SlideShare a Scribd company logo
1 of 19
Download to read offline
A Deep Learning Approach to Antibiotic Discovery
PR-232
주성훈, Samsung SDS
2020. 3. 15.
1. Research Background
1. Research Background
Introduction
3/19
• AutoML
, architecture hyperparameter .
• (NAS, Neural Architecture Search)
• Hyperparameters
• Learning rule (activation function, full forward pass, data augmentation, weight optimization, layer and weight pruning)
AutoML
https://arxiv.org/pdf/1810.13306.pdf
1. Research Background
Architecture search
• - Constrained search space
• building block search algorithm , NAS .
• constrained search space .
Search space :
Saining Xie et al. (2019) https://arxiv.org/pdf/1904.01569.pdf
PR-155
Golnaz Ghaisi et al. (2019) https://arxiv.org/pdf/1904.01569.pdf
PR-166
Yanan Sun et al. (2019) https://arxiv.org/pdf/1710.10741.pdf
4/19
1. Research Background
AutoML-Zero
• We propose to automatically search for whole ML algorithms using little restriction
on form and only simple mathematical operations as building blocks.
 Matrix decomposition derivative .
5/19
1. Research Background
AutoML-Zero
• we propose to automatically search for whole ML algorithms using little restriction
on form and only simple mathematical operations as building blocks.
백지상태에서 시작해서 최종 알고리즘 까지
정말 어마어마한 search space…
4일
6/19
2. Methods
P=5, T=3 일 때,
2. Methods
Type (i)
랜덤 연산 삽입/삭제.
삭제 확률이 삽입 확률의 두 배
Type (ii)
함수 내 연산 전부 교체
Type (iii)
Argument 하나만 교체.
Real-valued constant 수정할 때,
[0.5, 2.0]사이의 수 임의선택 후
곱하고 10%의 확률로 부호 바꿈
Evolutionary method
T만큼 랜덤선택
8/19
2. Methods
Step 3 best algorithm
9/19
3. Experimental Results
3. Experimental Results
Random search (RS)
• Evolution / RS success rate :
Acceptable algorithms .
Acceptable algorithm hand-designed reference model .
• Task difficulty :
RS 1 acceptable algorithms algorithms .
ex) linear regression case RS 1 acceptable algorithms 107.4 , linear regressor task difficulty 7.4 .
algorithm search space sparse , AutoML-Zero RS .
11/19
4 ops
7 ops
5 ops
9 ops
3. Experimental Results
AutoML-Zero hand-designed reference (2-layer FC NN)
• CIFAR-10 MNIST task
• 10 class , binary classification ; 10C2 = 45 pairs
• pair 8000 train/ 2000 valid example
• 45 36 – Tsearch
(search task . 1~10 evolution cycle )
• 45 9 – Tselect ( best accuracy )
• CIFAR-10 test set final evaluation
• Number of possible operations: 7/58/58 for Setup/Predict/Learn
 Figure 6 1 illustration , (5, 20) .
12/19
• Training Epoch : 1 or 10; evolution parameter: P=100, T=10
• Maximum num. instructions for Setup/Predict/Learn: 21/21/45.
3. Experimental Results
• Best model parameter (learning rate, uniform distribution mean ) Tselect dataset random search .
, linear/nonlinear baseline hyperparameters random search .
• [CIFAR-10 ] 5 trial best algorithm accuracy : 84.06 0.10%
Linear baseline : logistic regression, 77.65 0.22%
Nonlinear baseline : 2-layer fully connected neural network, 82.22 0.17%
• binary classification task :
1) SVHN (32 x 32 x 3) (88.12% AutoML-Zero vs. 59.58% linear baseline vs. 85.14% for nonlinear baseline)
2) down-sampled ImageNet (128 x 128 x 3) (80.78% vs. 76.44% vs. 78.44%)
3) Fashion MNIST (28 x 28 x 1) (98.60% vs. 97.90% vs. 98.21%).
 search space design convolution batch normalization .
AutoML-Zero hand-designed reference (2-layer FC NN)
AutoML-Zero 2-layer FC NN .
13/19
3. Experimental Results
Challenging task AutoML-Zero
1) Few training examples
• Training dataset 80 100 epoch ,
AutoML-Zero Noisy ReLU (dropout ) .
• ?
(80 examples) vs. (800 examples) 30 ,
(p<0.0005) noisy ReLU .
14/19
3. Experimental Results
Challenging task AutoML-Zero
2) Fast training
• Training dataset 800 10 epoch ,
AutoML-Zero learning-rate decay .
• ?
10 epoch vs. 100 epoch 30 ,
10 epoch case 30 (30/30), 100 epoch case 3 (3/30) learning-rate decay
.
15/19
3. Experimental Results
Challenging task AutoML-Zero
3) Multiple classes
• CIFAR-10 10 ,
Learning rate sin(weight )
.
• Multi-class vs. binary-class 30 ,
Binary-class (0/30)
Multi-class 24 (24/30) .
AutoML-Zero , .
16/19
2) Functional equivalence checking(FEC)
•
•
4) Hurdle :
•
•
3. Experimental Results
1) Migration
•
17/19
4. Conclusion
4. Conclusions 19/19
Thank you.
• AutoML ambitious goal (
) .
• future work higher-order tensor function call search space
.
• AutoML-Zero (Setup, Predict, Learn) ,
linear regressors, neural networks, gradient descent, multiplicative interactions,
weight averaging, normalized gradients
.
• AutoML-Zero
. .

