SlideShare a Scribd company logo
1 of 37
Download to read offline
Disusun Oleh :Disusun Oleh :Disusun Oleh :
NamaNamaNama ::: Abdul JamilAbdul JamilAbdul Jamil
NIMNIMNIM ::: 040 25 13 121040 25 13 121040 25 13 121
PROGRAM STUDI PENDIDIKAN IPA (FISIKA)PROGRAM STUDI PENDIDIKAN IPA (FISIKA)PROGRAM STUDI PENDIDIKAN IPA (FISIKA)
PROGRAM PASCASARJANAPROGRAM PASCASARJANAPROGRAM PASCASARJANA
UNIVERSITAS NEGERI SEMARANGUNIVERSITAS NEGERI SEMARANGUNIVERSITAS NEGERI SEMARANG
201420142014
FENOMENA ALAM PELANGIFENOMENA ALAM PELANGIFENOMENA ALAM PELANGI
Disusun Untuk Melengkapi Salah Satu TugasDisusun Untuk Melengkapi Salah Satu TugasDisusun Untuk Melengkapi Salah Satu Tugas
Mata Kuliah : Kapita Selekta FisikaMata Kuliah : Kapita Selekta FisikaMata Kuliah : Kapita Selekta Fisika
Dosen Pengampu : Dr. Agus Yulianto, M. Si.Dosen Pengampu : Dr. Agus Yulianto, M. Si.Dosen Pengampu : Dr. Agus Yulianto, M. Si.
1Kapita Selekta Fisika “Fenomena Pelangi”
FENOMENA PELANGI
Pendahuluan
Pelangi merupakan salah satu fenomena yang sering terjadi di daerah tropis, seperti
Indonesia. Menurut Smith (2000:32) Indonesia miliki intensitas cahaya matahari yang lebih
tinggi dibandingkan dengan daerah kutub. Sinar matahari, angin, dan rotasi bumi dapat
mempengaruhi arus air laut. Tingginya arus air laut dapat meningkatkan proses kondensasi,
sehingga curah hujan akan semakin tinggi di daerah tropis. Kombinasi antara berbagai faktor
alam tersebut akan mempengaruhi terbentuknya pelangi.
Fenomena pelangi yang tercipta ketika rintik hujan memecah sinar matahari telah
membuat manusia terpesona sejak zaman dahulu kala. Upaya menjelaskan pelangi secara
ilmiah pun telah dilakukan sejak masa Aristoteles. Kunci terjadinya pelangi adalah pembiasan,
pemantulan dan dispersi cahaya.
Sejauh ini pendekatan yang digunakan untuk menjawab fenomena pelangi ialah dari
sisi fisika, namun pendekatan dengan menggunakan matematika, khususnya kalkulus masih
jarang ditemui. Kalkulus merupakan salah satu cabang ilmu matematika yang membahas
masalah limit, turunan, integral dan deret tak terhingga. Kalkulus merupakan ilmu mengenai
perubahan, geometri merupakan ilmu yang mempelajari bentuk benda dan aljabar merupakan
ilmu mengenai pengerjaan untuk persamaan serta aplikasinya. Di sisi lain, kalkulus memiliki
aplikasi yang luas dalam bidang sains, ekonomi, dan teknik serta dapat memecahkan masalah
yang tidak dapat dipecahkan dengan aljabar elementer.
Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral.
Aplikasi kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa,
kerja, dan tekanan. Sedangkan aplikasi dari kalkulus diferensial meliputi perhitungan
kecepatan dan percepatan, kemiringan suatu kurva, nilai minimum dan maksimum. Kita dapat
menjelaskan fenomena pelangi yang sering kita temui dalam kehidupan sehari-hari dengan
menggunakan prinsip nilai minimum dan maksimum,
Penulis merasa fenomena pelangi ini sangat menarik perhatian, karena masalah
tersebut belum dijelaskan dalam materi perkuliahan, khususnya dari sudut pandang kalkulus.
Pembahasan masalah ini dibuat agar tinjauan kalkulus untuk pelangi dapat dilakukan secara
lebih mendalam.
2Kapita Selekta Fisika “Fenomena Pelangi”
Pembiasan Cahaya
Pembiasan cahaya adalah peristiwa penyimpangan atau pembelokkan arah rambat
cahaya karena cahaya melalui dua medium yang berbeda kerapatan optiknya. Arah pembiasan
cahaya dibedakan menjadi dua macam, yaitu mendekati garis normal dan menjauhi garis
normal. Cahaya dibiaskan mendekati garis normal jika cahaya merambat dari medium optik
kurang rapat ke medium optik lebih rapat. Contohnya jika cahaya merambat dari udara ke air.
Sedangkan cahaya akan dibiaskan menjauhi garis normal jika cahaya merambat dari medium
optik lebih rapat ke medium optik kurang rapat. Contohnya jika cahaya merambat dari air ke
udara. Syarat-syarat terjadinya pembiasan cahaya ialah cahaya melalui dua medium yang
berbeda kerapatan optiknya dan cahaya datang tidak tegak lurus terhadap bidang batas.
Indeks Bias Cahaya
Pembiasan cahaya dapat terjadi karena terdapat perbedaan laju cahaya pada kedua
medium. Laju cahaya pada medium yang rapat lebih kecil dibandingkan dengan laju cahaya
pada medium yang kurang rapat.
Menurut Christian Huygens (1629-1695): “Perbandingan laju cahaya dalam ruang
hampa dengan laju cahaya dalam suatu zat dinamakan indeks bias.” Bahan bening yang
dibatas oleh dua bidang permukaan yang bersudut disebut prisma. Tetesan air hujan
merupakan salah satu benda yang dihasilkan oleh alam, namun memiliki sifat seperti prisma.
Maksudnya jika sebuah cahaya menembus tetesan air, maka cahaya tersebut akan dibiaskan.
Pemantulan Cahaya
Cahaya sebagai gelombang dapat memantul bila mengenai permukaan suatu benda.
Pemantulan cahaya dapat dibedakan menjadi dua jenis, yaitu pemantulan sempurna dan
pemantulan baur. Pemantulan sempurna terjadi jika cahaya mengenai permukaan yang
mengkilap, seperti cermin. Saat cahaya mengenai permukaan cermin, kita dapat memprediksi
arah pemantulannya. Sedangkan pemantulan baur dapat terjadi jika cahaya mengenai
permukaan yang tidak rata, seperti kertas atau batu.
Dispersi Cahaya
Dispersi cahaya merupakan gejala penyebaran gelombang ketika menjalar melalui
celah sempit atau tepi tajam suatu benda. Seberkas cahaya polikromatik jika melalui prisma
akan mengalami proses penguraian warna cahaya menjadi warna-warna monokromatik.
Dispersi cahaya terjadi jika ukuran celah lebih kecil dari panjang gelombang yang melaluinya.
3Kapita Selekta Fisika “Fenomena Pelangi”
Hukum Snellius
Pada sekitar tahun 1621, ilmuan Belanda bernama Willebrord Snell melakukan
eksperimen untuk mencari hubungan antara sudut datang dengan sudut bias.
A. Hukum Snellius terhadap Pemantulan Cahaya
1. Sinar datang, sinar pantul dan garis normal terletak pada satu bidang datar
2. Sudut datang sama dengan sudut pantul
B. Hukum Snellius terhadap Pembiasan Cahaya
Jika cahaya merambat dari medium yang kerapatannya rendah menuju medium
yang kerapatannya tinggi, maka cahaya akan dibiaskan mendekati garis normal. Jika
cahaya merambat dari medium yang kerapatannya tinggi menuju medium yang
kerapatannya rendah, maka cahaya akan dibiaskan menjauhi garis normal.
Selanjutnya kita dapat menghitung sudut datang dan sudut bias berdasarkan
Hukum Snellius 𝑠𝑖𝑛( 𝛼) = 𝑘 𝑠𝑖𝑛( 𝛽) dengan:
𝛼 ∶ sudut datang
𝛽 ∶ sudut bias
𝑘 ∶ indeks bias
𝛽
x
𝛼
x
Sumber
Cahaya
Renggang
Rapat
N
𝛽
x
α
Sumber
Cahaya
Rapat
Renggang
N
Gambar Pembiasan Cahaya
𝛼
x
Sumber
Cahaya
N
𝛼
x
Sudut
datang
Sudut
pantul
Gambar Pemantulan Sempurna
4Kapita Selekta Fisika “Fenomena Pelangi”
Pembuktian Hukum Snellius
Akan dibuktikan bahwa jarak terpendek antara matahari dan pengamat pada saat berlaku
sin( 𝛼) = 𝑘 sin( 𝛽)
Bukti:
Misalkan
𝛼 : sudut datang
𝛽 : sudut bias
Medium A : medium yang kerapatannya renggang, misalkan udara.
Medium B : medium yang kerapatannya lebih rapat dari medium A, misalkan air.
V1 : kecepatan cahaya dalam medium A
V2 : kecepatan cahaya dalam medium B
𝐷1 : jarak yang ditempuh saat cahaya berada di medium A
𝐷2 : jarak yang ditempuh saat cahaya berada di medium B
Perhatikan gambar berikut.
Dari gambar diperoleh:
𝐷1 = √𝑎2 + ( 𝑑 − 𝑥)2 (1)
𝑠𝑖𝑛 𝛼 =
𝑑−𝑥
𝐷1
(2)
𝐷2 = √𝑏2 + 𝑥2 (3)
𝑠𝑖𝑛 𝛽 =
𝑥
𝐷2
(4)
Kita ambil ( 𝐷1 + 𝐷2) untuk mendapatkan jarak terpendek antara matahari dan
pengamat.
Gambar Cahaya yang Dibiaskan Mendekati Garis Normal
Sumber
Cahaya
d
a
Medium A
𝛽
cx
𝜷
𝛼
cx
𝜶
N
d - x
b
x
𝐷1
𝐷2
Medium B
d
Pengamat
5Kapita Selekta Fisika “Fenomena Pelangi”
Karena cahaya matahari memiliki kecepatan yang berbeda saat berada di medium yang
berbeda, maka jarak terpendek antara matahari dan pengamat dapat dinyatakan sebagai:
𝐷1
𝑉1
+
𝐷2
𝑉2
Untuk mendapatkan sudut deviasi yang minimum pada sinar datang, maka kita konstruksikan
𝐷1
′
𝑉1
+
𝐷2
′
𝑉2
= 0 (5)
Selanjutnya, kita menurunkan 𝐷1 dan 𝐷2 terhadap x, sehingga didapat:
𝐷1
′
=
1
2
( 𝑎2
+ ( 𝑑 − 𝑥)2)−
1
2 (−2𝑑 + 2𝑥)
=
( 𝑥 − 𝑑)
√𝑎2 + ( 𝑑 − 𝑥)2
𝐷2
′
=
1
2
( 𝑏2
+ 𝑥2)−
1
2 (2𝑥)
=
𝑥
√𝑏2 + 𝑥2
Subtitusikan nilai 𝐷1
′
dan 𝐷2
′
pada persamaan (5), sehingga diperoleh:
(𝑥−𝑑)
√𝑎2+(𝑑−𝑥)2
𝑉1
+
𝑥
√ 𝑏2+𝑥2
𝑉2
= 0 (6)
Dari persamaan (1) dan (2), diperoleh:
𝑑 − 𝑥
√𝑎2 + ( 𝑑 − 𝑥)2
= 𝑠𝑖𝑛 𝛼 , dan ditulis sebagai
𝑥 − 𝑑
√𝑎2 + ( 𝑑 − 𝑥)2
= − 𝑠𝑖𝑛 𝛼 (7)
Dari persamaan (3) dan (4), diperoleh:
𝑥
√𝑏2 + 𝑥2
= 𝑠𝑖𝑛 𝛽 (8)
Subtitusikan persamaan (7) dan (8) ke persamaan (6), diperoleh:
− 𝑠𝑖𝑛 𝛼
𝑉1
+
𝑠𝑖𝑛 𝛽
𝑉2
= 0
𝑠𝑖𝑛 𝛼
𝑉1
=
𝑠𝑖𝑛 𝛽
𝑉2
𝑠𝑖𝑛 𝛼 =
𝑉1
𝑉2
𝑠𝑖𝑛 𝛽
𝑠𝑖𝑛 𝛼 = 𝑘 𝑠𝑖𝑛 𝛽 dengan 𝑘 =
𝑉1
𝑉2
Jadi, terbukti benar bahwa 𝑠𝑖𝑛 𝛼 = 𝑘 𝑠𝑖𝑛 𝛽
6Kapita Selekta Fisika “Fenomena Pelangi”
Besar ukuran sudut bias dan sudut pelangi masing-masing warna pelangi dipengaruhi
oleh panjang gelombang dan indeks bias masing-masing gelombang warna. Berikut ini
merupakan data panjang gelombang dan indeks bias warna pelangi. Tabel Data Panjang
Gelombang dan Indeks Bias Warna Pelangi
Warna
Panjang
Gelombang
(λ)
Indeks
Bias
(k)
400 nm 1, 34451
425 nm 1, 34235
450 nm 1, 34055
475 nm 1, 33903
500 nm 1, 33772
525 nm 1, 33659
550 nm 1, 3356
575 nm 1, 33462
600 nm 1, 33393
625 nm 1, 33322
650 nm 1, 33257
675 nm 1, 33197
700 nm 1, 33141
Proses Terjadinya Pelangi
Pelangi merupakan satu-satunya gelombang elektromagnetik yang dapat kita lihat.
Pelangi adalah gejala optik dan meteorologi yang terjadi sacara alamiah dalam atmosfir bumi
serta melibatkan cahaya matahari, pengamat dan tetesan air hujan. Jika ada cahaya matahari
yang bersinar setelah hujan berhenti, maka cahaya tersebut akan menembus tetesan air hujan
di udara. Udara dan tetesan air hujan memiliki kerapatan yang berbeda, sehingga ketika cahaya
matahari merambat dari udara ke tetesan air hujan akan mengalami pembelokkan arah rambat
cahaya (pembiasan cahaya).
7Kapita Selekta Fisika “Fenomena Pelangi”
Cahaya matahari merupakan sinar polikromatik, saat masuk ke dalam tetesan air hujan
akan diuraikan menjadi warna-warna monokromatik yang memiliki panjang gelombang yang
berbeda-beda. Cahaya matahari yang telah terurai menjadi warna monokromatik sebagian
akan mengalami pemantulan saat mengenai dinding tetesan air hujan dan sebagian lainnya
akan menembus ke luar tetesan air hujan. Masing-masing gelombang cahaya monokromatik
tersebut akan mengalami pembiasan cahaya saat keluar dari tetesan air hujan dan arah
pembiasannya akan berbeda-beda, tergantung pada warnanya.
Warna-warna monokromatik yang keluar dari tetesan air hujan mempunyai panjang
gelombang yang berada dalam rentang 400 – 700 nm. Pada rentang 400 – 700 nm, gelombang
cahaya yang dapat dilihat oleh mata manusia ialah gelombang yang mempunyai gradasi warna
merah sampai ungu. Gradasi warna tersebut diasumsikan sebagai warna merah, jingga, kuning,
hijau, biru, nila, dan ungu. Susunan gradasi warna tersebut kita namakan sebagai pelangi.
Ketika kita melihat warna-warna ini pada pelangi, kita akan melihatnya tersusun dengan
dengan merah di paling atas dan warna ungu di paling bawah.
Berikut merupakan skema terjadinya pelangi pertama secara keseluruhan.
Saat kita melihat pelangi, daerah di bawah pelangi akan terlihat lebih terang jika
dibandingkan dengan daerah lainnya di sekitar pelangi. Daerah yang terlihat lebih terang
Sinar Matahari
Butiran Air
Pembiasan
Dispersi
Pemantulan
Sinar
Pemantulan Sinar di
dalam butiran air
Pengamat melihat merah di atas dan ungu di
bawah
Gambar Proses Fisis Pelangi Pertama Secara Keseluruhan
16
8Kapita Selekta Fisika “Fenomena Pelangi”
tersebut dinamakan daerah terang pelangi. Ada dua hal yang menyebabkan daerah terang
pelangi terlihat lebih terang dibandingkan daerah lainnya, yaitu yang pertama adalah cahaya
matahari yang masuk ke tetesan air hujan yang menimbulkan pelangi pertama mempunyai
intensitas cahaya matahari yang paling besar. Alasan kedua, pada proses pembentukan pelangi
pertama, saat berada dalam tetesan air hujan, cahaya matahari hanya mengalami satu kali
proses pemantulan cahaya, sehingga energi yang terserap oleh tetesan air hujan masih cukup
banyak.
Model Matematis
Rumus Umum yang Digunakan:
A. Hukum Pemantulan: Sudut datang sama dengan sudut pantul.
B. Persamaan Snellius: sin α = k sin β
Berikut merupakan ilustrasi cahaya yang menembus tetesan air hujan mengalami dua kali
proses pembiasan, satu kali pemantulan dan satu kali dispersi cahaya
T(α)
φ
φ
Keterangan :
T(α) : sudut deviasi
φ : sudut pelangi
Sudut deviasi (T(α)) adalah sudut yang dibentuk oleh
perpanjangan berkas sinar datang dan berkas sinar yang
keluar dari butiran air
Gambar Ilustrasi Sudut Pelangi
Keterangan :
α = sudut datang
β = sudut bias
k = perbandingan indeks bias dari dua medium yang
berbeda
9Kapita Selekta Fisika “Fenomena Pelangi”
Model Matematika dalam Pembentukan Pelangi Pertama
Perhatikan ∆ 𝐵𝐶𝐷
( 𝛼 − 𝛽) + (180°
− 2𝛽) + γ = 180°
γ = 180°
− 180°
+ 2𝛽 − 𝛼 + 𝛽
γ = 3𝛽 − 𝛼
γ + θ = 180°
( Sudut Berpelurus ) (1)
Subtitusikan nilai γ pada persamaan (1)
(3𝛽 − 𝛼) + θ = 180°
θ = 180°
+ 𝛼 − 3𝛽
Perhatikan ∆ 𝐴𝐷𝐸
𝜃 + ф + ( 𝛼 − 𝛽) = 180°
Subitusikan nilai θ, maka didapat:
(180°
+ 𝛼 − 3𝛽) + ф + 𝛼 − 𝛽 = 180°
ф = 180°
− 180°
− 𝛼 + 3𝛽 − 𝛼 + 𝛽
ф = 𝟒𝜷 − 𝟐𝜶
ф + T( 𝛼) = 180°
( Sudut Berpelurus ) (2)
Subtitusikan nilai ф pada persamaan (2)
𝜶
𝜶
𝜷
𝜷
𝜷
𝜷
(𝜶 − 𝜷)
(𝜶 − 𝜷)
C
A
B
D
E
𝐓(𝛂)
(𝟏𝟖𝟎°
− 𝟐𝜷)
𝛉
𝛄
ф
Sudut Pelangi
Sinar Datang
Menuju Pengamat
Keterangan:
𝛼 : sudut datang sinar matahari
𝛽 : sudut bias
𝑇( 𝛼) : sudut deviasi
ф : sudut pelangi
ф = 4𝛽 − 2𝛼
T( 𝛼) = 180°
− 4𝛽 + 2𝛼
10Kapita Selekta Fisika “Fenomena Pelangi”
(4𝛽 − 2𝛼) + 𝑇( 𝛼) = 180°
𝑻( 𝜶) = 𝟏𝟖𝟎°
+ 𝟐𝜶 − 𝟒𝜷
Jika T( 𝛼) diturunkan terhadap 𝛼 diperoleh:
𝑑𝑇
𝑑𝛼
= 2 − 4
𝑑𝛽
𝑑𝛼
(3)
Berdasarkan Hukum Snellius
𝑠𝑖𝑛( 𝛼) = 𝑘 𝑠𝑖𝑛( 𝛽)
Kedua ruas diturunkan terhadap 𝛼
𝑐𝑜𝑠 ( 𝛼) = 𝑘 𝑐𝑜𝑠 ( 𝛽)
𝑑𝛽
𝑑𝛼
𝑑𝛽
𝑑𝛼
=
cos ( 𝛼)
𝑘 cos ( 𝛽)
(4)
Subtitusikan persamaan (4) ke persamaan (3), diperoleh:
𝑑𝑇
𝑑𝛼
= 2 − 4 (
cos 𝛼
𝑘 cos 𝛽
)
Berdasarkan prinsip aproksimasi linear deret Taylor terhadap fungsi,
T( 𝛼) ≈ 𝑇( 𝛼0) + 𝑇′( 𝛼0)( 𝛼 − 𝛼0)
Karena (α - αo) nilainya kecil (mendekati nol), maka T’(αo) (α - αo) dapat diabaikan, sehingga
T(α) ≈ T(αo).
0 =
𝑑𝑇
𝑑𝛼
= 2 −
4 cos ( 𝛼0)
𝑘 cos ( 𝛽0)
(5)
Dari persamaan (5), didapat persamaan berikut
𝑘 𝑐𝑜𝑠( 𝛽0) =
4
2
𝑐𝑜𝑠( 𝛼0)
𝑘2
𝑐𝑜𝑠2( 𝛽0) = 4 𝑐𝑜𝑠2 ( 𝛼0) ( Kedua Ruas Dikuadratkan )
𝑘2(1 − 𝑠𝑖𝑛2
𝛽0) = 4(1 − 𝑠𝑖𝑛2
𝛼0)
𝑘2
− 𝑘2
𝑠𝑖𝑛2
𝛽0 = 4 − 4 𝑠𝑖𝑛2
𝛼0
Dengan mensubtitusikan
𝑠𝑖𝑛( 𝛼0) = 𝑘 𝑠𝑖𝑛( 𝛽0)
𝑠𝑖𝑛2( 𝛼0) = 𝑘2
𝑠𝑖𝑛2
(𝛽0)
Diperoleh:
𝑘2
− 𝑠𝑖𝑛2
𝛼0 = 4(1 − 𝑠𝑖𝑛2
𝛼0)
Sehingga diperoleh rumus untuk sudut datang dan sudut bias
𝑠𝑖𝑛2( 𝛼0) =
1
3
(4 − 𝑘2)
11Kapita Selekta Fisika “Fenomena Pelangi”
𝜶 𝟎 = 𝒔𝒊𝒏−𝟏
(√
𝟏
𝟑
( 𝟒 − 𝒌 𝟐) )
Dari Persamaan Snellius 𝑠𝑖𝑛( 𝛼0) = 𝑘 𝑠𝑖𝑛( 𝛽0) didapat:
𝜷 𝟎 = 𝒔𝒊𝒏−𝟏 (
𝐬𝐢𝐧 𝜶 𝟎
𝒌
)
Menentukan Sudut Pelangi
A. Sudut pelangi untuk warna merah
Diketahui indeks bias untuk warna merah (𝑘) = 1, 33141.
Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0
𝛼0 = 𝑠𝑖𝑛−1
(√
1
3
(4 − 𝑘2) )
Sehingga didapat 𝛼0 = 59, 50290393°
𝛽0 = 𝑠𝑖𝑛−1 (
sin 𝛼0
𝑘
)
Sehingga didapat 𝛽0 = 40, 3289244°
𝑇( 𝛼) = 180°
+ 2𝛼 − 4𝛽
Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh :
𝑇( 𝛼) = 137, 6901103°
Karena
ф = 180°
− 𝑇( 𝛼)
Maka:
ф = 180°
− 137, 6901103°
= 42, 30988974°
Jadi, sudut pelangi untuk warna merah adalah 42, 30988974°
B. Sudut pelangi untuk warna jingga
Diketahui indeks bias untuk warna jingga ( 𝑘) = 1,33322.
Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0
𝛼0 = 𝑠𝑖𝑛−1
(√
1
3
(4 − 𝑘2) )
Sehingga didapat 𝛼0 = 59, 39768806°
𝛽0 = 𝑠𝑖𝑛−1 (
sin 𝛼0
𝑘
)
Sehingga didapat 𝛽0 = 40, 25290214°
12Kapita Selekta Fisika “Fenomena Pelangi”
Perhatikan,
𝑇( 𝛼) = 180°
+ 2𝛼 − 4𝛽
Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh :
𝑇( 𝛼) = 137, 9538742°
Karena
ф = 180°
− 𝑇( 𝛼)
Maka:
ф = 180°
− 137, 9538742°
= 42.04612576°
Jadi, sudut pelangi untuk warna jingga adalah 42, 04612576°
C. Sudut pelangi untuk warna kuning
Diketahui indeks bias untuk warna kuning ( 𝑘) = 1, 33462.
Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0
𝛼0 = 𝑠𝑖𝑛−1
(√
1
3
(4 − 𝑘2) )
Sehingga didapat 𝛼0 = 59, 31635351°
𝛽0 = 𝑠𝑖𝑛−1 (
sin 𝛼0
𝑘
)
Sehingga didapat 𝛽0 = 40, 11895445°
Perhatikan,
𝑇( 𝛼) = 180°
+ 2𝛼 − 4𝛽
Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh :
𝑇( 𝛼) = 138, 1568892°
Karena
ф = 180°
− 𝑇( 𝛼)
Maka:
ф = 180°
− 138, 1568892°
= 41, 84311078°
Jadi, sudut pelangi untuk warna kuning adalah 41, 84311078°
D. Sudut pelangi untuk warna hijau
Diketahui indeks bias untuk warna hijau ( 𝑘) = 1, 33659.
Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0
𝛼0 = 𝑠𝑖𝑛−1
(√
1
3
(4 − 𝑘2) )
13Kapita Selekta Fisika “Fenomena Pelangi”
Sehingga didapat 𝛼0 = 59, 20197269°
𝛽0 = 𝑠𝑖𝑛−1 (
sin 𝛼0
𝑘
)
Sehingga didapat 𝛽0 = 39, 99071337°
Perhatikan,
𝑇( 𝛼) = 180°
+ 2𝛼 − 4𝛽
Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh :
𝑇( 𝛼) = 138, 4410919°
Karena
ф = 180°
− 𝑇( 𝛼)
Maka:
ф = 180°
− 138, 4410919°
= 41, 5589081°
Jadi, sudut pelangi untuk warna hijau adalah 41, 5589081°
E. Sudut pelangi untuk warna biru
Diketahui indeks bias untuk warna biru ( 𝑘) = 1, 34055.
Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0
𝛼0 = 𝑠𝑖𝑛−1
(√
1
3
(4 − 𝑘2) )
Sehingga didapat 𝛼0 = 58, 97228442°
𝛽0 = 𝑠𝑖𝑛−1 (
sin 𝛼0
𝑘
)
Sehingga didapat 𝛽0 = 39, 73433118°
Perhatikan,
𝑇( 𝛼) = 180°
+ 2𝛼 − 4𝛽
Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh :
𝑇( 𝛼) = 139, 0072441°
Karena
ф = 180°
− 𝑇( 𝛼)
Maka:
ф = 180°
− 139, 0072441°
= 40, 99275588°
Jadi, sudut pelangi untuk warna biru adalah 40, 99275588°
F. Sudut pelangi untuk warna nila
Diketahui indeks bias untuk warna nila ( 𝑘) = 1, 34235.
14Kapita Selekta Fisika “Fenomena Pelangi”
Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0
𝛼0 = 𝑠𝑖𝑛−1
(√
1
3
(4 − 𝑘2) )
Sehingga didapat 𝛼0 = 58, 86798023°
𝛽0 = 𝑠𝑖𝑛−1 (
sin 𝛼0
𝑘
)
Sehingga didapat 𝛽0 = 39, 61840454°
Perhatikan,
𝑇( 𝛼) = 180°
+ 2𝛼 − 4𝛽
Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh :
𝑇( 𝛼) = 139, 2623423°
Karena
ф = 180°
− 𝑇( 𝛼)
Maka:
ф = 180°
− 139, 2623423°
= 40, 7376577°
Jadi, sudut pelangi untuk warna nila adalah 40, 7376577°
G. Sudut pelangi untuk warna ungu
Diketahui indeks bias untuk warna ungu ( 𝑘) = 1, 34451.
Substitusikan nilai k ke persamaan berikut
𝛼0 = 𝑠𝑖𝑛−1
(√
1
3
(4 − 𝑘2) )
Sehingga didapat 𝛼0 = 58, 74289375°
𝛽0 = 𝑠𝑖𝑛−1 (
sin 𝛼0
𝑘
)
Sehingga didapat 𝛽0 = 39, 4797895°
Perhatikan,
𝑇( 𝛼) = 180°
+ 2𝛼 − 4𝛽
Dengan mensubstitusikan 𝛼0 dan 𝛽0 diperoleh :
𝑇( 𝛼) = 139, 5666295°
Karena
ф = 180°
− 𝑇( 𝛼)
Maka:
ф = 180°
− 139, 5666295°
= 40, 4333705°
15Kapita Selekta Fisika “Fenomena Pelangi”
Jadi, sudut pelangi untuk warna ungu adalah 40, 4333705°
Sudut pelangi dari masing-masing warna tersebut disajikan dalam tabel berikut
Warna
λ
(nm)
Indeks Bias
(k)
sudut datang (𝛼0)
(derajat)
Sudut bias
(𝛽0)
(derajat)
sudut deviasi T(α)
(derajat)
sudut pelangi (ф)
(derajat)
400 1, 34451 58, 74289375 39, 4797895 139, 5666295 40, 4333705
425 1, 34235 58, 86798023 39, 61840454 139, 2623423 40, 7376577
450 1, 34055 58, 97228442 39, 73433118 139, 0072441 40, 99275588
475 1, 33903 59, 06041141 39, 83252085 138, 7907394 41, 20926058
500 1, 33772 59, 13639897 39, 91736397 138, 6033421 41, 39665794
525 1, 33659 59, 20197269 39, 99071337 138, 4410919 41, 55890810
550 1, 33560 59, 25944347 40, 05510096 138, 2984831 41, 70151690
575 1, 33462 59, 31635351 40, 11895445 138, 1568892 41, 84311078
600 1, 33393 59, 35643464 40, 16398222 138, 0569404 41, 94305960
625 1, 33322 59, 39768806 40, 21037547 137, 9538742 42, 04612576
650 1, 33257 59, 43546465 40, 25290214 137, 8593207 42, 14067926
675 1, 33197 59, 47034346 40, 29220337 137, 7718734 42, 22812656
700 1, 33141 59, 50290393 40, 3289244 137, 6901103 42, 30988974
Bentuk Pelangi
Sebenarnya, bentuk pelangi adalah lingkaran penuh. Kalau terlihat setengah lingkaran,
atau bagian dari lingkaran, itu terjadi karena pelangi terpotong oleh horison bumi, atau objek
lain yang menghalangi cahaya, misalkan gunung dan bukit.
Gambar Pelangi
16Kapita Selekta Fisika “Fenomena Pelangi”
Pelangi terjadi akibat pembiasan cahaya pada sudut 40°
− 42°
. Karena sudut
pembiasan tetap, maka letak terjadinya warna pelangi selalu tetap dari pusat cahaya, sehingga
jari-jarinya juga tetap, kalau jari-jari nya tetap konstan dari satu pusat atau titik, kita akan
mendapatkan lingkaran. Kalau lingkarannya kita potong, kita selalu dapat bagian lingkaran
yang melengkung.
Untuk dapat melihat pelangi, kita harus mempunyai sudut deviasi sebesar 138°
, ini
menyebabkan kita akan mempunyai sudut pelangi sebesar 42°
. Sudut pelangi merupakan sudut
yang terbentuk antara axis dan titik puncak pelangi. Axis merupakan garis yang
menghubungkan matahari dan pengamat.
Saat memandang sebuah objek, mata manusia bersifat konvergen atau menyebar.
Pandangan mata kita saat melihat sebuah objek dapat diilustrasikan sebagai sebuah kerucut
yang memiliki titik puncak pada mata kita, seperti tampak pada gambar 3.6. Kemiringan
kerucut yang terbentuk dipengaruhi oleh posisi matahari. Sebagian alas kerucut tidak dapat
φ
Gambar Sifat Konvergen Mata Manusia
Gambar Ilustrasi Bentuk Pelangi
Garis Horizontal Bumi
Sudut
Pelangi
17Kapita Selekta Fisika “Fenomena Pelangi”
kita lihat karena berada di bawah garis horizontal bumi, sedangkan sebagian lainnya terlihat
sebagai busur atau biasa kita sebut sebagai pelangi.
Posisi Relatif Pelangi Terhadap Pengamat dan Matahari
Posisi matahari pengamat dan pelangi akan selalu dalam satu axis, di mana matahari
akan selalu berada di belakang. Kita tidak dapat melihat pelangi jika posisi matahari tegak
lurus dengan garis horizontal bumi.
Kesimpulan
Pelangi adalah gejala optik dan meteorologi yang terjadi sacara alamiah dalam atmosfir
bumi serta melibatkan cahaya matahari, pengamat dan tetesan air hujan. Cahaya matahari
masuk ke dalam tetesan air hujan akan mengalami proses pembiasan lalu cahaya tersebut akan
terurai menjadi warna monokromatik. Cahaya yang telah terurai, masing-masing akan
mengalami proses pemantulan saat mengenai dinding tetesan air hujan dan kembali akan
mengalami proses pembiasan cahaya saat keluar dari tetesan air hujan. Rangkaian gelombang
warna monokromatik yang membentuk spektrum cahaya tersebut yang akan membentuk
pelangi pertama.
Kita dapat mengkontruksi model matematika proses terjadinya pelangi pertama. Model
yang pertama ialah ф = 4𝛽 − 2𝛼 , ф merupakan sudut pelangi. Model kedua ialah 𝑇( 𝛼) =
180°
+ 2𝛼 − 4𝛽, 𝑇( 𝛼) merupakan sudut deviasi.
Selanjutnya 𝛼0 = 𝑠𝑖𝑛−1
(√
1
3
(4 − 𝑘2) ) yang merupakan sudut datang sinar matahari. Model
yang terakhir adalah 𝛽0 = 𝑠𝑖𝑛−1
(
sin 𝛼0
𝑘
) yang merupakan sudut bias pelangi.
Sebenarnya, bentuk pelangi adalah lingkaran penuh. Kalau terlihat setengah lingkaran,
atau bagian dari lingkaran, itu terjadi karena pelangi terpotong oleh horison bumi, atau objek
lain yang menghalangi cahaya, misalkan gunung dan bukit. Bentuk pelangi yang berupa
lingkaran disebabkan oleh sudut pembiasan masing-masing gelombang warna tetap dan sifat
konvergen (menyebar) saat mata manusia memandang sebuah objek.
Gambar Posisi Matahari, Pengamat dan Pelangi
18Kapita Selekta Fisika “Fenomena Pelangi”
Untuk dapat melihat pelangi, kita harus memiliki ф sebesar 40°
− 42°
serta posisi
matahari, pengamat dan pelangi terletak pada satu axis dengan posisi matahari berada di
belakang pengamat. Kita tidak dapat melihat pelangi jika posisi matahari tegak lurus dengan
garis horizontal bumi, sehingga kita hanya dapat melihat pelangi pada pagi hari atau sore hari.
Referensi
Thao Dang: The Theory of Rainbow, Vol. 0, No. 0,pp. 01,2006.
Rachel W. Hall and Nigel Higson: The Cakculus of Rainbows, Vol. 0, No.0, pp. 02–03,1998.
Raymond L. Lee, Jr: Mie theory, Airy theory, and the natural rainbow, 1998.
H. Moyses Nusseinveg: The The- ory of The Rainbow, Vol. 0, No.0, pp.007,1997.
PEMBUKTIAN MATEMATIS DIBALIK
PERISTIWA PELANGI
Ahmad Zulfakar Rahmadi, Wikky Fawwaz Al Maki
Departemen Matematika STKIP Surya
Abstrak
Jurnal ini membahas bagaimana kita melihat matematika sebagai induk dari segala
ilmu sains melalui kejadian-kejadian yang riil di sekitar. Pelangi, yang sejatinya hanya
terlihat dan jarang ditanggapi secara khusus oleh sebagian orang, disini akan dibuk-
tikan melalui suatu pendekatan konsep matematis dalam hal ini turunan. Dengan
menghitung sudut datang dan sudut pantul dari refraksi cahaya dan refleksinya, kita
dapat menentukan sudut terlihatnya pelangi dari turunan sudut yang ada, dan ke-
mudian menghubungkannya dengan hukum snell tentang cahaya. Selain itu, melalui
pendekatan geometri dapat dijelaskan alasan dari bentuk kurva pelangi itu sendiri.
Penerapan kedua hubungan matematis tersebut diperoleh pemahaman bahwa matem-
atika mempunyai banyak aplikasi kehidupan sesuai asumsinya sebagai induk sains.
Kata Kunci:Sudut datang dan pantul,Refraksi, Refleksi, Hukum Snell, Kurva
Pelangi.
1 PENDAHULUAN
Matematika merupakan salah satu ilmu
yang mendasari berkembangnya ilmu
pengetahuan. Namun,kondisi matematis
yang abstrak terkadang membuat kita sulit
bernalar tentang bagaimana aplikasi nyata
dari matematika itu sendiri. Tidak hanya
itu, relasi antara matematika dan ilmu
lain pun terkadang kurang dikenali baik
secara abstrak maupun fenomena alam
yang nyata.
Pelangi, sebagai salah satu fenom-
ena alam yang indah dan sering terli-
hat serta dikenali khalayak ternyata meny-
impan fakta-fakta unik dibalik peristiwa
terjadinya. Pada pelangi, dapat dite-
mukan model matematika yang alamiah
dan tetap dibuktikan dengan logika yang
tepat. Dalam pembuktian model matem-
atika pelangi, digunakan hubungan an-
tara matematika dan fisika yang dalam hal
ini konsep turunan aljabar, geometri, dan
hukum refleksi dan refraksi Snellius.
Dari berbagai teori yang ditelusuri
hubungan dan buktinya, akhirnya akan
digunakan untuk menjelaskan fakta-fakta
yang ada dibalik pelangi. Mulai dari be-
sar sudut pandang terhadap pelangi, proses
terjadinya warna pada pelangi, hingga pen-
jelasan bentuk kurva dari pelangi akan diba-
has secara matematis.
2 METODE
Metode yang digunakan dalam penelitian
jurnal ini berupa studi literatur yang
berhubungan dengan konsep turunan al-
jabar dan geometri serta hukum Snellius
tentang refraksi cahaya diman setiap konsep
memiliki hubungan khusus mengenai tin-
jauan matematis dari pelangi.
1
3 HASIL DAN PEMBA-
HASAN
3.1 Proses Terjadinya Pelangi
Pelangi adalah fenomena alam yang teben-
tuk karena cahaya matahari melalui tetesan
air yang terpancar atau tersebar di udara.
Pada saat sinar menyentuh permukaan air
hujan, sinar tersebut akan dibiaskan karena
cahaya mengalami perubahan indeks media
dari udara ke air. Ketika sinar dihantarkan
kembali ke permukaan belakang tetesan air,
hampir seluruhnya dibiaskan dan keluar
dari tetesan air. Hanya beberapa yang di-
pantulkan dan saat cahaya tersebut menuju
keluar permukaan, setiap warna akan dib-
iaskan kembali seperti saat meninggalkan
tetesan air. Hal itu terjadi pembiasan
langsung dari sumber cahaya ke medium
diteruskan ke air terlalu banyak dan cepat
[1]. Pada dasarnya, kita dapat membuk-
Figure 1: Pembiasan pelangi
tikannya dengan perhitungan ketika:
sin(α) = k.sin(β)
dimana α dan β adalah sudut datang
sinar dan bias, dan k adalah rasio dari
kecepatan perubahan medium sumber ke
medium penerima.
3.2 Hukum Pemantulan
Pemantulan sinar adalah peristiwa ter-
jadinya perubahan arah rambat cahaya ke
sisi yang berbeda. Dengan kata lain,
sudutdatang = sudutpantul
Hal yang menarik dan harus dicatat
bahwa pembiasan dan pemantulan meru-
pakan manifestasi dari satu hukum yang
disebut Fermat’s Principle, yang meny-
atakan cahaya mencapai yang sampai ke
mata telah diteruskan jauh dari sumbernya
[2].
Figure 2: Refleksi cahaya
Seperti saat kita melihat tangan kita di
kaca atau permukaan air, bayangan yang
terlihat diambil dari pembiasan ke mata.
3.3 Sudut Putar dari Pelangi
Sekarang kita dapat menghitung
hubungan matematis untuk beberapa fakta
umum dari cahaya,mari kembali pada
model gambar tetesan air hujan.Untuk
membuat hal ini menjadi simpel, kita
asumsikan bahwa air hujan ”is perfectly
spherical”,dan hal tersebut memiliki sense
untuk dillihat secara dua dimensi.
Jika sinar datang menuju tetes air
dengan sudut datang α, dipantulkan oleh
permukaan belakang dari tetes air,dan
dibiaskan kembali meninggalkan medium
tersebut. Jadi berapa sudut putar dari
cahaya saat keluar dari medium tersebut?
Diketahui α adalah sudut datang dan
β adalah sudut bias, dimana berhubungan
dengan hukum Snell. Saat cahaya melalui
bagian terjauh dari medium(dalam hal ini
tetesan air), selanjutnya akan dipindahkan
jauh ke dasar dari garis segitiga sama kaki
yang merupakan sisi dari perpanjangan ke-
dua garis radian medium hujan. Setelah
2
Figure 3: Sudut balik pelangi
direfleksikan ke bagian dalam dari medium,
sinar akan dibawa kembali melalui tetesan
air dan saling melengkapi bagian yang lain,
segitiga sama kaki.
Seperti yang ditampilkan pada gam-
bar, sudut bias untuk sinar yang mening-
galkan medium dikenali sebagai β.Kembali
pada hal awal yang telah kita catat, ca-
haya dibawa dari air ke udara dengan sudut
datang β akan memiliki sudut bias α.
Kita misalkan T(α) adalah sudut
putar atau balik yang terbentuk jika kita
teruskan perpanjangan sinar datang(seolah-
olah tidak dibiaskan),besarnya adalah jum-
lah total sudut yang terbentuk dari sinar
yang kembali ke medium air hujan, berben-
tuk searah jarum jam dari garis lurus.
Sudut datang α yang terbentuk antara garis
medium,sinar bias, dan perpanjangan sinar
memiliki besar yang sama dengan sudut
bias β, sehingga sudut pada perpotongan
sinar bias besarnya sama dengan 2β dan
sudut yang melakukan pemantulan kem-
bali terhadap sinar besarnya dapat diny-
atakan sebagai 180◦
−2β (lihat pada Fig.4).
Cahaya yang memasuki medium air dikem-
balikan oleh α-β (mengapa)? seperti saat
cahaya meninggalkan medium. Pemantu-
lan dikarenakan oleh sudut 180◦
− 2β. Dari
argumen tersebut, maka T(α) dapat diny-
atakan sebagai jumlah seluruh sudut yang
terbentuk pada sinar datang dan sinar bias.
Figure 4: sudut bias pelangi
Maka:
(1)
T(α) = (α − β) + (180 − 2β) + (α − β)
(2)
= 180◦
+ 2α − 4β
(3)
Jadi,sinar memasuki tetesan air hujan
dengan sudut α akan dikembalikan arahnya
oleh sudut 180 + 2α − 4β yang kemudian
hasil ini dapat kita tentukan sudut pelangi
θ = 180◦
− T(α).
3.4 Warna dari Pelangi
Sejauh ini, kita telah dijelaskan proses ter-
jadinya pelangi, pembiasan cahayanya dan
bagaimana proses masuknya cahaya ke tete-
sen air hujan hingga terjadi pembiasan
serta aplikasi dari hukum Snell. Namun
kita belum menjelaskan sedikit pun tentang
apa yang membuat pelangi berwarna.Tabel
berikut menampilkan panjang gelombang
dari warna-warna pelangi dimana hal terse-
but nantinya akan menjelaskan tentang ben-
tuk dari pelangi itu sendiri(akan dibahas di
subbab lain).
Sinar matahari sebenarnya terdiri dari
banyak warna. Meskipun,ketika semua
warna terkombinasi bersama, yang kita li-
hat hanyalah cahaya putih. Saat mata-
hari muncul, sinar matahari akan menerpa
tetesan air hujan. Hal tersebut akan dibi-
askan, denagan panjang gelombang refraksi
berbeda untuk sudut yang berbeda pula,
3
dan warna-warna yang menarik akan tam-
pak. Warna dari pelangi lapis pertama atau
pelangi primer selalu diikuti warna yang
berbeda dan berurutan: merah,jingga, kun-
ing, hijau, biru, nila, dan ungu.
Figure 5: Pembiasan warna pelangi
Efek tersebut terjadi ketika cahaya putih
dibiaskan,setiap komponen warna akan di-
belokkan oleh bagian lain seperti saat
melewati medium transparan ke medium
lainnya. Dispersi ini disebabkan prisma
medium memproduksi spektrum warna dari
cahaya putih. Pada kasus tetesan air,
cahaya ungu akan dibiaskan melalui sisi
dan sudut yang lebih baik dari cahaya
merah. Hal itu menyebabkan cahaya ungu
di pelangi primer selalu terlihat dibawah
cahaya merah(setelah merah).Sisa cahaya
selain merah dan ungu adalah warna
palsu,atau hanya berupa efek dari kedua
warna tersebut. Dari penjelasan pada sub-
bab sebelumnya, kita mendapatkan gam-
baran umum tipe warna pelangi bahwa ca-
haya biru dan ungu dibiaskan lebih dari-
pada cahaya merah. Pembiasan terse-
but tergantung pada indeks pembiasan dari
air hujan, dan perhitungannya dapat men-
galami keselahan dalam ketelitian karena
perbedaaan panjang gelombang antara ca-
haya ”merah” dan ”ungu” yang tidak tentu
pula [3].
Catatan:Ketika hujan, terdapat banyak
tetesan air hujan turun dari langit. Setiap
tetesan hujan dapat membentuk ”hanya
satu” warna yang mata kita bisa lihat.Letak
setiap warna tersebut direfleksikan terhadap
bagian belakang air hujan dan menuju mata
No. Warna Pelangi Panjang Spektrum
1. Merah 620 - 750nm
2. Jingga 590 - 620nm
3. Kuning 570 - 590nm
4. Hijau 495 - 570nm
5. Biru 450 - 495nm
6. Nila ......
7. Ungu 380 - 450nm
selalu pada sudut yang terukur dari garis
antara mata dan matahari. Sudutnya berk-
isar 42 ◦
terukur dari puncak dari gelom-
bang cahaya merah dan 40 ◦
ke bawah dari
cahaya ungu.
Figure 6: Warna dasar pelangi
3.5 Pembentukan Pelangi Per-
