SlideShare a Scribd company logo
1 of 55
Download to read offline
Volumes By Non Circular
Cross-Sections
Volumes By Non Circular
Cross-Sections
a
b
e.g. Find the volume of this rectangular pyramid
h
Volumes By Non Circular
Cross-Sections
y
xa
b
e.g. Find the volume of this rectangular pyramid
h
Volumes By Non Circular
Cross-Sections
y
xa
z
b
e.g. Find the volume of this rectangular pyramid
h
Volumes By Non Circular
Cross-Sections
y
xa
z
b
e.g. Find the volume of this rectangular pyramid
h
Volumes By Non Circular
Cross-Sections
y
xa
z
z
b
e.g. Find the volume of this rectangular pyramid
h
Volumes By Non Circular
Cross-Sections
y
xa
z
y2
z
b
e.g. Find the volume of this rectangular pyramid
h
Volumes By Non Circular
Cross-Sections
y
xa
z
y2
zx2
b
e.g. Find the volume of this rectangular pyramid
h
Volumes By Non Circular
Cross-Sections
y
xa
z
y2
zx2
b
e.g. Find the volume of this rectangular pyramid
h
  xyzA 4
Find x in terms of z
x
z
h
b
2
1
b
2
1

Find x in terms of z
x
z
h
b
2
1
b
2
1

Find x in terms of z
x
z
h
b
2
1
b
2
1

x
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
 
h
zhb
x
x
zh
b
h
2
2




Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
 
h
zhb
x
x
zh
b
h
2
2




geometrycoordinateusing:2Method
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
 
h
zhb
x
x
zh
b
h
2
2




geometrycoordinateusing:2Method
(0,h)
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
 
h
zhb
x
x
zh
b
h
2
2




geometrycoordinateusing:2Method
(0,h)





 0,
2
1
b
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
 
h
zhb
x
x
zh
b
h
2
2




geometrycoordinateusing:2Method
b
h
b
h
m
2
2
1
0
0





(0,h)





 0,
2
1
b
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
 
h
zhb
x
x
zh
b
h
2
2




geometrycoordinateusing:2Method
b
h
b
h
m
2
2
1
0
0





 0
2


 x
b
h
hz
(0,h)





 0,
2
1
b
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
 
h
zhb
x
x
zh
b
h
2
2




geometrycoordinateusing:2Method
b
h
b
h
m
2
2
1
0
0





 0
2


 x
b
h
hz
 
 
h
zhb
x
hxhzb
2
2



(0,h)





 0,
2
1
b
Find x in terms of z
x
z
h
b
2
1
b
2
1

x (x,z)
ssimilarusing:1Method 
h
b
2
1
h - z
x
x
zh
b
h 

2
1
 
h
zhb
x
x
zh
b
h
2
2




geometrycoordinateusing:2Method
b
h
b
h
m
2
2
1
0
0





 0
2


 x
b
h
hz
 
 
h
zhb
x
hxhzb
2
2



 
h
zha
y
2
Similarly;


(0,h)





 0,
2
1
b
     



 



 

h
zha
h
zhb
zA
22
4
     



 



 

h
zha
h
zhb
zA
22
4
 
2
2
h
zhab 

     



 



 

h
zha
h
zhb
zA
22
4
 
2
2
h
zhab 

 
z
h
zhab
V 

 2
2
     



 



 

h
zha
h
zhb
zA
22
4
 
2
2
h
zhab 

 
z
h
zhab
V 

 2
2
 





h
z
z
z
h
zhab
V
0
2
2
0
lim
     



 



 

h
zha
h
zhb
zA
22
4
 
2
2
h
zhab 

 
z
h
zhab
V 

 2
2
 





h
z
z
z
h
zhab
V
0
2
2
0
lim
  
h
dzzh
h
ab
0
2
2
     



 



 

h
zha
h
zhb
zA
22
4
 
2
2
h
zhab 

 
z
h
zhab
V 

 2
2
 





h
z
z
z
h
zhab
V
0
2
2
0
lim
  
h
dzzh
h
ab
0
2
2
 
h
zh
h
ab
0
3
2
3 








     



 



 

h
zha
h
zhb
zA
22
4
 
2
2
h
zhab 

 
z
h
zhab
V 

 2
2
 





h
z
z
z
h
zhab
V
0
2
2
0
lim
  
h
dzzh
h
ab
0
2
2
 
h
zh
h
ab
0
3
2
3 








3
3
2
units
3
3
0
abh
h
h
ab








(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x-2
-2
2
2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
  2
4yxA 
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
  2
4yxA 
 2
44 x
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
  2
4yxA 
 2
44 x
  xxV  2
44
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
  2
4yxA 
 2
44 x
  xxV  2
44
 


2
2
2
0
44lim
x
x
xxV
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
  2
4yxA 
 2
44 x
  xxV  2
44
 


2
2
2
0
44lim
x
x
xxV
  
2
0
2
48 dxx
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
  2
4yxA 
 2
44 x
  xxV  2
44
 


