SlideShare a Scribd company logo
1 of 67
Download to read offline
Advances and Prospects in Forage
Systems Biology and Molecular Breeding
German Spangenberg
2
Systems Biology: from Genome to Phenome
3
Systems Biology for Transformational
Through-Value Chain Impact
Forage yield
Forage quality
Forage persistence
Biotic stress tolerance
Abiotic stress tolerance
Feed efficiency
Milk composition
Methane
Core genetic traits
Milk composition
Products
Health
Nutrition
Plant
symbiome
Rumen
microbiome Animal
symbiome Milk
biome
Systems Biology of Forage Grass
Symbiomes and Microbiomes
N
H
O
O
HO O O
O
HO
H
Chemical Formula: C39 H51 NO7
Exact Mass: 645.36655
N
H
N
H
HN
O
N
O
NHO
H
O
O
Chemical Formula: C29 H35 N5 O5
Exact Mass: 533.26382
N
N
O
N
NH2
H2N
Chemical Formula: C12 H17 N5 O
Exact Mass: 247.14331 Janthitrem I
ergovaline
peramine
[M+H]+
248.15022
[M+H]+
646.37238
[M+H]+
534.27002
N
H
O
HO
O
O
H
O
H O
O H
H
Chemical Formula: C42 H55 NO7
Exact Mass: 685.39785
[M+H]+
686.40369
Lolitrem B
N
H
O
O
HO O O
O
HO
H
Chemical Formula: C39 H51 NO7
Exact Mass: 645.36655
N
H
N
H
HN
O
N
O
NHO
H
O
O
Chemical Formula: C29 H35 N5 O5
Exact Mass: 533.26382
N
N
O
N
NH2
H2N
Chemical Formula: C12 H17 N5 O
Exact Mass: 247.14331 Janthitrem I
ergovaline
peramine
[M+H]+
248.15022
[M+H]+
646.37238
[M+H]+
534.27002
N
H
O
HO
O
O
H
O
H O
O H
H
Chemical Formula: C42 H55 NO7
Exact Mass: 685.39785
[M+H]+
686.40369
Lolitrem B
5
• Asexual filamentous fungi (phylum Ascomycota, family Clavicipitaceae) that
form mutualistic symbioses with temperate grasses (subfamily Pooideae)
• Seed transmissible
• Protect host grasses from biotic (e.g. insects and vertebrate herbivores) and
abiotic (e.g. drought) stresses
• Produce several bioactive secondary metabolites in planta
• Evolved from sexual grass choke Epichloë pathogens
Neotyphodium spp. Endophytes
E. festucae
Loss of
sexual state
N. lolii
(c. 29 + 4 Mb)
N. lolii x E. typhina
Interspecific
hybridisation
N. sp. LpTG-2
(c. 55 + 6 Mb)
6
From Endophyte Discovery to Pangenome
Analysis Exploiting Global Genetic Diversity – Endophytes
from Perennial Ryegrass
 Genetically similar endophytes have a similar toxin profile and origin
 Endophytes with reduced toxicity effects are genetically divergent
from the main group
 Selection of novel candidate endophytes based on:
 DNA profiles
 Geographic origin
 Toxin profiles
Endophytes cluster into groups based
on geographical origin and toxin
production
 Ability to predict likely toxin production
based on genotypic profile
Genetic similarity
0.12 0.34 0.56 0.78 1.00
Genetic similarity
0.12 0.34 0.56 0.78 1.00
Middle East
Eastern Europe
Northern Europe
Lolitrem B
Peramine
Middle East
Mediterranean
Western Europe
New World
Lolitrem B
Ergovaline
Peramine
Mediterranean
Western Europe
Eastern Europe
Ergovaline
Peramine
Peramine
LpTG-2
N. lolii
LpTG-3
 A broadly-applicable approach for discovery of novel endophytes
Janthitrem
7
 In vitro cultures of candidate endophytes
 Endophyte genotypes confirmation
 Long-term cryopreservation of endophyte cultures
Species No. Isolates Examples
N. lolii 70 ST, NEA2, NEA3, NEA5, NEA6, NEA10, 42 novel endophytes
N. coenophialum 43 E34, E6, 22 novel endophytes
LpTG-2 7 NEA4, NEA11, 3 novel endophytes
LpTG-3 5 NEA12, E1
FaTG-2 4 8907 and 3 novel endophytes
FaTG-3 6 NEA21, NEA23
N. uncinatum 1 E81
Total 136
Discovering Genetically Novel Endophytes
 A broad-based, germplasm collection of novel, genetically diverse endophytes7
8
E9
G4
ST
C9
NA6
Lp19
AR1
NEA3
Genetic similarity
0.12 0.34 0.56 0.78 1.00
Genetic similarity
0.12 0.34 0.56 0.78 1.00
Middle East
Eastern Europe
Northern Europe
Lolitrem
Peramine
Middle East
Mediterranean
Western Europe
New World
Lolitrem
Ergovaline
Peramine
Mediterranean
Western Europe
Eastern Europe
Ergovaline
Peramine
Peramine
NEA12, 15310,15311
E1
Ef E2368
N. lolii
LpTG-3
NEA10
15335
15441