tama dan Sudut Pandang
Pelangi
Seperti yang kita ketahui bersama, pelangi
pertama terbentuk dengan sudut kurang
lebih 42 derajat. Bagaimana pembuktian-
nya? Sekarang kita akan membuktikan
bagaimana menentukan sudut pengamat
terhadap pelangi dengan beberapa teori.
Dalam kasus ini, kita tidak hanya menggu-
nakan hukum Snell, tetapi juga hukum ca-
haya, turunan aljabar,trigonometri , dan ge-
ometri. Pada turunan aljabar menggunakan
persamaan dibawah ini untuk menentukan
persamaan turunannya:
f (x) = lim
x→h
f(x + h) − f(x)
h
(4)
Dalam hal ini kita gunakan beberapa
istilah di antaranya:
α= sudut datang
β= sudut bias
4
Figure 7: sudut bias pelangi
k=perbandingan indeks bias dari dua
medium yang berbeda.
Sekarang kita akan menghitung tingkat
perubahan pada sudut balik T(α) ter-
hadap α. Dengan kata lain ,kita akan
menyatakannya dalam bentuk dT
dα
. Setelah
selesai ,kita masukkan α ke persamaan
tadi,sehingga dT(α)
dα
sama dengan nol. Perlu
diingat bahwa seluruh persamaan ini untuk
menghitung konsentrasi cahaya di sudut 42
◦
.
Turunkan kedua sisi persamaan:
T(α) = 180◦
+ 2α − 4β (5)
dengan α
dT(α)
dα
= 2 − 4
dβ
dα
(6)
Namun bagaimana dengan dβ
dα
? Kita dapat
menurunkan kedua ruas dari hukum refraksi
Snell:
sin(α) = ksin(β) (7)
dari persamaan hukum Snell di atas, dida-
patkan
cos(α) = kcos(β)
dβ
dα
(8)
Perlu diingat,turunan fungsi diatas digu-
nakan untuk menentukan persamaan lnear
fungsi utama.
Yaitu,
T(α) ≈ T(α0) + T (α0)(α − α0) (9)
T(α) ditaksir memiliki nilai yang hampir
sama karena diketahui α − α0 bernilai san-
gat kecil sehingga tidak berpengaruh ter-
hadap perubahan nilai sudut. Jika kita da-
pat menemukan nilai α0 dimana T =0, ke-
mudian T(α) ≈ T(α0) untuk setiap nilai
α mendekati nilai α0.Hal tersebut berarti
berlaku untuk setiap sinar yang masuk den-
gan sudut datang mendekati nilai dimana
T = 0 akan dikembalikan sesuai dengan
hukum persamaan yang sama.
Sekarang, mari tentukan nilai α0. Misalkan,
0 =
dT
dα
= 2 −
4cos(α0)
kcos(β0)
(10)
Dari persamaan diatas, diperoleh per-
samaan berikut
k2
cos2
(β0) = 4cos2
(α0) (11)
k2
(1 − sin2
(β0)) = 4(1 − sin2
(α0)) (12)
Substitusikan,
sin(α0) = ksin(β0) (13)
sin2
(α0) = k2
sin2
(β0) (14)
Sehingga diperoleh:
k2
− sin2
α0 = 4(1 − sin2
α0) (15)
Dari persamaan-persamaan diatas, kita per-
oleh rumus sudut datang dan bias
sin2
(α0) =
1
3
(4 − k2
) (16)
α0 = arcsin
1
3
(4 − k2) (17)
Kemudian dari persamaan Snellius kita da-
patkan
sinα0 = ksinβ0 (18)
β0 = arcsin
sinα0
k
(19)
Pada pembentukan pelangi pertama,
akan dicari sudut pelangi untuk warna
merah. Diketahui indeks bias warna merah
(k) = 1, 33. Substitusikan nilai k ke
5
persamaan berikut:
α0 = sin−1 1
3
(4 − k2) (20)
Sehingga didapat α0= 59.470343460◦
β0 = sin−1 sinα0
k
(21)
dan diperoleh β0=40.292203370◦
Substitusikan nilai α0dan β0 ke persamaan
T(α) = 180◦
+ 2α − 4β.
Sehingga diperoleh T(α) ≈ 138◦
Jadi, besar sudut pada pembentukan
pelangi pertama atau pelangi dengan warna
merah adalah
180◦
− T(α) = 180◦
− 138◦
= 42◦
(22)
Catatan:Perhitungan diatas mengalami
pembulatan yang dianggap perlu, sehingga
sudut pelangi pertama ≈ 42◦
dan nilai terse-
but diukur dari warna merah sebagai pun-
cak pelangi.
3.6 Pelangi Kedua(Sekunder)
Pelangi sekunder trdiri dari cahaya yang
keluar dari pemantulan internal di medium.
Dengan setiap pantulan dari beberapa sinar
hilang, dimana hal tersebut menjadi alasan
utama pelangi kedua ini lebih berwarna dari
pada pelangi pertama(merah). Theodoric
dan Descrate menjelaskan bahwa dari di-
reksi panjang dengan daerah hasil sudut
yang berkorespondensi ke pelangi dengan
hanya satu warna pada saat terlihat dilan-
git.Ketika pandangan mata berpindah ke
tempat lain dan menciptakan sudut pan-
dangan yang lain, spektrum warna lain
mulai bermunculan,satu demi satu.Ia juga
menjelaskan bahwa setiap warna yang terli-
hat oleh mata berasal dari tetesan air yang
lain [4].
Seperti yang dijelaskan oleh Descrate,
setiap fitur utama dari pelangi akan di-
mengerti melalui sebuah pertimbangan
bahwa cahaya melewati tetes air yang singu-
lar. Prinsip dasar telah menentukan pelangi
alami yang dimana terjadi interaksi cahaya
dengan medium transparan,dan dinamakan
refleksi dan refraksi.
Figure 8: Pelangi sekunder
Selain itu, ada satu fakta unik lagi ten-
tang kemunculan pelangi selain pelangi
primer. Fakta unik tersebut adalah kemu-
ngkinannya terbentuk pelangi yang tidak
kasat mata. Kemunculan pelangi tersebut
tak lepas dari peran radiasi dan gelombang
serta atom yang berhubungan. Pelangi
tersebut diproduksi dari peristiwa peng-
hamburan inti atom di udara. [5]
3.7 Interpretasi Bentuk
Pelangi
Bila kita membahas pelangi, ada satu hal
yang menarik tentang bentuk pelangi itu
sendiri. Fakta unik tersebut terletak pada
bentuknya yang selalu menyerupai kurva
parabola, dan lingkaran.
Apa yang menyebabkan bentuk tersebut?
Penjelasannya kita dapatkan dari per-
samaan sudut-sudut pada pelangi,dimana
sudut pembiasaan(β) masing-masing
gelombang warna bersifat tetap,sehingga
dari tiap warna akan membentuk lintasan-
lintasan cahaya yang ketika disatukan
bentuknya menyerupai sebuah parabola
atau lingkaran. Pada tabel panjang gelom-
bang warna pelangi sebelumnya,setiap
warna memiliki interval panjang yang
6
berbeda. Selain itu,bila dilihat dari Fig.9,
grafik tersebut menunjukkan bagaimana se-
tiap sudut dari pembiasan dan pemantulan
sinar memiliki frekuensi berbeda terhadap
warna dan panjangnya, sehingga mem-
bentuk kurva. Selain itu, kecenderungan
Figure 9: Grafik pelangi
mata manusia pada saat memandang objek
tertentu bersifat konvergen (menyebar) se-
hingga efek yang ditimbulkan dari refraksi
cahaya ke mata memberikan kesan lebih
terhadap bentuk pelangi itu sendiri.
4 SIMPULAN
Dari paparan di atas mengenai peris-
tiwa pelangi,dapat ditarik kesimpulan seba-
gai berikut.
Pelangi adalah gejala optik dan meteorologi
yang terjadi sacara alamiah dalam atmos-
fir bumi serta melibatkan cahaya matahari,
pengamat dan tetesan air hujan. Kejadian
pelangi juga dapat dihubungkan dengan
konsep matematis yang ada,mulai dari tu-
runan aljabar, Trigonometri, geometri dan
kurva.
Di dalam tetesan air hujan, cahaya mata-
hari mengalami proses pembiasan, peman-
tulan, dan dispersi cahaya. Cahaya tersebut
merupakan gelombang warna yang mem-
bentuk spektrum cahaya dan membentuk
pelangi pertama.
Kita dapat mengkontruksi model matem-
atika proses terjadinya pelangi pertama.
Model yang pertama ialah T(α) sebagai
jumlah total sudut dan θ merupakan sudut
pelangi. Model kedua ialah yang kita kenal
sebagai sudut deviasi.
Selanjutnya kita dapat menentukan dua
persamaan pelangi, pertama yang meru-
pakan sudut datang sinar matahari (α).
Model yang terakhir adalah persamaan β
yang merupakan sudut bias dari pelangi.
Kita harus memiliki sudut pelangi sebesar
42◦
serta posisi matahari terletak dalam
satu axis dengan posisi matahari berada di
belakang pengamat.
Bentuk pelangi adalah lingkaran karena
disebabkan oleh sudut pembiasan masing-
masing gelombang warna tetap dan sifat
konvergen (menyebar) saat mata manusia
memandang sebuah objek.
Daftar Pustaka
[1] Thao Dang: The Theory of Rainbow,
Vol. 0, No. 0,pp. 01,2006.
[2] Rachel W. Hall and Nigel Higson: The
Cakculus of Rainbows, Vol. 0, No.0,pp.
02–03,1998.
[3] John A. Adam: The Mathematical
Physics of Rainbows and Glories, vol.
0, No.356,pp.07, 2001.
[4] Raymond L. Lee, Jr: Mie theory, Airy
theory, and the natural rainbow, 1998.
[5] H. Moyses Nusseinveg: The The-
ory of The Rainbow, Vol. 0, No.0,
pp.007,1997.
7
The Theory of the Rainbow
When sunlight is scattered by raindrops, why is it that colorful
arcs appear in certain regions of the sky? Answering this subtle
question has required all the resources of mathematical physics
The rainbow is a bridge between the
two cultures: poets and scientists
alike have long been challenged to
describe it. The scientific description is
often supposed to be a simple problem
in geometrical optics, a problem that
was solved long ago and that holds inter­
est today only as a historical exercise.
This is not so: a satisfactory quantitative
theory of the rainbow has been devel­
oped only in the past few years. More­
over, that theory involves much more
than geometrical optics; it draws on all
we know of the nature of light. Allow­
ance must be made for wavelike proper­
ties, such as interference, diffraction and
polarization, and for particlelike prop­
erties, such as the momentum carried by
a beam of light.
Some of the most powerful tools of
mathematical physics were devised ex­
plicitly to deal with the problem of the
rainbow and with closely related prob­
lems. Indeed, the rainbow has served as
a touchstone for testing theories of op­
tics. With the more successful of those
theories it is now possible to describe the
rainbow mathematically, that is, to pre­
dict the distribution of light in the sky.
The same methods can also be applied
to related phenomena, such as the bright
ring of color called the glory, and even
to other kinds of rainbows, such as
atomic and nuclear ones.
Scientific insight has not always been
welcomed without reservations. Goethe
wrote that Newton's analysis of the rain­
bow's colors would "cripple Nature's
heart. " A similar sentiment was ex­
pressed by Charles Lamb and John
Keats; at a dinner party in 1817 they
proposed a toast: "Newton's health. and
confusion to mathematics. " Yet the sci­
entists who have contributed to the the­
ory of the rainbow are by no means in­
sensitive to the rainbow's beauty. In the
words of Descartes: "The rainbow is
such a remarkable marvel of Nature
. . . that I could hardly choose a more
suitable example for the application of
my method. "
The single bright arc seen after a rain
shower or in the spray of a waterfall is
116
by H. Moyses Nussenzveig
the primary rainbow. Certainly its most
conspicuous feature is its splash of col­
ors. These vary a good deal in brightness
and distinctness, but they always follow
the same sequence: violet is innermost.
blending gradually with various shades
of blue. green, yellow and orange, with
red outermost.
Other features of the rainbow are
fainter and indeed are not always pres­
ent. Higher in the sky than the primary
bow is the secondary one, in which the
colors appear in reverse order, with red
innermost and violet outermost. Careful
observation reveals that the region be­
tween the two bows is considerably
darker than the surrounding sky. Even
when the secondary bow is not discern­
ible, the primary bow can be seen to
have a "lighted side" and a "dark side. "
The dark region has been given the
name Alexander's dark band, after the
Greek philosopher Alexander of Aph­
rodisias, who first described it in about
A.D.200.
Another feature that is only some­
times seen is a series of faint bands, usu­
ally pink and green alternately, on the
inner side of the primary bow. (Even
more rarely they may appear on the out­
er side of the secondary bow.) These
"supernumerary arcs" are usually seen
most clearly near the top of the bow.
They are anything but conspicuous. but
they have had a major influence on the
development of theories of the rainbow.
The first attempt to rationally explain
the appearance of the rainbow was
probably that of Aristotle. He proposed
that the rainbow is actually an unusual
kind of reflection of sunlight from
clouds. The light is reflected at a fixed
angle. giving rise to a circular cone
of "rainbow rays. " Aristotle thus ex­
plained correctly the circular shape of
the bow and perceived that it is not a
material object with a definite location
in the sky but rather a set of directions
along which light is strongly scattered
into the eyes of the observer.
The angle formed by the rainbow rays
and the incident sunlight was first mea-
sured in 1266 by Roger Bacon. He mea­
sured an angle of about 42 degrees; the
secondary bow is about eight degrees
higher in the sky. Today these angles are
customarily measured from the oppo­
site direction, so that we measure the
total change in the direction of the sun's
rays. The angle of the primary bow is
therefore 180 minus 42, or 138, degrees;
this is called the rainbow angle. The an­
gle of the secondary bow is 130 degrees.
After Aristotle's conjecture some 17
centuries passed before further signifi­
cant progress was made in the theory of
the rainbow. In 1304 the German monk
Theodoric of Freiberg rejected Aristot­
le's hypothesis that the rainbow results
from collective reflection by the rain­
drops in a cloud. He suggested instead
that each drop is individually capable of
producing a rainbow. Moreover, he test­
ed this conjecture in experiments with a
magnified raindrop: a spherical flask
filled with water. He was able to trace
the path followed by the light rays that
make up the rainbow.
Theodoric's findings remained largely
unknown for three centuries, until they
were independently rediscovered by
Descartes, who employed the same
method. Both Theodoric and Descartes
showed that the rainbow is made up of
rays that enter a droplet and are reflect­
ed once from the inner surface. The sec­
ondary bow consists of rays that have
undergone two internal reflections.
With each reflection some light is lost,
which is the main reason the secondary
bow is fainter than the primary one.
Theodoric and Descartes also noted that
along each direction within the angular
DOUBLE RAINBOW was photographed at
Johnstone Strait in British Columbia. The
bright, inner band is the primary bow; it is
separated from the fainter secondary bow by
a region, called Alexander'S dark band, that
is noticeably darker than the surrounding sky.
Below the primary bow are a few faint stripes
of pink and green; they are supernumerary
arcs. The task of theory is to give a quanti­
tative explanation for each of these features.
© 1977 SCIENTIFIC AMERICAN, INC
!""' �- -""""ILIGHTED
__________ ______�----------------+_------� SIDE
----------�----------�----�,t
______ __________�----------------+_------�c=__,SECONDARY
RAINBOW
ALEXANDER'S
DARK BAND
z-----------------�--------------��--------�--_, PRIMARY
� ==================:============���=====:��:=�RAINBOWv.
SUPERNUMERARY
ARCS
RAIN
GEOMETRY OF THE RAINBOW is determitted by the scattering angle: the total angle
through which a ray of sunlight is bent by its passage through a raindrop. Rays are strongly
scattered at angles of 138 degrees and 130 degrees, giving rise respectively to the primary and
the secondary rainbows. Between those angles very little light is deflected; that is the region of
Alexander's dark band. The optimum angles are slightly different for each wavelength of light,
with the result that the colors are dispersed; note that the sequence of colors in the secondary
bow is the reverse of that in the primary bow. There is no single plane in which the rainbow lies;
·the rainbow is merely the set of directions along which light is scattered toward the observer.
range corresponding to the rainbow
only one color at a time could be seen in
the light scattered by the globe. When
the eye was moved to a new position so
as to explore other scattering angles. the
other spectral colors appeared. one by
one. Theodoric and Descartes conclud-
ed that each of the colors in the rainbow
comes to the eye from a different set of
water droplets.
As Theodoric and Descartes realized.
all the main features of the rainbow can
be understood through a consideration
of the light passing through a single
REFLECTION AND REFRACTION of light at boundaries between airand water are the
basic events in the creation of a rainbow. In reflection the angle of incidence is equal to the
angle of reflection. In refraction the angle of the transmitted ray is determined by the properties
of the medium, as characterized by its refractive index. Light entering a medium with a higher
index is bent toward the normal. Light of different wavelengths is refracted through slightly
different angles; this dependence of the refractive index on color is called dispersion. Theories
of the rainbow often deal separately with each monochromatic component of incident light.
118
droplet. The fundamental principles
that determine the nature of the bow are
those that govern the interaction of light
with transparent media. namely reflec­
tion and refraction.
The law of reflection is the familiar
and intuitively obvious principle that
the angle of reflection must equal the
angle ofincidence. The law of refraction
is somewhat more complicated. Where­
as the path of a reflected ray is deter­
mined entirely by geometry. refraction
also involves the properties of light and
the properties of the medium.
The speed of light in a vacuum is in­
variant; indeed. it is one of the funda­
mental constants of nature. The speed
of light in a material medium. on the
other hand. is determined by the proper­
ties of the medium. The ratio of the
speed of light in a vacuum to the speed
in a substance is called the refractive
index of that substance. For air the in­
dex is only slightly greater than 1; for
water it is about 1.33.
A ray of light passing from air into
water is retarded at the boundary; if it
strikes the surface obliquely. the change
in speed results in a change in direction.
The sines of the angles of incidence and
refraction are always in constant ratio to
each other. and the ratio is equal to that
between the refractive indexes for the
two materials. This equality is called
Snell's law. after Willebrord Snell. who
formulated it in 1621.
Apreliminary analysis of the rainbow
can be obtained by applying the
laws of reflection and refraction to the
path of a ray through a droplet. Because
the droplet is assumed to be spherical all
directions are equivalent and there is
only one significant variable: the dis­
placement of the incident ray from an
axis passing through the center of the
droplet. That displacement is called the
impact parameter. It ranges from zerO.
when the ray coincides with the central
axis. to the radius of the droplet. when
the ray is tangential.
At the surface of the droplet the inci­
dent ray is partially reflected. and this
reflected light we shall identify as the
scattered rays of Class 1. The remaining
light is transmitted into the droplet (with
a change in direction caused by refrac­
tion) and at the next surface is again
partially transmitted (rays of Class 2)
and partially reflected. At the next
boundary the reflected ray is again split
into reflected and transmitted compo­
nents. and the process continues indefi­
nitely. Thus the droplet gives rise to a
series of scattered rays. usually with
rapidly decreasing intensity. Rays of
Class 1 represent direct reflection by the
droplet and those of Class 2 are directly
transmitted through it. Rays of Class 3
are those that escape the droplet after
one internal reflection. and they make
up the primary rainbow. The Class 4
rays. having undergone two internal re-
© 1977 SCIENTIFIC AMERICAN, INC
flections. give rise to the secondary bow.
Rainbows of higher order are formed by
rays making more complicated pas­
sages. but they are not ordinarily visible.
For each class of scattered rays the
scattering angle varies over a wide range
of values as a function of the impact
parameter. Since in sunlight the droplet
is illuminated at all impact parameters
simultaneously. light is scattered in vir­
tually all-directions. It is not difficult to
find light paths through the droplet that
contribute to the rainbow. but there are
infinitely many other paths that direct
the light elsewhere. Why. then. is the
scattered intensity enhanced in the vi­
cinity of the rainbow angle? It is a ques­
tion Theodoric did not consider; an an­
swer was first provided by Descartes.
By applying the laws of reflection and
refraction at each point where a ray
strikes an air-water boundary. Des­
cartes painstakingly computed the paths
of many rays incident at many impact
parameters. The rays of Class 3 are of
predominating importance. When the
impact parameter is zero. these rays are
scattered through an angle of 180 de­
grees. that is. they are backscattered
toward the sun. having passed through
the center of the droplet and been re­
flected from the far wall. As the impact
parameter increases and the incident
rays are displaced from the center of the
droplet. the scattering angle decreases.
Descartes found. however. that this
trend does not continue as the impact
parameter is increased to its maximum
value. where the incident ray grazes the
droplet at a tangent to its surface. In­
stead the scattering angle passes through
a minimum when the impact parameter
is about seven-eighths of the radius of
the droplet. and thereafter it increases
again. The scattering angle at the mini­
mum is 138 degrees.
For rays of Class 4 the scattering an­
gle is zero when the impact parameter
is zero; in other words. the central ray
is reflected twice. then continues in its
original direction. As the impact param­
eter increases so does the scattering an­
gle. but again the trend is eventually re­
versed. this time at 130 degrees. The
Class 4 rays have a maximum scattering
angle of 130 degrees. and as the impact
parameter is further increased they bend
back toward the forward scattering di­
rection again.
Because a droplet in sunlight is uni­
formly illuminated the impact pa­
rameters of the incident rays are uni­
formly distributed. The concentration
of scattered light is therefore expected
to be greatest where the scattering angle
varies most slowly with changes in the
impact parameter. In other words. the
scattered light is brightest where it gath­
ers together the incident rays from the
largest range of impact parameters. The
regions of minimum variation are those
surrounding the maximum and mini-
mum scattering angles. and so the spe­
cial status of the primary and secondary
rainbow angles is explained. Further­
more. since no rays of Class 3 or Class 4
are scattered into the angular region be­
tween 130 and 138 degrees. Alexander's
dark band is also explained.
Descartes's theory can be seen more
clearly by considering an imaginary
population of droplets from which light
is somehow scattered with uniform in­
tensity in all directions. A sky filled with
such droplets would be uniformly bright
at all angles. In a sky filled with real
water droplets the same total illumina­
tion is available. but it is redistributed.
Most parts of the sky are dimmer than
they would be with uniform scattering.
but in the vicinity of the rainbow angle
there is a bright arc. tapering off gradu­
ally on the lighted side and more sharply
on the dark side. The secondary bow is a
similar intensity highlight. except that it
is narrower and all its features are dim­
mer. In the Cartesian theory the region
between the bows is distinctly darker
than the sky elsewhere; if only rays of
Class 3 and Class 4 existed. it would be
quite black.
The Cartesian rainbow is a remark-
T
----
IMPACT
PARAMETER
ably simple phenomenon. Brightness is
a function of the rate at which the scat­
tering angle changes. That angle is itself
determined by just two factors: the re­
fractive index. which is assumed to be
constant. and the impact parameter.
which is assumed to be uniformly dis­
tributed. One factor that has no influ­
ence at all on the rainbow angle is size:
the geometry of scattering is the same
for small cloud droplets and for the
large water-filled globes employed by
Theodoric and Descartes.
so far we have ignored one of the most
conspicuous features of the rain­
bow: its colors. They were explained. of
course. by Newton. in his prism experi­
ments of 1666. Those experiments dem­
onstrated not only that white light is a
mixture of colors but also that the re­
fractive index is different for each color.
the effect called dispersion. It follows
that each color or wavelength of light
must have its own rainbow angle; what
we observe in nature is a collection of
monochromatic rainbows. each one
slightly displaced from the next.
From his measurements of the refrac­
tive index Newton calculated that the
WATER DROPLET
CLASS 1PATH OF LIGHT through a droplet can be determined by applying the laws of geometrical
optics. Each time the beam strikes the surface part of the light is reflected and part is refracted.
Rays reflected directly from the surface are labeled rays of Class 1; those transmitted directly
through the droplet are designated Class 2.The Class 3 rays emerge after one internal reflec­
tion; it is these that give rise to the primary rainbow. The secondary bow is made up of Class
4rays, which have undergone two internal reflections. For rays of each class only one factor
determines the value of the scattering angle. That factor is the impact parameter: the dis­
placement of the incident ray from an axis that passes through the center of the droplet.
119© 1977 SCIENTIFIC AMERICAN, INC
rainbow angle is 137 degrees 58 minutes
for red light and 139 degrees 43 minutes
for violet light. The difference between
these angles is one degree 45 minutes.
which would be the width of the rain­
bow if the rays of incident sunlight were
exactly parallel. Allowing half a degree
for the apparent diameter of the sun.
Newton obtained a total width of two
degrees 15 minutes for the primary bow.
His own observations were in good
agreement with this result.
Descartes and Newton between them
were able to account for all the more
conspicuous features of the rainbow.
They explained the existence of primary
and secondary bows and of the dark
band that separates them. They calcu­
lated the angular positions of these fea­
tures and described the dispersion of the
scattered light into a spectrum. All of
this was accomplished with only geo­
metrical optics. Their theory neverthe­
less had a major failing: it could not
explain the supernumerary arcs. The un­
derstanding of these seemingly minor
features requires a more sophisticated
view of the nature of light.
The supernumerary arcs appear on
the inner. or lighted. side of the primary
bow. In this angular region two scat­
tered rays of Class 3 emerge in the same
direction; they arise from incident rays
that have impact parameters on each
side of the rainbow value. Thus at any
given angle slightly greater than the
rainbow angle the scattered light in­
cludes rays that have followed two dif­
ferent paths through the droplet. The
rays emerge at different positions on the
surface of the droplet. but they proceed
in the same direction.
In the time of Descartes and Newton
these two contributions to the scattered
intensity could be handled only by sim­
ple addition. As a result the predicted
intensity falls off smoothly with devia­
tion from the rainbow angle. with no
trace of supernumerary arcs. Actually
the intensities of the two rays cannot be
added because they are not independent
sources of radiation.
The optical effect underlying the su­
pernumerary arcs was discovered in
1 803 by Thomas Young. who showed
that light is capable of interference. a
phenomenon that was already familiar
from the study of water waves. In any
medium the superposition of waves can
lead either to reinforcement (crest on
180�=- ------------------------------------------------------.- --------------------� ----------
.-,
160
140$w
120w
II:
<!l
w
e.w 100...J
<!l
Z
<I:
<!l 80z
((w
1=<I: 60u
CIl
40
20
0
RAINBOW RAY
120
ALEXANDER'S DARK BAND
IMPACT PARAMETER �
B C
PRIMARY­
RAINBOW
RAY
SECONDARY­
RAINBOW
RAY
DROPLET RADIUS -.J
RAINBOW ANGLE can be seen to have a special significance when
the scattering angle is considered as a function of the impact param­
eter. When the impact parameter is zero, the scattering angle for a
ray of Class 3 is 180 degrees; the ray passes through the center of the
droplet and is reflected by the far surface straight back at the sun. As
the impact parameter increases, the scattering angle decreases, but
eventually a minimum angle is reached. This ray of minimum deflec­
tion is the rainbow ray in the diagram at the left; rays with impact
parameters on each side of it are scattered through larger angles. The
minimum deflection is about 138 degrees, and the greatest concentra­
tion of scattered rays is to be found in the vicinity of this angle. The
resulting enhancement in the intensity of the scattered light is per­
ceived as the primary rainbow. The secondary bow is formed in a
similar way, except that the scattering angle for the Class 4rays of
which it is composed increases to a maximum instead of decreasing
to a minimum. The maximum lies at about 130 degrees. No rays of
Class 3 or Class 4can reach angles between 130 degrees and 138 de­
grees, explaining the existence of Alexander's dark band. At the left
two Class 3 rays, with impact parameters on each side of the rain­
bow value, emerge at the same scattering angle. It is interference be­
tween rays such as these two that gives rise to the supernumerary arcs.
© 1977 SCIENTIFIC AMERICAN, INC
crest) or to cancellation (crest on
trough). Young demonstrated the in­
terference of light waves by passing a
single beam of monochromatic light
through two pinholes and observing the
alternating bright and dark "fringes"
produced. It was Young himself who
pointed out the pertinence of his discov­
ery to the supernumerary arcs of the
rainbow. The two rays scattered in the
same direction by a raindrop are strictly
analogous to the light passing through
the two pinholes in Young's experiment.
At angles very close to the rainbow an­
gle the two paths through the droplet
differ only slightly, and so the two rays
interfere constructively. As the angle in­
creases, the two rays follow paths of
substantially different length. When the
difference equals half of the wavelength,
the interference is completely destruc­
tive; at still greater angles the beams re­
inforce again. The result is a periodic
variation in the intensity of the scattered
light, a series of alternately bright and
dark bands.
Because the scattering angles at which
the interference happens to be construc­
tive are determined by the difference be­
tween two path lengths, those angles are
affected by the radius of the droplet.
The pattern of the supernumerary arcs
(in contrast to the rainbow angle) is
therefore dependent on droplet size. In
larger drops the difference in path length
increases much more quickly with im­
pact parameter than it does in small
droplets. Hence the larger the droplets
are, the narrower the angular separation
between the supernumerary arcs is. The
arcs can rarely be distinguished if the
droplets are larger than about a millime­
ter in diameter. The overlapping of col­
ors also tends to wash out the arcs. The
size dependence of the supernumeraries
explains why they are easier to see near
the top of the bow: raindrops tend to
grow larger as they fall.
With Young's interference theory all
the major features of the rainbow
could be explained, at least in a qualita­
tive and approximate way. What was
lacking was a quantitative, mathemati­
cal theory capable of predicting the in­
tensity of the scattered light as a func­
tion of droplet size and scattering angle.
Young's explanation of the supernu­
merary arcs was based on a wave theory
of light. Paradoxically his predictions
for the other side of the rainbow, for the
region of Alexander's dark band, were
inconsistent with such a theory. The in­
terference theory, like the theories of
Descartes and Newton, predicted com­
plete darkness in this region, at least
when only rays of Class 3 and Class 4
were considered. Such an abrupt transi­
tion, however, is not possible, because
the wave theory of light requires that
sharp boundaries between light and
RAINBOW RAY
CONFLUENCE OF RAYS scattered by a droplet gives rise to caustics, or "burning curves."
A caustic is tbe envelope �f a ray system. Of special interest is tbe caustic of Class 3 rays, wbicb
bas two brancbes, a real brancb and a "virtual" one; tbe latter is formed wben tbe rays are ex­
tended backward. Wben tbe rainbow ray is produced in botb directions, it approacbes tbe
brancbes of tbis caustic. A tbeory of tbe rainbow based on tbe analysis of sucb a caustic was
devised by George B. Airy. Having cbosen an initial wave front-a surface perpendicular at
all points to tbe rays of Class 3-Airy was able to determine tbe amplitude distribution in sub­
sequent waves. A weakness of tbe tbeory is tbe need to guess tbe amplitudes of tbe initial waves.
shadow be softened by diffraction. The
most familiar manifestation of diffrac­
tion is the apparent bending of light or