More Related Content

What's hot

MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MLAI2
 

What's hot (20)

Mlp mixer image_process_210613 deeplearning paper review!
Mlp mixer image_process_210613 deeplearning paper review!Mlp mixer image_process_210613 deeplearning paper review!
Mlp mixer image_process_210613 deeplearning paper review!
 
【DL輪読会】Standardized Max Logits: A Simple yet Effective Approach for Identifyi...
【DL輪読会】Standardized Max Logits: A Simple yet Effective Approach for Identifyi...【DL輪読会】Standardized Max Logits: A Simple yet Effective Approach for Identifyi...
【DL輪読会】Standardized Max Logits: A Simple yet Effective Approach for Identifyi...
 
Review : PolarMask: Single Shot Instance Segmentation with Polar Representati...
Review : PolarMask: Single Shot Instance Segmentation with Polar Representati...Review : PolarMask: Single Shot Instance Segmentation with Polar Representati...
Review : PolarMask: Single Shot Instance Segmentation with Polar Representati...
 
DNR - Auto deep lab paper review ppt
DNR - Auto deep lab paper review pptDNR - Auto deep lab paper review ppt
DNR - Auto deep lab paper review ppt
 
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
[Review] BoxInst: High-Performance Instance Segmentation with Box Annotations...
 
Review : Multi-Domain Image Completion for Random Missing Input Data [cdm]
Review : Multi-Domain Image Completion for Random Missing Input Data [cdm]Review : Multi-Domain Image Completion for Random Missing Input Data [cdm]
Review : Multi-Domain Image Completion for Random Missing Input Data [cdm]
 
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision TransformersEmerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
 
Dear - 딥러닝 논문읽기 모임 김창연님
Dear - 딥러닝 논문읽기 모임 김창연님Dear - 딥러닝 논문읽기 모임 김창연님
Dear - 딥러닝 논문읽기 모임 김창연님
 
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)[unofficial] Pyramid Scene Parsing Network (CVPR 2017)
[unofficial] Pyramid Scene Parsing Network (CVPR 2017)
 
Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]
 
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
Vision Transformer(ViT) / An Image is Worth 16*16 Words: Transformers for Ima...
 
Review: You Only Look One-level Feature
Review: You Only Look One-level FeatureReview: You Only Look One-level Feature
Review: You Only Look One-level Feature
 
Deep Learning Fast MRI Using Channel Attention in Magnitude Domain
Deep Learning Fast MRI Using Channel Attention in Magnitude DomainDeep Learning Fast MRI Using Channel Attention in Magnitude Domain
Deep Learning Fast MRI Using Channel Attention in Magnitude Domain
 
How much position information do convolutional neural networks encode? review...
How much position information do convolutional neural networks encode? review...How much position information do convolutional neural networks encode? review...
How much position information do convolutional neural networks encode? review...
 
Building and road detection from large aerial imagery
Building and road detection from large aerial imageryBuilding and road detection from large aerial imagery
Building and road detection from large aerial imagery
 
201907 AutoML and Neural Architecture Search
201907 AutoML and Neural Architecture Search201907 AutoML and Neural Architecture Search
201907 AutoML and Neural Architecture Search
 
Image classification using CNN
Image classification using CNNImage classification using CNN
Image classification using CNN
 
[PR-325] Pixel-BERT: Aligning Image Pixels with Text by Deep Multi-Modal Tran...
[PR-325] Pixel-BERT: Aligning Image Pixels with Text by Deep Multi-Modal Tran...[PR-325] Pixel-BERT: Aligning Image Pixels with Text by Deep Multi-Modal Tran...
[PR-325] Pixel-BERT: Aligning Image Pixels with Text by Deep Multi-Modal Tran...
 