NEA2
15714
NEA6
15931
F2
A1
NEA11
NEA4
LpTG-2
 Over 80 ryegrass endophyte strains sequenced
16 N. lolii
3 LpTG-2
4 LpTG-3
 Reference genome construction - ST
 Representatives of global diversity of
perennial ryegrass endophytes
 Current commercial endophytes
[e.g. AR1, NEA2, NEA3 and NEA4]
 New endophytes in pre-commercial development
[e.g. NEA10, NEA11, NEA12]
 Within cluster analysis of genetic diversity
- Endophytes from distinct geographical origins
[e.g. ST (Grasslands Samson) – NA6 (Morocco) and C9 (Spain)]
- Endophytes from the same geographical origin
[e.g. NEA12 (France) – 15310 and 15311]
Pangenome Analysis of Endophytes
 Pangenome analysis across spectrum of genetic, geographic
and taxonomic diversity of endophytes from perennial ryegrass
8
9
Gene present Gene absent Gene partially present
Pangenome Analysis of Endophytes
Sequence Diversity in Alkaloid Production Genes
 Identification of core and flexible genomes in Neotyphodium endophytes
9
10
Establishing Symbiota in Isogenic Hosts
Developing Diverse Perennial Ryegrass Isogenic Host Panel
Host cultivar Characteristics
Number of
TCR
genotypesa
TCR genotype
used for
inoculation
Tolosa Distinct forage type 1 Tol 03
Bronsyn
Standard forage type with robust
endophyte performance
3 Bro 08
Impact Late flowering, dense tillering forage type 3 Imp 04
Meridian Early flowering forage type 1 Mer 05
Barsandra Turf type 1 San 02
Bealey Tetraploid forage type 2 Bea 02
Barsintra Tetraploid forage type 4 Sin 04
Barfest
Intergeneric hybrid between Lolium
species parents
3 Fest 02
 Materials for symbiome analysis to dissect
endophyte and grass host effects
10
11
Establishing Symbiota in Isogenic Hosts
Inoculating Novel Endophytes into Perennial Ryegrass Isogenic Host Panel
 Establishing defined symbiota to study Gp x Ge effects11
12
Endophyte Transcriptome in Symbiota
 Perennial ryegrass symbiota; isogenic background; with/without ST endophyte
 6 growth conditions: complete media; Low NO3, Low NH4, Low K, Low PO4 and Low Ca
 RNAseq libraries; shoots and roots; sequence reads mapped using BLASTn; plant and endophyte transcripts
 Endophyte genic sequence reads only observed in tillers of symbiota
 Endophyte transcriptome only in symbiotum shoots
genes
0
50000
100000
150000
200000
250000
300000
350000
Full Ca K NH 4 NO 3 PO 4 Full Ca K NH 4 NO 3 PO 4
Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST
Leaves Roots
Reads mapped to endophyte genes with an overlap >40 bp and a percent identity of greater >98genes
0
50000
100000
150000
200000
250000
300000
350000
Full Ca K NH 4 NO3 PO4 Full Ca K NH4 NO3 PO4
Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST
Shoots Roots
Reads mapped to endophyte genes with an overlap >40 bpand a percent identity of greater >98
13
0
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
LpL_
FR
F
U
LL1_8
0_40
LpL_
FR
C
a1_
80_40
LpL_
FR
K
1_80_40
LpL_
FR
N
H
1_80
_40
LpL_
FR
N
O
1_80_40
LpL_
FR
P
O
1_80
_40
LpL_
S
T
FU
LL
1_80_40
LpL_
S
T
C
a1_80_40
LpL_
S
T
K
1_80_
40
LpL_
S
T
N
H
1
_80_40
LpL_
S
T
N
O
1_80
_40
LpL_
S
T
P
O
1
_80_40
mito
cp
rRNA
gene
Number of reads mapping to plant genes from leaf libraries
0
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
LpL_
FR
F
U
LL1_8
0_40
LpL_
FR
C
a1_
80_40
LpL_
FR
K
1_80_40
LpL_
FR
N
H
1_80
_40
LpL_
FR
N
O
1_80_40
LpL_
FR
P
O
1_80
_40
LpL_
S
T
FU
LL
1_80_40
LpL_
S
T
C
a1_80_40
LpL_
S
T
K
1_80_
40
LpL_
S
T
N
H
1
_80_40
LpL_
S
T
N
O
1_80
_40
LpL_
S
T
P
O
1
_80_40
mito
cp
rRNA
gene
Number of reads mapping to plant genes from leaf libraries
Plant Transcriptome in Symbiota
0
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
LpL_
FR
F
U
LL1_8
0_40
LpL_
FR
C
a1_
80_40
LpL_
FR
K
1_80_40
LpL_
FR
N
H
1_80
_40
LpL_
FR
N
O
1_80_40
LpL_
FR
P
O
1_80
_40
LpL_
S
T
FU
LL
1_80_40
LpL_
S
T
C
a1_80_40
LpL_
S
T
K
1_80_
40
LpL_
S
T
N
H
1
_80_40
LpL_
S
T
N
O
1_80
_40
LpL_