sound at the edge of an opaque obstacle.
In the rainbow there is no real obstacle,
but the boundary between the primary
bow and the dark band should exhibit
diffraction nonetheless. The treatment
of diffraction is a subtle and difficult
problem in mathematical physics, and
the subsequent development of the theo­
ry of the rainbow was stimulated mainly
by efforts to solve it.
In 1835 Richard Potter of the Univer­
sity of Cambridge pointed out that the
crossing of various sets of light rays in a
droplet gives rise to caustic curves. A
caustic. or "burning curve, " represents
the envelope of a system of rays and is
always associated with an intensity
highlight. A familiar caustic is the bright
cusp-shaped curve formed in a teacup
when sunlight is reflected from its inner
walls. Caustics, like the rainbow, gener­
ally have a lighted side and a dark side;
intensity increases continuously up to
the caustic, then drops abruptly.
Potter showed that the Descartes rain­
bow ray-the Class 3 ray of minimum
scattering angle-can be regarded as a
caustic. All the other transmitted rays of
Class 3, when extended to infinity, ap­
proach the Descartes ray from the light­
ed side; there are no rays of this class on
the dark side. Thus finding the intensity
of the scattered light in a rainbow is sim­
ilar to the problem of determining the
intensity distribution in the neighbor­
hood of a caustic.
In 1838 an attempt to determine that
distribution was made by Potter's Cam­
bridge colleague George B. Airy. His
121
© 1977 SCIENTIFIC AMERICAN, INC
il-
I
(!):J wD oJW (!)CC Zw «
1=
�«
0 CO
en z
u. �0 CC�
iiizWI-�
DARK BAND PRIMARY BOW
SCATIERING ANGLE �
I ARST SUPERNUMERARY I
PREDICTED INTENSITY as a function of scattering angle is compared for three early theo­
riesof the rainbow. In the geometric analysis of Descartes, intensity is infinite at the rainbow
angle; it declines smoothly (without supernumerary arcs) on the lighted side and falls off
abruptly to zero on the dark side. The theory of Thomas Young, which is based on the interfer­
ence of light waves, predicts supernumerary arcs but retains the sharp transition from infinite
tozero intensity. Airy's theory relocates the peaks in the intensity curve and for the first time
provides (through diffraction) an explanation for gradual fading of the rainbow into shadow.
reasoning was based on a principle of
wave propagation formulated in the
17thcentury by Christiaan Huygens and
later elaborated by Augustin Jean Fres­
nel. This principle regards every point
of a wave front as being a source of
secondary spherical waves; the second­
ary waves define a new wave front and
hence describe the propagation of the
wave. It follows that if one knew the
amplitudes of the waves over any one
complete wave front. the amplitude dis­
tribution at any other point could be re­
constructed. The entire rainbow could
be described rigorously if we knew the
amplitude distribution along a wave
front in a single droplet. Unfortunately
the amplitude distribution can seldom
be determined; all one can usually do is
make a reasonable guess for some cho­
sen wave front in the hope that it will
lead to a good approximation.
The starting wave front chosen by
Airy is a surface inside the droplet. nor­
mal to all the rays of Class 3 and with an
inflection point (a change in the sense of
. curvature) where it intersects the Des­
cartes rainbow ray. The wave ampli­
tudes along this wave front were esti­
mated through standard assumptions in
thetheory of diffraction. Airy was then
able to express the intensity of the scat-
122
tered light in the rainbow region in
terms of a new mathematical function.
then known as the rainbow integral and
today called the Airy function. The
mathematical form of the Airy function
will not concern us here; we shall con­
centrate instead on its physical meaning.
The intensity distribution predicted
by the Airy function is analogous to the
diffraction pattern appearing in the
shadow of a straight edge. On the light­
ed side of the primary bow there are
oscillations in intensity that correspond
to the supernumerary arcs; the positions
and widths of these peaks differ some­
what from those predicted by the Young
interference theory. Another significant
distinction of the Airy theory is that the
maximum intensity of the rainbow falls
at an angle somewhat greater than the
Descartes minimum scattering angle.
The Descartes and Young theories pre­
dict an infinite intensity at that angle (be­
cause of the caustic). The Airy theory
does not reach an infinite intensity at
any point. and at the Descartes rainbow
ray the intensity predicted is less than
half the maximum. Finally. diffraction
effects appear on the dark side of the
rainbow: instead of vanishing abruptly
the intensity tapers away smoothly with­
in Alexander's dark band.
Airy's calculations were for a mono­
chromatic rainbow. In order to apply his
method to a rainbow produced in sun­
light one must superpose the Airy pat­
terns generated by the various mono­
chromatic components. To proceed fur­
ther and describe the perceived image of
the rainbow requires a theory of color
vision.
The purity of the rainbow colors is
determined by the extent to which the
component monochromatic rainbows
overlap; that in turn is determined by
the droplet size. Uniformly large drops
(with diameters on the order of a few
millimeters) generally give bright rain­
bows with pure colors; with very small
droplets (diameters of .01 millimeter or
so) the overlap of colors is so great that
the resulting light appears to be almost
white.
An important property of light that we
I. have so far ignored is its state of
polarization. Light is a transverse wave.
that is. one in which the oscillations are
perpendicular to the direction of propa­
gation. (Sound. on the other hand. is a
longitudinal vibration.) The orientation
of the transverse oscillation can be re­
solved into components along two mu­
tually perpendicular axes. Any light ray
can be described in terms of these two
independent states of linear polariza­
tion. Sunlight is an incoherent mixture
of the two in equal proportions; it is of­
ten said to be randomly polarized or
simply unpolarized. Reflection can alter
its state of polarization. and in that fact
lies the importance of polarization to
the analysis of the rainbow.
Let us consider the reflection of a light
ray traveling inside a water droplet
when it reaches the boundary of the
droplet. The plane of reflection. the
plane that contains both the incident
and the reflected rays. provides a conve­
nient geometric reference. The polariza­
tion states of the incident light can be
defined as being parallel to that plane
and perpendicular to it. For both polari­
zations the reflectivity of the surface is
slight at angles of incidence near the per­
pendicular. and it rises very steeply near
a critical angle whose value is deter­
mined by the index of refraction. Be­
yond that critical angle the ray is totally
reflected. regardless of polarization. At
intermediate angles. however. reflectivi­
ty depends on polarization. As the angle
of incidence becomes shallower a stead­
ily larger portion of the perpendicularly
polarized component is reflected. For
the parallel component. on the other
hand. reflectivity falls before it begins to
increase. At one angle in particular. re­
flectivity for the parallel-polarized wave
vanishes entirely; that wave is totally
transmitted. Hence for sunlight incident
at that angle the internally reflected ray
is completely polarized perpendicular
© 1977 SCIENTIFIC AMERICAN, INC
to the plane of reflection. The angle is
called Brewster's angle, after David
Brewster, who discussed its significance
in 1815.
Light from the rainbow is almost
completely polarized, as can be seen
by looking at a rainbow through Polar­
oid sunglasses and rotating the lenses
around the line of sight. The strong po­
larization results from a remarkable co­
incidence: the internal angle of inci­
dence for the rainbow ray is very close
to Brewster's angle. Most of the parallel
component escapes in the transmitted
rays of Class 2, leaving a preponderance
of perpendicular rays in the rainbow.
With the understanding that both
matter and radiation can behave
as waves, the theory of the rainbow has
been enlarged in scope. It must now en­
compass new, invisible rainbows pro­
duced in atomic and nuclear scattering.
An analogy between geometrical op­
tics and classical particle mechanics had
already been perceived in 1831 by Wil­
liam Rowan Hamilton, the Irish mathe­
matician. The analogues of rays in geo­
metrical optics are particle trajectories,
and the bending of a light ray on enter­
ing a medium with a different refractive
index corresponds to the deflection of a
moving particle under the action of a
force. Particle-scattering analogues ex­
ist for many effects in optics, including
the rainbow.
Consider a collision between two at­
oms in a gas. As the atoms approach
from a large initial separation, they are
at first subject to a steadily increasing
attraction. At closer range, however, the
electron shells of the atoms begin to in­
terpenetrate and the attractive force di­
minishes. At very close range it becomes
an increasingly strong repulsion.
As in the optical experiment, the
atomic scattering can be analyzed by
tracing the paths of the atoms as a func­
tion of the impact parameter. Because
the forces vary gradually and continu­
ously, the atoms follow curved trajecto­
ries instead of changing direction sud­
denly, as at the boundary between me­
dia of differing refractive index. Even
though some of the trajectories are rath­
er complicated, each impact parameter
corresponds to a single deflection angle;
moreover, there is one trajectory that
represents a local maximum angular de­
flection. That trajectory turns out to be
the one that makes the most effective use
of the attractive interaction between
atoms. A strong concentration of scat­
tered particles is expected near this an­
gle; it is the rainbow angle for the inter­
acting atoms.
A wave-mechanical treatment of the
atomic and nuclear rainbows was for­
mulated in 1959 by Kenneth W. Ford of
Brandeis University and John A. Whee­
ler of Princeton University. Interference
between trajectories emerging in the
same direction gives rise to supernumer­
ary peaks in intensity. A particle-scatter­
ing analogue of Airy's theory has also
been derived.
An atomic rainbow was first observed
in 1964, by E. Hundhausen and H. Pau­
ly of the University of Bonn, in the scat-
100
90
80
70i='z 60w
()0: '
w
eo.>- 50f-
;;i=()w
-' 40LL
WW
0: -'ClZ<I:30 (/)
Cr:w
f-
(/)
�20 w
0:
en
II10 I
0 10 20
tering of sodium atoms by mercury at­
oms. The main rainbow peak and two
supernumeraries were detected; in more
recent experiments oscillations on an
even finer scale have been observed. The
rainbows measured in these experi­
ments carry information about the inter­
atomic forces. Just as the optical rain-
TOTAL INTERNAL REFLECTION
PARALLEL
90PLANE OF REFLECTION - PERPENDICULAR
WATER
AIR
EVANESCENT
WAVE
POLARIZATION OF THE RAINBOW results from differential reflection. An incident ray
can be resolved into two components polarized parallel to and perpendicular to the plane of
reflection. For a ray approaching an air-water bouudary from inside a droplet the reflectivity
of the surface depends ou the angle of incidence. Beyond a critical angle both parallel and per­
pendicular components are totally reflected, although some light travels parallel to the surface
as an "evanescent wave." At lesser angles the perpendicular component is reflected more effi­
ciently than the parallel one, and at one augle in particular, Brewster's angle, parallel-polarized
light is completely transmitted. The angle of internal reflection for the rainbow ray falls near
Brewster's angle. As a result light from the rainbow has a strong perpendicular polarization.
123
© 1977 SCIENTIFIC AMERICAN, INC
RAINBOW
TRAJECTORY
SCATTERING OF ATOMS BY ATOMS creates a particulate rainbow. The role played in
optical scattering by the refractive index is played here by interatomic forces. The principal dif­
ference is that the forces vary smoothly and continuously, so that the atoms follow curved
trajectories. Asone atom approaches another the force between them is initially a steadily
growing attraction (coloredshading),but at close range it becomes strongly repulsive (gray
shading).A local maximum in the scattering angle corresponds to the optical rainbow angle. It
is the angle made by the trajectory most effective in using the attractive part of the potential.
t(f)
::2:
�o
UJ
a:
UJ
1=«
u
(f)
LL
o
a:
UJ
co
::2:
::.
z
o 5
PRIMARY
/RAINBOW
10 15 20 25SCATTERING ANGLE (DEGREES)
30 35ATOMIC RAINBOW was detected by E. Hundhausen and H. Pauly of the University of Bonn
in the scattering of sodium atoms by mercury atoms. The oscillations in the number of scattered
atoms detected correspond to a primary rainbow and to two supernumerary peaks. A rainbow
of this kind embodies information about the strength and range of the interatomic forces.
124
bow angle depends solely on the refrac­
tive index, so the atomic rainbow angle
is determined by the strength of the at­
tractive part of the interaction. Similar­
ly, the positions of the supernumerary
peaks are size-dependent, and they pro­
vide information about the range of the
interaction. Observations of the same
kind have now been made in the scatter­
ing of atomic nuclei.
The Airy theory of the rainbow has
had many satisfying successes, but it
contains one disturbing uncertainty: the
need to guess the amplitude distribution
along the chosen initial wave front. The
assumptions employed in making that
guess are plausible only for rather large
raindrops. In this context size is best ex­
pressed in terms of a "size parameter,"
defined as the ratio of a droplet's cir­
cumference to the wavelength of the
light. The size parameter varies from
about 100 in fog or mist to several thou­
sand for large raindrops. Airy's approxi­
mation is plausible only for drops with a
size parameter greater than about 5,000.
It is ironic that a problem as intracta­
ble as the rainbow actually has an exact
solution, and one that has been known
for many years. As soon as the electro­
magnetic theory of light was proposed
by James Clerk Maxwell about a centu­
ry ago, it became possible to give a pre­
cise mathematical formulation of the
optical rainbow problem. What is need­
ed is a computation of the scattering of
an electromagnetic plane wave by a ho­
mogeneous sphere. The solution to a
similar but slightly easier problem, the
scattering of sound waves by a sphere,
was discussed by several investigators,
notably Lord Rayleigh, in the 1 9th cen­
tury. The solution they obtainedconsist­
ed of an infinite series of terms, called
partial waves. A solution of the same
form was found for the electromagnetic
problem in 1 908 by Gustav Mie and Pe­
ter J. W. Debye.
Given the existence of an exact solu­
tion to the scattering problem, it might
seem an easy matter to determine all its
features, including the precise character
of the rainbow. The problem, of course.
is the need to sum the series of partial
waves, each term of which is a rather
complicated function. The series can be
truncated to give an approximate solu­
tion, but this procedure is practical only
in some cases. The number of terms that
must be retained is of the same order of
magnitude as the size parameter. The
partial-wave series is therefore eminent­
ly suited to the treatment of Rayleigh
scattering, which is responsible for the
blue of the sky; in that case the scatter­
ing particles are molecules and are
much smaller than the wavelength, so
that one term of theseries isenough. For
the rainbow problem size parameters up
to several thousand must be considered.
© 1977 SCIENTIFIC AMERICAN, INC
A good approximation to the solution
by the partial-wave method would re­
quire evaluating the sum of several
thousand complicated terms. Comput­
ers have been applied to the task. but the
results are rapidly varying functions of
the size parameter and the scattering an­
gIe. so that the labor and cost quickly
become prohibitive. Besides. a comput­
er can only calculate numerical solu­
tions; it offers no insight into the physics
of the rainbow. We are thus in the tanta­
lizing situation of knowing a form of the
exact solution and yet being unable to
extract from it an understanding of the
phenomena it describes.
The first steps toward the resolution
of this paradox were taken in the
early years of the 20th century by the
mathematicians Henri Poincare and G.
N. Watson. They found a method for
transforming the partial,wave series.
which converges only very slowly onto a
stable value. into a rapidly convergent
expression. The technique has come to
be known as the Watson transformation
or as the complex-angular-momentum
method.
It is not particularly hard to see why
angular momentum is involved in the
rainbow problem. although it is less ob­
vious why "complex" values of the an­
gular momentum need to be considered.
The explanation is simplest in a corpus­
cular theory of light. in which a beam of
light is regarded as a stream of the parti­
cles called photons. Even though the
photon has no mass. it does transport
energy and momentum in inverse pro­
portion to the wavelength of the corre­
sponding light wave. When a photon
strikes a water droplet with some impact
parameter greater than zero. the photon
carries an angular momentum equal to
the product of its linear momentum and
the impact parameter. As the photon
undergoes a series of internal reflec­
tions. it is effectively orbiting the center
of the droplet. Actually quantum me­
chanics places additional constraints on
this process. On the one hand it requires
that the angular momentum assume
only certain discrete values; on the other
it denies that the impact parameter can
be precisely determined. Each discrete
value of angular momentum corre­
sponds to one term in the partial-wave
series.
In order to perform the Watson trans­
formation. values of the angular mo­
mentum that are conventionally regard­
ed as being "unphysical" must be intro­
duced. For one thing the angular mo­
mentum must be allowed to vary contin­
uously. instead of in quantized units;
more important. it must be allowed to
range over the complex numbers: those
that include both a real component and
an imaginary one. containing some mul­
tiple of the square root of - 1 . The
plane defined by these two components
is referred to as the complex-angular­
momentum plane.
Much is gained in return for the math­
ematical abstractions of the complex­
angular-momentum method. In particu­
lar. after going over to the complex­
angular-momentum plane through the
Watson transformation. the contribu­
tions to the partial-wave series can be
redistributed. Instead of a great many
terms. one can work with just a few
points called poles and saddle points in
the complex-angular-momentum plane.
In recent years the poles have attracted
great theoretical interest in the physics
of elementary particles. In that context
they are usually called Regge poles. af­
ter the Italian physicist Tullio Regge.
Both poles and saddle points have
physical interpretations in the rain­
bow problem. Contributions from real
saddle points are associated with the or­
dinary. real light rays we have been con­
sidering throughout this article. What
about complex saddle points? Imagi­
nary or complex numbers are ordinarily
regarded as being unphysical solutions
to an equation. but they are not mean­
ingless solutions. In descriptions of
wave propagation imaginary compo­
nents are usually associated with the
damping of the wave amplitude. For ex­
ample. in the total internal reflection of
a light ray at a water-air boundary a
INCIDENT RAY
light wave does go "through the looking
glass." Its amplitude is rapidly damped.
however. so that the intensity becomes
negligible within a depth on the order of
a single wavelength. Such a wave does
not propagate into the air; instead it be­
comes attached to the interface between
the water and the air. traveling along the
surface; it is called an evanescent wave.
The mathematical description of the ev­
anescent wave involves the imaginary
components of a solution. The effect
called quantum-mechanical tunneling.
in which a particle passes through a po­
tential barrier without climbing over it.
has a similar mathematical basis. "Com­
plex rays" also appear on the shadow
side of a caustic. where they describe the
damped amplitude of the diffracted
light waves.
Regge-pole contributions to the trans­
formed partial-wave series are associat­
ed with surface waves of another kind.
These waves are excited by incident rays
that strike the sphere tangentially. Once
such a wave is launched. it travels
around the sphere. but it is continually
damped because it sheds radiation tan­
gentially. like a garden sprinkler. At
each point along the wave's circumfer­
ential path it also penetrates the sphere
at the critical angle for total internal re­
flection. reemerging as a surface wave
after taking one or more such shortcuts.
It is interesting to note that Johannes
Kepler conjectured in 1 584 that "pin-
SURFACE
WAVE
IMPACT
PARAMETER
EQUAL TO
DROPLET
CRITICALANGLE
I_ __ _ __ ._ _ ___
CRITICALANGLE
SURFACE
WAVE
COMPLEX-ANGULAR-MOMENTUM theory of the rainbow begins with the ohservation
that a photon, or quantnm of light, incident on a droplet at some impact parameter (which can­
not be exactly defined) carries angular momentnm. In the theory, components of that angular
momentnm are extended to complex values, that is, values containing the square root of -1.
The consequences of this procedure can be illustrated by the example of a ray striking a drop­
let tangentially. The ray stimulates surface waves, which travel around the droplet and con­
tinuously shed radiation. The ray can also penetrate the droplet at the critical angle for total
internal reflection, emerging either to form another surface wave or to repeat the shortcut.
125© 1977 SCIENTIFIC AMERICAN, INC
wheel" rays of this kind might be re­
sponsible for the rainbow, but he aban­
doned the idea because it did not lead to
the correct rainbow angle.
In 1 937 the Dutch physicists Balthus
Van der Pol and H. Bremmer applied
Watson's transformation to the rainbow
problem, but they were able to show
only that Airy's approximation could be
obtained as a limiting case. In 1 965 I
developed an improved version of Wat­
son's method, and I applied it to the
rainbow problem in 1 969 with some­
what greater success.
In the simple Cartesian analysis we saw
that on the lighted side of the rain­
bow there are two rays emerging in the
same direction; at the rainbow angle
these coalesce into the single Descartes
ray of minimum deflection and on the
shadow side they vanish. In the com­
plex-angular-momentum plane, as I
have mentioned, each geometric ray
corresponds to a real saddle point.
Hence in mathematical terms a rainbow
is merely the collision of two saddle
f­
I
<9
:J
o
w
0:
w
�«
u
(fJ
lL
o
>­
f-
� 104w
f­
�
COMPLEX·
ANGULAR·
MOMENTUM ___
THEORY
points in the complex-angular-momen­
tum plane. In the shadow region beyond
the rainbow angle the saddle points do
not simply disappear; they become
complex, that is, they develop imagi­
nary parts. The diffracted light in Alex­
ander's dark band arises from a complex
saddle point. It is an example of a "com­
plex ray" on the shadow side of a caustic
curve.
It should be noted that the adoption of
the complex-angular-momentum meth­
od does not imply that earlier solutions
to the rainbow problem were wrong.
Descartes's explanation of the primary
bow as the ray of minimum deflection is
by no means invalid, and the supernu­
merary arcs can still be regarded as a
product of interference, as Young pro­
posed. The complex-angular-momen­
tum method simply gives a more com­
prehensive accounting of the paths
available to a photon in the rainbow re­
gion of the sky, and it thereby achieves
more accurate results.
In 1 975 Vijay Khare of the University
of Rochester made a detailed compari-
AIRY
THEORY -
139SCATTERING ANGLE (DEGREES)
son of three theories of the rainbow: the
Airy approximation, the "exact" solu­
tion, obtained by a computer summa­
tion of the partial-wave series, and the
rainbow terms in the complex-angular­
momentum method, associated with the
collision of two saddle points. For the
dominant, perpendicular polarization
the Airy theory requires only small cor­
rections within the primary bow, and its
errors become appreciable only in the
region of the supernumerary arcs. For
the scattered rays polarized parallel to
the scattering plane, however, Airy's ap­
proximation fails badly. For the super­
numerary arcs the exact solution shows
minima where the Airy theory has maxi­
mum intensity, and vice versa. This seri­
ous failure is an indirect result of the
near coincidence between the angle of
internal reflection for the rainbow rays
and Brewster's angle. At Brewster's an­
gie the amplitude of the reflected ray
changes sign, a change the Airy theory
does not take into account. As a result of
the change in sign the interference along
directions corresponding to the peaks in
140 141 142QUANTITATIVE THEORIES of tbe rainbow predict tbe intensity
of tbe scattered Iigbt as a function of tbe scatteriug angle and also
witb respect to droplet size and polarization. Here tbe predictions of
tbree tbeories are presented for parallel-polarized Iigbt scattered by
droplets witb a circumference equal to 1,500 wavelengths of tbe Iigbt.
One curve represents tbe "exact" solution to tbe rainbow problem,
derived from James Clerk Maxwell's equations describing electro­
magnetic radiation. The exact solution is tbe sum of an infinite series
of terms, approximated bere by adding up more tban 1,500 compli-
cated terms for eacb point employed in plotting tbe curve. Tbe Airy
tbeory is clearly in disagreement witb tbe exact solution, particu­
larly in tbe angular region of tbe supernumerary arcs. Tbere the exact
solution sbows trougbs at tbe positions of Airy's peaks. The results
obtained by the complex-angular-momentum metbod, on the otber
band, correspond closely to tbe exact solution, failing only to repro­
duce small, bigb-frequency oscillations. Tbese 8uctuations are associ­
ated witb anotber optical pbenomenon in tbe atmospbere, the glory,
wbicb is also explained by tbe complex-angular-momentum tbeory.
126 © 1977 SCIENTIFIC AMERICAN, INC
the Airy solutions is destructive instead
of constructive.
In terms of large-scale features, such
as the primary bow, the supernumerary
arcs and the dark-side diffraction pat­
tern, the complex-angular-momentum
result agrees quite closely with the exact
solution. Smaller-scale fluctuations in
the exact intensity curve are not repro­
duced as well by the rainbow terms in
the complex-angular-momentum meth­
od. On the other hand, the exact solu­
tion, for a typical size parameter of
1 ,500, requires the summation of more
than 1 .500 complicated terms; the com­
plex-angular-momentum curve is ob­
tained from only a few much simpler
terms.
The small residual fluctuations in the
exact intensity curve arise from
higher-order internal reflections: rays
belonging to classes higher than Class 3
or Class 4. They are of little importance
for the primary bow, but at larger scat­
tering angles their contribution increas­
es and near the backward direction it
becomes dominant. There these rays are
responsible for another fascinating me­
teorological display: the glory [see "The
Glory," by Howard C. Bryant and Nel­
son Jarmie; SCIENTIFICAMERICAN,July,
1 974].
The glory appears as a halo of spec­
tral colors surrounding the shadow an
observer casts on clouds or fog; it is
most commonly seen from an airplane
flying above clouds. It can also be ex­
plained through the complex-angular­
momentum theory, but the explanation
is more complicated than that for the
rainbow. One set of contributions to the
glory comes from the surface waves de­
scribed by Regge poles that are associat­
ed with the tangential rays of Kepler's
pinwheel type. Multiple internal reflec­
tions that happen to produce closed,
star-shaped polygons play an important
role, leading to resonances, or enhance­
ments in intensity. Such geometric coin­
cidences are very much in the spirit of
Kepler's theories.
A second important set of contribu­
tions, demonstrated by Khare, is from
the shadow side of higher-order rain­
bows that appear near the backward di­
rection. These contributions represent
the effect of complex rays. The lOth­
order rainbow, formed only a few de­
grees away from the backward direc­
tion, is particularly effective.
For the higher-order rainbows Airy's
theory would give incorrect results for
both polarizations, and so the complex­
angular-momentum theory must be em­
ployed. One might thus say the glory is
formed in part from the shadow of a
rainbow. It is gratifying to discover in
the elegant but seemingly abstract theo­
ry of complex angular momentum an
explanation for these two natural phe­
nomena, and to find there an unexpected
link between them.
Authors . . .
LOOKING
FOR A
PUBLISHER?Learn how to have
your book published.
You are i nvited to send for a free i l l us­
trated guidebook which explains how
your book can be published, p romoted
a n d m a r ke t e d .
W h e t h e r y o u r
subject is fic­
tion, non-fiction
or poetry, sci­
entific, scholar­
ly, special ized,
( e v e n c o n t ro­
v e r s La l ) t h i s
h a n d s o m e 52-
page brochure
wi l l show you
how to arrange
for prompt pub-
lication.
U n p u b l i s h e d a u t h o rs, e s p e c i a l ly, w i l l
find this booklet valuable and i nform­
a t i v e . For y o u r f r e e c o p y , w r i t e t o :
VANTAGE PRESS, Inc. Dept. F-53
516W.34St., New York, N.Y. 10001
PROFESSIONALDISCOUNTSTexas Instruments
electronic calculator
TI·30. . $21 .95 SR·51 ·11 . $54.50
1 600 . 21 .95 SR·56 . . . 84.50
1 650 . . . 26.95 SR·52 . . . 1 84.95
2550-11 28.50 pc·l 00 . . 1 54.95
SR-40 . 31 .95 TI·5050M . 89.95 j�igrBus. Anst. 32.50 504O-PD . . 1 1 4.95
51 00 . . . 44.95 Money Mgr. 21 .95
Libraries 24.�39.95
Ask for TI digital watches!
_ ( N o creditcards)HP.2t .
HE�:�:oTil�f:frEKARDs:!��
Hp·22 . . . . . . 102.25 HP·67 . . . 395.00
HP·25 . t t8.90 Hp·97 . 664.95
NOVUS�NATIONAL
SEMICON DUCTOR
Malh 451 0 . .
Scientist 4520 . .
Scientist PR4525 .
Financier PR6025 .
16.95 Stalislician PR6035 . . S 32.50
29.95 NS·4640 . . 49.95
54.95 NS·7 t oo . . . . 395.00
32.50 Adversary TV Game . . . 74.95
IIII!!I�IIIIIIIIII__� Programmable Video Game . $149.95
FAIRCMILO (2000 games possiblel
'-lillliilili_iliiii. Cartridges . . . . . . . . . 1 7.95-
Also Fairchild watches!
WE Will BEAT OR MEET ANY COMPETITORS' PRICE IF
HE HAS MERCHANDISE ON HAND. 3().day exchange by
TK. "year warranty by manufacturers. All units shipped in
originaf factorycartons with accessories according to manu·
facturers ' specifications. In Calif. call (21 31 37()'5795 or
OROERS ONLY CALL (8001 421·0367 (other than CAl. Send
money order. Pers. ck (2 wks to clear); in CA add 6% sales tax.
Add $3.50 min. shippirtg charges US ortly, $7.00 for SR·52,
PC·100, Hp·67, ·97 Cartada min. shipping charges $6.50.
WE SHIP UPS AIR. Send mail orders to OEPT. SA-D.
"th��[@,�=II16611HawthorneBlvd.awndale,Ca.90260(213)370·5795(800)421-0367
read less
kRal marekeepupwithallnewadvancesIntechnologywithonly30minutesaweek200 paragraph size digests Qulk-Sean newsleHer Ionnat
of ,ltal a�lcles from 350 lets roo plclc out lust what
Pllbllcatlons wort�Ide"". you need to know.",.!a."
SPECIAL
1/2 PRICE OFFER
$12 for 12 weeks
A PredicaslsP U B L I CA T I O N
. - - - - - - -
. ... - - - - - - - ­
- -- - - - - - - - - -
- - - - - - - - - - _ . -
- - ---- - - _ ... _. -
- - - ... . _ - -- -
- ... - ... . ... ... _- -
- - -_ ... . . ... _- -
- - - - _ ... - - - _ . -
- - _ . _ - - - - _ . -
- _ .. .. . ... _ - - _ . _ .
- .. - - - - - - . _ .
- - - - - - - -
- - - - - - - - --
- - - - - - - - --
-- - - - - - _.
- - - - - - - -
- - - - - - -
- - - _ . - -
- - _ . - - -
_ ... _ - - - - -
- - - - - - - -
- - - - - -
- - - - - -
$!ID,.,,..,-WNlt,,IrwRiTEORCALl:SPECiALOFFERDEPTB�1
I
TECHNICALSURVEY, 11001CEDARAVE.CLEVELAND,OH44106, (216)795--3000 I
IName I
I Company I
IAddress
I
L£.ity __:.J
127© 1977 SCIENTIFIC AMERICAN, INC