2
2
2
0
44lim
x
x
xxV
  
2
0
2
48 dxx
2
0
3
3
1
48 


  xx
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
  2
4yxA 
 2
44 x
  xxV  2
44
 


2
2
2
0
44lim
x
x
xxV
  
2
0
2
48 dxx
2
0
3
3
1
48 


  xx
3
units
3
128
0
3
8
88






 
(ii) A solid has a circular base, , and each cross section is
a square perpendicular to the base.
422
 yx
y
x2
2
-2
-2
x
y2
y2
  2
4yxA 
 2
44 x
  xxV  2
44
 


2
2
2
0
44lim
x
x
xxV
  
2
0
2
48 dxx
2
0
3
3
1
48 


  xx
3
units
3
128
0
3
8
88






 
Exercise 3A; 16ade, 19
Exercise 3C; 2, 7, 8

More Related Content

Similar to X2 t05 03 parallel crosssections (2013)

11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)Nigel Simmons
 
X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)Nigel Simmons
 
X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)Nigel Simmons
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)Nigel Simmons
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practicetschmucker
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theoremsmiller5
 
0008 Math Paper 1 Q # 23 To Q # 32 Especially for Grade-8 and Generally for ...
0008 Math Paper 1 Q # 23 To Q # 32 Especially for  Grade-8 and Generally for ...0008 Math Paper 1 Q # 23 To Q # 32 Especially for  Grade-8 and Generally for ...
0008 Math Paper 1 Q # 23 To Q # 32 Especially for Grade-8 and Generally for ...Kashif Zahoor
 
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
PERTEMUAN 9B APLIKASI  INTEGRAL.pptPERTEMUAN 9B APLIKASI  INTEGRAL.ppt
PERTEMUAN 9B APLIKASI INTEGRAL.pptTiodoraSihombing
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
plane_strain_transformation.pptx
 plane_strain_transformation.pptx plane_strain_transformation.pptx
plane_strain_transformation.pptxSafwanRawi1
 
2.1_-The-3-Dimensional-Coordinate-System.pdf
2.1_-The-3-Dimensional-Coordinate-System.pdf2.1_-The-3-Dimensional-Coordinate-System.pdf
2.1_-The-3-Dimensional-Coordinate-System.pdfNoorYassinHJamel
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 
11 x1 t11 02 parabola as a locus (2013)
11 x1 t11 02 parabola as a locus (2013)11 x1 t11 02 parabola as a locus (2013)
11 x1 t11 02 parabola as a locus (2013)Nigel Simmons
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answersleblance
 

Similar to X2 t05 03 parallel crosssections (2013) (20)

11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)
 
X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)X2 t05 02 cylindrical shells (2012)
X2 t05 02 cylindrical shells (2012)
 
X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)X2 T06 02 cylindrical shells (2010)
X2 T06 02 cylindrical shells (2010)
 
X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)X2 T05 02 cylindrical shells (2011)
X2 T05 02 cylindrical shells (2011)
 
Area and volume practice
Area and volume practiceArea and volume practice
Area and volume practice
 
1.3 Pythagorean Theorem
1.3 Pythagorean Theorem1.3 Pythagorean Theorem
1.3 Pythagorean Theorem
 
0008 Math Paper 1 Q # 23 To Q # 32 Especially for Grade-8 and Generally for ...
0008 Math Paper 1 Q # 23 To Q # 32 Especially for  Grade-8 and Generally for ...0008 Math Paper 1 Q # 23 To Q # 32 Especially for  Grade-8 and Generally for ...
0008 Math Paper 1 Q # 23 To Q # 32 Especially for Grade-8 and Generally for ...
 
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
PERTEMUAN 9B APLIKASI  INTEGRAL.pptPERTEMUAN 9B APLIKASI  INTEGRAL.ppt
PERTEMUAN 9B APLIKASI INTEGRAL.ppt
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
plane_strain_transformation.pptx
 plane_strain_transformation.pptx plane_strain_transformation.pptx
plane_strain_transformation.pptx
 
2.1_-The-3-Dimensional-Coordinate-System.pdf
2.1_-The-3-Dimensional-Coordinate-System.pdf2.1_-The-3-Dimensional-Coordinate-System.pdf
2.1_-The-3-Dimensional-Coordinate-System.pdf
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 
11 x1 t11 02 parabola as a locus (2013)
11 x1 t11 02 parabola as a locus (2013)11 x1 t11 02 parabola as a locus (2013)
11 x1 t11 02 parabola as a locus (2013)
 
Chapter 4 Extra Practice Answers
Chapter 4 Extra Practice AnswersChapter 4 Extra Practice Answers
Chapter 4 Extra Practice Answers
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 

Recently uploaded

Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 

Recently uploaded (20)

Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 

X2 t05 03 parallel crosssections (2013)