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
 
Mlp mixer an all-mlp architecture for vision
Mlp mixer  an all-mlp architecture for visionMlp mixer  an all-mlp architecture for vision
Mlp mixer an all-mlp architecture for vision
 

Similar to PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch

Practical tips for handling noisy data and annotaiton
Practical tips for handling noisy data and annotaitonPractical tips for handling noisy data and annotaiton
Practical tips for handling noisy data and annotaiton
RyuichiKanoh
 
Multi-Layer Perceptrons
Multi-Layer PerceptronsMulti-Layer Perceptrons
Multi-Layer Perceptrons
ESCOM
 

Similar to PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch (20)

PPT - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
PPT - AutoML-Zero: Evolving Machine Learning Algorithms From ScratchPPT - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
PPT - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
 
C3 w1
C3 w1C3 w1
C3 w1
 
AutoML lectures (ACDL 2019)
AutoML lectures (ACDL 2019)AutoML lectures (ACDL 2019)
AutoML lectures (ACDL 2019)
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning Models
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning Models
 
Automated Machine Learning via Sequential Uniform Designs
Automated Machine Learning via Sequential Uniform DesignsAutomated Machine Learning via Sequential Uniform Designs
Automated Machine Learning via Sequential Uniform Designs
 
Time series representations for better data mining
Time series representations for better data miningTime series representations for better data mining
Time series representations for better data mining
 
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
Ernest: Efficient Performance Prediction for Advanced Analytics on Apache Spa...
 
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for De...
 
Practical tips for handling noisy data and annotaiton
Practical tips for handling noisy data and annotaitonPractical tips for handling noisy data and annotaiton
Practical tips for handling noisy data and annotaiton
 
MLConf 2016 SigOpt Talk by Scott Clark
MLConf 2016 SigOpt Talk by Scott ClarkMLConf 2016 SigOpt Talk by Scott Clark
MLConf 2016 SigOpt Talk by Scott Clark
 
Scott Clark, Co-Founder and CEO, SigOpt at MLconf SF 2016
Scott Clark, Co-Founder and CEO, SigOpt at MLconf SF 2016Scott Clark, Co-Founder and CEO, SigOpt at MLconf SF 2016
Scott Clark, Co-Founder and CEO, SigOpt at MLconf SF 2016
 
Spark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef HabdankSpark Summit EU talk by Josef Habdank
Spark Summit EU talk by Josef Habdank
 
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...
Driving Moore's Law with Python-Powered Machine Learning: An Insider's Perspe...
 
Prediction as a service with ensemble model in SparkML and Python ScikitLearn
Prediction as a service with ensemble model in SparkML and Python ScikitLearnPrediction as a service with ensemble model in SparkML and Python ScikitLearn
Prediction as a service with ensemble model in SparkML and Python ScikitLearn
 
Using SigOpt to Tune Deep Learning Models with Nervana Cloud
Using SigOpt to Tune Deep Learning Models with Nervana CloudUsing SigOpt to Tune Deep Learning Models with Nervana Cloud
Using SigOpt to Tune Deep Learning Models with Nervana Cloud
 
Deep_Learning__INAF_baroncelli.pdf
Deep_Learning__INAF_baroncelli.pdfDeep_Learning__INAF_baroncelli.pdf
Deep_Learning__INAF_baroncelli.pdf
 
Multi-Layer Perceptrons
Multi-Layer PerceptronsMulti-Layer Perceptrons
Multi-Layer Perceptrons
 
Large Scale Kernel Learning using Block Coordinate Descent
Large Scale Kernel Learning using Block Coordinate DescentLarge Scale Kernel Learning using Block Coordinate Descent
Large Scale Kernel Learning using Block Coordinate Descent
 
StackNet Meta-Modelling framework
StackNet Meta-Modelling frameworkStackNet Meta-Modelling framework
StackNet Meta-Modelling framework
 

More from Sunghoon Joo

More from Sunghoon Joo (17)

PR-445: Token Merging: Your ViT But Faster
PR-445: Token Merging: Your ViT But FasterPR-445: Token Merging: Your ViT But Faster
PR-445: Token Merging: Your ViT But Faster
 
