Zero Voltage Zero Current

6,043
-1

Published on

DC-DC converters with Series Resonance Converter (SRC) topology

Published in: Education
0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
6,043
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
347
Comments
0
Likes
4
Embeds 0
No embeds

No notes for slide

Zero Voltage Zero Current

  1. 1. Zero-Voltage- and Zero-Current-Switching with Series Resonance in FB Converter Utilizing Leakage Inductance<br />Presented by:<br />Guided By:<br />JoemonRaju Joseph K<br />Reg No.- 09HN026<br />M tech PE & D<br />Dr. S Suresh Kumar<br />(Professor and Head)<br />Dept. of EEE<br />22-Sep-10<br />1<br />
  2. 2. Overview<br />ZVS and ZCS<br />Literatures on ZV-ZCS<br />Base Paper Concept & Methodology<br />Simulation<br />Summary<br />Proposed Modification<br />References<br />22-Sep-10<br />2<br />
  3. 3. Overview<br />ZVS and ZCS<br />Literatures on ZV-ZCS<br />Base Paper Concept & Methodology<br />Simulation<br />Summary<br />Proposed Modification<br />References<br />22-Sep-10<br />3<br />
  4. 4. Zero Voltage Switching &Zero Current Switching<br />22-Sep-10<br />4<br />
  5. 5. Merits<br />Lossless switching transition<br />Reduced EMI/RFI during switching due to transition<br />Short circuit toleration<br />Reduction in switching stresses<br />22-Sep-10<br />5<br />
  6. 6. Overview<br />ZVS and ZCS<br />Literatures on ZV-ZCS<br />Base Paper Concept & Methodology<br />Simulation<br />Summary<br />Proposed Modification<br />References <br />22-Sep-10<br />6<br />
  7. 7. ZCS Circuit Methodology<br />Fig: 1 – Converter with hard switching Auxiliary Circuit<br />Fig:2- Fully resonant auxiliary circuit<br />Reference [5]<br />22-Sep-10<br />7<br />
  8. 8. ZVS Circuit Methodology<br />Fig:3 FB Converter with ZVS<br />Reference [13]<br />22-Sep-10<br />8<br />
  9. 9. ZV-ZCS Circuit Methodology<br />Using Additional Auxillary Circuits<br />Fig:4 FB Converter with Auxiliary Voltage Source<br />Reference [11]<br />22-Sep-10<br />9<br />
  10. 10. Using Series Resonant Converters<br />Fig:5 HB LCL-T ResonantConverter<br />Reference [16]<br />10<br />22-Sep-10<br />
  11. 11. Preference for ZV-ZCS Topologies <br />ZCS circuits – Auxiliary circuit Conduction losses, voltage stresses in boost diode<br />ZVS circuits – high circulating losses, high valued inductor with increase in power<br />22-Sep-10<br />11<br />
  12. 12. Choice of IGBT<br />Has lower cost considering high power and high voltage applications .<br />ZVS realizable by adding additional lossless turn off snubber in parallel<br />22-Sep-10<br />12<br />
  13. 13. Overview<br />ZVS and ZCS<br />Literatures on ZV-ZCS<br />Base Paper Concept & Methodology<br />Simulation<br />Summary<br />Proposed Modification<br />References <br />22-Sep-10<br />13<br />
  14. 14. ZV-ZCS FB Converter with Secondary Resonance<br />22-Sep-10<br />14<br />
  15. 15. Concept<br />SRC based circuit<br />Leakage inductance of transformer participates in resonance<br />Turn-on of leading legs possible under all operating conditions and lossless snubber reduces their turn off losses<br />Lagging legs can be turned on at ZV and turned off near ZC without additional aux. circuits<br />22-Sep-10<br />15<br />
  16. 16. Control Signal<br />Normal PWM<br />Phase Shifted PWM<br />22-Sep-10<br />16<br />
  17. 17. Circuit Operation<br /><ul><li>Mode-1</li></ul>im(t) = ip(t) = iT1(t) = −iT2(t) = im(t0) ...(1)<br />22-Sep-10<br />17<br />
  18. 18. <ul><li>Mode-2</li></ul>22-Sep-10<br />18<br />
  19. 19. is(t) = sin ωr(t − t1) x nVin − (Vo − Vc(t1))/Zo …(2)<br />ωr = 2πfr = 1/√(LlkCr) …(angular resonance frequency)<br />Zo = √(Lr/Cr) …(Characteristic Impedance)<br />im(t) = im(t1) + (Vin/Lm) x (t − t1) ….(3)<br />ip(t) = im(t) + nis(t) = iT1(t) = iB2(t) ....(4)<br />22-Sep-10<br />19<br />
  20. 20. <ul><li>Mode-3</li></ul>is(t) = is (t2) cos ωr(t − t2) − [Vo − Vc(t2)] x sin ωr(t − t2)/Zo …(5)<br />ip(t) = im(t) + nis (t) = −iB1(t) = iB2(t) ...(6)<br />21-Sep-10<br />20<br />
  21. 21. Operation Waveforms<br />t4<br />t5<br />t6<br />t1<br />t3<br />to<br />t2<br />21-Sep-10<br />21<br />
  22. 22. Other Design Factors<br />Frequency Ratio: F = fr/fs<br />Quality Factor: Q =4ωrLlk/Ro<br />tch= (CT1+CB1) x Vin/ (Ip1+ Im2max)… Charging time of Capacitance<br />21-Sep-10<br />22<br />
