a) 0u = 0 b) K0 = 0 c) (-1)u = -u d) Jika ku = 0, maka k = 0 atau u = 0
  • TERIMAKASIH (^0^)/