S
T
P
O
1
_80_40
mito
cp
rRNA
gene_sum
Number of reads mapping to plant genes from leaf libraries
0
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
LpL_
FR
F
U
LL1_8
0_40
LpL_
FR
C
a1_
80_40
LpL_
FR
K
1_80_40
LpL_
FR
N
H
1_80
_40
LpL_
FR
N
O
1_80_40
LpL_
FR
P
O
1_80
_40
LpL_
S
T
FU
LL
1_80_40
LpL_
S
T
C
a1_80_40
LpL_
S
T
K
1_80_
40
LpL_
S
T
N
H
1
_80_40
LpL_
S
T
N
O
1_80
_40
LpL_
S
T
P
O
1
_80_40
mito
cp
rRNA
gene_sum
Number of reads mapping to plant genes from leaf libraries
 Number of sequence reads mapped to plant sequences in shoot libraries (2.4 to 20.8 million reads per library)
 Counts mapping to genes used to identify endophyte-induced or repressed plant genes in symbiota shoots
 Of 918 endophyte-regulated plant genes 68 are differentially regulated in shoots
(51 induced and 15 repressed)
Shoot Transcriptome: Endophyte-Regulated Plant Genes
13
14
Plant Transcriptome in Symbiota
Root Transcriptome: Endophyte-Regulated Plant Genes
 Number of sequence reads mapped to plant sequences in root libraries (2.4 to 20.8 million reads per library)
 Counts mapping to genes used to identify endophyte-induced or repressed plant genes in symbiota roots
0
5,000,000
10,000,000
15,000,000
20,000,000
25,000,000
30,000,000
LpR
_F
R
F
U
LL1_80_4
0
LpR
_F
R
C
a1_80
_40
LpR
_F
R
K
1_
80_40
LpR
_F
R
N
H
1_80_4
0
LpR
_F
R
N
O
1
_80_40
LpR
_F
R
P
O
1_80_4
0
LpR
_S
TF
U
LL1_8
0_40
LpR
_S
TC
a1
_80_40
LpR
_S
TK
1_80_40
LpR
_S
TN
H
1_8
0_40
LpR
_S
TN
O
1_t80_
40
LpR
_S
TP
O
1_8
0_40
mito
cp
rRNA
gene_
Number of reads mapping to plant genes from root libraries
0
5,000,000
10,000,000
15,000,000
20,000,000
25,000,000
30,000,000
LpR
_F
R
F
U
LL1_80_4
0
LpR
_F
R
C
a1_80
_40
LpR
_F
R
K
1_
80_40
LpR
_F
R
N
H
1_80_4
0
LpR
_F
R
N
O
1
_80_40
LpR
_F
R
P
O
1_80_4
0
LpR
_S
TF
U
LL1_8
0_40
LpR
_S
TC
a1
_80_40
LpR
_S
TK
1_80_40
LpR
_S
TN
H
1_8
0_40
LpR
_S
TN
O
1_t80_
40
LpR
_S
TP
O
1_8
0_40
mito
cp
rRNA
gene_
Number of reads mapping to plant genes from root libraries
0
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
LpL_
FR
F
U
LL1_8
0_40
LpL_
FR
C
a1_
80_40
LpL_
FR
K
1_80_40
LpL_
FR
N
H
1_80
_40
LpL_
FR
N
O
1_80_40
LpL_
FR
P
O
1_80
_40
LpL_
S
T
FU
LL
1_80_40
LpL_
S
T
C
a1_80_40
LpL_
S
T
K
1_80_
40
LpL_
S
T
N
H
1
_80_40
LpL_
S
T
N
O
1_80
_40
LpL_
S
T
P
O
1
_80_40
mito
cp
rRNA
gene_sum
Number of reads mapping to plant genes from leaf libraries
0
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
LpL_
FR
F
U
LL1_8
0_40
LpL_
FR
C
a1_
80_40
LpL_
FR
K
1_80_40
LpL_
FR
N
H
1_80
_40
LpL_
FR
N
O
1_80_40
LpL_
FR
P
O
1_80
_40
LpL_
S
T
FU
LL
1_80_40
LpL_
S
T
C
a1_80_40
LpL_
S
T
K
1_80_
40
LpL_
S
T
N
H
1
_80_40
LpL_
S
T
N
O
1_80
_40
LpL_
S
T
P
O
1
_80_40
mito
cp
rRNA
gene_sum
Number of reads mapping to plant genes from leaf libraries
 Of 918 endophyte-regulated plant genes 728 are differentially regulated in roots
(529 induced and 167 repressed)
14
Plant Transcriptome in Symbiota
 Cluster 3: root-expressed genes induced
by endophytes, but expressed at lower level
in endophyte-free plants
 Largest cluster of endophyte-regulated
plant genes
 Annotation of endophyte-regulated plant
genes
 Defence response genes
 Chitin responsive genes
 Innate immunity genes
Patterns of Expression in Endophyte-Regulated Plant Genes
Part of cluster 3 hierachical clusterPart of cluster 3 hierachical cluster
 Symbiotum transcriptional
response to endophyte
presence is up-regulation of
defence-related genes in roots15
Plant Transcriptome in Symbiota
Hierarchical clustering of C1Hierarchical clustering of C1
 Cluster 1: root-expressed genes repressed by
endophytes
 Annotation of endophyte-regulated plant genes
 Transcription regulators
 Max2 F-box LRR gene in
signalling of strigolactones
Patterns of Expression in Endophyte-Regulated Plant Genes
 Clusters 10 and 11: shoot-expressed genes
repressed by endophyte
 Annotation of 15 endophyte-regulated plant genes