PR-433: Test-time Training with Masked Autoencoders
PR-433: Test-time Training with Masked AutoencodersPR-433: Test-time Training with Masked Autoencoders
PR-433: Test-time Training with Masked Autoencoders
 
PR422_hyper-deep ensembles.pdf
PR422_hyper-deep ensembles.pdfPR422_hyper-deep ensembles.pdf
PR422_hyper-deep ensembles.pdf
 
PR-411: Model soups: averaging weights of multiple fine-tuned models improves...
PR-411: Model soups: averaging weights of multiple fine-tuned models improves...PR-411: Model soups: averaging weights of multiple fine-tuned models improves...
PR-411: Model soups: averaging weights of multiple fine-tuned models improves...
 
PR-393: ResLT: Residual Learning for Long-tailed Recognition
PR-393: ResLT: Residual Learning for Long-tailed RecognitionPR-393: ResLT: Residual Learning for Long-tailed Recognition
PR-393: ResLT: Residual Learning for Long-tailed Recognition
 
PR-383: Solving ImageNet: a Unified Scheme for Training any Backbone to Top R...
PR-383: Solving ImageNet: a Unified Scheme for Training any Backbone to Top R...PR-383: Solving ImageNet: a Unified Scheme for Training any Backbone to Top R...
PR-383: Solving ImageNet: a Unified Scheme for Training any Backbone to Top R...
 
PR-373: Revisiting ResNets: Improved Training and Scaling Strategies.
PR-373: Revisiting ResNets: Improved Training and Scaling Strategies.PR-373: Revisiting ResNets: Improved Training and Scaling Strategies.
PR-373: Revisiting ResNets: Improved Training and Scaling Strategies.
 
PR-339: Maintaining discrimination and fairness in class incremental learning
PR-339: Maintaining discrimination and fairness in class incremental learningPR-339: Maintaining discrimination and fairness in class incremental learning
PR-339: Maintaining discrimination and fairness in class incremental learning
 
PR-313 Training BatchNorm and Only BatchNorm: On the Expressive Power of Rand...
PR-313 Training BatchNorm and Only BatchNorm: On the Expressive Power of Rand...PR-313 Training BatchNorm and Only BatchNorm: On the Expressive Power of Rand...
PR-313 Training BatchNorm and Only BatchNorm: On the Expressive Power of Rand...
 
PR-298 PARADE: Passage representation aggregation for document reranking
PR-298 PARADE: Passage representation aggregation for document rerankingPR-298 PARADE: Passage representation aggregation for document reranking
PR-298 PARADE: Passage representation aggregation for document reranking
 
PR-285 Leveraging Semantic and Lexical Matching to Improve the Recall of Docu...
PR-285 Leveraging Semantic and Lexical Matching to Improve the Recall of Docu...PR-285 Leveraging Semantic and Lexical Matching to Improve the Recall of Docu...
PR-285 Leveraging Semantic and Lexical Matching to Improve the Recall of Docu...
 
PR-246: A deep learning system for differential diagnosis of skin diseases
PR-246: A deep learning system for differential diagnosis of skin diseasesPR-246: A deep learning system for differential diagnosis of skin diseases
PR-246: A deep learning system for differential diagnosis of skin diseases
 
PR-218: MFAS: Multimodal Fusion Architecture Search
PR-218: MFAS: Multimodal Fusion Architecture SearchPR-218: MFAS: Multimodal Fusion Architecture Search
PR-218: MFAS: Multimodal Fusion Architecture Search
 
PR-203: Class-Balanced Loss Based on Effective Number of Samples
PR-203: Class-Balanced Loss Based on Effective Number of SamplesPR-203: Class-Balanced Loss Based on Effective Number of Samples
PR-203: Class-Balanced Loss Based on Effective Number of Samples
 
PR-187 : MorphNet: Fast & Simple Resource-Constrained Structure Learning of D...
PR-187 : MorphNet: Fast & Simple Resource-Constrained Structure Learning of D...PR-187 : MorphNet: Fast & Simple Resource-Constrained Structure Learning of D...
PR-187 : MorphNet: Fast & Simple Resource-Constrained Structure Learning of D...
 
PR173 : Automatic Chemical Design Using a Data-Driven Continuous Representati...
PR173 : Automatic Chemical Design Using a Data-Driven Continuous Representati...PR173 : Automatic Chemical Design Using a Data-Driven Continuous Representati...
PR173 : Automatic Chemical Design Using a Data-Driven Continuous Representati...
 