More Related Content

What's hot

Ppt 2 difraksi kristal dan kisi balik
Ppt 2 difraksi kristal dan kisi balikPpt 2 difraksi kristal dan kisi balik
Ppt 2 difraksi kristal dan kisi balikwindyramadhani52
 
Reaksi unsur golongan II A
Reaksi unsur golongan II AReaksi unsur golongan II A
Reaksi unsur golongan II AYuke Puspita
 
Pelatihan Mekanika untuk OSK Fisika 2014
Pelatihan Mekanika untuk OSK Fisika 2014Pelatihan Mekanika untuk OSK Fisika 2014
Pelatihan Mekanika untuk OSK Fisika 2014Zainal Abidin Mustofa
 
Kegagalan Fisika Klasik menjelaskan Mekanika Kuantum
Kegagalan Fisika Klasik menjelaskan Mekanika KuantumKegagalan Fisika Klasik menjelaskan Mekanika Kuantum
Kegagalan Fisika Klasik menjelaskan Mekanika KuantumAdli Sone
 
LAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERM
LAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERMLAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERM
LAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERMNesha Mutiara
 
Laporan praktikum fisika Hukum Hooke
Laporan praktikum fisika Hukum HookeLaporan praktikum fisika Hukum Hooke
Laporan praktikum fisika Hukum HookeYunan Malifah
 
Pp inti atom dan radioaktivitas
Pp inti atom dan radioaktivitasPp inti atom dan radioaktivitas
Pp inti atom dan radioaktivitasSri Wulan Hidayati
 
Laporan hasil praktikum pembiasan pada prisma
Laporan hasil praktikum pembiasan pada prismaLaporan hasil praktikum pembiasan pada prisma
Laporan hasil praktikum pembiasan pada prismaFitri Kurniawati
 
Bab ii atom hidrogen
Bab ii atom hidrogenBab ii atom hidrogen
Bab ii atom hidrogenDwi Karyani
 
Soal Laju Reaksi + Pembahasan
Soal Laju Reaksi + PembahasanSoal Laju Reaksi + Pembahasan
Soal Laju Reaksi + PembahasanArsyi Nurani
 
Laporan praktikum hukum melde kelompok 1
Laporan praktikum hukum melde kelompok 1Laporan praktikum hukum melde kelompok 1
Laporan praktikum hukum melde kelompok 1Nita Mardiana
 
Soal kesetimbangan kimia dan pergeseran kimia
Soal kesetimbangan kimia dan pergeseran kimiaSoal kesetimbangan kimia dan pergeseran kimia
Soal kesetimbangan kimia dan pergeseran kimiaYusi Rahmah
 
1 b 59_utut muhammad_laporan akhir mi (momen inersia)
1 b 59_utut muhammad_laporan akhir mi (momen inersia)1 b 59_utut muhammad_laporan akhir mi (momen inersia)
1 b 59_utut muhammad_laporan akhir mi (momen inersia)umammuhammad27
 
MANFAAT RADIOISOTOP DI BERBAGAI BIDANG KEHIDUPAN
MANFAAT RADIOISOTOP DI BERBAGAI BIDANG KEHIDUPANMANFAAT RADIOISOTOP DI BERBAGAI BIDANG KEHIDUPAN
MANFAAT RADIOISOTOP DI BERBAGAI BIDANG KEHIDUPANNur Widdya Kurniati
 

What's hot (20)

Ppt 2 difraksi kristal dan kisi balik
Ppt 2 difraksi kristal dan kisi balikPpt 2 difraksi kristal dan kisi balik
Ppt 2 difraksi kristal dan kisi balik
 
Spektrum garis
Spektrum garisSpektrum garis
Spektrum garis
 
Reaksi unsur golongan II A
Reaksi unsur golongan II AReaksi unsur golongan II A
Reaksi unsur golongan II A
 
Pelatihan Mekanika untuk OSK Fisika 2014
Pelatihan Mekanika untuk OSK Fisika 2014Pelatihan Mekanika untuk OSK Fisika 2014
Pelatihan Mekanika untuk OSK Fisika 2014
 
Kegagalan Fisika Klasik menjelaskan Mekanika Kuantum
Kegagalan Fisika Klasik menjelaskan Mekanika KuantumKegagalan Fisika Klasik menjelaskan Mekanika Kuantum
Kegagalan Fisika Klasik menjelaskan Mekanika Kuantum
 
LAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERM
LAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERMLAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERM
LAPORAN PRAKTIKUM REAKSI ENDOTERM DAN REAKSI EKSOTERM
 
Laporan praktikum fisika Hukum Hooke
Laporan praktikum fisika Hukum HookeLaporan praktikum fisika Hukum Hooke
Laporan praktikum fisika Hukum Hooke
 
Pp inti atom dan radioaktivitas
Pp inti atom dan radioaktivitasPp inti atom dan radioaktivitas
Pp inti atom dan radioaktivitas
 
Laporan hasil praktikum pembiasan pada prisma
Laporan hasil praktikum pembiasan pada prismaLaporan hasil praktikum pembiasan pada prisma
Laporan hasil praktikum pembiasan pada prisma
 
Bab ii atom hidrogen
Bab ii atom hidrogenBab ii atom hidrogen
Bab ii atom hidrogen
 
Listrik arus searah
Listrik arus searahListrik arus searah
Listrik arus searah
 
Gas mulia (Golongan VIII A)
Gas mulia (Golongan VIII A)Gas mulia (Golongan VIII A)
Gas mulia (Golongan VIII A)
 
Soal Laju Reaksi + Pembahasan
Soal Laju Reaksi + PembahasanSoal Laju Reaksi + Pembahasan
Soal Laju Reaksi + Pembahasan
 
Laporan praktikum hukum melde kelompok 1
Laporan praktikum hukum melde kelompok 1Laporan praktikum hukum melde kelompok 1
Laporan praktikum hukum melde kelompok 1
 
Soal kesetimbangan kimia dan pergeseran kimia
Soal kesetimbangan kimia dan pergeseran kimiaSoal kesetimbangan kimia dan pergeseran kimia
Soal kesetimbangan kimia dan pergeseran kimia
 
Persamaan Schrodinger
Persamaan SchrodingerPersamaan Schrodinger
Persamaan Schrodinger
 
1 b 59_utut muhammad_laporan akhir mi (momen inersia)
1 b 59_utut muhammad_laporan akhir mi (momen inersia)1 b 59_utut muhammad_laporan akhir mi (momen inersia)
1 b 59_utut muhammad_laporan akhir mi (momen inersia)
 
MANFAAT RADIOISOTOP DI BERBAGAI BIDANG KEHIDUPAN
MANFAAT RADIOISOTOP DI BERBAGAI BIDANG KEHIDUPANMANFAAT RADIOISOTOP DI BERBAGAI BIDANG KEHIDUPAN
MANFAAT RADIOISOTOP DI BERBAGAI BIDANG KEHIDUPAN
 
Praktikum Sel Volta
Praktikum Sel VoltaPraktikum Sel Volta
Praktikum Sel Volta
 
Ppt gelombang elektromagnetik
Ppt gelombang elektromagnetikPpt gelombang elektromagnetik
Ppt gelombang elektromagnetik
 

Viewers also liked

“Energi dan Momentum pada Gelombang Elektromagnetik”
“Energi dan Momentum pada Gelombang Elektromagnetik”“Energi dan Momentum pada Gelombang Elektromagnetik”
“Energi dan Momentum pada Gelombang Elektromagnetik”Millathina Puji Utami
 
Modul proses terjadinya pelangi/sitinasity
Modul proses terjadinya pelangi/sitinasityModul proses terjadinya pelangi/sitinasity
Modul proses terjadinya pelangi/sitinasitysitinasityy
 
Text explanation How Rainbow Formed
Text explanation How Rainbow FormedText explanation How Rainbow Formed
Text explanation How Rainbow FormedNur Wakhidah
 
rainbow colours
rainbow coloursrainbow colours
rainbow coloursgargdeepti
 
What are the colours of the rainbow?
What are the colours of the rainbow?What are the colours of the rainbow?
What are the colours of the rainbow?SLauren
 
Praktikum membuat pelangi
Praktikum membuat pelangiPraktikum membuat pelangi
Praktikum membuat pelangiSheryl Canely
 
Colors of the rainbow
Colors of the rainbowColors of the rainbow
Colors of the rainbowbailey301
 
Assignment ICT Multimedia 'Pembentukan Pelangi'
Assignment  ICT Multimedia 'Pembentukan Pelangi'Assignment  ICT Multimedia 'Pembentukan Pelangi'
Assignment ICT Multimedia 'Pembentukan Pelangi'Nuzue LieYana
 
buku k13 kelas XI SMA semester 2 bahasa indonesia
buku k13 kelas XI SMA semester 2 bahasa indonesiabuku k13 kelas XI SMA semester 2 bahasa indonesia
buku k13 kelas XI SMA semester 2 bahasa indonesiaEndang Pristiawaty
 

Viewers also liked (18)

Ppt pelangi
Ppt pelangiPpt pelangi
Ppt pelangi
 
Terjadinya Pelangi
Terjadinya Pelangi Terjadinya Pelangi
Terjadinya Pelangi
 
“Energi dan Momentum pada Gelombang Elektromagnetik”
“Energi dan Momentum pada Gelombang Elektromagnetik”“Energi dan Momentum pada Gelombang Elektromagnetik”
“Energi dan Momentum pada Gelombang Elektromagnetik”
 
Modul proses terjadinya pelangi/sitinasity
Modul proses terjadinya pelangi/sitinasityModul proses terjadinya pelangi/sitinasity
Modul proses terjadinya pelangi/sitinasity
 
Pelangi
PelangiPelangi
Pelangi
 
Text explanation How Rainbow Formed
Text explanation How Rainbow FormedText explanation How Rainbow Formed
Text explanation How Rainbow Formed
 
Pelangi Hijauh
Pelangi HijauhPelangi Hijauh
Pelangi Hijauh
 
Mtkpelangi
MtkpelangiMtkpelangi
Mtkpelangi
 
rainbow colours
rainbow coloursrainbow colours
rainbow colours
 
Lesson 7.3
Lesson 7.3Lesson 7.3
Lesson 7.3
 
What are the colours of the rainbow?
What are the colours of the rainbow?What are the colours of the rainbow?
What are the colours of the rainbow?
 