 3 MADS-box genes
 2 blue light photoreceptors
 1 cytokinin oxidase
 Carbohydrate metabolism and transporters
16
17
Peramine
N-formylloline
Lolitrem B
Metabolome Analysis of Symbiota
Ergovaline
Metabolic Profiling of Natural Symbiota
 Metabolic profiling across spectrum of genetic, geographic
and taxonomic diversity of endophytes from perennial ryegrass
17
18
Barsandra TolosaImpact
Lolitrem B
0.00
0.50
1.00
1.50
2.00
2.50
3.00
NEA10 NEA11 NEA12 E1 STxxx
b
a
Ergovaline
0.00
0.50
1.00
1.50
2.00
2.50
3.00
NEA10 NEA11 NEA12 E1 STxxx
*
Janthitrem
0.00
0.50
1.00
1.50
2.00
2.50
NEA10 NEA11 NEA12 E1 ST
x
a
ab
b
xx
Peramine
0.00
0.50
1.00
1.50
2.00
NEA10 NEA11 NEA12 E1 ST
b
a
a
*
*b
a
xxx
NEA10 NEA11 NEA12 E1 ST
LolitremBErgovalineJanthitremPeramine
Metabolome Analysis of Symbiota
Metabolic Profiling of Novel Symbiota
in Isogenic Hosts
 Strong Gp x Ge effects on alkaloid toxin profiles
in defined symbiota with novel endophytes18
Endophyte
strain
Putative
toxin profile
Endogenous
toxin profile
Isogenic
(confirmed)
toxin profile
Taxon
NEA10 Unknown -/E/n.d
a
-/E/P/- (Y) N. lolii
NEA11 E+P -/E/n.d
a
-/E/P/- (Y) Lp TG-2
NEA12 Unknown -/-/- -/-/-/J (Y) Lp TG-3
E1 Unknown n.d -/-/-/-
ST L/E/P L/E/P/- (Y) N. lolii
a
Peramine not measured
Lp TG-3
19
Metabolome Analysis of Symbiota
XX X
X
Adapted from Young et al, 2009
 10 lolitrem biosynthetic genes
 3 gene clusters
 2 deletions (LtmE, LtmJ)
Pathway Analysis – Lolitrem Biosynthesis
19
20
Compound Bea02 Bro08 Imp04 San02 Tol03 Imp04 Bea02 Bro08 Imp04 San02 Tol03 Imp04 San02 Tol03 Bro08 Imp04 Bea02 Bro08 San02 Tol03
E- E- E- E- E- NEA10 NEA11 NEA11 NEA11 NEA11 NEA11 NEA12 NEA12 NEA12 E1 E1 ST ST ST ST
paspaline - - - - - + + + + + + + + + + + + + + +
13-desoxy paxilline - - - - - + + + + + + + + + - - + + + +
paxilline - - - - - + + + + + + + +(Trace) +(Trace) - - + + + +
terpendole I - - - - - + + + + + + + - + - - + + + +
prenylate terpendole I - - - - - + + + + + + + - + - - + + + +
terpendole C - - - - - + + + + + + + - + - - + + + +
lolitriol - - - - - - - - - - - - - - - - + + + +
lolitrem E - - - - - - - - - - - - - - - - + + + +
lolitrem B - - - - - - - - - - - - - - - - + + + +
lolitrem J - - - - - - - - - - - - - - - - - - - -
lolitrem K - - - - - - - - - - - - - - - - + + + +
paspalicine - - - - - + + + + + + + - + - - + + + +
paspalicinol - - - - - + + + + + + + + + - - + + + +
paspalininol - - - - - + + + + + + + - + - - + + + +
paspalinine - - - - - + + + + + + + - + - - + + + +
aflatrem - - - - - + + + + - + + - + - - + + - +
tryptophan + + + + + + + + + + + + + + + + + + + +
chanoclavine - - - - - + + + + + + - - - - - + + + +
secolysergine - - - - - - - - + + - - - - - - + + + +
agroclavine - - + + + + + + + + + + - - - + + + + +
setoclavine - - - + + + + + + + + - + + - + + + + +
elymoclavine - - - - - + + + + + + - - - - - + + + +
lysergic acid + + + + + + + + + + + + + + + + + + + +
lysergyl peptide lactam - - - - - + + - + - + - - - - - + + + +
lysergyl alanine - - - - - + + + + + + - - - - - + + + +
lysergamide - - - - - + + + + + + - - - - - + + + +
ergovaline - - - - - + +(Trace) + + +(Trace) + - - - - - +(Trace) + + +
lysergol - - - - - + + + + + + - - - - - + + + +
Peramine +(Trace) +(Trace) +(Trace) +(Trace) +(Trace) + + + + + + +(Trace) +(Trace) +(Trace) +(Trace) +(Trace) + + + +
Imidacloprid - - - - + - - - - + + - + + - - - - + -
4-Hydroxy-imidacloprid + - + + + + + + + + + + + + + + + + + +
Janthitrem I - - - - - - - - - - - + + + + +(Trace) - - - -
Janthitrem A - - - - - - - - - - - - - + + - + + + +
Janthitrem B - - - - - - - - - - - + + + + + - - - -
Janthitrem C + + + + + + + + + + + + + + + + + + + +
Peramine
Janthitrem
Host-EndophyteSymbiota
Lolitrems
Aflatrem
Ergot
Alkaloids
Metabolome Analysis of Symbiota
Pathway Analyses – Lolitrems, Aflatrem, Ergot Alkaloids, Peramine and Janthitrems
20
21
