SlideShare a Scribd company logo
1 of 60
Download to read offline
Roots and Coefficients
Roots and Coefficients
Quadratics

ax 2  bx  c  0
Roots and Coefficients
Quadratics

ax 2  bx  c  0

b
  
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0

b
  
a

c
 
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0

b
  
a
Cubics

ax 3  bx 2  cx  d  0

c
 
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0

b
  
a
Cubics

ax 3  bx 2  cx  d  0

     

b
a

c
 
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

c
     
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

d
  
a

c
     
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0

b
      
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0

b
      
a

c
           
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0

c
b
           
      
a
a
d
        
a
Roots and Coefficients
Quadratics

ax 2  bx  c  0
c
 
a

b
  
a
Cubics

ax 3  bx 2  cx  d  0

b
     
a

Quartics

d
  
a

c
     
a

ax 4  bx 3  cx 2  dx  e  0

c
b
           
      
a
a
d
e
        
 
a
a
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0
b
   a

(sum of roots, one at a time)
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0
b
   a
c
  a

(sum of roots, one at a time)
(sum of roots, two at a time)
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0
b
   a
c
  a
d
   a

(sum of roots, one at a time)
(sum of roots, two at a time)
(sum of roots, three at a time)
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0






b

a
c

a
d

a
e

a

(sum of roots, one at a time)
(sum of roots, two at a time)
(sum of roots, three at a time)
(sum of roots, four at a time)
For the polynomial equation;

ax n  bx n1  cx n2  dx n3    0






b

a
c

a
d

a
e

a

Note:



(sum of roots, one at a time)
(sum of roots, two at a time)
(sum of roots, three at a time)
(sum of roots, four at a time)

2

     2 
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2

3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2

3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
b)  







3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  










3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  










3
 2
1

2


3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  










3
 2
1

2
 3


3
2

  

1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  

c)  2   2   2









3
 2
1

2
 3


1
2
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

1
2

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  

c)  2   2   2
  
2

        2      
3

 2
1

2
 3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

1
2

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  

c)  2   2   2
  
2

        2      
3
2

5

 3
    2  
 2
2
 2
1

2
 3
e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the
values of;
a) 4  4   4  7
5
    
2

      

3
2

  

1
2

5  1
4  4   4  7  4    7   
2  2
27

2
1 1 1
    
b)  

c)  2   2   2
  
2

        2      
3
2

5

 3
    2  
 2
2
 2
1

37
2

4
 3
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
(iii)

1





1





1


1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
(iii)

1





1





1



    
  
  

1

1

1
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
(iii)

1





1





1



    
  
  

1

1

1



3
1
1988 Extension 1 HSC Q2c)
3
If  ,  and  are the roots of x  3 x  1  0 find:
(i)     

     0
(ii) 

  1
(iii)

1





1





1



    
  
  

1

1

1

3
1
3


2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 


2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 


2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3


2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2 3   3  k  3  6  0
3

2
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2 3   3  k  3  6  0
3

2

 54  9  3k  6  0
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2 3   3  k  3  6  0
3

2

 54  9  3k  6  0
3k  39
2003 Extension 1 HSC Q4c)
It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are
reciprocals of each other.
Find the value of k.
1
Let the roots be  , and 
 1      6
  
2
 
  3



P   3  0
2 3   3  k  3  6  0
3

2

 54  9  3k  6  0
3k  39
k  13
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
s   2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
s   2

1     t
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
s   2

1     t
t 2
2006 Extension 1 HSC Q4a)
The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real
numbers, has three real zeros, 1,  and  
(i) Find the value of r
1       r
r  1
(ii) Find the value of s + t

1   1         s
s   2

1     t
t 2

s  t  0
Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15,
16ad, 17, 18, 19

More Related Content

Viewers also liked

11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)Nigel Simmons
 
11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)Nigel Simmons
 
11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)Nigel Simmons
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)Nigel Simmons
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2Nigel Simmons
 
11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)Nigel Simmons
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)Nigel Simmons
 
11 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 211 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 2Nigel Simmons
 
11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)Nigel Simmons
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)Nigel Simmons
 