  23. 23. Overview<br />ZVS and ZCS<br />Literatures on ZV-ZCS<br />Base Paper Concept & Methodology<br />Simulation<br />Summary<br />Proposed Modification<br />References<br />21-Sep-10<br />23<br />
  24. 24. Assumptions for Analysis<br />Ideal Switches<br />Ripple free Input Voltage<br />Ideal transformer with magnetizing and leakage inductances alone<br />Frequency ratio, F=1<br />22-Sep-10<br />24<br />
  25. 25. PSIM Model<br />Control Signal<br />21-Sep-10<br />25<br />
  26. 26. Model Parameters<br />21-Sep-10<br />26<br />
  27. 27. Phase Shifted PWM Generation<br />21-Sep-10<br />27<br />
  28. 28. 21-Sep-10<br />28<br />
  29. 29. Simulation Results<br />Phase Shifted PWM Signals<br />21-Sep-10<br />29<br />
  30. 30. Simulation Results<br />Switching Currents<br />ZVS ON<br />ZVS ON<br />ZCS OFF<br />21-Sep-10<br />30<br />
  31. 31. Overview<br />ZVS and ZCS<br />Literatures on ZV-ZCS<br />Base Paper Concept & Methodology<br />Summary<br />Proposed Modification<br />References<br />21-Sep-10<br />31<br />
  32. 32. Inference from Literatures: <br /><ul><li>ZV-ZCS has upper hand in effectiveness rather than ZVS or ZCS alone
  33. 33. IGBT is preferable for high power application</li></ul>Inference from Base Paper:<br /><ul><li>Transformer design plays a crucial role for ZV-ZCS to avoid additional inductor </li></ul>22-Sep-10<br />32<br />
  34. 34. Overview<br />ZVS and ZCS<br />Literatures on ZV-ZCS<br />Base Paper Concept & Methodology<br />Methodology<br />Summary<br />Proposed Modification<br />References<br />21-Sep-10<br />33<br />
  35. 35. Intended Modification<br />Realization of the concept with Bridge rectifier at the transformer secondary.<br />Projected Circuit Configuration<br />21-Sep-10<br />34<br />
  36. 36. References <br />Eung-Ho Kim and Bong-Hwan Kwon,” Zero-Voltage- and Zero-Current-Switching Full-Bridge Converter With Secondary Resonance”, IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 1017–1025, Mar. 2010.<br />X. Wu, J. Zhang, X. Ye, and Z. Qian, “Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 773–781, Feb. 2008.<br />J. J. Lee, J. M. Kwon, E. H. Kim, and B. H. Kwon, “Dual series resonant active-clamp converter,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 699–710, Feb. 2008.<br />C. M. Wang, “A novel ZCS-PWM flyback converter with a simple ZCSPWM<br /> commutation cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 749–757, Feb. 2008.<br /> X. Wu, X. Xie, C. Zhao, Z. Qian, and R. Zhao, “Low voltage and current stress ZVZCS full bridge DC–DC converter using center tapped rectifier reset,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1470–1477, Mar. 2008.<br />M. Borage, S. Tiwari, and S. Kotaiah, “LCL-T resonant converter with clamp diodes: A novel constant-current power supply with inherent constant-voltage limit,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 741–746, Apr. 2007.<br />35<br />21-Sep-10<br />
  37. 37. J. T. Matysik, “The current and voltage phase shift regulation in resonant converters with integration control,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1240–1242, Apr. 2007.<br />E. Adib and H. Farzanehfard, “Family of zero-current transition PWM converters,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3055–3063, Aug. 2008.<br />E. H. Kim and B. H. Kwon, “High step-up push-pull converter with high efficiency,” IET Power Electron., vol. 2, no. 1, pp. 79–89, Jan. 2009.<br />Y. Tsuruta, Y. Ito, and A. Kawamura, “Snubber-assisted zero-voltage and zero-current transition bilateral buck and boost chopper for EV drive application and test evaluation at 25 kW,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 4–11, Jan. 2009.<br />J. L. Russi, M. L. S. Martins, and H. L. Hey, “Coupled-filter-inductor soft-switching techniques: Principles and topologies,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3361–3373, Sep. 2009.<br />T. Citko and S. Jalbrzykowski, “Current-fed resonant full-bridge boost DC/AC/DC converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1198–1205, Mar. 2008.<br />Yungtaek Jang, Milan M. Jovanovic and Yu-Ming Chang, ”A New ZVS-PWM Full-Bridge Converter,” IEEE Trans. Power Electronics, Vol. 18, No. 5,pp.1122-1129, Sep 2003<br />21-Sep-10<br />36<br />
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×