Assessing Endophyte Stability and Symbiota Performance
Barsandra
E- ST NEA11 NEA12
Bronsyn
A. Number of inoculations performed
ST NEA10 NEA11 NEA12 Total
Bea02 40 30 70
Bro08 80 75 155
Imp04 90 50 140
San02 80 50 130
Tol03 80 40 120
Total 0 370 0 245 615
B. Number of inoculations tested
ST NEA10 NEA11 NEA12 Total
Bea02 31 21 52
Bro08 59 50 109
Imp04 60 21 81
San02 64 31 95
Tol03 32 27 59
Total 246 150 396
C. Number of successful inoculations
ST NEA10 NEA11 NEA12 Total
Bea02 0 1 1
Bro08 1 0 1
Imp04 1 2 3
San02 0 1 1
Tol03 0 2 2
Total 2 6 8
D. Percent of successful inoculations
ST NEA10 NEA11 NEA12 Total
Bea02 0 1 1.0
Bro08 1.7 0 1.7
Imp04 1.7 9.5 11.2
San02 0 3.2 3.2
Tol03 0 7.4 7.4
Total 3.4 21.2 24.5
Stable association
Unstable association
Stable association
Unstable association
E- ST NEA11 NEA12
Phenome Analysis of Symbiota
21
22
Assessing Endophyte Effect on Symbiota PerformanceShoot Fresh Weight in Response to Nitrate
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
E- NEA10 NEA11 NEA12 ST
Host-Endophyte Association
FreshWeight(g)
0.5 mM NO3-
2.5 mM NO3-
10.0 mM NO3-
Shoot fresh weight
Tiller Number in Response to Nitrate
0
10
20
30
40
50
60
70
80
E- NEA10 NEA11 NEA12 ST
Host-Endophyte Association
TillerNumber
0.5 mM NO3-
2.5 mM NO3-
10.0 mM NO3-
Tiller number
Root fresh weight
Root Fresh Weight in Response to Nitrate
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
E- NEA10 NEA11 NEA12 ST
Host-Endophyte Association
RootFreshWeight(g)
0.5 mM NO3-
2.5 mM NO3-
10.0 mM NO3-
Root Dry Weight in Response to Nitrate
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
E- NEA10 NEA11 NEA12 ST
Host-Endophyte Association
RootDryWeight(g)
0.5 mM NO3-
2.5 mM NO3-
10.0 mM NO3-
Root dry weight
Shoot Fresh Weight in Response to Nitrate
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
E- NEA10 NEA11 NEA12 ST
Host-Endophyte Association
FreshWeight(g)
0.5 mM NO3-
2.5 mM NO3-
10.0 mM NO3-
Shoot fresh weight
Tiller Number in Response to Nitrate
0
10
20
30
40
50
60
70
80
E- NEA10 NEA11 NEA12 ST
Host-Endophyte Association
TillerNumber
0.5 mM NO3-
2.5 mM NO3-
10.0 mM NO3-
Tiller number
Root fresh weight
Root Fresh Weight in Response to Nitrate
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
E- NEA10 NEA11 NEA12 ST
Host-Endophyte Association
RootFreshWeight(g)
0.5 mM NO3-
2.5 mM NO3-
10.0 mM NO3-
Root Dry Weight in Response to Nitrate
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
E- NEA10 NEA11 NEA12 ST
Host-Endophyte Association
RootDryWeight(g)
0.5 mM NO3-
2.5 mM NO3-
10.0 mM NO3-
Root dry weight
0.5 mM NO3
-
2.5 mM NO3
-
10.0 mM NO3
-
Phenome Analysis of Symbiota
22
23
23
N-formylloline
Peramine
• Perennial ryegrass and
• Tall fescue
 Establish symbiota
with both:
NEA21
Morocco
NEA23
Tunisia
 Novel endophytes for broad deployment discovered and characterised23
Novel Fungal Endophytes for Forage Grasses
Discovering Endophytes with Novel Bioactivity
and Broad Host Specificity
24
Forage Grass Microbiomes
Meta-Transcriptomics of Ryegrass Microbiomes
Alphaproteobacteria, 654
Gammaproteobacteria,
493
Betaproteobacteria, 421
Actinobacteria, 341
Bacteroidetes, 294
Cyanobacteria/Chloroplast
, 235
Firmicutes, 136
Chlamydiae, 6
Spirochaetes, 12
Chloroflexi, 15
Planctomycetes, 31
Deltaproteobacteria, 59
Deinococcus-Thermus, 23
Nitrospira, 4
Tenericutes, 10
Epsilonproteobacteria, 7
Acidobacteria, 3
Fusobacteria, 2
Chrysiogenetes, 2
Deferribacteres, 2
Verrucomicrobia, 17
 Diverse bacterial microbiomes revealed in forage grasses
 Rapid and cost
effective RNA
profiling of
plant microbiomes
• Shoot and root microbiomes
• Meta-transcriptomics (16S rRNA)
• Over 2700 bacterial phyla in
perennial ryegrass microbiome
24
25
Forage Grass Microbiomes
Shoot and Root Microbiomes in Perennial Ryegrass
Hierarchical clustering of bacterial counts classifies root treatments but not shoot treatments.