  • 1. Volumes By Non Circular Cross-Sections
  • 2. Volumes By Non Circular Cross-Sections a b e.g. Find the volume of this rectangular pyramid h
  • 3. Volumes By Non Circular Cross-Sections y xa b e.g. Find the volume of this rectangular pyramid h
  • 4. Volumes By Non Circular Cross-Sections y xa z b e.g. Find the volume of this rectangular pyramid h
  • 5. Volumes By Non Circular Cross-Sections y xa z b e.g. Find the volume of this rectangular pyramid h
  • 6. Volumes By Non Circular Cross-Sections y xa z z b e.g. Find the volume of this rectangular pyramid h
  • 7. Volumes By Non Circular Cross-Sections y xa z y2 z b e.g. Find the volume of this rectangular pyramid h
  • 8. Volumes By Non Circular Cross-Sections y xa z y2 zx2 b e.g. Find the volume of this rectangular pyramid h
  • 9. Volumes By Non Circular Cross-Sections y xa z y2 zx2 b e.g. Find the volume of this rectangular pyramid h   xyzA 4
  • 10. Find x in terms of z x z h b 2 1 b 2 1 
  • 11. Find x in terms of z x z h b 2 1 b 2 1 
  • 12. Find x in terms of z x z h b 2 1 b 2 1  x
  • 13. Find x in terms of z x z h b 2 1 b 2 1  x (x,z)
  • 14. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method 
  • 15. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1
  • 16. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x
  • 17. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1
  • 18. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1   h zhb x x zh b h 2 2    
  • 19. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1   h zhb x x zh b h 2 2     geometrycoordinateusing:2Method
  • 20. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1   h zhb x x zh b h 2 2     geometrycoordinateusing:2Method (0,h)
  • 21. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1   h zhb x x zh b h 2 2     geometrycoordinateusing:2Method (0,h)       0, 2 1 b
  • 22. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1   h zhb x x zh b h 2 2     geometrycoordinateusing:2Method b h b h m 2 2 1 0 0      (0,h)       0, 2 1 b
  • 23. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1   h zhb x x zh b h 2 2     geometrycoordinateusing:2Method b h b h m 2 2 1 0 0       0 2    x b h hz (0,h)       0, 2 1 b
  • 24. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1   h zhb x x zh b h 2 2     geometrycoordinateusing:2Method b h b h m 2 2 1 0 0       0 2    x b h hz     h zhb x hxhzb 2 2    (0,h)       0, 2 1 b
  • 25. Find x in terms of z x z h b 2 1 b 2 1  x (x,z) ssimilarusing:1Method  h b 2 1 h - z x x zh b h   2 1   h zhb x x zh b h 2 2     geometrycoordinateusing:2Method b h b h m 2 2 1 0 0       0 2    x b h hz     h zhb x hxhzb 2 2      h zha y 2 Similarly;   (0,h)       0, 2 1 b
  • 26.                  h zha h zhb zA 22 4
  • 27.                  h zha h zhb zA 22 4   2 2 h zhab  
  • 28.                  h zha h zhb zA 22 4   2 2 h zhab     z h zhab V    2 2
  • 29.                  h zha h zhb zA 22 4   2 2 h zhab     z h zhab V    2 2        h z z z h zhab V 0 2 2 0 lim
  • 30.                  h zha h zhb zA 22 4   2 2 h zhab     z h zhab V    2 2        h z z z h zhab V 0 2 2 0 lim    h dzzh h ab 0 2 2
  • 31.                  h zha h zhb zA 22 4   2 2 h zhab     z h zhab V    2 2        h z z z h zhab V 0 2 2 0 lim    h dzzh h ab 0 2 2   h zh h ab 0 3 2 3         
  • 32.                  h zha h zhb zA 22 4   2 2 h zhab     z h zhab V    2 2        h z z z h zhab V 0 2 2 0 lim    h dzzh h ab 0 2 2   h zh h ab 0 3 2 3          3 3 2 units 3 3 0 abh h h ab        
  • 33. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx
  • 34. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x-2 -2 2 2
  • 35. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 36. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 37. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 38. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 39. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 40. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 41. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 42. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 43. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 44. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 45. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2
  • 46. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x
  • 47. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2
  • 48. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2   2 4yxA 
  • 49. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2   2 4yxA   2 44 x
  • 50. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2   2 4yxA   2 44 x   xxV  2 44
  • 51. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2   2 4yxA   2 44 x   xxV  2 44     2 2 2 0 44lim x x xxV
  • 52. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2   2 4yxA   2 44 x   xxV  2 44     2 2 2 0 44lim x x xxV    2 0 2 48 dxx
  • 53. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2   2 4yxA   2 44 x   xxV  2 44     2 2 2 0 44lim x x xxV    2 0 2 48 dxx 2 0 3 3 1 48      xx
  • 54. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2   2 4yxA   2 44 x   xxV  2 44     2 2 2 0 44lim x x xxV    2 0 2 48 dxx 2 0 3 3 1 48      xx 3 units 3 128 0 3 8 88        
  • 55. (ii) A solid has a circular base, , and each cross section is a square perpendicular to the base. 422  yx y x2 2 -2 -2 x y2 y2   2 4yxA   2 44 x   xxV  2 44     2 2 2 0 44lim x x xxV    2 0 2 48 dxx 2 0 3 3 1 48      xx 3 units 3 128 0 3 8 88         Exercise 3A; 16ade, 19 Exercise 3C; 2, 7, 8