11X1 T13 07 products of intercepts (2011)
11X1 T13 07 products of intercepts (2011)11X1 T13 07 products of intercepts (2011)
11X1 T13 07 products of intercepts (2011)Nigel Simmons
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)Nigel Simmons
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)Nigel Simmons
 
11 x1 t13 07 products of intercepts (2013)
11 x1 t13 07 products of intercepts (2013)11 x1 t13 07 products of intercepts (2013)
11 x1 t13 07 products of intercepts (2013)Nigel Simmons
 
11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)Nigel Simmons
 
11 x1 t15 04 polynomial theorems (2013)
11 x1 t15 04 polynomial theorems (2013)11 x1 t15 04 polynomial theorems (2013)
11 x1 t15 04 polynomial theorems (2013)Nigel Simmons
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)Nigel Simmons
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)Nigel Simmons
 

Viewers also liked (20)

11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)11 x1 t07 02 triangle theorems (2012)
11 x1 t07 02 triangle theorems (2012)
 
11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)11 x1 t13 05 tangent theorems 1 (2013)
11 x1 t13 05 tangent theorems 1 (2013)
 
11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)11 x1 t13 01 definitions & chord theorems (2012)
11 x1 t13 01 definitions & chord theorems (2012)
 
11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)11X1 T08 01 angle theorems (2011)
11X1 T08 01 angle theorems (2011)
 
11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)11 x1 t07 03 congruent triangles (2012)
11 x1 t07 03 congruent triangles (2012)
 
11X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 211X1 T07 06 tangent theorems 2
11X1 T07 06 tangent theorems 2
 
11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)11 x1 t07 05 similar triangles (2012)
11 x1 t07 05 similar triangles (2012)
 
11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)11 x1 t13 01 definitions & chord theorems (2013)
11 x1 t13 01 definitions & chord theorems (2013)
 
11 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 211 x1 t13 06 tangent theorems 2
11 x1 t13 06 tangent theorems 2
 
11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)11 x1 t13 03 angle theorems 2 (2013)
11 x1 t13 03 angle theorems 2 (2013)
 
11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)11 x1 t15 03 polynomial division (2013)
11 x1 t15 03 polynomial division (2013)
 
11X1 T13 07 products of intercepts (2011)
11X1 T13 07 products of intercepts (2011)11X1 T13 07 products of intercepts (2011)
11X1 T13 07 products of intercepts (2011)
 
11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)11 x1 t13 02 angle theorems 1 (2013)
11 x1 t13 02 angle theorems 1 (2013)
 
11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)11 x1 t07 06 transversals (2013)
11 x1 t07 06 transversals (2013)
 
11 x1 t13 07 products of intercepts (2013)
11 x1 t13 07 products of intercepts (2013)11 x1 t13 07 products of intercepts (2013)
11 x1 t13 07 products of intercepts (2013)
 
11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)11 x1 t07 04 quadrilateral family (2012)
11 x1 t07 04 quadrilateral family (2012)
 
11 x1 t15 04 polynomial theorems (2013)
11 x1 t15 04 polynomial theorems (2013)11 x1 t15 04 polynomial theorems (2013)
11 x1 t15 04 polynomial theorems (2013)
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 

Similar to 11 x1 t15 06 roots & coefficients (2013)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)Nigel Simmons
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCarlon Baird
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)Nigel Simmons
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of rootsNigel Simmons
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomialsNigel Simmons
 
X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)Nigel Simmons
 
Lecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsLecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsHazel Joy Chong
 
X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsNigel Simmons
 
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theoremsmiller5
 
11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)Nigel Simmons
 
11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 

Similar to 11 x1 t15 06 roots & coefficients (2013) (20)

11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)
 
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONSCAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
CAPE PURE MATHEMATICS UNIT 2 MODULE 2 PRACTICE QUESTIONS
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots11X1 T11 07 sum & product of roots
11X1 T11 07 sum & product of roots
 
11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)11X1 T10 07 sum & product of roots (2011)
11X1 T10 07 sum & product of roots (2011)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomials
 
X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)X2 t05 03 parallel crosssections (2013)
X2 t05 03 parallel crosssections (2013)
 
Lecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of rootsLecture 08 quadratic formula and nature of roots
Lecture 08 quadratic formula and nature of roots
 