 Meta-transcriptomics reveals differences in bacterial species
predominance in shoot and root microbiomes
 Root microbiome profiles ‘descriptive’ of treatment (e.g. nutritional status)
25
26
Forage Grass Microbiomes
Shoot and Root Microbiomes in Perennial RyegrassL_F_FULL1
L_F_FULL3
L_F_FULL5
L_F_Ca2
L_F_Ca4
L_F_K1
L_F_K3
L_F_K5
L_F_NH2
L_F_NH4
L_F_NO1
L_F_NO3
L_F_NO5
L_F_P02*
L_F_P04*
L_S_FULL1
L_S_FULL3
L_S_FULL5
L_S_Ca2
L_S_Ca4
L_S_K1
L_S_K3
L_S_K5
L_S_NH2
L_S_NH4
L_S_NO1
L_S_NO3
L_S_NO5
L_S_P02*
L_S_P04*
R_F_FULL1
R_F_FULL3
R_F_FULL5
R_F_Ca2
R_F_Ca4
R_F_K1
R_F_K3
R_F_K5
R_F_NH2
R_F_NH4
R_F_NO1
R_F_NOL3
R_F_NO5
R_F_PO2
R_F_PO4
R_S_FULL1
R_S_FULL3
R_S_FULL5
R_S_Ca2
R_S_Ca4
R_S_K1
R_S_K3
R_S_K5
R_S_NH2
R_S_NH4
R_S_NO1
R_S_NO3
R_S_NO5
R_S_PO2
R_S_PO4
Azospirillum sp
0
50
100
150
200
250
Azospirillum sp
Azospirillum sp
Azospirillum amazonense
Azospirillum sp
Azospirillum sp
Azospirillum amazonense
Azospirillum brasilense
Azospirillum brasilense
Azospirillum lipoferum
Azospirillum sp
Azospirillum sp
Azospirillum brasilense
 Analysis of bacterial microbiome in symbiota reveals range of bacterial
species known to be N fixers and phytostimulators of grasses
 Azospirillum species induced in number (under low N)
 Associative nitrogen fixation
 Synthesis of phytohormones
26
Integrative, Genomics-Assisted
F1 Hybrid Breeding of
Forage Grass Symbiota
Lessons and Prospects?
1. Breeding and Selection of Host Grass Only
Current Paradigm
2. Few Selective Recombinations in Long Breeding Cycle
4. Evaluation of Symbiota (i.e. Grass-Endophyte Associations)
3. Inoculation of Single Unselected Endophytes
5. Seed Generational Advance Limiting Heterosis
6. No Hybrid Varieties Limiting Value Capture
28
Lessons and Prospects?
1. Ab Initio Breeding and Selection of Symbiota
New Paradigm?
2. More Selective Recombinations in Shorter Breeding Cycle
4. More Accurate Evaluation of Symbiota
3. Exploit Broader Endophyte Diversity and Endophyte Effects
5. Exploit Heterosis and High-Impact Traits
6. Hybrid Varieties Enhancing Value Capture
29
 Capture Ab Initio Plant Genotype X Endophyte Genotype Effects
 Capture and Exploit Broader Endophyte Genotype Effects
on Symbiota Performance
 Extend Concept of Synthetic Varieties to Both Partners of
the Symbiotum i.e. Grass Host and Endophyte
→ Deploy multiple endophyte and grass genotypes in populations
selected for optimal symbiota compatibility and performance
→ Breed and select ab initio symbiota for optimal symbiota compatibility
and performance rather than breed and select grass host only followed
by endophyte inoculation and symbiota evaluation
→ Exploit significant endophyte genotype effects on symbiota performance
well beyond pest resistance (and reduced animal toxicosis)
What Does This Mean?
30
 Maximise Heterosis in Farmers’ Seed
 Deliver F1 Hybrid Symbiota Varieties for Maximal On-Farm Impact
 Reduce Generation Interval and Increase Selection Intensity
of Symbiota
→ Tailor genomic selection interventions in breeding cycle building on
simulated breeding schemes and sward-relevant phenotypes
→ Implement integrative, F1 hybrid symbiota breeding schemes building on
self-incompatibility allele typing
→ Produce F1 hybrid seed of symbiota deploying multiple endophytes and
high-impact traits
What Does This Mean?
31
Overcoming Bottle-Necks
• New tools for efficient, robust, low-cost, large-scale
generation of grass-endophyte symbiota
 Method applicable to inoculation of 10s of endophytes in
100s of grass genotypes
 Method applicable to inoculation of novel and designer
endophytes with de novo generated genetic variation
[i.e. induced mutagenesis (ionizing radiation, colchicine), genome editing, transgenesis]
 Enabling tool for next-generation ab initio molecular breeding, selection
and evaluation of grass-endophyte symbiota [rather than breeding and selection of
grass host followed by endophyte inoculation and symbiota evaluation only]
High-Throughput, Large-Scale Endophyte Inoculation
32
Day 1 Day 3 Days 4-5 Days 6-7 Days 8-10Day 1 Day 3 Days 4-5 Days 6-7 Days 8-10
Production of Artificial Seeds
Large-Scale Generation of Symbiota
Coating with single or multiple Ca-alginate matrix layers of ryegrass mature seed-derived embryos
Assessing germination frequency of artificial seeds
33
 Inoculation of isolated
seed-derived embryos
with endophyte mycelia
followed by Ca-alginate
coating into artificial
seeds or double-coating
of isolated seed-derived
embryos with endophyte-
containing inner Ca-
alginate matrix
Coating seed-derived embryos with multiple endophytes into viable symbiota artificial seeds
a b c
First coating Second coatingEndophyte outgrowth Germinating symbiota
Large-Scale Inoculation of Endophytes into Artificial Seeds
Large-Scale Generation of Symbiota
 Generating > 1,000 viable symbiota artificial seeds per FTE and day
 Established symbiota plants with live endophytes in <50% artificial seeds.