Praktikum membuat pelangi
Praktikum membuat pelangiPraktikum membuat pelangi
Praktikum membuat pelangi
 
Rainbow's Rainbow
Rainbow's RainbowRainbow's Rainbow
Rainbow's Rainbow
 
Colors of the rainbow
Colors of the rainbowColors of the rainbow
Colors of the rainbow
 
Rainbow
RainbowRainbow
Rainbow
 
How rainbow is formed
How rainbow is formedHow rainbow is formed
How rainbow is formed
 
Assignment ICT Multimedia 'Pembentukan Pelangi'
Assignment  ICT Multimedia 'Pembentukan Pelangi'Assignment  ICT Multimedia 'Pembentukan Pelangi'
Assignment ICT Multimedia 'Pembentukan Pelangi'
 
buku k13 kelas XI SMA semester 2 bahasa indonesia
buku k13 kelas XI SMA semester 2 bahasa indonesiabuku k13 kelas XI SMA semester 2 bahasa indonesia
buku k13 kelas XI SMA semester 2 bahasa indonesia
 

Similar to Tugas Pelangi

Streamer waves, final version
Streamer waves, final versionStreamer waves, final version
Streamer waves, final versionNicholas Mellor
 
ppt pembiasan optik g8
ppt pembiasan optik g8ppt pembiasan optik g8
ppt pembiasan optik g8DIAH KOHLER
 
Gelombang mekanik
Gelombang mekanikGelombang mekanik
Gelombang mekanikemri3
 
What is the Speed of Light !!!!.pdf
What is the Speed of Light !!!!.pdfWhat is the Speed of Light !!!!.pdf
What is the Speed of Light !!!!.pdfkhalid mehmood
 
Refraction of Light-Notes.pdf
Refraction of Light-Notes.pdfRefraction of Light-Notes.pdf
Refraction of Light-Notes.pdfTITUSINDIMULI
 
PRL Summer Internship Report - 2015
PRL Summer Internship Report - 2015 PRL Summer Internship Report - 2015
PRL Summer Internship Report - 2015 Praveen Kumar Singh
 
108938458 physics-study-guide
108938458 physics-study-guide108938458 physics-study-guide
108938458 physics-study-guidehomeworkping7
 
Chapter 7 - Wave optics.pptx
Chapter 7 - Wave optics.pptxChapter 7 - Wave optics.pptx
Chapter 7 - Wave optics.pptxPooja M
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSAli Osman Öncel
 
Poster: Teaching about mechanical waves and sound with a tuning fork and the Sun
Poster: Teaching about mechanical waves and sound with a tuning fork and the SunPoster: Teaching about mechanical waves and sound with a tuning fork and the Sun
Poster: Teaching about mechanical waves and sound with a tuning fork and the SunSilvia Galano
 
CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics Pooja M
 
Lo9 physics
Lo9 physicsLo9 physics
Lo9 physicsjgalay
 
Optical phenomena
Optical phenomena Optical phenomena
Optical phenomena Satish Gupta
 

Similar to Tugas Pelangi (20)

Streamer waves, final version
Streamer waves, final versionStreamer waves, final version
Streamer waves, final version
 
ppt pembiasan optik g8
ppt pembiasan optik g8ppt pembiasan optik g8
ppt pembiasan optik g8
 
Gelombang mekanik
Gelombang mekanikGelombang mekanik
Gelombang mekanik
 
What is the Speed of Light !!!!.pdf
What is the Speed of Light !!!!.pdfWhat is the Speed of Light !!!!.pdf
What is the Speed of Light !!!!.pdf
 
4.4
4.44.4
4.4
 
Refraction of Light-Notes.pdf
Refraction of Light-Notes.pdfRefraction of Light-Notes.pdf
Refraction of Light-Notes.pdf
 
PRL Summer Internship Report - 2015
PRL Summer Internship Report - 2015 PRL Summer Internship Report - 2015
PRL Summer Internship Report - 2015
 
108938458 physics-study-guide
108938458 physics-study-guide108938458 physics-study-guide
108938458 physics-study-guide
 
L3 emr
L3 emrL3 emr
L3 emr
 
4.4
4.44.4
4.4
 
Chapter 7 - Wave optics.pptx
Chapter 7 - Wave optics.pptxChapter 7 - Wave optics.pptx
Chapter 7 - Wave optics.pptx
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
BASICS OF COSMOLOGY
BASICS OF COSMOLOGYBASICS OF COSMOLOGY
BASICS OF COSMOLOGY
 
Poster: Teaching about mechanical waves and sound with a tuning fork and the Sun
Poster: Teaching about mechanical waves and sound with a tuning fork and the SunPoster: Teaching about mechanical waves and sound with a tuning fork and the Sun
Poster: Teaching about mechanical waves and sound with a tuning fork and the Sun
 
Q value
Q value Q value
Q value
 
CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics CLASS XII PHYSICS Chapter 7 - wave optics
CLASS XII PHYSICS Chapter 7 - wave optics
 
Lo9 physics
Lo9 physicsLo9 physics
Lo9 physics
 
Velocity Of Sound
Velocity Of SoundVelocity Of Sound
Velocity Of Sound
 
Optical phenomena
Optical phenomenaOptical phenomena
Optical phenomena
 
Optical phenomena
Optical phenomena Optical phenomena
Optical phenomena
 

More from Abdul Jamil

Peta-Okupasi-Bidang-Komunikasi.pdf
Peta-Okupasi-Bidang-Komunikasi.pdfPeta-Okupasi-Bidang-Komunikasi.pdf
Peta-Okupasi-Bidang-Komunikasi.pdfAbdul Jamil
 
Uji Permeabilitas
Uji PermeabilitasUji Permeabilitas
Uji PermeabilitasAbdul Jamil
 
Hasil Diskusi/ Tanya Jawab Problem Solving Learning
Hasil Diskusi/ Tanya Jawab Problem Solving LearningHasil Diskusi/ Tanya Jawab Problem Solving Learning
Hasil Diskusi/ Tanya Jawab Problem Solving LearningAbdul Jamil
 
Seng Penting Numpuk
Seng Penting NumpukSeng Penting Numpuk
Seng Penting NumpukAbdul Jamil
 
Panduan Pendaftaran SPAN 2014
Panduan Pendaftaran SPAN 2014Panduan Pendaftaran SPAN 2014
Panduan Pendaftaran SPAN 2014Abdul Jamil
 
Model Pembelajaran Saintifik Mapel prakarya
Model Pembelajaran Saintifik Mapel prakaryaModel Pembelajaran Saintifik Mapel prakarya
Model Pembelajaran Saintifik Mapel prakaryaAbdul Jamil
 
Model Pembelajaran Saintifik Mapel antrhopologi
Model Pembelajaran Saintifik Mapel antrhopologiModel Pembelajaran Saintifik Mapel antrhopologi
Model Pembelajaran Saintifik Mapel antrhopologiAbdul Jamil
 
Model Pembelajaran Saintifik Mapel pkn
Model Pembelajaran Saintifik Mapel pknModel Pembelajaran Saintifik Mapel pkn
Model Pembelajaran Saintifik Mapel pknAbdul Jamil
 
Model Pembelajaran Saintifik Mapel pai
Model Pembelajaran Saintifik Mapel paiModel Pembelajaran Saintifik Mapel pai
Model Pembelajaran Saintifik Mapel paiAbdul Jamil
 
Model Pembelajaran Saintifik Mapel bhs-inggris
Model Pembelajaran Saintifik Mapel bhs-inggrisModel Pembelajaran Saintifik Mapel bhs-inggris
Model Pembelajaran Saintifik Mapel bhs-inggrisAbdul Jamil
 
Model Pembelajaran Saintifik Mapel sosiologi
Model Pembelajaran Saintifik Mapel sosiologiModel Pembelajaran Saintifik Mapel sosiologi
Model Pembelajaran Saintifik Mapel sosiologiAbdul Jamil
 
Model Pembelajaran Saintifik Mapel sejarah
Model Pembelajaran Saintifik Mapel sejarahModel Pembelajaran Saintifik Mapel sejarah
Model Pembelajaran Saintifik Mapel sejarahAbdul Jamil
 
Model Pembelajaran Saintifik Mapel biologi
Model Pembelajaran Saintifik Mapel biologiModel Pembelajaran Saintifik Mapel biologi
Model Pembelajaran Saintifik Mapel biologiAbdul Jamil
 
Model Pembelajaran Saintifik Mapel kimia
Model Pembelajaran Saintifik Mapel kimiaModel Pembelajaran Saintifik Mapel kimia
Model Pembelajaran Saintifik Mapel kimiaAbdul Jamil
 
Model Pembelajaran Saintifik Mapel fisika
Model Pembelajaran Saintifik Mapel fisikaModel Pembelajaran Saintifik Mapel fisika
Model Pembelajaran Saintifik Mapel fisikaAbdul Jamil
 
Model Pembelajaran Saintifik Mapel matematika
Model Pembelajaran Saintifik Mapel matematikaModel Pembelajaran Saintifik Mapel matematika
Model Pembelajaran Saintifik Mapel matematikaAbdul Jamil
 

More from Abdul Jamil (20)

Peta-Okupasi-Bidang-Komunikasi.pdf
Peta-Okupasi-Bidang-Komunikasi.pdfPeta-Okupasi-Bidang-Komunikasi.pdf
Peta-Okupasi-Bidang-Komunikasi.pdf
 
Fisika paket 4
Fisika paket 4Fisika paket 4
Fisika paket 4
 
Fisika paket 3
Fisika paket 3Fisika paket 3
Fisika paket 3
 
Fisika paket 2
Fisika paket 2Fisika paket 2
Fisika paket 2
 
Fisika paket 1
Fisika paket 1Fisika paket 1
Fisika paket 1
 
Uji Permeabilitas
Uji PermeabilitasUji Permeabilitas
Uji Permeabilitas
 
Hasil Diskusi/ Tanya Jawab Problem Solving Learning
Hasil Diskusi/ Tanya Jawab Problem Solving LearningHasil Diskusi/ Tanya Jawab Problem Solving Learning
Hasil Diskusi/ Tanya Jawab Problem Solving Learning
 
Seng Penting Numpuk
Seng Penting NumpukSeng Penting Numpuk
Seng Penting Numpuk
 
Panduan Pendaftaran SPAN 2014
Panduan Pendaftaran SPAN 2014Panduan Pendaftaran SPAN 2014
Panduan Pendaftaran SPAN 2014
 
Model Pembelajaran Saintifik Mapel prakarya
Model Pembelajaran Saintifik Mapel prakaryaModel Pembelajaran Saintifik Mapel prakarya
Model Pembelajaran Saintifik Mapel prakarya
 
Model Pembelajaran Saintifik Mapel antrhopologi
Model Pembelajaran Saintifik Mapel antrhopologiModel Pembelajaran Saintifik Mapel antrhopologi
Model Pembelajaran Saintifik Mapel antrhopologi
 
Model Pembelajaran Saintifik Mapel pkn
Model Pembelajaran Saintifik Mapel pknModel Pembelajaran Saintifik Mapel pkn
Model Pembelajaran Saintifik Mapel pkn
 
Model Pembelajaran Saintifik Mapel pai
Model Pembelajaran Saintifik Mapel paiModel Pembelajaran Saintifik Mapel pai
Model Pembelajaran Saintifik Mapel pai
 
Model Pembelajaran Saintifik Mapel bhs-inggris
Model Pembelajaran Saintifik Mapel bhs-inggrisModel Pembelajaran Saintifik Mapel bhs-inggris
Model Pembelajaran Saintifik Mapel bhs-inggris
 
Model Pembelajaran Saintifik Mapel sosiologi
Model Pembelajaran Saintifik Mapel sosiologiModel Pembelajaran Saintifik Mapel sosiologi
Model Pembelajaran Saintifik Mapel sosiologi
 
Model Pembelajaran Saintifik Mapel sejarah
Model Pembelajaran Saintifik Mapel sejarahModel Pembelajaran Saintifik Mapel sejarah
Model Pembelajaran Saintifik Mapel sejarah
 
Model Pembelajaran Saintifik Mapel biologi
Model Pembelajaran Saintifik Mapel biologiModel Pembelajaran Saintifik Mapel biologi
Model Pembelajaran Saintifik Mapel biologi
 
Model Pembelajaran Saintifik Mapel kimia
Model Pembelajaran Saintifik Mapel kimiaModel Pembelajaran Saintifik Mapel kimia
Model Pembelajaran Saintifik Mapel kimia
 
Model Pembelajaran Saintifik Mapel fisika
Model Pembelajaran Saintifik Mapel fisikaModel Pembelajaran Saintifik Mapel fisika
Model Pembelajaran Saintifik Mapel fisika
 
Model Pembelajaran Saintifik Mapel matematika
Model Pembelajaran Saintifik Mapel matematikaModel Pembelajaran Saintifik Mapel matematika
Model Pembelajaran Saintifik Mapel matematika
 