X2 T06 03 Parallel Crosssections
X2 T06 03 Parallel CrosssectionsX2 T06 03 Parallel Crosssections
X2 T06 03 Parallel Crosssections
 
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)
 
EKR for Matchings
EKR for MatchingsEKR for Matchings
EKR for Matchings
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theorem
 
11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)11 x1 t11 05 tangents & normals i (2013)
11 x1 t11 05 tangents & normals i (2013)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)
 
11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 

Recently uploaded

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 

Recently uploaded (20)

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 

11 x1 t15 06 roots & coefficients (2013)

  • 3. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a
  • 4. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a c   a
  • 5. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a Cubics ax 3  bx 2  cx  d  0 c   a
  • 6. Roots and Coefficients Quadratics ax 2  bx  c  0 b    a Cubics ax 3  bx 2  cx  d  0       b a c   a
  • 7. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a c       a
  • 8. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a d    a c       a
  • 9. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0
  • 10. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 b        a
  • 11. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 b        a c             a
  • 12. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 c b                    a a d          a
  • 13. Roots and Coefficients Quadratics ax 2  bx  c  0 c   a b    a Cubics ax 3  bx 2  cx  d  0 b       a Quartics d    a c       a ax 4  bx 3  cx 2  dx  e  0 c b                    a a d e            a a
  • 14. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0
  • 15. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a (sum of roots, one at a time)
  • 16. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a c   a (sum of roots, one at a time) (sum of roots, two at a time)
  • 17. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0 b    a c   a d    a (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time)
  • 18. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0     b  a c  a d  a e  a (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time) (sum of roots, four at a time)
  • 19. For the polynomial equation; ax n  bx n1  cx n2  dx n3    0     b  a c  a d  a e  a Note:  (sum of roots, one at a time) (sum of roots, two at a time) (sum of roots, three at a time) (sum of roots, four at a time) 2      2  2
  • 20. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7
  • 21. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2
  • 22. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2
  • 23. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2
  • 24. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 3 2    1 2
  • 25. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 3 2    1 2
  • 26. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1 b)      3 2    1 2
  • 27. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3 2    1 2
  • 28. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3  2 1  2  3 2    1 2
  • 29. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)        3  2 1  2  3  3 2    1 2
  • 30. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2     3  2 1  2  3  1 2
  • 31. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3   2 1  2  3
  • 32. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3 2  5   3     2    2 2  2 1  2  3
  • 33. e.g. (i ) If  ,  and  are the roots of 2 x 3  5 x 2  3 x  1  0, find the values of; a) 4  4   4  7 5      2        3 2    1 2 5  1 4  4   4  7  4    7    2  2 27  2 1 1 1      b)    c)  2   2   2    2          2       3 2  5   3     2    2 2  2 1  37 2  4  3
  • 34. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)     
  • 35. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0
  • 36. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii) 
  • 37. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1
  • 38. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1 
  • 39. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1
  • 40. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1  3 1
  • 41. 1988 Extension 1 HSC Q2c) 3 If  ,  and  are the roots of x  3 x  1  0 find: (i)           0 (ii)    1 (iii) 1   1   1              1 1 1 3 1 3 
  • 42. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k.
  • 43. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and  
  • 44. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2   
  • 45. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3 
  • 46. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0
  • 47. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2
  • 48. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0
  • 49. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39
  • 50. 2003 Extension 1 HSC Q4c) It is known that two of the roots of the equation 2 x 3  x 2  kx  6  0 are reciprocals of each other. Find the value of k. 1 Let the roots be  , and   1      6    2     3  P   3  0 2 3   3  k  3  6  0 3 2  54  9  3k  6  0 3k  39 k  13
  • 51. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r
  • 52. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r
  • 53. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1
  • 54. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t
  • 55. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s
  • 56. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2
  • 57. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t
  • 58. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t t 2
  • 59. 2006 Extension 1 HSC Q4a) The cubic polynomial P x   x 3  rx 2  sx  t , where r, s and t are real numbers, has three real zeros, 1,  and   (i) Find the value of r 1       r r  1 (ii) Find the value of s + t 1   1         s s   2 1     t t 2 s  t  0
  • 60. Exercise 4F; 2, 4, 5ac, 6ac, 8, 10a, 13, 15, 16ad, 17, 18, 19