PR-159 : Synergistic Image and Feature Adaptation: Towards Cross-Modality Dom...
PR-159 : Synergistic Image and Feature Adaptation: Towards Cross-Modality Dom...PR-159 : Synergistic Image and Feature Adaptation: Towards Cross-Modality Dom...
PR-159 : Synergistic Image and Feature Adaptation: Towards Cross-Modality Dom...
 

Recently uploaded

Teachers record management system project report..pdf
Teachers record management system project report..pdfTeachers record management system project report..pdf
Teachers record management system project report..pdf
Kamal Acharya
 
School management system project report.pdf
School management system project report.pdfSchool management system project report.pdf
School management system project report.pdf
Kamal Acharya
 

Recently uploaded (20)

Teachers record management system project report..pdf
Teachers record management system project report..pdfTeachers record management system project report..pdf
Teachers record management system project report..pdf
 
Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2Research Methodolgy & Intellectual Property Rights Series 2
Research Methodolgy & Intellectual Property Rights Series 2
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbineLow rpm Generator for efficient energy harnessing from a two stage wind turbine
Low rpm Generator for efficient energy harnessing from a two stage wind turbine
 
Furniture showroom management system project.pdf
Furniture showroom management system project.pdfFurniture showroom management system project.pdf
Furniture showroom management system project.pdf
 
Lect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptxLect_Z_Transform_Main_digital_image_processing.pptx
Lect_Z_Transform_Main_digital_image_processing.pptx
 
Dairy management system project report..pdf
Dairy management system project report..pdfDairy management system project report..pdf
Dairy management system project report..pdf
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdf
 
School management system project report.pdf
School management system project report.pdfSchool management system project report.pdf
School management system project report.pdf
 
Introduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AIIntroduction to Artificial Intelligence and History of AI
Introduction to Artificial Intelligence and History of AI
 
Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docx
 
Supermarket billing system project report..pdf
Supermarket billing system project report..pdfSupermarket billing system project report..pdf
Supermarket billing system project report..pdf
 
ROAD CONSTRUCTION PRESENTATION.PPTX.pptx
ROAD CONSTRUCTION PRESENTATION.PPTX.pptxROAD CONSTRUCTION PRESENTATION.PPTX.pptx
ROAD CONSTRUCTION PRESENTATION.PPTX.pptx
 
RM&IPR M5 notes.pdfResearch Methodolgy & Intellectual Property Rights Series 5
RM&IPR M5 notes.pdfResearch Methodolgy & Intellectual Property Rights Series 5RM&IPR M5 notes.pdfResearch Methodolgy & Intellectual Property Rights Series 5
RM&IPR M5 notes.pdfResearch Methodolgy & Intellectual Property Rights Series 5
 
solid state electronics ktu module 5 slides
solid state electronics ktu module 5 slidessolid state electronics ktu module 5 slides
solid state electronics ktu module 5 slides
 
Online book store management system project.pdf
Online book store management system project.pdfOnline book store management system project.pdf
Online book store management system project.pdf
 
Attraction and Repulsion type Moving Iron Instruments.pptx
Attraction and Repulsion type Moving Iron Instruments.pptxAttraction and Repulsion type Moving Iron Instruments.pptx
Attraction and Repulsion type Moving Iron Instruments.pptx
 
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...Software Engineering - Modelling Concepts + Class Modelling + Building the An...
Software Engineering - Modelling Concepts + Class Modelling + Building the An...
 
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas SachpazisSeismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
Seismic Hazard Assessment Software in Python by Prof. Dr. Costas Sachpazis
 

PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch

  • 1. A Deep Learning Approach to Antibiotic Discovery PR-232 주성훈, Samsung SDS 2020. 3. 15.
  • 3. 1. Research Background Introduction 3/19 • AutoML , architecture hyperparameter . • (NAS, Neural Architecture Search) • Hyperparameters • Learning rule (activation function, full forward pass, data augmentation, weight optimization, layer and weight pruning) AutoML https://arxiv.org/pdf/1810.13306.pdf
  • 4. 1. Research Background Architecture search • - Constrained search space • building block search algorithm , NAS . • constrained search space . Search space : Saining Xie et al. (2019) https://arxiv.org/pdf/1904.01569.pdf PR-155 Golnaz Ghaisi et al. (2019) https://arxiv.org/pdf/1904.01569.pdf PR-166 Yanan Sun et al. (2019) https://arxiv.org/pdf/1710.10741.pdf 4/19
  • 5. 1. Research Background AutoML-Zero • We propose to automatically search for whole ML algorithms using little restriction on form and only simple mathematical operations as building blocks.  Matrix decomposition derivative . 5/19
  • 6. 1. Research Background AutoML-Zero • we propose to automatically search for whole ML algorithms using little restriction on form and only simple mathematical operations as building blocks. 백지상태에서 시작해서 최종 알고리즘 까지 정말 어마어마한 search space… 4일 6/19
  • 8. P=5, T=3 일 때, 2. Methods Type (i) 랜덤 연산 삽입/삭제. 삭제 확률이 삽입 확률의 두 배 Type (ii) 함수 내 연산 전부 교체 Type (iii) Argument 하나만 교체. Real-valued constant 수정할 때, [0.5, 2.0]사이의 수 임의선택 후 곱하고 10%의 확률로 부호 바꿈 Evolutionary method T만큼 랜덤선택 8/19
  • 9. 2. Methods Step 3 best algorithm 9/19
  • 11. 3. Experimental Results Random search (RS) • Evolution / RS success rate : Acceptable algorithms . Acceptable algorithm hand-designed reference model . • Task difficulty : RS 1 acceptable algorithms algorithms . ex) linear regression case RS 1 acceptable algorithms 107.4 , linear regressor task difficulty 7.4 . algorithm search space sparse , AutoML-Zero RS . 11/19 4 ops 7 ops 5 ops 9 ops
  • 12. 3. Experimental Results AutoML-Zero hand-designed reference (2-layer FC NN) • CIFAR-10 MNIST task • 10 class , binary classification ; 10C2 = 45 pairs • pair 8000 train/ 2000 valid example • 45 36 – Tsearch (search task . 1~10 evolution cycle ) • 45 9 – Tselect ( best accuracy ) • CIFAR-10 test set final evaluation • Number of possible operations: 7/58/58 for Setup/Predict/Learn  Figure 6 1 illustration , (5, 20) . 12/19 • Training Epoch : 1 or 10; evolution parameter: P=100, T=10 • Maximum num. instructions for Setup/Predict/Learn: 21/21/45.
  • 13. 3. Experimental Results • Best model parameter (learning rate, uniform distribution mean ) Tselect dataset random search . , linear/nonlinear baseline hyperparameters random search . • [CIFAR-10 ] 5 trial best algorithm accuracy : 84.06 0.10% Linear baseline : logistic regression, 77.65 0.22% Nonlinear baseline : 2-layer fully connected neural network, 82.22 0.17% • binary classification task : 1) SVHN (32 x 32 x 3) (88.12% AutoML-Zero vs. 59.58% linear baseline vs. 85.14% for nonlinear baseline) 2) down-sampled ImageNet (128 x 128 x 3) (80.78% vs. 76.44% vs. 78.44%) 3) Fashion MNIST (28 x 28 x 1) (98.60% vs. 97.90% vs. 98.21%).  search space design convolution batch normalization . AutoML-Zero hand-designed reference (2-layer FC NN) AutoML-Zero 2-layer FC NN . 13/19
  • 14. 3. Experimental Results Challenging task AutoML-Zero 1) Few training examples • Training dataset 80 100 epoch , AutoML-Zero Noisy ReLU (dropout ) . • ? (80 examples) vs. (800 examples) 30 , (p<0.0005) noisy ReLU . 14/19
  • 15. 3. Experimental Results Challenging task AutoML-Zero 2) Fast training • Training dataset 800 10 epoch , AutoML-Zero learning-rate decay . • ? 10 epoch vs. 100 epoch 30 , 10 epoch case 30 (30/30), 100 epoch case 3 (3/30) learning-rate decay . 15/19
  • 16. 3. Experimental Results Challenging task AutoML-Zero 3) Multiple classes • CIFAR-10 10 , Learning rate sin(weight ) . • Multi-class vs. binary-class 30 , Binary-class (0/30) Multi-class 24 (24/30) . AutoML-Zero , . 16/19
  • 17. 2) Functional equivalence checking(FEC) • • 4) Hurdle : • • 3. Experimental Results 1) Migration • 17/19
  • 19. 4. Conclusions 19/19 Thank you. • AutoML ambitious goal ( ) . • future work higher-order tensor function call search space . • AutoML-Zero (Setup, Predict, Learn) , linear regressors, neural networks, gradient descent, multiplicative interactions, weight averaging, normalized gradients . • AutoML-Zero . .