34
Predicting Endophyte Stability in Stored Seed and Selecting
Stable Associations Using Accelerated Ageing
 A method for Accelerated Ageing [i.e. 80% -100% RH for 4-7 days]
of seed (natural and artificial) with resident endophytes developed
 The method allows to predict endophyte stability in stored
seed [range of endophytes assessed in single and different host genetic backgrounds]
 The method allows to rank novel endophytes according to predicted
stability/viability in stored seed
[range of endophytes assessed in single host genetic background]
 The method allows to select and rank symbiota according to their
stability
Overcoming Bottle-Necks
35
36
NEA12
0
20
40
60
80
100
120
Alto Bealey Bronsyn Trojan
Control
80% 4d
80% 7d
100% 4d
100% 7d
NEA10
0
20
40
60
80
100
120
Alto Bealey Bronsyn Trojan
Control
80% 4d
80% 7d
100% 4d
100% 7d
NEA11
0
20
40
60
80
100
120
Alto Bealey Bronsyn Trojan
Control
80% 4d
80% 7d
100% 4d
100% 7d
E1
E1
0
20
40
60
80
100
120
Al to Beal ey Br onsyn T r oj an Endo
E1
0
20
40
60
80
100
120
A l t o B eal ey B r onsyn T r oj an E ndo
Cont r ol
80%4d
80%7d
100%4d
100%7d
 Accelerated ageing [i.e. 100%RH for 4d or 7d] allows ranking endophytes for
compatibility and selecting for endophyte genotype-host genotype stability
Using Accelerated Ageing to Select for Symbiota Viability and Stability
 Assessed endophyte viability and stability of symbiota after accelerated ageing treatment of seed
Selection for Symbiota Stability
36
37
Rapid Early Assay of Endophyte Viability in Symbiota
37
Overcoming Bottle-Necks
A fast, reliable and low-cost method for determining endophyte
viability in perennial ryegrass seeds, seedlings and established
symbiota
Assay Requirements:
1. Rapid determination: 3-5 day old epicotyls
2. Robust and reliable
3. Sensitive for use in single seed to seed batches
4. Specific to Neotyphodium endophytes
(i.e. does not detect other fungi)
5. Detects live endophyte only
Seed with endophyte
3838
Assaying Endophyte Viability
Metabolomics-Based Assay
Assays developed based on:
• Genotyping
• Early gene expression
• Production of indicator metabolites
Seed
germination
Harvest
epicotyls
Dark
Light
Day 1 Day 4 Day 5 Day 6
Metabolite
extraction
Direct
Injection MS
Set-up
Data
analysis
With Endophyte
Without Endophyte
Detection of E- seed
 Rapid (≤6 days), low cost (<$1/sample) assay – 5X cheaper and 5X faster
3939
Increasing Accuracy and Reducing Cost of Phenotyping
 Low-cost, high-throughput, accurate methods for large-scale
phenotyping of individual plants for herbage quality traits
 Robust, reliable methods enabled by automated workflows
Overcoming Bottle-Necks
 Low-cost, high-throughput, accurate methods for large-scale,
multisite phenotyping of key traits at sward level
 Field-based phenomics (from individual plant to farmer’s paddock)
 Laboratory-based molecular phenomics
 Generating low-cost, high-throughput, accurate, relevant
phenotypes for genomics-assisted molecular breeding
40
Rainout Shelters
 Precise water-stress treatments
Automated Assessments
 Vegetative biomass
 Quality traits – CP/WSC/ME/Minerals
 Persistence traits – Biomass
over time
 Stress related traits
Active Optical Sensors
 Canopy greenness &
photosynthetic capacity
 Normalised difference
vegetative index output
 Forage quality
Field-Based Phenomics
40
41
Non-Destructive Forage Yield Estimation Using Normalized
Difference Vegetation Index
Field-Based Phenomics
GreenSeeker Aphex hexacopter
41
42
peramine
0
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109113 117 121 125 129 133 137 141 145 149 153 157 161 165 169 173 177
Sample ID
AmountofPeramine
lolitrem B
0
500000
1000000
1500000
2000000
2500000
3000000
3500000
4000000
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176
Sample ID
amountoflolitremB
ergovaline
0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176
Sample ID
amountofergovaline
peramine
ergovaline
lolitrem B
 Exploiting genotype x genotype
interactions
 Overcoming limitations of current
paradigm: breeding hosts and
evaluating symbiota
 Setting the basis for molecular
breeding of symbiota
 Proof of concept in semi-
quantitative toxin profiling of
symbiota breeding population
(i.e. 80 Bealey NEA2/NEA6)
 Significant variation in alkaloid
profile and content
Molecular Phenomics of Symbiota
Molecular Phenotyping to
Enable Symbiota Selection
42
43
Molecular Phenomics of Symbiota
0
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175
lolitrem B
ergovaline
peramine
0
10000000
20000000
30000000
40000000
50000000
60000000
70000000
80000000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
lolitrem B
ergovaline
peramine
Top 20 peramine producing symbiota
Molecular Phenotyping to Enable Symbiota Selection
 Selection of symbiota within breeding population with favourable toxin profiles
• high peramine, low ergovaline, no lolitrem B
 Molecular breeding of symbiota capturing ab initio Gp x Ge effects
43
4444
 Refined breeding schemes
 Phenotyping tools at acceptable cost
 Genotyping tools at acceptable costs
 Computational tools to handle data
and empowering breeders
Genomic Selection Selection candidates
Genotypes
Selected parents
Estimated
breeding
values
Prediction equation
Genomic Breeding Value =
w1x1+w2x2+w3x3……..