Recently uploaded

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 

Tugas Pelangi

  • 1. Disusun Oleh :Disusun Oleh :Disusun Oleh : NamaNamaNama ::: Abdul JamilAbdul JamilAbdul Jamil NIMNIMNIM ::: 040 25 13 121040 25 13 121040 25 13 121 PROGRAM STUDI PENDIDIKAN IPA (FISIKA)PROGRAM STUDI PENDIDIKAN IPA (FISIKA)PROGRAM STUDI PENDIDIKAN IPA (FISIKA) PROGRAM PASCASARJANAPROGRAM PASCASARJANAPROGRAM PASCASARJANA UNIVERSITAS NEGERI SEMARANGUNIVERSITAS NEGERI SEMARANGUNIVERSITAS NEGERI SEMARANG 201420142014 FENOMENA ALAM PELANGIFENOMENA ALAM PELANGIFENOMENA ALAM PELANGI Disusun Untuk Melengkapi Salah Satu TugasDisusun Untuk Melengkapi Salah Satu TugasDisusun Untuk Melengkapi Salah Satu Tugas Mata Kuliah : Kapita Selekta FisikaMata Kuliah : Kapita Selekta FisikaMata Kuliah : Kapita Selekta Fisika Dosen Pengampu : Dr. Agus Yulianto, M. Si.Dosen Pengampu : Dr. Agus Yulianto, M. Si.Dosen Pengampu : Dr. Agus Yulianto, M. Si.
  • 2. 1Kapita Selekta Fisika “Fenomena Pelangi” FENOMENA PELANGI Pendahuluan Pelangi merupakan salah satu fenomena yang sering terjadi di daerah tropis, seperti Indonesia. Menurut Smith (2000:32) Indonesia miliki intensitas cahaya matahari yang lebih tinggi dibandingkan dengan daerah kutub. Sinar matahari, angin, dan rotasi bumi dapat mempengaruhi arus air laut. Tingginya arus air laut dapat meningkatkan proses kondensasi, sehingga curah hujan akan semakin tinggi di daerah tropis. Kombinasi antara berbagai faktor alam tersebut akan mempengaruhi terbentuknya pelangi. Fenomena pelangi yang tercipta ketika rintik hujan memecah sinar matahari telah membuat manusia terpesona sejak zaman dahulu kala. Upaya menjelaskan pelangi secara ilmiah pun telah dilakukan sejak masa Aristoteles. Kunci terjadinya pelangi adalah pembiasan, pemantulan dan dispersi cahaya. Sejauh ini pendekatan yang digunakan untuk menjawab fenomena pelangi ialah dari sisi fisika, namun pendekatan dengan menggunakan matematika, khususnya kalkulus masih jarang ditemui. Kalkulus merupakan salah satu cabang ilmu matematika yang membahas masalah limit, turunan, integral dan deret tak terhingga. Kalkulus merupakan ilmu mengenai perubahan, geometri merupakan ilmu yang mempelajari bentuk benda dan aljabar merupakan ilmu mengenai pengerjaan untuk persamaan serta aplikasinya. Di sisi lain, kalkulus memiliki aplikasi yang luas dalam bidang sains, ekonomi, dan teknik serta dapat memecahkan masalah yang tidak dapat dipecahkan dengan aljabar elementer. Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral. Aplikasi kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa, kerja, dan tekanan. Sedangkan aplikasi dari kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, nilai minimum dan maksimum. Kita dapat menjelaskan fenomena pelangi yang sering kita temui dalam kehidupan sehari-hari dengan menggunakan prinsip nilai minimum dan maksimum, Penulis merasa fenomena pelangi ini sangat menarik perhatian, karena masalah tersebut belum dijelaskan dalam materi perkuliahan, khususnya dari sudut pandang kalkulus. Pembahasan masalah ini dibuat agar tinjauan kalkulus untuk pelangi dapat dilakukan secara lebih mendalam.
  • 3. 2Kapita Selekta Fisika “Fenomena Pelangi” Pembiasan Cahaya Pembiasan cahaya adalah peristiwa penyimpangan atau pembelokkan arah rambat cahaya karena cahaya melalui dua medium yang berbeda kerapatan optiknya. Arah pembiasan cahaya dibedakan menjadi dua macam, yaitu mendekati garis normal dan menjauhi garis normal. Cahaya dibiaskan mendekati garis normal jika cahaya merambat dari medium optik kurang rapat ke medium optik lebih rapat. Contohnya jika cahaya merambat dari udara ke air. Sedangkan cahaya akan dibiaskan menjauhi garis normal jika cahaya merambat dari medium optik lebih rapat ke medium optik kurang rapat. Contohnya jika cahaya merambat dari air ke udara. Syarat-syarat terjadinya pembiasan cahaya ialah cahaya melalui dua medium yang berbeda kerapatan optiknya dan cahaya datang tidak tegak lurus terhadap bidang batas. Indeks Bias Cahaya Pembiasan cahaya dapat terjadi karena terdapat perbedaan laju cahaya pada kedua medium. Laju cahaya pada medium yang rapat lebih kecil dibandingkan dengan laju cahaya pada medium yang kurang rapat. Menurut Christian Huygens (1629-1695): “Perbandingan laju cahaya dalam ruang hampa dengan laju cahaya dalam suatu zat dinamakan indeks bias.” Bahan bening yang dibatas oleh dua bidang permukaan yang bersudut disebut prisma. Tetesan air hujan merupakan salah satu benda yang dihasilkan oleh alam, namun memiliki sifat seperti prisma. Maksudnya jika sebuah cahaya menembus tetesan air, maka cahaya tersebut akan dibiaskan. Pemantulan Cahaya Cahaya sebagai gelombang dapat memantul bila mengenai permukaan suatu benda. Pemantulan cahaya dapat dibedakan menjadi dua jenis, yaitu pemantulan sempurna dan pemantulan baur. Pemantulan sempurna terjadi jika cahaya mengenai permukaan yang mengkilap, seperti cermin. Saat cahaya mengenai permukaan cermin, kita dapat memprediksi arah pemantulannya. Sedangkan pemantulan baur dapat terjadi jika cahaya mengenai permukaan yang tidak rata, seperti kertas atau batu. Dispersi Cahaya Dispersi cahaya merupakan gejala penyebaran gelombang ketika menjalar melalui celah sempit atau tepi tajam suatu benda. Seberkas cahaya polikromatik jika melalui prisma akan mengalami proses penguraian warna cahaya menjadi warna-warna monokromatik. Dispersi cahaya terjadi jika ukuran celah lebih kecil dari panjang gelombang yang melaluinya.
  • 4. 3Kapita Selekta Fisika “Fenomena Pelangi” Hukum Snellius Pada sekitar tahun 1621, ilmuan Belanda bernama Willebrord Snell melakukan eksperimen untuk mencari hubungan antara sudut datang dengan sudut bias. A. Hukum Snellius terhadap Pemantulan Cahaya 1. Sinar datang, sinar pantul dan garis normal terletak pada satu bidang datar 2. Sudut datang sama dengan sudut pantul B. Hukum Snellius terhadap Pembiasan Cahaya Jika cahaya merambat dari medium yang kerapatannya rendah menuju medium yang kerapatannya tinggi, maka cahaya akan dibiaskan mendekati garis normal. Jika cahaya merambat dari medium yang kerapatannya tinggi menuju medium yang kerapatannya rendah, maka cahaya akan dibiaskan menjauhi garis normal. Selanjutnya kita dapat menghitung sudut datang dan sudut bias berdasarkan Hukum Snellius 𝑠𝑖𝑛( 𝛼) = 𝑘 𝑠𝑖𝑛( 𝛽) dengan: 𝛼 ∶ sudut datang 𝛽 ∶ sudut bias 𝑘 ∶ indeks bias 𝛽 x 𝛼 x Sumber Cahaya Renggang Rapat N 𝛽 x α Sumber Cahaya Rapat Renggang N Gambar Pembiasan Cahaya 𝛼 x Sumber Cahaya N 𝛼 x Sudut datang Sudut pantul Gambar Pemantulan Sempurna
  • 5. 4Kapita Selekta Fisika “Fenomena Pelangi” Pembuktian Hukum Snellius Akan dibuktikan bahwa jarak terpendek antara matahari dan pengamat pada saat berlaku sin( 𝛼) = 𝑘 sin( 𝛽) Bukti: Misalkan 𝛼 : sudut datang 𝛽 : sudut bias Medium A : medium yang kerapatannya renggang, misalkan udara. Medium B : medium yang kerapatannya lebih rapat dari medium A, misalkan air. V1 : kecepatan cahaya dalam medium A V2 : kecepatan cahaya dalam medium B 𝐷1 : jarak yang ditempuh saat cahaya berada di medium A 𝐷2 : jarak yang ditempuh saat cahaya berada di medium B Perhatikan gambar berikut. Dari gambar diperoleh: 𝐷1 = √𝑎2 + ( 𝑑 − 𝑥)2 (1) 𝑠𝑖𝑛 𝛼 = 𝑑−𝑥 𝐷1 (2) 𝐷2 = √𝑏2 + 𝑥2 (3) 𝑠𝑖𝑛 𝛽 = 𝑥 𝐷2 (4) Kita ambil ( 𝐷1 + 𝐷2) untuk mendapatkan jarak terpendek antara matahari dan pengamat. Gambar Cahaya yang Dibiaskan Mendekati Garis Normal Sumber Cahaya d a Medium A 𝛽 cx 𝜷 𝛼 cx 𝜶 N d - x b x 𝐷1 𝐷2 Medium B d Pengamat
  • 6. 5Kapita Selekta Fisika “Fenomena Pelangi” Karena cahaya matahari memiliki kecepatan yang berbeda saat berada di medium yang berbeda, maka jarak terpendek antara matahari dan pengamat dapat dinyatakan sebagai: 𝐷1 𝑉1 + 𝐷2 𝑉2 Untuk mendapatkan sudut deviasi yang minimum pada sinar datang, maka kita konstruksikan 𝐷1 ′ 𝑉1 + 𝐷2 ′ 𝑉2 = 0 (5) Selanjutnya, kita menurunkan 𝐷1 dan 𝐷2 terhadap x, sehingga didapat: 𝐷1 ′ = 1 2 ( 𝑎2 + ( 𝑑 − 𝑥)2)− 1 2 (−2𝑑 + 2𝑥) = ( 𝑥 − 𝑑) √𝑎2 + ( 𝑑 − 𝑥)2 𝐷2 ′ = 1 2 ( 𝑏2 + 𝑥2)− 1 2 (2𝑥) = 𝑥 √𝑏2 + 𝑥2 Subtitusikan nilai 𝐷1 ′ dan 𝐷2 ′ pada persamaan (5), sehingga diperoleh: (𝑥−𝑑) √𝑎2+(𝑑−𝑥)2 𝑉1 + 𝑥 √ 𝑏2+𝑥2 𝑉2 = 0 (6) Dari persamaan (1) dan (2), diperoleh: 𝑑 − 𝑥 √𝑎2 + ( 𝑑 − 𝑥)2 = 𝑠𝑖𝑛 𝛼 , dan ditulis sebagai 𝑥 − 𝑑 √𝑎2 + ( 𝑑 − 𝑥)2 = − 𝑠𝑖𝑛 𝛼 (7) Dari persamaan (3) dan (4), diperoleh: 𝑥 √𝑏2 + 𝑥2 = 𝑠𝑖𝑛 𝛽 (8) Subtitusikan persamaan (7) dan (8) ke persamaan (6), diperoleh: − 𝑠𝑖𝑛 𝛼 𝑉1 + 𝑠𝑖𝑛 𝛽 𝑉2 = 0 𝑠𝑖𝑛 𝛼 𝑉1 = 𝑠𝑖𝑛 𝛽 𝑉2 𝑠𝑖𝑛 𝛼 = 𝑉1 𝑉2 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝛼 = 𝑘 𝑠𝑖𝑛 𝛽 dengan 𝑘 = 𝑉1 𝑉2 Jadi, terbukti benar bahwa 𝑠𝑖𝑛 𝛼 = 𝑘 𝑠𝑖𝑛 𝛽
  • 7. 6Kapita Selekta Fisika “Fenomena Pelangi” Besar ukuran sudut bias dan sudut pelangi masing-masing warna pelangi dipengaruhi oleh panjang gelombang dan indeks bias masing-masing gelombang warna. Berikut ini merupakan data panjang gelombang dan indeks bias warna pelangi. Tabel Data Panjang Gelombang dan Indeks Bias Warna Pelangi Warna Panjang Gelombang (λ) Indeks Bias (k) 400 nm 1, 34451 425 nm 1, 34235 450 nm 1, 34055 475 nm 1, 33903 500 nm 1, 33772 525 nm 1, 33659 550 nm 1, 3356 575 nm 1, 33462 600 nm 1, 33393 625 nm 1, 33322 650 nm 1, 33257 675 nm 1, 33197 700 nm 1, 33141 Proses Terjadinya Pelangi Pelangi merupakan satu-satunya gelombang elektromagnetik yang dapat kita lihat. Pelangi adalah gejala optik dan meteorologi yang terjadi sacara alamiah dalam atmosfir bumi serta melibatkan cahaya matahari, pengamat dan tetesan air hujan. Jika ada cahaya matahari yang bersinar setelah hujan berhenti, maka cahaya tersebut akan menembus tetesan air hujan di udara. Udara dan tetesan air hujan memiliki kerapatan yang berbeda, sehingga ketika cahaya matahari merambat dari udara ke tetesan air hujan akan mengalami pembelokkan arah rambat cahaya (pembiasan cahaya).
  • 8. 7Kapita Selekta Fisika “Fenomena Pelangi” Cahaya matahari merupakan sinar polikromatik, saat masuk ke dalam tetesan air hujan akan diuraikan menjadi warna-warna monokromatik yang memiliki panjang gelombang yang berbeda-beda. Cahaya matahari yang telah terurai menjadi warna monokromatik sebagian akan mengalami pemantulan saat mengenai dinding tetesan air hujan dan sebagian lainnya akan menembus ke luar tetesan air hujan. Masing-masing gelombang cahaya monokromatik tersebut akan mengalami pembiasan cahaya saat keluar dari tetesan air hujan dan arah pembiasannya akan berbeda-beda, tergantung pada warnanya. Warna-warna monokromatik yang keluar dari tetesan air hujan mempunyai panjang gelombang yang berada dalam rentang 400 – 700 nm. Pada rentang 400 – 700 nm, gelombang cahaya yang dapat dilihat oleh mata manusia ialah gelombang yang mempunyai gradasi warna merah sampai ungu. Gradasi warna tersebut diasumsikan sebagai warna merah, jingga, kuning, hijau, biru, nila, dan ungu. Susunan gradasi warna tersebut kita namakan sebagai pelangi. Ketika kita melihat warna-warna ini pada pelangi, kita akan melihatnya tersusun dengan dengan merah di paling atas dan warna ungu di paling bawah. Berikut merupakan skema terjadinya pelangi pertama secara keseluruhan. Saat kita melihat pelangi, daerah di bawah pelangi akan terlihat lebih terang jika dibandingkan dengan daerah lainnya di sekitar pelangi. Daerah yang terlihat lebih terang Sinar Matahari Butiran Air Pembiasan Dispersi Pemantulan Sinar Pemantulan Sinar di dalam butiran air Pengamat melihat merah di atas dan ungu di bawah Gambar Proses Fisis Pelangi Pertama Secara Keseluruhan 16
  • 9. 8Kapita Selekta Fisika “Fenomena Pelangi” tersebut dinamakan daerah terang pelangi. Ada dua hal yang menyebabkan daerah terang pelangi terlihat lebih terang dibandingkan daerah lainnya, yaitu yang pertama adalah cahaya matahari yang masuk ke tetesan air hujan yang menimbulkan pelangi pertama mempunyai intensitas cahaya matahari yang paling besar. Alasan kedua, pada proses pembentukan pelangi pertama, saat berada dalam tetesan air hujan, cahaya matahari hanya mengalami satu kali proses pemantulan cahaya, sehingga energi yang terserap oleh tetesan air hujan masih cukup banyak. Model Matematis Rumus Umum yang Digunakan: A. Hukum Pemantulan: Sudut datang sama dengan sudut pantul. B. Persamaan Snellius: sin α = k sin β Berikut merupakan ilustrasi cahaya yang menembus tetesan air hujan mengalami dua kali proses pembiasan, satu kali pemantulan dan satu kali dispersi cahaya T(α) φ φ Keterangan : T(α) : sudut deviasi φ : sudut pelangi Sudut deviasi (T(α)) adalah sudut yang dibentuk oleh perpanjangan berkas sinar datang dan berkas sinar yang keluar dari butiran air Gambar Ilustrasi Sudut Pelangi Keterangan : α = sudut datang β = sudut bias k = perbandingan indeks bias dari dua medium yang berbeda
  • 10. 9Kapita Selekta Fisika “Fenomena Pelangi” Model Matematika dalam Pembentukan Pelangi Pertama Perhatikan ∆ 𝐵𝐶𝐷 ( 𝛼 − 𝛽) + (180° − 2𝛽) + γ = 180° γ = 180° − 180° + 2𝛽 − 𝛼 + 𝛽 γ = 3𝛽 − 𝛼 γ + θ = 180° ( Sudut Berpelurus ) (1) Subtitusikan nilai γ pada persamaan (1) (3𝛽 − 𝛼) + θ = 180° θ = 180° + 𝛼 − 3𝛽 Perhatikan ∆ 𝐴𝐷𝐸 𝜃 + ф + ( 𝛼 − 𝛽) = 180° Subitusikan nilai θ, maka didapat: (180° + 𝛼 − 3𝛽) + ф + 𝛼 − 𝛽 = 180° ф = 180° − 180° − 𝛼 + 3𝛽 − 𝛼 + 𝛽 ф = 𝟒𝜷 − 𝟐𝜶 ф + T( 𝛼) = 180° ( Sudut Berpelurus ) (2) Subtitusikan nilai ф pada persamaan (2) 𝜶 𝜶 𝜷 𝜷 𝜷 𝜷 (𝜶 − 𝜷) (𝜶 − 𝜷) C A B D E 𝐓(𝛂) (𝟏𝟖𝟎° − 𝟐𝜷) 𝛉 𝛄 ф Sudut Pelangi Sinar Datang Menuju Pengamat Keterangan: 𝛼 : sudut datang sinar matahari 𝛽 : sudut bias 𝑇( 𝛼) : sudut deviasi ф : sudut pelangi ф = 4𝛽 − 2𝛼 T( 𝛼) = 180° − 4𝛽 + 2𝛼
  • 11. 10Kapita Selekta Fisika “Fenomena Pelangi” (4𝛽 − 2𝛼) + 𝑇( 𝛼) = 180° 𝑻( 𝜶) = 𝟏𝟖𝟎° + 𝟐𝜶 − 𝟒𝜷 Jika T( 𝛼) diturunkan terhadap 𝛼 diperoleh: 𝑑𝑇 𝑑𝛼 = 2 − 4 𝑑𝛽 𝑑𝛼 (3) Berdasarkan Hukum Snellius 𝑠𝑖𝑛( 𝛼) = 𝑘 𝑠𝑖𝑛( 𝛽) Kedua ruas diturunkan terhadap 𝛼 𝑐𝑜𝑠 ( 𝛼) = 𝑘 𝑐𝑜𝑠 ( 𝛽) 𝑑𝛽 𝑑𝛼 𝑑𝛽 𝑑𝛼 = cos ( 𝛼) 𝑘 cos ( 𝛽) (4) Subtitusikan persamaan (4) ke persamaan (3), diperoleh: 𝑑𝑇 𝑑𝛼 = 2 − 4 ( cos 𝛼 𝑘 cos 𝛽 ) Berdasarkan prinsip aproksimasi linear deret Taylor terhadap fungsi, T( 𝛼) ≈ 𝑇( 𝛼0) + 𝑇′( 𝛼0)( 𝛼 − 𝛼0) Karena (α - αo) nilainya kecil (mendekati nol), maka T’(αo) (α - αo) dapat diabaikan, sehingga T(α) ≈ T(αo). 0 = 𝑑𝑇 𝑑𝛼 = 2 − 4 cos ( 𝛼0) 𝑘 cos ( 𝛽0) (5) Dari persamaan (5), didapat persamaan berikut 𝑘 𝑐𝑜𝑠( 𝛽0) = 4 2 𝑐𝑜𝑠( 𝛼0) 𝑘2 𝑐𝑜𝑠2( 𝛽0) = 4 𝑐𝑜𝑠2 ( 𝛼0) ( Kedua Ruas Dikuadratkan ) 𝑘2(1 − 𝑠𝑖𝑛2 𝛽0) = 4(1 − 𝑠𝑖𝑛2 𝛼0) 𝑘2 − 𝑘2 𝑠𝑖𝑛2 𝛽0 = 4 − 4 𝑠𝑖𝑛2 𝛼0 Dengan mensubtitusikan 𝑠𝑖𝑛( 𝛼0) = 𝑘 𝑠𝑖𝑛( 𝛽0) 𝑠𝑖𝑛2( 𝛼0) = 𝑘2 𝑠𝑖𝑛2 (𝛽0) Diperoleh: 𝑘2 − 𝑠𝑖𝑛2 𝛼0 = 4(1 − 𝑠𝑖𝑛2 𝛼0) Sehingga diperoleh rumus untuk sudut datang dan sudut bias 𝑠𝑖𝑛2( 𝛼0) = 1 3 (4 − 𝑘2)
  • 12. 11Kapita Selekta Fisika “Fenomena Pelangi” 𝜶 𝟎 = 𝒔𝒊𝒏−𝟏 (√ 𝟏 𝟑 ( 𝟒 − 𝒌 𝟐) ) Dari Persamaan Snellius 𝑠𝑖𝑛( 𝛼0) = 𝑘 𝑠𝑖𝑛( 𝛽0) didapat: 𝜷 𝟎 = 𝒔𝒊𝒏−𝟏 ( 𝐬𝐢𝐧 𝜶 𝟎 𝒌 ) Menentukan Sudut Pelangi A. Sudut pelangi untuk warna merah Diketahui indeks bias untuk warna merah (𝑘) = 1, 33141. Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0 𝛼0 = 𝑠𝑖𝑛−1 (√ 1 3 (4 − 𝑘2) ) Sehingga didapat 𝛼0 = 59, 50290393° 𝛽0 = 𝑠𝑖𝑛−1 ( sin 𝛼0 𝑘 ) Sehingga didapat 𝛽0 = 40, 3289244° 𝑇( 𝛼) = 180° + 2𝛼 − 4𝛽 Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh : 𝑇( 𝛼) = 137, 6901103° Karena ф = 180° − 𝑇( 𝛼) Maka: ф = 180° − 137, 6901103° = 42, 30988974° Jadi, sudut pelangi untuk warna merah adalah 42, 30988974° B. Sudut pelangi untuk warna jingga Diketahui indeks bias untuk warna jingga ( 𝑘) = 1,33322. Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0 𝛼0 = 𝑠𝑖𝑛−1 (√ 1 3 (4 − 𝑘2) ) Sehingga didapat 𝛼0 = 59, 39768806° 𝛽0 = 𝑠𝑖𝑛−1 ( sin 𝛼0 𝑘 ) Sehingga didapat 𝛽0 = 40, 25290214°
  • 13. 12Kapita Selekta Fisika “Fenomena Pelangi” Perhatikan, 𝑇( 𝛼) = 180° + 2𝛼 − 4𝛽 Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh : 𝑇( 𝛼) = 137, 9538742° Karena ф = 180° − 𝑇( 𝛼) Maka: ф = 180° − 137, 9538742° = 42.04612576° Jadi, sudut pelangi untuk warna jingga adalah 42, 04612576° C. Sudut pelangi untuk warna kuning Diketahui indeks bias untuk warna kuning ( 𝑘) = 1, 33462. Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0 𝛼0 = 𝑠𝑖𝑛−1 (√ 1 3 (4 − 𝑘2) ) Sehingga didapat 𝛼0 = 59, 31635351° 𝛽0 = 𝑠𝑖𝑛−1 ( sin 𝛼0 𝑘 ) Sehingga didapat 𝛽0 = 40, 11895445° Perhatikan, 𝑇( 𝛼) = 180° + 2𝛼 − 4𝛽 Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh : 𝑇( 𝛼) = 138, 1568892° Karena ф = 180° − 𝑇( 𝛼) Maka: ф = 180° − 138, 1568892° = 41, 84311078° Jadi, sudut pelangi untuk warna kuning adalah 41, 84311078° D. Sudut pelangi untuk warna hijau Diketahui indeks bias untuk warna hijau ( 𝑘) = 1, 33659. Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0 𝛼0 = 𝑠𝑖𝑛−1 (√ 1 3 (4 − 𝑘2) )
  • 14. 13Kapita Selekta Fisika “Fenomena Pelangi” Sehingga didapat 𝛼0 = 59, 20197269° 𝛽0 = 𝑠𝑖𝑛−1 ( sin 𝛼0 𝑘 ) Sehingga didapat 𝛽0 = 39, 99071337° Perhatikan, 𝑇( 𝛼) = 180° + 2𝛼 − 4𝛽 Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh : 𝑇( 𝛼) = 138, 4410919° Karena ф = 180° − 𝑇( 𝛼) Maka: ф = 180° − 138, 4410919° = 41, 5589081° Jadi, sudut pelangi untuk warna hijau adalah 41, 5589081° E. Sudut pelangi untuk warna biru Diketahui indeks bias untuk warna biru ( 𝑘) = 1, 34055. Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0 𝛼0 = 𝑠𝑖𝑛−1 (√ 1 3 (4 − 𝑘2) ) Sehingga didapat 𝛼0 = 58, 97228442° 𝛽0 = 𝑠𝑖𝑛−1 ( sin 𝛼0 𝑘 ) Sehingga didapat 𝛽0 = 39, 73433118° Perhatikan, 𝑇( 𝛼) = 180° + 2𝛼 − 4𝛽 Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh : 𝑇( 𝛼) = 139, 0072441° Karena ф = 180° − 𝑇( 𝛼) Maka: ф = 180° − 139, 0072441° = 40, 99275588° Jadi, sudut pelangi untuk warna biru adalah 40, 99275588° F. Sudut pelangi untuk warna nila Diketahui indeks bias untuk warna nila ( 𝑘) = 1, 34235.
  • 15. 14Kapita Selekta Fisika “Fenomena Pelangi” Substitusikan nilai k ke persamaan 𝛼0 dan 𝛽0 𝛼0 = 𝑠𝑖𝑛−1 (√ 1 3 (4 − 𝑘2) ) Sehingga didapat 𝛼0 = 58, 86798023° 𝛽0 = 𝑠𝑖𝑛−1 ( sin 𝛼0 𝑘 ) Sehingga didapat 𝛽0 = 39, 61840454° Perhatikan, 𝑇( 𝛼) = 180° + 2𝛼 − 4𝛽 Dengan mensubstitusikan nilai 𝛼0 dan 𝛽0 diperoleh : 𝑇( 𝛼) = 139, 2623423° Karena ф = 180° − 𝑇( 𝛼) Maka: ф = 180° − 139, 2623423° = 40, 7376577° Jadi, sudut pelangi untuk warna nila adalah 40, 7376577° G. Sudut pelangi untuk warna ungu Diketahui indeks bias untuk warna ungu ( 𝑘) = 1, 34451. Substitusikan nilai k ke persamaan berikut 𝛼0 = 𝑠𝑖𝑛−1 (√ 1 3 (4 − 𝑘2) ) Sehingga didapat 𝛼0 = 58, 74289375° 𝛽0 = 𝑠𝑖𝑛−1 ( sin 𝛼0 𝑘 ) Sehingga didapat 𝛽0 = 39, 4797895° Perhatikan, 𝑇( 𝛼) = 180° + 2𝛼 − 4𝛽 Dengan mensubstitusikan 𝛼0 dan 𝛽0 diperoleh : 𝑇( 𝛼) = 139, 5666295° Karena ф = 180° − 𝑇( 𝛼) Maka: ф = 180° − 139, 5666295° = 40, 4333705°
  • 16. 15Kapita Selekta Fisika “Fenomena Pelangi” Jadi, sudut pelangi untuk warna ungu adalah 40, 4333705° Sudut pelangi dari masing-masing warna tersebut disajikan dalam tabel berikut Warna λ (nm) Indeks Bias (k) sudut datang (𝛼0) (derajat) Sudut bias (𝛽0) (derajat) sudut deviasi T(α) (derajat) sudut pelangi (ф) (derajat) 400 1, 34451 58, 74289375 39, 4797895 139, 5666295 40, 4333705 425 1, 34235 58, 86798023 39, 61840454 139, 2623423 40, 7376577 450 1, 34055 58, 97228442 39, 73433118 139, 0072441 40, 99275588 475 1, 33903 59, 06041141 39, 83252085 138, 7907394 41, 20926058 500 1, 33772 59, 13639897 39, 91736397 138, 6033421 41, 39665794 525 1, 33659 59, 20197269 39, 99071337 138, 4410919 41, 55890810 550 1, 33560 59, 25944347 40, 05510096 138, 2984831 41, 70151690 575 1, 33462 59, 31635351 40, 11895445 138, 1568892 41, 84311078 600 1, 33393 59, 35643464 40, 16398222 138, 0569404 41, 94305960 625 1, 33322 59, 39768806 40, 21037547 137, 9538742 42, 04612576 650 1, 33257 59, 43546465 40, 25290214 137, 8593207 42, 14067926 675 1, 33197 59, 47034346 40, 29220337 137, 7718734 42, 22812656 700 1, 33141 59, 50290393 40, 3289244 137, 6901103 42, 30988974 Bentuk Pelangi Sebenarnya, bentuk pelangi adalah lingkaran penuh. Kalau terlihat setengah lingkaran, atau bagian dari lingkaran, itu terjadi karena pelangi terpotong oleh horison bumi, atau objek lain yang menghalangi cahaya, misalkan gunung dan bukit. Gambar Pelangi
  • 17. 16Kapita Selekta Fisika “Fenomena Pelangi” Pelangi terjadi akibat pembiasan cahaya pada sudut 40° − 42° . Karena sudut pembiasan tetap, maka letak terjadinya warna pelangi selalu tetap dari pusat cahaya, sehingga jari-jarinya juga tetap, kalau jari-jari nya tetap konstan dari satu pusat atau titik, kita akan mendapatkan lingkaran. Kalau lingkarannya kita potong, kita selalu dapat bagian lingkaran yang melengkung. Untuk dapat melihat pelangi, kita harus mempunyai sudut deviasi sebesar 138° , ini menyebabkan kita akan mempunyai sudut pelangi sebesar 42° . Sudut pelangi merupakan sudut yang terbentuk antara axis dan titik puncak pelangi. Axis merupakan garis yang menghubungkan matahari dan pengamat. Saat memandang sebuah objek, mata manusia bersifat konvergen atau menyebar. Pandangan mata kita saat melihat sebuah objek dapat diilustrasikan sebagai sebuah kerucut yang memiliki titik puncak pada mata kita, seperti tampak pada gambar 3.6. Kemiringan kerucut yang terbentuk dipengaruhi oleh posisi matahari. Sebagian alas kerucut tidak dapat φ Gambar Sifat Konvergen Mata Manusia Gambar Ilustrasi Bentuk Pelangi Garis Horizontal Bumi Sudut Pelangi
  • 18. 17Kapita Selekta Fisika “Fenomena Pelangi” kita lihat karena berada di bawah garis horizontal bumi, sedangkan sebagian lainnya terlihat sebagai busur atau biasa kita sebut sebagai pelangi. Posisi Relatif Pelangi Terhadap Pengamat dan Matahari Posisi matahari pengamat dan pelangi akan selalu dalam satu axis, di mana matahari akan selalu berada di belakang. Kita tidak dapat melihat pelangi jika posisi matahari tegak lurus dengan garis horizontal bumi. Kesimpulan Pelangi adalah gejala optik dan meteorologi yang terjadi sacara alamiah dalam atmosfir bumi serta melibatkan cahaya matahari, pengamat dan tetesan air hujan. Cahaya matahari masuk ke dalam tetesan air hujan akan mengalami proses pembiasan lalu cahaya tersebut akan terurai menjadi warna monokromatik. Cahaya yang telah terurai, masing-masing akan mengalami proses pemantulan saat mengenai dinding tetesan air hujan dan kembali akan mengalami proses pembiasan cahaya saat keluar dari tetesan air hujan. Rangkaian gelombang warna monokromatik yang membentuk spektrum cahaya tersebut yang akan membentuk pelangi pertama. Kita dapat mengkontruksi model matematika proses terjadinya pelangi pertama. Model yang pertama ialah ф = 4𝛽 − 2𝛼 , ф merupakan sudut pelangi. Model kedua ialah 𝑇( 𝛼) = 180° + 2𝛼 − 4𝛽, 𝑇( 𝛼) merupakan sudut deviasi. Selanjutnya 𝛼0 = 𝑠𝑖𝑛−1 (√ 1 3 (4 − 𝑘2) ) yang merupakan sudut datang sinar matahari. Model yang terakhir adalah 𝛽0 = 𝑠𝑖𝑛−1 ( sin 𝛼0 𝑘 ) yang merupakan sudut bias pelangi. Sebenarnya, bentuk pelangi adalah lingkaran penuh. Kalau terlihat setengah lingkaran, atau bagian dari lingkaran, itu terjadi karena pelangi terpotong oleh horison bumi, atau objek lain yang menghalangi cahaya, misalkan gunung dan bukit. Bentuk pelangi yang berupa lingkaran disebabkan oleh sudut pembiasan masing-masing gelombang warna tetap dan sifat konvergen (menyebar) saat mata manusia memandang sebuah objek. Gambar Posisi Matahari, Pengamat dan Pelangi
  • 19. 18Kapita Selekta Fisika “Fenomena Pelangi” Untuk dapat melihat pelangi, kita harus memiliki ф sebesar 40° − 42° serta posisi matahari, pengamat dan pelangi terletak pada satu axis dengan posisi matahari berada di belakang pengamat. Kita tidak dapat melihat pelangi jika posisi matahari tegak lurus dengan garis horizontal bumi, sehingga kita hanya dapat melihat pelangi pada pagi hari atau sore hari. Referensi Thao Dang: The Theory of Rainbow, Vol. 0, No. 0,pp. 01,2006. Rachel W. Hall and Nigel Higson: The Cakculus of Rainbows, Vol. 0, No.0, pp. 02–03,1998. Raymond L. Lee, Jr: Mie theory, Airy theory, and the natural rainbow, 1998. H. Moyses Nusseinveg: The The- ory of The Rainbow, Vol. 0, No.0, pp.007,1997.
  • 20. PEMBUKTIAN MATEMATIS DIBALIK PERISTIWA PELANGI Ahmad Zulfakar Rahmadi, Wikky Fawwaz Al Maki Departemen Matematika STKIP Surya Abstrak Jurnal ini membahas bagaimana kita melihat matematika sebagai induk dari segala ilmu sains melalui kejadian-kejadian yang riil di sekitar. Pelangi, yang sejatinya hanya terlihat dan jarang ditanggapi secara khusus oleh sebagian orang, disini akan dibuk- tikan melalui suatu pendekatan konsep matematis dalam hal ini turunan. Dengan menghitung sudut datang dan sudut pantul dari refraksi cahaya dan refleksinya, kita dapat menentukan sudut terlihatnya pelangi dari turunan sudut yang ada, dan ke- mudian menghubungkannya dengan hukum snell tentang cahaya. Selain itu, melalui pendekatan geometri dapat dijelaskan alasan dari bentuk kurva pelangi itu sendiri. Penerapan kedua hubungan matematis tersebut diperoleh pemahaman bahwa matem- atika mempunyai banyak aplikasi kehidupan sesuai asumsinya sebagai induk sains. Kata Kunci:Sudut datang dan pantul,Refraksi, Refleksi, Hukum Snell, Kurva Pelangi. 1 PENDAHULUAN Matematika merupakan salah satu ilmu yang mendasari berkembangnya ilmu pengetahuan. Namun,kondisi matematis yang abstrak terkadang membuat kita sulit bernalar tentang bagaimana aplikasi nyata dari matematika itu sendiri. Tidak hanya itu, relasi antara matematika dan ilmu lain pun terkadang kurang dikenali baik secara abstrak maupun fenomena alam yang nyata. Pelangi, sebagai salah satu fenom- ena alam yang indah dan sering terli- hat serta dikenali khalayak ternyata meny- impan fakta-fakta unik dibalik peristiwa terjadinya. Pada pelangi, dapat dite- mukan model matematika yang alamiah dan tetap dibuktikan dengan logika yang tepat. Dalam pembuktian model matem- atika pelangi, digunakan hubungan an- tara matematika dan fisika yang dalam hal ini konsep turunan aljabar, geometri, dan hukum refleksi dan refraksi Snellius. Dari berbagai teori yang ditelusuri hubungan dan buktinya, akhirnya akan digunakan untuk menjelaskan fakta-fakta yang ada dibalik pelangi. Mulai dari be- sar sudut pandang terhadap pelangi, proses terjadinya warna pada pelangi, hingga pen- jelasan bentuk kurva dari pelangi akan diba- has secara matematis. 2 METODE Metode yang digunakan dalam penelitian jurnal ini berupa studi literatur yang berhubungan dengan konsep turunan al- jabar dan geometri serta hukum Snellius tentang refraksi cahaya diman setiap konsep memiliki hubungan khusus mengenai tin- jauan matematis dari pelangi. 1
  • 21. 3 HASIL DAN PEMBA- HASAN 3.1 Proses Terjadinya Pelangi Pelangi adalah fenomena alam yang teben- tuk karena cahaya matahari melalui tetesan air yang terpancar atau tersebar di udara. Pada saat sinar menyentuh permukaan air hujan, sinar tersebut akan dibiaskan karena cahaya mengalami perubahan indeks media dari udara ke air. Ketika sinar dihantarkan kembali ke permukaan belakang tetesan air, hampir seluruhnya dibiaskan dan keluar dari tetesan air. Hanya beberapa yang di- pantulkan dan saat cahaya tersebut menuju keluar permukaan, setiap warna akan dib- iaskan kembali seperti saat meninggalkan tetesan air. Hal itu terjadi pembiasan langsung dari sumber cahaya ke medium diteruskan ke air terlalu banyak dan cepat [1]. Pada dasarnya, kita dapat membuk- Figure 1: Pembiasan pelangi tikannya dengan perhitungan ketika: sin(α) = k.sin(β) dimana α dan β adalah sudut datang sinar dan bias, dan k adalah rasio dari kecepatan perubahan medium sumber ke medium penerima. 3.2 Hukum Pemantulan Pemantulan sinar adalah peristiwa ter- jadinya perubahan arah rambat cahaya ke sisi yang berbeda. Dengan kata lain, sudutdatang = sudutpantul Hal yang menarik dan harus dicatat bahwa pembiasan dan pemantulan meru- pakan manifestasi dari satu hukum yang disebut Fermat’s Principle, yang meny- atakan cahaya mencapai yang sampai ke mata telah diteruskan jauh dari sumbernya [2]. Figure 2: Refleksi cahaya Seperti saat kita melihat tangan kita di kaca atau permukaan air, bayangan yang terlihat diambil dari pembiasan ke mata. 3.3 Sudut Putar dari Pelangi Sekarang kita dapat menghitung hubungan matematis untuk beberapa fakta umum dari cahaya,mari kembali pada model gambar tetesan air hujan.Untuk membuat hal ini menjadi simpel, kita asumsikan bahwa air hujan ”is perfectly spherical”,dan hal tersebut memiliki sense untuk dillihat secara dua dimensi. Jika sinar datang menuju tetes air dengan sudut datang α, dipantulkan oleh permukaan belakang dari tetes air,dan dibiaskan kembali meninggalkan medium tersebut. Jadi berapa sudut putar dari cahaya saat keluar dari medium tersebut? Diketahui α adalah sudut datang dan β adalah sudut bias, dimana berhubungan dengan hukum Snell. Saat cahaya melalui bagian terjauh dari medium(dalam hal ini tetesan air), selanjutnya akan dipindahkan jauh ke dasar dari garis segitiga sama kaki yang merupakan sisi dari perpanjangan ke- dua garis radian medium hujan. Setelah 2
  • 22. Figure 3: Sudut balik pelangi direfleksikan ke bagian dalam dari medium, sinar akan dibawa kembali melalui tetesan air dan saling melengkapi bagian yang lain, segitiga sama kaki. Seperti yang ditampilkan pada gam- bar, sudut bias untuk sinar yang mening- galkan medium dikenali sebagai β.Kembali pada hal awal yang telah kita catat, ca- haya dibawa dari air ke udara dengan sudut datang β akan memiliki sudut bias α. Kita misalkan T(α) adalah sudut putar atau balik yang terbentuk jika kita teruskan perpanjangan sinar datang(seolah- olah tidak dibiaskan),besarnya adalah jum- lah total sudut yang terbentuk dari sinar yang kembali ke medium air hujan, berben- tuk searah jarum jam dari garis lurus. Sudut datang α yang terbentuk antara garis medium,sinar bias, dan perpanjangan sinar memiliki besar yang sama dengan sudut bias β, sehingga sudut pada perpotongan sinar bias besarnya sama dengan 2β dan sudut yang melakukan pemantulan kem- bali terhadap sinar besarnya dapat diny- atakan sebagai 180◦ −2β (lihat pada Fig.4). Cahaya yang memasuki medium air dikem- balikan oleh α-β (mengapa)? seperti saat cahaya meninggalkan medium. Pemantu- lan dikarenakan oleh sudut 180◦ − 2β. Dari argumen tersebut, maka T(α) dapat diny- atakan sebagai jumlah seluruh sudut yang terbentuk pada sinar datang dan sinar bias. Figure 4: sudut bias pelangi Maka: (1) T(α) = (α − β) + (180 − 2β) + (α − β) (2) = 180◦ + 2α − 4β (3) Jadi,sinar memasuki tetesan air hujan dengan sudut α akan dikembalikan arahnya oleh sudut 180 + 2α − 4β yang kemudian hasil ini dapat kita tentukan sudut pelangi θ = 180◦ − T(α). 3.4 Warna dari Pelangi Sejauh ini, kita telah dijelaskan proses ter- jadinya pelangi, pembiasan cahayanya dan bagaimana proses masuknya cahaya ke tete- sen air hujan hingga terjadi pembiasan serta aplikasi dari hukum Snell. Namun kita belum menjelaskan sedikit pun tentang apa yang membuat pelangi berwarna.Tabel berikut menampilkan panjang gelombang dari warna-warna pelangi dimana hal terse- but nantinya akan menjelaskan tentang ben- tuk dari pelangi itu sendiri(akan dibahas di subbab lain). Sinar matahari sebenarnya terdiri dari banyak warna. Meskipun,ketika semua warna terkombinasi bersama, yang kita li- hat hanyalah cahaya putih. Saat mata- hari muncul, sinar matahari akan menerpa tetesan air hujan. Hal tersebut akan dibi- askan, denagan panjang gelombang refraksi berbeda untuk sudut yang berbeda pula, 3
  • 23. dan warna-warna yang menarik akan tam- pak. Warna dari pelangi lapis pertama atau pelangi primer selalu diikuti warna yang berbeda dan berurutan: merah,jingga, kun- ing, hijau, biru, nila, dan ungu. Figure 5: Pembiasan warna pelangi Efek tersebut terjadi ketika cahaya putih dibiaskan,setiap komponen warna akan di- belokkan oleh bagian lain seperti saat melewati medium transparan ke medium lainnya. Dispersi ini disebabkan prisma medium memproduksi spektrum warna dari cahaya putih. Pada kasus tetesan air, cahaya ungu akan dibiaskan melalui sisi dan sudut yang lebih baik dari cahaya merah. Hal itu menyebabkan cahaya ungu di pelangi primer selalu terlihat dibawah cahaya merah(setelah merah).Sisa cahaya selain merah dan ungu adalah warna palsu,atau hanya berupa efek dari kedua warna tersebut. Dari penjelasan pada sub- bab sebelumnya, kita mendapatkan gam- baran umum tipe warna pelangi bahwa ca- haya biru dan ungu dibiaskan lebih dari- pada cahaya merah. Pembiasan terse- but tergantung pada indeks pembiasan dari air hujan, dan perhitungannya dapat men- galami keselahan dalam ketelitian karena perbedaaan panjang gelombang antara ca- haya ”merah” dan ”ungu” yang tidak tentu pula [3]. Catatan:Ketika hujan, terdapat banyak tetesan air hujan turun dari langit. Setiap tetesan hujan dapat membentuk ”hanya satu” warna yang mata kita bisa lihat.Letak setiap warna tersebut direfleksikan terhadap bagian belakang air hujan dan menuju mata No. Warna Pelangi Panjang Spektrum 1. Merah 620 - 750nm 2. Jingga 590 - 620nm 3. Kuning 570 - 590nm 4. Hijau 495 - 570nm 5. Biru 450 - 495nm 6. Nila ...... 7. Ungu 380 - 450nm selalu pada sudut yang terukur dari garis antara mata dan matahari. Sudutnya berk- isar 42 ◦ terukur dari puncak dari gelom- bang cahaya merah dan 40 ◦ ke bawah dari cahaya ungu. Figure 6: Warna dasar pelangi 3.5 Pembentukan Pelangi Per- tama dan Sudut Pandang Pelangi Seperti yang kita ketahui bersama, pelangi pertama terbentuk dengan sudut kurang lebih 42 derajat. Bagaimana pembuktian- nya? Sekarang kita akan membuktikan bagaimana menentukan sudut pengamat terhadap pelangi dengan beberapa teori. Dalam kasus ini, kita tidak hanya menggu- nakan hukum Snell, tetapi juga hukum ca- haya, turunan aljabar,trigonometri , dan ge- ometri. Pada turunan aljabar menggunakan persamaan dibawah ini untuk menentukan persamaan turunannya: f (x) = lim x→h f(x + h) − f(x) h (4) Dalam hal ini kita gunakan beberapa istilah di antaranya: α= sudut datang β= sudut bias 4
  • 24. Figure 7: sudut bias pelangi k=perbandingan indeks bias dari dua medium yang berbeda. Sekarang kita akan menghitung tingkat perubahan pada sudut balik T(α) ter- hadap α. Dengan kata lain ,kita akan menyatakannya dalam bentuk dT dα . Setelah selesai ,kita masukkan α ke persamaan tadi,sehingga dT(α) dα sama dengan nol. Perlu diingat bahwa seluruh persamaan ini untuk menghitung konsentrasi cahaya di sudut 42 ◦ . Turunkan kedua sisi persamaan: T(α) = 180◦ + 2α − 4β (5) dengan α dT(α) dα = 2 − 4 dβ dα (6) Namun bagaimana dengan dβ dα ? Kita dapat menurunkan kedua ruas dari hukum refraksi Snell: sin(α) = ksin(β) (7) dari persamaan hukum Snell di atas, dida- patkan cos(α) = kcos(β) dβ dα (8) Perlu diingat,turunan fungsi diatas digu- nakan untuk menentukan persamaan lnear fungsi utama. Yaitu, T(α) ≈ T(α0) + T (α0)(α − α0) (9) T(α) ditaksir memiliki nilai yang hampir sama karena diketahui α − α0 bernilai san- gat kecil sehingga tidak berpengaruh ter- hadap perubahan nilai sudut. Jika kita da- pat menemukan nilai α0 dimana T =0, ke- mudian T(α) ≈ T(α0) untuk setiap nilai α mendekati nilai α0.Hal tersebut berarti berlaku untuk setiap sinar yang masuk den- gan sudut datang mendekati nilai dimana T = 0 akan dikembalikan sesuai dengan hukum persamaan yang sama. Sekarang, mari tentukan nilai α0. Misalkan, 0 = dT dα = 2 − 4cos(α0) kcos(β0) (10) Dari persamaan diatas, diperoleh per- samaan berikut k2 cos2 (β0) = 4cos2 (α0) (11) k2 (1 − sin2 (β0)) = 4(1 − sin2 (α0)) (12) Substitusikan, sin(α0) = ksin(β0) (13) sin2 (α0) = k2 sin2 (β0) (14) Sehingga diperoleh: k2 − sin2 α0 = 4(1 − sin2 α0) (15) Dari persamaan-persamaan diatas, kita per- oleh rumus sudut datang dan bias sin2 (α0) = 1 3 (4 − k2 ) (16) α0 = arcsin 1 3 (4 − k2) (17) Kemudian dari persamaan Snellius kita da- patkan sinα0 = ksinβ0 (18) β0 = arcsin sinα0 k (19) Pada pembentukan pelangi pertama, akan dicari sudut pelangi untuk warna merah. Diketahui indeks bias warna merah (k) = 1, 33. Substitusikan nilai k ke 5
  • 25. persamaan berikut: α0 = sin−1 1 3 (4 − k2) (20) Sehingga didapat α0= 59.470343460◦ β0 = sin−1 sinα0 k (21) dan diperoleh β0=40.292203370◦ Substitusikan nilai α0dan β0 ke persamaan T(α) = 180◦ + 2α − 4β. Sehingga diperoleh T(α) ≈ 138◦ Jadi, besar sudut pada pembentukan pelangi pertama atau pelangi dengan warna merah adalah 180◦ − T(α) = 180◦ − 138◦ = 42◦ (22) Catatan:Perhitungan diatas mengalami pembulatan yang dianggap perlu, sehingga sudut pelangi pertama ≈ 42◦ dan nilai terse- but diukur dari warna merah sebagai pun- cak pelangi. 3.6 Pelangi Kedua(Sekunder) Pelangi sekunder trdiri dari cahaya yang keluar dari pemantulan internal di medium. Dengan setiap pantulan dari beberapa sinar hilang, dimana hal tersebut menjadi alasan utama pelangi kedua ini lebih berwarna dari pada pelangi pertama(merah). Theodoric dan Descrate menjelaskan bahwa dari di- reksi panjang dengan daerah hasil sudut yang berkorespondensi ke pelangi dengan hanya satu warna pada saat terlihat dilan- git.Ketika pandangan mata berpindah ke tempat lain dan menciptakan sudut pan- dangan yang lain, spektrum warna lain mulai bermunculan,satu demi satu.Ia juga menjelaskan bahwa setiap warna yang terli- hat oleh mata berasal dari tetesan air yang lain [4]. Seperti yang dijelaskan oleh Descrate, setiap fitur utama dari pelangi akan di- mengerti melalui sebuah pertimbangan bahwa cahaya melewati tetes air yang singu- lar. Prinsip dasar telah menentukan pelangi alami yang dimana terjadi interaksi cahaya dengan medium transparan,dan dinamakan refleksi dan refraksi. Figure 8: Pelangi sekunder Selain itu, ada satu fakta unik lagi ten- tang kemunculan pelangi selain pelangi primer. Fakta unik tersebut adalah kemu- ngkinannya terbentuk pelangi yang tidak kasat mata. Kemunculan pelangi tersebut tak lepas dari peran radiasi dan gelombang serta atom yang berhubungan. Pelangi tersebut diproduksi dari peristiwa peng- hamburan inti atom di udara. [5] 3.7 Interpretasi Bentuk Pelangi Bila kita membahas pelangi, ada satu hal yang menarik tentang bentuk pelangi itu sendiri. Fakta unik tersebut terletak pada bentuknya yang selalu menyerupai kurva parabola, dan lingkaran. Apa yang menyebabkan bentuk tersebut? Penjelasannya kita dapatkan dari per- samaan sudut-sudut pada pelangi,dimana sudut pembiasaan(β) masing-masing gelombang warna bersifat tetap,sehingga dari tiap warna akan membentuk lintasan- lintasan cahaya yang ketika disatukan bentuknya menyerupai sebuah parabola atau lingkaran. Pada tabel panjang gelom- bang warna pelangi sebelumnya,setiap warna memiliki interval panjang yang 6
  • 26. berbeda. Selain itu,bila dilihat dari Fig.9, grafik tersebut menunjukkan bagaimana se- tiap sudut dari pembiasan dan pemantulan sinar memiliki frekuensi berbeda terhadap warna dan panjangnya, sehingga mem- bentuk kurva. Selain itu, kecenderungan Figure 9: Grafik pelangi mata manusia pada saat memandang objek tertentu bersifat konvergen (menyebar) se- hingga efek yang ditimbulkan dari refraksi cahaya ke mata memberikan kesan lebih terhadap bentuk pelangi itu sendiri. 4 SIMPULAN Dari paparan di atas mengenai peris- tiwa pelangi,dapat ditarik kesimpulan seba- gai berikut. Pelangi adalah gejala optik dan meteorologi yang terjadi sacara alamiah dalam atmos- fir bumi serta melibatkan cahaya matahari, pengamat dan tetesan air hujan. Kejadian pelangi juga dapat dihubungkan dengan konsep matematis yang ada,mulai dari tu- runan aljabar, Trigonometri, geometri dan kurva. Di dalam tetesan air hujan, cahaya mata- hari mengalami proses pembiasan, peman- tulan, dan dispersi cahaya. Cahaya tersebut merupakan gelombang warna yang mem- bentuk spektrum cahaya dan membentuk pelangi pertama. Kita dapat mengkontruksi model matem- atika proses terjadinya pelangi pertama. Model yang pertama ialah T(α) sebagai jumlah total sudut dan θ merupakan sudut pelangi. Model kedua ialah yang kita kenal sebagai sudut deviasi. Selanjutnya kita dapat menentukan dua persamaan pelangi, pertama yang meru- pakan sudut datang sinar matahari (α). Model yang terakhir adalah persamaan β yang merupakan sudut bias dari pelangi. Kita harus memiliki sudut pelangi sebesar 42◦ serta posisi matahari terletak dalam satu axis dengan posisi matahari berada di belakang pengamat. Bentuk pelangi adalah lingkaran karena disebabkan oleh sudut pembiasan masing- masing gelombang warna tetap dan sifat konvergen (menyebar) saat mata manusia memandang sebuah objek. Daftar Pustaka [1] Thao Dang: The Theory of Rainbow, Vol. 0, No. 0,pp. 01,2006. [2] Rachel W. Hall and Nigel Higson: The Cakculus of Rainbows, Vol. 0, No.0,pp. 02–03,1998. [3] John A. Adam: The Mathematical Physics of Rainbows and Glories, vol. 0, No.356,pp.07, 2001. [4] Raymond L. Lee, Jr: Mie theory, Airy theory, and the natural rainbow, 1998. [5] H. Moyses Nusseinveg: The The- ory of The Rainbow, Vol. 0, No.0, pp.007,1997. 7
  • 27. The Theory of the Rainbow When sunlight is scattered by raindrops, why is it that colorful arcs appear in certain regions of the sky? Answering this subtle question has required all the resources of mathematical physics The rainbow is a bridge between the two cultures: poets and scientists alike have long been challenged to describe it. The scientific description is often supposed to be a simple problem in geometrical optics, a problem that was solved long ago and that holds inter­ est today only as a historical exercise. This is not so: a satisfactory quantitative theory of the rainbow has been devel­ oped only in the past few years. More­ over, that theory involves much more than geometrical optics; it draws on all we know of the nature of light. Allow­ ance must be made for wavelike proper­ ties, such as interference, diffraction and polarization, and for particlelike prop­ erties, such as the momentum carried by a beam of light. Some of the most powerful tools of mathematical physics were devised ex­ plicitly to deal with the problem of the rainbow and with closely related prob­ lems. Indeed, the rainbow has served as a touchstone for testing theories of op­ tics. With the more successful of those theories it is now possible to describe the rainbow mathematically, that is, to pre­ dict the distribution of light in the sky. The same methods can also be applied to related phenomena, such as the bright ring of color called the glory, and even to other kinds of rainbows, such as atomic and nuclear ones. Scientific insight has not always been welcomed without reservations. Goethe wrote that Newton's analysis of the rain­ bow's colors would "cripple Nature's heart. " A similar sentiment was ex­ pressed by Charles Lamb and John Keats; at a dinner party in 1817 they proposed a toast: "Newton's health. and confusion to mathematics. " Yet the sci­ entists who have contributed to the the­ ory of the rainbow are by no means in­ sensitive to the rainbow's beauty. In the words of Descartes: "The rainbow is such a remarkable marvel of Nature . . . that I could hardly choose a more suitable example for the application of my method. " The single bright arc seen after a rain shower or in the spray of a waterfall is 116 by H. Moyses Nussenzveig the primary rainbow. Certainly its most conspicuous feature is its splash of col­ ors. These vary a good deal in brightness and distinctness, but they always follow the same sequence: violet is innermost. blending gradually with various shades of blue. green, yellow and orange, with red outermost. Other features of the rainbow are fainter and indeed are not always pres­ ent. Higher in the sky than the primary bow is the secondary one, in which the colors appear in reverse order, with red innermost and violet outermost. Careful observation reveals that the region be­ tween the two bows is considerably darker than the surrounding sky. Even when the secondary bow is not discern­ ible, the primary bow can be seen to have a "lighted side" and a "dark side. " The dark region has been given the name Alexander's dark band, after the Greek philosopher Alexander of Aph­ rodisias, who first described it in about A.D.200. Another feature that is only some­ times seen is a series of faint bands, usu­ ally pink and green alternately, on the inner side of the primary bow. (Even more rarely they may appear on the out­ er side of the secondary bow.) These "supernumerary arcs" are usually seen most clearly near the top of the bow. They are anything but conspicuous. but they have had a major influence on the development of theories of the rainbow. The first attempt to rationally explain the appearance of the rainbow was probably that of Aristotle. He proposed that the rainbow is actually an unusual kind of reflection of sunlight from clouds. The light is reflected at a fixed angle. giving rise to a circular cone of "rainbow rays. " Aristotle thus ex­ plained correctly the circular shape of the bow and perceived that it is not a material object with a definite location in the sky but rather a set of directions along which light is strongly scattered into the eyes of the observer. The angle formed by the rainbow rays and the incident sunlight was first mea- sured in 1266 by Roger Bacon. He mea­ sured an angle of about 42 degrees; the secondary bow is about eight degrees higher in the sky. Today these angles are customarily measured from the oppo­ site direction, so that we measure the total change in the direction of the sun's rays. The angle of the primary bow is therefore 180 minus 42, or 138, degrees; this is called the rainbow angle. The an­ gle of the secondary bow is 130 degrees. After Aristotle's conjecture some 17 centuries passed before further signifi­ cant progress was made in the theory of the rainbow. In 1304 the German monk Theodoric of Freiberg rejected Aristot­ le's hypothesis that the rainbow results from collective reflection by the rain­ drops in a cloud. He suggested instead that each drop is individually capable of producing a rainbow. Moreover, he test­ ed this conjecture in experiments with a magnified raindrop: a spherical flask filled with water. He was able to trace the path followed by the light rays that make up the rainbow. Theodoric's findings remained largely unknown for three centuries, until they were independently rediscovered by Descartes, who employed the same method. Both Theodoric and Descartes showed that the rainbow is made up of rays that enter a droplet and are reflect­ ed once from the inner surface. The sec­ ondary bow consists of rays that have undergone two internal reflections. With each reflection some light is lost, which is the main reason the secondary bow is fainter than the primary one. Theodoric and Descartes also noted that along each direction within the angular DOUBLE RAINBOW was photographed at Johnstone Strait in British Columbia. The bright, inner band is the primary bow; it is separated from the fainter secondary bow by a region, called Alexander'S dark band, that is noticeably darker than the surrounding sky. Below the primary bow are a few faint stripes of pink and green; they are supernumerary arcs. The task of theory is to give a quanti­ tative explanation for each of these features. © 1977 SCIENTIFIC AMERICAN, INC
  • 28. !""' �- -""""ILIGHTED __________ ______�----------------+_------� SIDE ----------�----------�----�,t ______ __________�----------------+_------�c=__,SECONDARY RAINBOW ALEXANDER'S DARK BAND z-----------------�--------------��--------�--_, PRIMARY � ==================:============���=====:��:=�RAINBOWv. SUPERNUMERARY ARCS RAIN GEOMETRY OF THE RAINBOW is determitted by the scattering angle: the total angle through which a ray of sunlight is bent by its passage through a raindrop. Rays are strongly scattered at angles of 138 degrees and 130 degrees, giving rise respectively to the primary and the secondary rainbows. Between those angles very little light is deflected; that is the region of Alexander's dark band. The optimum angles are slightly different for each wavelength of light, with the result that the colors are dispersed; note that the sequence of colors in the secondary bow is the reverse of that in the primary bow. There is no single plane in which the rainbow lies; ·the rainbow is merely the set of directions along which light is scattered toward the observer. range corresponding to the rainbow only one color at a time could be seen in the light scattered by the globe. When the eye was moved to a new position so as to explore other scattering angles. the other spectral colors appeared. one by one. Theodoric and Descartes conclud- ed that each of the colors in the rainbow comes to the eye from a different set of water droplets. As Theodoric and Descartes realized. all the main features of the rainbow can be understood through a consideration of the light passing through a single REFLECTION AND REFRACTION of light at boundaries between airand water are the basic events in the creation of a rainbow. In reflection the angle of incidence is equal to the angle of reflection. In refraction the angle of the transmitted ray is determined by the properties of the medium, as characterized by its refractive index. Light entering a medium with a higher index is bent toward the normal. Light of different wavelengths is refracted through slightly different angles; this dependence of the refractive index on color is called dispersion. Theories of the rainbow often deal separately with each monochromatic component of incident light. 118 droplet. The fundamental principles that determine the nature of the bow are those that govern the interaction of light with transparent media. namely reflec­ tion and refraction. The law of reflection is the familiar and intuitively obvious principle that the angle of reflection must equal the angle ofincidence. The law of refraction is somewhat more complicated. Where­ as the path of a reflected ray is deter­ mined entirely by geometry. refraction also involves the properties of light and the properties of the medium. The speed of light in a vacuum is in­ variant; indeed. it is one of the funda­ mental constants of nature. The speed of light in a material medium. on the other hand. is determined by the proper­ ties of the medium. The ratio of the speed of light in a vacuum to the speed in a substance is called the refractive index of that substance. For air the in­ dex is only slightly greater than 1; for water it is about 1.33. A ray of light passing from air into water is retarded at the boundary; if it strikes the surface obliquely. the change in speed results in a change in direction. The sines of the angles of incidence and refraction are always in constant ratio to each other. and the ratio is equal to that between the refractive indexes for the two materials. This equality is called Snell's law. after Willebrord Snell. who formulated it in 1621. Apreliminary analysis of the rainbow can be obtained by applying the laws of reflection and refraction to the path of a ray through a droplet. Because the droplet is assumed to be spherical all directions are equivalent and there is only one significant variable: the dis­ placement of the incident ray from an axis passing through the center of the droplet. That displacement is called the impact parameter. It ranges from zerO. when the ray coincides with the central axis. to the radius of the droplet. when the ray is tangential. At the surface of the droplet the inci­ dent ray is partially reflected. and this reflected light we shall identify as the scattered rays of Class 1. The remaining light is transmitted into the droplet (with a change in direction caused by refrac­ tion) and at the next surface is again partially transmitted (rays of Class 2) and partially reflected. At the next boundary the reflected ray is again split into reflected and transmitted compo­ nents. and the process continues indefi­ nitely. Thus the droplet gives rise to a series of scattered rays. usually with rapidly decreasing intensity. Rays of Class 1 represent direct reflection by the droplet and those of Class 2 are directly transmitted through it. Rays of Class 3 are those that escape the droplet after one internal reflection. and they make up the primary rainbow. The Class 4 rays. having undergone two internal re- © 1977 SCIENTIFIC AMERICAN, INC
  • 29. flections. give rise to the secondary bow. Rainbows of higher order are formed by rays making more complicated pas­ sages. but they are not ordinarily visible. For each class of scattered rays the scattering angle varies over a wide range of values as a function of the impact parameter. Since in sunlight the droplet is illuminated at all impact parameters simultaneously. light is scattered in vir­ tually all-directions. It is not difficult to find light paths through the droplet that contribute to the rainbow. but there are infinitely many other paths that direct the light elsewhere. Why. then. is the scattered intensity enhanced in the vi­ cinity of the rainbow angle? It is a ques­ tion Theodoric did not consider; an an­ swer was first provided by Descartes. By applying the laws of reflection and refraction at each point where a ray strikes an air-water boundary. Des­ cartes painstakingly computed the paths of many rays incident at many impact parameters. The rays of Class 3 are of predominating importance. When the impact parameter is zero. these rays are scattered through an angle of 180 de­ grees. that is. they are backscattered toward the sun. having passed through the center of the droplet and been re­ flected from the far wall. As the impact parameter increases and the incident rays are displaced from the center of the droplet. the scattering angle decreases. Descartes found. however. that this trend does not continue as the impact parameter is increased to its maximum value. where the incident ray grazes the droplet at a tangent to its surface. In­ stead the scattering angle passes through a minimum when the impact parameter is about seven-eighths of the radius of the droplet. and thereafter it increases again. The scattering angle at the mini­ mum is 138 degrees. For rays of Class 4 the scattering an­ gle is zero when the impact parameter is zero; in other words. the central ray is reflected twice. then continues in its original direction. As the impact param­ eter increases so does the scattering an­ gle. but again the trend is eventually re­ versed. this time at 130 degrees. The Class 4 rays have a maximum scattering angle of 130 degrees. and as the impact parameter is further increased they bend back toward the forward scattering di­ rection again. Because a droplet in sunlight is uni­ formly illuminated the impact pa­ rameters of the incident rays are uni­ formly distributed. The concentration of scattered light is therefore expected to be greatest where the scattering angle varies most slowly with changes in the impact parameter. In other words. the scattered light is brightest where it gath­ ers together the incident rays from the largest range of impact parameters. The regions of minimum variation are those surrounding the maximum and mini- mum scattering angles. and so the spe­ cial status of the primary and secondary rainbow angles is explained. Further­ more. since no rays of Class 3 or Class 4 are scattered into the angular region be­ tween 130 and 138 degrees. Alexander's dark band is also explained. Descartes's theory can be seen more clearly by considering an imaginary population of droplets from which light is somehow scattered with uniform in­ tensity in all directions. A sky filled with such droplets would be uniformly bright at all angles. In a sky filled with real water droplets the same total illumina­ tion is available. but it is redistributed. Most parts of the sky are dimmer than they would be with uniform scattering. but in the vicinity of the rainbow angle there is a bright arc. tapering off gradu­ ally on the lighted side and more sharply on the dark side. The secondary bow is a similar intensity highlight. except that it is narrower and all its features are dim­ mer. In the Cartesian theory the region between the bows is distinctly darker than the sky elsewhere; if only rays of Class 3 and Class 4 existed. it would be quite black. The Cartesian rainbow is a remark- T ---- IMPACT PARAMETER ably simple phenomenon. Brightness is a function of the rate at which the scat­ tering angle changes. That angle is itself determined by just two factors: the re­ fractive index. which is assumed to be constant. and the impact parameter. which is assumed to be uniformly dis­ tributed. One factor that has no influ­ ence at all on the rainbow angle is size: the geometry of scattering is the same for small cloud droplets and for the large water-filled globes employed by Theodoric and Descartes. so far we have ignored one of the most conspicuous features of the rain­ bow: its colors. They were explained. of course. by Newton. in his prism experi­ ments of 1666. Those experiments dem­ onstrated not only that white light is a mixture of colors but also that the re­ fractive index is different for each color. the effect called dispersion. It follows that each color or wavelength of light must have its own rainbow angle; what we observe in nature is a collection of monochromatic rainbows. each one slightly displaced from the next. From his measurements of the refrac­ tive index Newton calculated that the WATER DROPLET CLASS 1PATH OF LIGHT through a droplet can be determined by applying the laws of geometrical optics. Each time the beam strikes the surface part of the light is reflected and part is refracted. Rays reflected directly from the surface are labeled rays of Class 1; those transmitted directly through the droplet are designated Class 2.The Class 3 rays emerge after one internal reflec­ tion; it is these that give rise to the primary rainbow. The secondary bow is made up of Class 4rays, which have undergone two internal reflections. For rays of each class only one factor determines the value of the scattering angle. That factor is the impact parameter: the dis­ placement of the incident ray from an axis that passes through the center of the droplet. 119© 1977 SCIENTIFIC AMERICAN, INC
  • 30. rainbow angle is 137 degrees 58 minutes for red light and 139 degrees 43 minutes for violet light. The difference between these angles is one degree 45 minutes. which would be the width of the rain­ bow if the rays of incident sunlight were exactly parallel. Allowing half a degree for the apparent diameter of the sun. Newton obtained a total width of two degrees 15 minutes for the primary bow. His own observations were in good agreement with this result. Descartes and Newton between them were able to account for all the more conspicuous features of the rainbow. They explained the existence of primary and secondary bows and of the dark band that separates them. They calcu­ lated the angular positions of these fea­ tures and described the dispersion of the scattered light into a spectrum. All of this was accomplished with only geo­ metrical optics. Their theory neverthe­ less had a major failing: it could not explain the supernumerary arcs. The un­ derstanding of these seemingly minor features requires a more sophisticated view of the nature of light. The supernumerary arcs appear on the inner. or lighted. side of the primary bow. In this angular region two scat­ tered rays of Class 3 emerge in the same direction; they arise from incident rays that have impact parameters on each side of the rainbow value. Thus at any given angle slightly greater than the rainbow angle the scattered light in­ cludes rays that have followed two dif­ ferent paths through the droplet. The rays emerge at different positions on the surface of the droplet. but they proceed in the same direction. In the time of Descartes and Newton these two contributions to the scattered intensity could be handled only by sim­ ple addition. As a result the predicted intensity falls off smoothly with devia­ tion from the rainbow angle. with no trace of supernumerary arcs. Actually the intensities of the two rays cannot be added because they are not independent sources of radiation. The optical effect underlying the su­ pernumerary arcs was discovered in 1 803 by Thomas Young. who showed that light is capable of interference. a phenomenon that was already familiar from the study of water waves. In any medium the superposition of waves can lead either to reinforcement (crest on 180�=- ------------------------------------------------------.- --------------------� ---------- .-, 160 140$w 120w II: <!l w e.w 100...J <!l Z <I: <!l 80z ((w 1=<I: 60u CIl 40 20 0 RAINBOW RAY 120 ALEXANDER'S DARK BAND IMPACT PARAMETER � B C PRIMARY­ RAINBOW RAY SECONDARY­ RAINBOW RAY DROPLET RADIUS -.J RAINBOW ANGLE can be seen to have a special significance when the scattering angle is considered as a function of the impact param­ eter. When the impact parameter is zero, the scattering angle for a ray of Class 3 is 180 degrees; the ray passes through the center of the droplet and is reflected by the far surface straight back at the sun. As the impact parameter increases, the scattering angle decreases, but eventually a minimum angle is reached. This ray of minimum deflec­ tion is the rainbow ray in the diagram at the left; rays with impact parameters on each side of it are scattered through larger angles. The minimum deflection is about 138 degrees, and the greatest concentra­ tion of scattered rays is to be found in the vicinity of this angle. The resulting enhancement in the intensity of the scattered light is per­ ceived as the primary rainbow. The secondary bow is formed in a similar way, except that the scattering angle for the Class 4rays of which it is composed increases to a maximum instead of decreasing to a minimum. The maximum lies at about 130 degrees. No rays of Class 3 or Class 4can reach angles between 130 degrees and 138 de­ grees, explaining the existence of Alexander's dark band. At the left two Class 3 rays, with impact parameters on each side of the rain­ bow value, emerge at the same scattering angle. It is interference be­ tween rays such as these two that gives rise to the supernumerary arcs. © 1977 SCIENTIFIC AMERICAN, INC
  • 31. crest) or to cancellation (crest on trough). Young demonstrated the in­ terference of light waves by passing a single beam of monochromatic light through two pinholes and observing the alternating bright and dark "fringes" produced. It was Young himself who pointed out the pertinence of his discov­ ery to the supernumerary arcs of the rainbow. The two rays scattered in the same direction by a raindrop are strictly analogous to the light passing through the two pinholes in Young's experiment. At angles very close to the rainbow an­ gle the two paths through the droplet differ only slightly, and so the two rays interfere constructively. As the angle in­ creases, the two rays follow paths of substantially different length. When the difference equals half of the wavelength, the interference is completely destruc­ tive; at still greater angles the beams re­ inforce again. The result is a periodic variation in the intensity of the scattered light, a series of alternately bright and dark bands. Because the scattering angles at which the interference happens to be construc­ tive are determined by the difference be­ tween two path lengths, those angles are affected by the radius of the droplet. The pattern of the supernumerary arcs (in contrast to the rainbow angle) is therefore dependent on droplet size. In larger drops the difference in path length increases much more quickly with im­ pact parameter than it does in small droplets. Hence the larger the droplets are, the narrower the angular separation between the supernumerary arcs is. The arcs can rarely be distinguished if the droplets are larger than about a millime­ ter in diameter. The overlapping of col­ ors also tends to wash out the arcs. The size dependence of the supernumeraries explains why they are easier to see near the top of the bow: raindrops tend to grow larger as they fall. With Young's interference theory all the major features of the rainbow could be explained, at least in a qualita­ tive and approximate way. What was lacking was a quantitative, mathemati­ cal theory capable of predicting the in­ tensity of the scattered light as a func­ tion of droplet size and scattering angle. Young's explanation of the supernu­ merary arcs was based on a wave theory of light. Paradoxically his predictions for the other side of the rainbow, for the region of Alexander's dark band, were inconsistent with such a theory. The in­ terference theory, like the theories of Descartes and Newton, predicted com­ plete darkness in this region, at least when only rays of Class 3 and Class 4 were considered. Such an abrupt transi­ tion, however, is not possible, because the wave theory of light requires that sharp boundaries between light and RAINBOW RAY CONFLUENCE OF RAYS scattered by a droplet gives rise to caustics, or "burning curves." A caustic is tbe envelope �f a ray system. Of special interest is tbe caustic of Class 3 rays, wbicb bas two brancbes, a real brancb and a "virtual" one; tbe latter is formed wben tbe rays are ex­ tended backward. Wben tbe rainbow ray is produced in botb directions, it approacbes tbe brancbes of tbis caustic. A tbeory of tbe rainbow based on tbe analysis of sucb a caustic was devised by George B. Airy. Having cbosen an initial wave front-a surface perpendicular at all points to tbe rays of Class 3-Airy was able to determine tbe amplitude distribution in sub­ sequent waves. A weakness of tbe tbeory is tbe need to guess tbe amplitudes of tbe initial waves. shadow be softened by diffraction. The most familiar manifestation of diffrac­ tion is the apparent bending of light or sound at the edge of an opaque obstacle. In the rainbow there is no real obstacle, but the boundary between the primary bow and the dark band should exhibit diffraction nonetheless. The treatment of diffraction is a subtle and difficult problem in mathematical physics, and the subsequent development of the theo­ ry of the rainbow was stimulated mainly by efforts to solve it. In 1835 Richard Potter of the Univer­ sity of Cambridge pointed out that the crossing of various sets of light rays in a droplet gives rise to caustic curves. A caustic. or "burning curve, " represents the envelope of a system of rays and is always associated with an intensity highlight. A familiar caustic is the bright cusp-shaped curve formed in a teacup when sunlight is reflected from its inner walls. Caustics, like the rainbow, gener­ ally have a lighted side and a dark side; intensity increases continuously up to the caustic, then drops abruptly. Potter showed that the Descartes rain­ bow ray-the Class 3 ray of minimum scattering angle-can be regarded as a caustic. All the other transmitted rays of Class 3, when extended to infinity, ap­ proach the Descartes ray from the light­ ed side; there are no rays of this class on the dark side. Thus finding the intensity of the scattered light in a rainbow is sim­ ilar to the problem of determining the intensity distribution in the neighbor­ hood of a caustic. In 1838 an attempt to determine that distribution was made by Potter's Cam­ bridge colleague George B. Airy. His 121 © 1977 SCIENTIFIC AMERICAN, INC
  • 32. il- I (!):J wD oJW (!)CC Zw « 1= �« 0 CO en z u. �0 CC� iiizWI-� DARK BAND PRIMARY BOW SCATIERING ANGLE � I ARST SUPERNUMERARY I PREDICTED INTENSITY as a function of scattering angle is compared for three early theo­ riesof the rainbow. In the geometric analysis of Descartes, intensity is infinite at the rainbow angle; it declines smoothly (without supernumerary arcs) on the lighted side and falls off abruptly to zero on the dark side. The theory of Thomas Young, which is based on the interfer­ ence of light waves, predicts supernumerary arcs but retains the sharp transition from infinite tozero intensity. Airy's theory relocates the peaks in the intensity curve and for the first time provides (through diffraction) an explanation for gradual fading of the rainbow into shadow. reasoning was based on a principle of wave propagation formulated in the 17thcentury by Christiaan Huygens and later elaborated by Augustin Jean Fres­ nel. This principle regards every point of a wave front as being a source of secondary spherical waves; the second­ ary waves define a new wave front and hence describe the propagation of the wave. It follows that if one knew the amplitudes of the waves over any one complete wave front. the amplitude dis­ tribution at any other point could be re­ constructed. The entire rainbow could be described rigorously if we knew the amplitude distribution along a wave front in a single droplet. Unfortunately the amplitude distribution can seldom be determined; all one can usually do is make a reasonable guess for some cho­ sen wave front in the hope that it will lead to a good approximation. The starting wave front chosen by Airy is a surface inside the droplet. nor­ mal to all the rays of Class 3 and with an inflection point (a change in the sense of . curvature) where it intersects the Des­ cartes rainbow ray. The wave ampli­ tudes along this wave front were esti­ mated through standard assumptions in thetheory of diffraction. Airy was then able to express the intensity of the scat- 122 tered light in the rainbow region in terms of a new mathematical function. then known as the rainbow integral and today called the Airy function. The mathematical form of the Airy function will not concern us here; we shall con­ centrate instead on its physical meaning. The intensity distribution predicted by the Airy function is analogous to the diffraction pattern appearing in the shadow of a straight edge. On the light­ ed side of the primary bow there are oscillations in intensity that correspond to the supernumerary arcs; the positions and widths of these peaks differ some­ what from those predicted by the Young interference theory. Another significant distinction of the Airy theory is that the maximum intensity of the rainbow falls at an angle somewhat greater than the Descartes minimum scattering angle. The Descartes and Young theories pre­ dict an infinite intensity at that angle (be­ cause of the caustic). The Airy theory does not reach an infinite intensity at any point. and at the Descartes rainbow ray the intensity predicted is less than half the maximum. Finally. diffraction effects appear on the dark side of the rainbow: instead of vanishing abruptly the intensity tapers away smoothly with­ in Alexander's dark band. Airy's calculations were for a mono­ chromatic rainbow. In order to apply his method to a rainbow produced in sun­ light one must superpose the Airy pat­ terns generated by the various mono­ chromatic components. To proceed fur­ ther and describe the perceived image of the rainbow requires a theory of color vision. The purity of the rainbow colors is determined by the extent to which the component monochromatic rainbows overlap; that in turn is determined by the droplet size. Uniformly large drops (with diameters on the order of a few millimeters) generally give bright rain­ bows with pure colors; with very small droplets (diameters of .01 millimeter or so) the overlap of colors is so great that the resulting light appears to be almost white. An important property of light that we I. have so far ignored is its state of polarization. Light is a transverse wave. that is. one in which the oscillations are perpendicular to the direction of propa­ gation. (Sound. on the other hand. is a longitudinal vibration.) The orientation of the transverse oscillation can be re­ solved into components along two mu­ tually perpendicular axes. Any light ray can be described in terms of these two independent states of linear polariza­ tion. Sunlight is an incoherent mixture of the two in equal proportions; it is of­ ten said to be randomly polarized or simply unpolarized. Reflection can alter its state of polarization. and in that fact lies the importance of polarization to the analysis of the rainbow. Let us consider the reflection of a light ray traveling inside a water droplet when it reaches the boundary of the droplet. The plane of reflection. the plane that contains both the incident and the reflected rays. provides a conve­ nient geometric reference. The polariza­ tion states of the incident light can be defined as being parallel to that plane and perpendicular to it. For both polari­ zations the reflectivity of the surface is slight at angles of incidence near the per­ pendicular. and it rises very steeply near a critical angle whose value is deter­ mined by the index of refraction. Be­ yond that critical angle the ray is totally reflected. regardless of polarization. At intermediate angles. however. reflectivi­ ty depends on polarization. As the angle of incidence becomes shallower a stead­ ily larger portion of the perpendicularly polarized component is reflected. For the parallel component. on the other hand. reflectivity falls before it begins to increase. At one angle in particular. re­ flectivity for the parallel-polarized wave vanishes entirely; that wave is totally transmitted. Hence for sunlight incident at that angle the internally reflected ray is completely polarized perpendicular © 1977 SCIENTIFIC AMERICAN, INC
  • 33. to the plane of reflection. The angle is called Brewster's angle, after David Brewster, who discussed its significance in 1815. Light from the rainbow is almost completely polarized, as can be seen by looking at a rainbow through Polar­ oid sunglasses and rotating the lenses around the line of sight. The strong po­ larization results from a remarkable co­ incidence: the internal angle of inci­ dence for the rainbow ray is very close to Brewster's angle. Most of the parallel component escapes in the transmitted rays of Class 2, leaving a preponderance of perpendicular rays in the rainbow. With the understanding that both matter and radiation can behave as waves, the theory of the rainbow has been enlarged in scope. It must now en­ compass new, invisible rainbows pro­ duced in atomic and nuclear scattering. An analogy between geometrical op­ tics and classical particle mechanics had already been perceived in 1831 by Wil­ liam Rowan Hamilton, the Irish mathe­ matician. The analogues of rays in geo­ metrical optics are particle trajectories, and the bending of a light ray on enter­ ing a medium with a different refractive index corresponds to the deflection of a moving particle under the action of a force. Particle-scattering analogues ex­ ist for many effects in optics, including the rainbow. Consider a collision between two at­ oms in a gas. As the atoms approach from a large initial separation, they are at first subject to a steadily increasing attraction. At closer range, however, the electron shells of the atoms begin to in­ terpenetrate and the attractive force di­ minishes. At very close range it becomes an increasingly strong repulsion. As in the optical experiment, the atomic scattering can be analyzed by tracing the paths of the atoms as a func­ tion of the impact parameter. Because the forces vary gradually and continu­ ously, the atoms follow curved trajecto­ ries instead of changing direction sud­ denly, as at the boundary between me­ dia of differing refractive index. Even though some of the trajectories are rath­ er complicated, each impact parameter corresponds to a single deflection angle; moreover, there is one trajectory that represents a local maximum angular de­ flection. That trajectory turns out to be the one that makes the most effective use of the attractive interaction between atoms. A strong concentration of scat­ tered particles is expected near this an­ gle; it is the rainbow angle for the inter­ acting atoms. A wave-mechanical treatment of the atomic and nuclear rainbows was for­ mulated in 1959 by Kenneth W. Ford of Brandeis University and John A. Whee­ ler of Princeton University. Interference between trajectories emerging in the same direction gives rise to supernumer­ ary peaks in intensity. A particle-scatter­ ing analogue of Airy's theory has also been derived. An atomic rainbow was first observed in 1964, by E. Hundhausen and H. Pau­ ly of the University of Bonn, in the scat- 100 90 80 70i='z 60w ()0: ' w eo.>- 50f- ;;i=()w -' 40LL WW 0: -'ClZ<I:30 (/) Cr:w f- (/) �20 w 0: en II10 I 0 10 20 tering of sodium atoms by mercury at­ oms. The main rainbow peak and two supernumeraries were detected; in more recent experiments oscillations on an even finer scale have been observed. The rainbows measured in these experi­ ments carry information about the inter­ atomic forces. Just as the optical rain- TOTAL INTERNAL REFLECTION PARALLEL 90PLANE OF REFLECTION - PERPENDICULAR WATER AIR EVANESCENT WAVE POLARIZATION OF THE RAINBOW results from differential reflection. An incident ray can be resolved into two components polarized parallel to and perpendicular to the plane of reflection. For a ray approaching an air-water bouudary from inside a droplet the reflectivity of the surface depends ou the angle of incidence. Beyond a critical angle both parallel and per­ pendicular components are totally reflected, although some light travels parallel to the surface as an "evanescent wave." At lesser angles the perpendicular component is reflected more effi­ ciently than the parallel one, and at one augle in particular, Brewster's angle, parallel-polarized light is completely transmitted. The angle of internal reflection for the rainbow ray falls near Brewster's angle. As a result light from the rainbow has a strong perpendicular polarization. 123 © 1977 SCIENTIFIC AMERICAN, INC
  • 34. RAINBOW TRAJECTORY SCATTERING OF ATOMS BY ATOMS creates a particulate rainbow. The role played in optical scattering by the refractive index is played here by interatomic forces. The principal dif­ ference is that the forces vary smoothly and continuously, so that the atoms follow curved trajectories. Asone atom approaches another the force between them is initially a steadily growing attraction (coloredshading),but at close range it becomes strongly repulsive (gray shading).A local maximum in the scattering angle corresponds to the optical rainbow angle. It is the angle made by the trajectory most effective in using the attractive part of the potential. t(f) ::2: �o UJ a: UJ 1=« u (f) LL o a: UJ co ::2: ::. z o 5 PRIMARY /RAINBOW 10 15 20 25SCATTERING ANGLE (DEGREES) 30 35ATOMIC RAINBOW was detected by E. Hundhausen and H. Pauly of the University of Bonn in the scattering of sodium atoms by mercury atoms. The oscillations in the number of scattered atoms detected correspond to a primary rainbow and to two supernumerary peaks. A rainbow of this kind embodies information about the strength and range of the interatomic forces. 124 bow angle depends solely on the refrac­ tive index, so the atomic rainbow angle is determined by the strength of the at­ tractive part of the interaction. Similar­ ly, the positions of the supernumerary peaks are size-dependent, and they pro­ vide information about the range of the interaction. Observations of the same kind have now been made in the scatter­ ing of atomic nuclei. The Airy theory of the rainbow has had many satisfying successes, but it contains one disturbing uncertainty: the need to guess the amplitude distribution along the chosen initial wave front. The assumptions employed in making that guess are plausible only for rather large raindrops. In this context size is best ex­ pressed in terms of a "size parameter," defined as the ratio of a droplet's cir­ cumference to the wavelength of the light. The size parameter varies from about 100 in fog or mist to several thou­ sand for large raindrops. Airy's approxi­ mation is plausible only for drops with a size parameter greater than about 5,000. It is ironic that a problem as intracta­ ble as the rainbow actually has an exact solution, and one that has been known for many years. As soon as the electro­ magnetic theory of light was proposed by James Clerk Maxwell about a centu­ ry ago, it became possible to give a pre­ cise mathematical formulation of the optical rainbow problem. What is need­ ed is a computation of the scattering of an electromagnetic plane wave by a ho­ mogeneous sphere. The solution to a similar but slightly easier problem, the scattering of sound waves by a sphere, was discussed by several investigators, notably Lord Rayleigh, in the 1 9th cen­ tury. The solution they obtainedconsist­ ed of an infinite series of terms, called partial waves. A solution of the same form was found for the electromagnetic problem in 1 908 by Gustav Mie and Pe­ ter J. W. Debye. Given the existence of an exact solu­ tion to the scattering problem, it might seem an easy matter to determine all its features, including the precise character of the rainbow. The problem, of course. is the need to sum the series of partial waves, each term of which is a rather complicated function. The series can be truncated to give an approximate solu­ tion, but this procedure is practical only in some cases. The number of terms that must be retained is of the same order of magnitude as the size parameter. The partial-wave series is therefore eminent­ ly suited to the treatment of Rayleigh scattering, which is responsible for the blue of the sky; in that case the scatter­ ing particles are molecules and are much smaller than the wavelength, so that one term of theseries isenough. For the rainbow problem size parameters up to several thousand must be considered. © 1977 SCIENTIFIC AMERICAN, INC
  • 35. A good approximation to the solution by the partial-wave method would re­ quire evaluating the sum of several thousand complicated terms. Comput­ ers have been applied to the task. but the results are rapidly varying functions of the size parameter and the scattering an­ gIe. so that the labor and cost quickly become prohibitive. Besides. a comput­ er can only calculate numerical solu­ tions; it offers no insight into the physics of the rainbow. We are thus in the tanta­ lizing situation of knowing a form of the exact solution and yet being unable to extract from it an understanding of the phenomena it describes. The first steps toward the resolution of this paradox were taken in the early years of the 20th century by the mathematicians Henri Poincare and G. N. Watson. They found a method for transforming the partial,wave series. which converges only very slowly onto a stable value. into a rapidly convergent expression. The technique has come to be known as the Watson transformation or as the complex-angular-momentum method. It is not particularly hard to see why angular momentum is involved in the rainbow problem. although it is less ob­ vious why "complex" values of the an­ gular momentum need to be considered. The explanation is simplest in a corpus­ cular theory of light. in which a beam of light is regarded as a stream of the parti­ cles called photons. Even though the photon has no mass. it does transport energy and momentum in inverse pro­ portion to the wavelength of the corre­ sponding light wave. When a photon strikes a water droplet with some impact parameter greater than zero. the photon carries an angular momentum equal to the product of its linear momentum and the impact parameter. As the photon undergoes a series of internal reflec­ tions. it is effectively orbiting the center of the droplet. Actually quantum me­ chanics places additional constraints on this process. On the one hand it requires that the angular momentum assume only certain discrete values; on the other it denies that the impact parameter can be precisely determined. Each discrete value of angular momentum corre­ sponds to one term in the partial-wave series. In order to perform the Watson trans­ formation. values of the angular mo­ mentum that are conventionally regard­ ed as being "unphysical" must be intro­ duced. For one thing the angular mo­ mentum must be allowed to vary contin­ uously. instead of in quantized units; more important. it must be allowed to range over the complex numbers: those that include both a real component and an imaginary one. containing some mul­ tiple of the square root of - 1 . The plane defined by these two components is referred to as the complex-angular­ momentum plane. Much is gained in return for the math­ ematical abstractions of the complex­ angular-momentum method. In particu­ lar. after going over to the complex­ angular-momentum plane through the Watson transformation. the contribu­ tions to the partial-wave series can be redistributed. Instead of a great many terms. one can work with just a few points called poles and saddle points in the complex-angular-momentum plane. In recent years the poles have attracted great theoretical interest in the physics of elementary particles. In that context they are usually called Regge poles. af­ ter the Italian physicist Tullio Regge. Both poles and saddle points have physical interpretations in the rain­ bow problem. Contributions from real saddle points are associated with the or­ dinary. real light rays we have been con­ sidering throughout this article. What about complex saddle points? Imagi­ nary or complex numbers are ordinarily regarded as being unphysical solutions to an equation. but they are not mean­ ingless solutions. In descriptions of wave propagation imaginary compo­ nents are usually associated with the damping of the wave amplitude. For ex­ ample. in the total internal reflection of a light ray at a water-air boundary a INCIDENT RAY light wave does go "through the looking glass." Its amplitude is rapidly damped. however. so that the intensity becomes negligible within a depth on the order of a single wavelength. Such a wave does not propagate into the air; instead it be­ comes attached to the interface between the water and the air. traveling along the surface; it is called an evanescent wave. The mathematical description of the ev­ anescent wave involves the imaginary components of a solution. The effect called quantum-mechanical tunneling. in which a particle passes through a po­ tential barrier without climbing over it. has a similar mathematical basis. "Com­ plex rays" also appear on the shadow side of a caustic. where they describe the damped amplitude of the diffracted light waves. Regge-pole contributions to the trans­ formed partial-wave series are associat­ ed with surface waves of another kind. These waves are excited by incident rays that strike the sphere tangentially. Once such a wave is launched. it travels around the sphere. but it is continually damped because it sheds radiation tan­ gentially. like a garden sprinkler. At each point along the wave's circumfer­ ential path it also penetrates the sphere at the critical angle for total internal re­ flection. reemerging as a surface wave after taking one or more such shortcuts. It is interesting to note that Johannes Kepler conjectured in 1 584 that "pin- SURFACE WAVE IMPACT PARAMETER EQUAL TO DROPLET CRITICALANGLE I_ __ _ __ ._ _ ___ CRITICALANGLE SURFACE WAVE COMPLEX-ANGULAR-MOMENTUM theory of the rainbow begins with the ohservation that a photon, or quantnm of light, incident on a droplet at some impact parameter (which can­ not be exactly defined) carries angular momentnm. In the theory, components of that angular momentnm are extended to complex values, that is, values containing the square root of -1. The consequences of this procedure can be illustrated by the example of a ray striking a drop­ let tangentially. The ray stimulates surface waves, which travel around the droplet and con­ tinuously shed radiation. The ray can also penetrate the droplet at the critical angle for total internal reflection, emerging either to form another surface wave or to repeat the shortcut. 125© 1977 SCIENTIFIC AMERICAN, INC
  • 36. wheel" rays of this kind might be re­ sponsible for the rainbow, but he aban­ doned the idea because it did not lead to the correct rainbow angle. In 1 937 the Dutch physicists Balthus Van der Pol and H. Bremmer applied Watson's transformation to the rainbow problem, but they were able to show only that Airy's approximation could be obtained as a limiting case. In 1 965 I developed an improved version of Wat­ son's method, and I applied it to the rainbow problem in 1 969 with some­ what greater success. In the simple Cartesian analysis we saw that on the lighted side of the rain­ bow there are two rays emerging in the same direction; at the rainbow angle these coalesce into the single Descartes ray of minimum deflection and on the shadow side they vanish. In the com­ plex-angular-momentum plane, as I have mentioned, each geometric ray corresponds to a real saddle point. Hence in mathematical terms a rainbow is merely the collision of two saddle f­ I <9 :J o w 0: w �« u (fJ lL o >­ f- � 104w f­ � COMPLEX· ANGULAR· MOMENTUM ___ THEORY points in the complex-angular-momen­ tum plane. In the shadow region beyond the rainbow angle the saddle points do not simply disappear; they become complex, that is, they develop imagi­ nary parts. The diffracted light in Alex­ ander's dark band arises from a complex saddle point. It is an example of a "com­ plex ray" on the shadow side of a caustic curve. It should be noted that the adoption of the complex-angular-momentum meth­ od does not imply that earlier solutions to the rainbow problem were wrong. Descartes's explanation of the primary bow as the ray of minimum deflection is by no means invalid, and the supernu­ merary arcs can still be regarded as a product of interference, as Young pro­ posed. The complex-angular-momen­ tum method simply gives a more com­ prehensive accounting of the paths available to a photon in the rainbow re­ gion of the sky, and it thereby achieves more accurate results. In 1 975 Vijay Khare of the University of Rochester made a detailed compari- AIRY THEORY - 139SCATTERING ANGLE (DEGREES) son of three theories of the rainbow: the Airy approximation, the "exact" solu­ tion, obtained by a computer summa­ tion of the partial-wave series, and the rainbow terms in the complex-angular­ momentum method, associated with the collision of two saddle points. For the dominant, perpendicular polarization the Airy theory requires only small cor­ rections within the primary bow, and its errors become appreciable only in the region of the supernumerary arcs. For the scattered rays polarized parallel to the scattering plane, however, Airy's ap­ proximation fails badly. For the super­ numerary arcs the exact solution shows minima where the Airy theory has maxi­ mum intensity, and vice versa. This seri­ ous failure is an indirect result of the near coincidence between the angle of internal reflection for the rainbow rays and Brewster's angle. At Brewster's an­ gie the amplitude of the reflected ray changes sign, a change the Airy theory does not take into account. As a result of the change in sign the interference along directions corresponding to the peaks in 140 141 142QUANTITATIVE THEORIES of tbe rainbow predict tbe intensity of tbe scattered Iigbt as a function of tbe scatteriug angle and also witb respect to droplet size and polarization. Here tbe predictions of tbree tbeories are presented for parallel-polarized Iigbt scattered by droplets witb a circumference equal to 1,500 wavelengths of tbe Iigbt. One curve represents tbe "exact" solution to tbe rainbow problem, derived from James Clerk Maxwell's equations describing electro­ magnetic radiation. The exact solution is tbe sum of an infinite series of terms, approximated bere by adding up more tban 1,500 compli- cated terms for eacb point employed in plotting tbe curve. Tbe Airy tbeory is clearly in disagreement witb tbe exact solution, particu­ larly in tbe angular region of tbe supernumerary arcs. Tbere the exact solution sbows trougbs at tbe positions of Airy's peaks. The results obtained by the complex-angular-momentum metbod, on the otber band, correspond closely to tbe exact solution, failing only to repro­ duce small, bigb-frequency oscillations. Tbese 8uctuations are associ­ ated witb anotber optical pbenomenon in tbe atmospbere, the glory, wbicb is also explained by tbe complex-angular-momentum tbeory. 126 © 1977 SCIENTIFIC AMERICAN, INC
  • 37. the Airy solutions is destructive instead of constructive. In terms of large-scale features, such as the primary bow, the supernumerary arcs and the dark-side diffraction pat­ tern, the complex-angular-momentum result agrees quite closely with the exact solution. Smaller-scale fluctuations in the exact intensity curve are not repro­ duced as well by the rainbow terms in the complex-angular-momentum meth­ od. On the other hand, the exact solu­ tion, for a typical size parameter of 1 ,500, requires the summation of more than 1 .500 complicated terms; the com­ plex-angular-momentum curve is ob­ tained from only a few much simpler terms. The small residual fluctuations in the exact intensity curve arise from higher-order internal reflections: rays belonging to classes higher than Class 3 or Class 4. They are of little importance for the primary bow, but at larger scat­ tering angles their contribution increas­ es and near the backward direction it becomes dominant. There these rays are responsible for another fascinating me­ teorological display: the glory [see "The Glory," by Howard C. Bryant and Nel­ son Jarmie; SCIENTIFICAMERICAN,July, 1 974]. The glory appears as a halo of spec­ tral colors surrounding the shadow an observer casts on clouds or fog; it is most commonly seen from an airplane flying above clouds. It can also be ex­ plained through the complex-angular­ momentum theory, but the explanation is more complicated than that for the rainbow. One set of contributions to the glory comes from the surface waves de­ scribed by Regge poles that are associat­ ed with the tangential rays of Kepler's pinwheel type. Multiple internal reflec­ tions that happen to produce closed, star-shaped polygons play an important role, leading to resonances, or enhance­ ments in intensity. Such geometric coin­ cidences are very much in the spirit of Kepler's theories. A second important set of contribu­ tions, demonstrated by Khare, is from the shadow side of higher-order rain­ bows that appear near the backward di­ rection. These contributions represent the effect of complex rays. The lOth­ order rainbow, formed only a few de­ grees away from the backward direc­ tion, is particularly effective. For the higher-order rainbows Airy's theory would give incorrect results for both polarizations, and so the complex­ angular-momentum theory must be em­ ployed. One might thus say the glory is formed in part from the shadow of a rainbow. It is gratifying to discover in the elegant but seemingly abstract theo­ ry of complex angular momentum an explanation for these two natural phe­ nomena, and to find there an unexpected link between them. Authors . . . LOOKING FOR A PUBLISHER?Learn how to have your book published. You are i nvited to send for a free i l l us­ trated guidebook which explains how your book can be published, p romoted a n d m a r ke t e d . W h e t h e r y o u r subject is fic­ tion, non-fiction or poetry, sci­ entific, scholar­ ly, special ized, ( e v e n c o n t ro­ v e r s La l ) t h i s h a n d s o m e 52- page brochure wi l l show you how to arrange for prompt pub- lication. U n p u b l i s h e d a u t h o rs, e s p e c i a l ly, w i l l find this booklet valuable and i nform­ a t i v e . For y o u r f r e e c o p y , w r i t e t o : VANTAGE PRESS, Inc. Dept. F-53 516W.34St., New York, N.Y. 10001 PROFESSIONALDISCOUNTSTexas Instruments electronic calculator TI·30. . $21 .95 SR·51 ·11 . $54.50 1 600 . 21 .95 SR·56 . . . 84.50 1 650 . . . 26.95 SR·52 . . . 1 84.95 2550-11 28.50 pc·l 00 . . 1 54.95 SR-40 . 31 .95 TI·5050M . 89.95 j�igrBus. Anst. 32.50 504O-PD . . 1 1 4.95 51 00 . . . 44.95 Money Mgr. 21 .95 Libraries 24.�39.95 Ask for TI digital watches! _ ( N o creditcards)HP.2t . HE�:�:oTil�f:frEKARDs:!�� Hp·22 . . . . . . 102.25 HP·67 . . . 395.00 HP·25 . t t8.90 Hp·97 . 664.95 NOVUS�NATIONAL SEMICON DUCTOR Malh 451 0 . . Scientist 4520 . . Scientist PR4525 . Financier PR6025 . 16.95 Stalislician PR6035 . . S 32.50 29.95 NS·4640 . . 49.95 54.95 NS·7 t oo . . . . 395.00 32.50 Adversary TV Game . . . 74.95 IIII!!I�IIIIIIIIII__� Programmable Video Game . $149.95 FAIRCMILO (2000 games possiblel '-lillliilili_iliiii. Cartridges . . . . . . . . . 1 7.95- Also Fairchild watches! WE Will BEAT OR MEET ANY COMPETITORS' PRICE IF HE HAS MERCHANDISE ON HAND. 3().day exchange by TK. "year warranty by manufacturers. All units shipped in originaf factorycartons with accessories according to manu· facturers ' specifications. In Calif. call (21 31 37()'5795 or OROERS ONLY CALL (8001 421·0367 (other than CAl. Send money order. Pers. ck (2 wks to clear); in CA add 6% sales tax. Add $3.50 min. shippirtg charges US ortly, $7.00 for SR·52, PC·100, Hp·67, ·97 Cartada min. shipping charges $6.50. WE SHIP UPS AIR. Send mail orders to OEPT. SA-D. "th��[@,�=II16611HawthorneBlvd.awndale,Ca.90260(213)370·5795(800)421-0367 read less kRal marekeepupwithallnewadvancesIntechnologywithonly30minutesaweek200 paragraph size digests Qulk-Sean newsleHer Ionnat of ,ltal a�lcles from 350 lets roo plclc out lust what Pllbllcatlons wort�Ide"". you need to know.",.!a." SPECIAL 1/2 PRICE OFFER $12 for 12 weeks A PredicaslsP U B L I CA T I O N . - - - - - - - . ... - - - - - - - ­ - -- - - - - - - - - - - - - - - - - - - - _ . - - - ---- - - _ ... _. - - - - ... . _ - -- - - ... - ... . ... ... _- - - - -_ ... . . ... _- - - - - - _ ... - - - _ . - - - _ . _ - - - - _ . - - _ .. .. . ... _ - - _ . _ . - .. - - - - - - . _ . - - - - - - - - - - - - - - - - -- - - - - - - - - -- -- - - - - - _. - - - - - - - - - - - - - - - - - - _ . - - - - _ . - - - _ ... _ - - - - - - - - - - - - - - - - - - - - - - - - - $!ID,.,,..,-WNlt,,IrwRiTEORCALl:SPECiALOFFERDEPTB�1 I TECHNICALSURVEY, 11001CEDARAVE.CLEVELAND,OH44106, (216)795--3000 I IName I I Company I IAddress I L£.ity __:.J 127© 1977 SCIENTIFIC AMERICAN, INC