Reference population
Genotypes
Phenotypes
Increasing Rate of Genetic Gain via Genomic Selection
Overcoming Bottle-Necks
4545
Rates of Selective Breeding, Genetic Gain and Improvement
M1 B M2
(A) (B)
(C)
(D)
(E)
Genomic selection
Update
prediction
equation
Multi-site environment trials
F1 Production
Seed production
(F2 Production)
Selection under grazing and/or
visual assessment
Varietal construction
Seed production
Multi-environment
plot trials
1 varietal release
Base population
establishment
c. 1,000 – 10,000
Individuals
c. 100,000 Individuals
Reduction in
individuals by a
factor of 10
Selective
Recombination
Non-Selective
Recombination
Selective
Recombination
c. 1-10 Varieties
Multi-environment
plot trials
Less than 100
varieties
Non-Selective
Recombination
Less than 100 varieties
F1 Production
Seed production
(F2 Production)
Selection under grazing and/or
visual assessment
Varietal construction
Seed production
Multi-environment
plot trials
1 varietal release
Base population
establishment
c. 1,000 – 10,000
Individuals
c. 100,000 Individuals
Reduction in
individuals by a
factor of 10
Selective
Recombination
Non-Selective
Recombination
Selective
Recombination
c. 1-10 Varieties
Multi-environment
plot trials
Less than 100
varieties
Non-Selective
Recombination
Less than 100 varieties
F1 Production
Seed production
(F2 Production)
Selection under grazing and/or
visual assessment
Varietal construction
Seed production
Multi-environment
plot trials
1 varietal release
Base population
establishment
c. 1,000 – 10,000
Individuals
c. 100,000 Individuals
Reduction in
individuals by a
factor of 10
Selective
Recombination
Non-Selective
Recombination
Selective
Recombination
c. 1-10 Varieties
Multi-environment
plot trials
Less than 100
varieties
Non-Selective
Recombination
Less than 100 varieties
2 selective recombination steps
– 10 years
2 selective recombination steps – 3 years
Genomic Selection
 Computational simulation of commercial ryegrass breeding program to
optimise application of genomic selection
 Genomic-estimated breeding values for key traits in ryegrass breeding
4646
Exploiting Heterosis via Novel Hybrid Breeding Scheme
 Candidate genes for Self-Incompatibility loci (S and Z) discovered and
functionally characterised
 An F1 hybrid breeding scheme designed and being piloted
Overcoming Bottle-Necks
Fertilisation
S1Z1
S1Z2 S2Z2 S1Z3
S3Z1
S3Z3
S1S2Z1Z2
S1S2Z1Z2
S1Z1
S1Z2
S2Z1
S2Z2
Pistil
Pollen
(haploid)
(diploid)
Pistil
Anther
 A method for SI allele prediction developed
4747
Os04g0645100(TC101821)
Os04g0645200
Os04g0645500
Os04g0645600
Os04g0645700
Os04g0645900
Os04g0646100
Os04g0646500
Os04g0646700
Os04g0646800
Os04g0646900
Os04g0647100
Os04g0647200
Os04g0647300(TC116908)
Os04g0647800(TC89057)
Os04g0647900
Os04g0648000
Os04g0648200
Os04g0648400
Os04g0648500
Os04g0648600
Os04g0648700
Os04g0648800
Os04g0648900
Os04g0649100
Os04g0649200
Os04g0649500
Os04g0649600
Os04g0649700
Os04g0649900
Os04g0650000(bcd266)
BAC8-E18
BAC 119-E12
BAC50-H02
BAC118-B23
BAC87-P20
BAC67-H10 BAC85-A01 BAC27-A19 BAC93-M20 BAC90-J24
LpTC101821
LpVQ
LpOs04g0645500
LpOs04g0645600
LpTC116908
LpTC89057
LpOs04g0648400
LpOs04g0648500
LpOs04g0648600
LpOs04g0648700
LpOs04g0648800
LpOs04g0648900
LpOs04g0649200
LpOs04g0649100
Lpbcd266
BAC127-K20
BAC65-A01
BAC79-L12
LpOs06g0607900
LpDUF247
LpOs03g0193400
LpOs06g0607800
LpOs11g0242400
LpOs10g0419600
LpOs06g0607900
LpOs04g0274400
Rice chr.4
Brachypodium Bd5
Perennial ryegrass
Z locus region
Conserved genes
Specific genes
Os04g0645100(TC101821)
Os04g0645200
Os04g0645500
Os04g0645600
Os04g0645700
Os04g0645900
Os04g0646100
Os04g0646500
Os04g0646700
Os04g0646800
Os04g0646900
Os04g0647100
Os04g0647200
Os04g0647300(TC116908)
Os04g0647800(TC89057)
Os04g0647900
Os04g0648000
Os04g0648200
Os04g0648400
Os04g0648500
Os04g0648600
Os04g0648700
Os04g0648800
Os04g0648900
Os04g0649100
Os04g0649200
Os04g0649500
Os04g0649600
Os04g0649700
Os04g0649900
Os04g0650000(bcd266)
BAC8-E18
BAC 119-E12
BAC50-H02
BAC118-B23
BAC87-P20
BAC67-H10 BAC85-A01 BAC27-A19 BAC93-M20 BAC90-J24
LpTC101821
LpVQ
LpOs04g0645500
LpOs04g0645600
LpTC116908
LpTC89057
LpOs04g0648400
LpOs04g0648500
LpOs04g0648600
LpOs04g0648700
LpOs04g0648800
LpOs04g0648900
LpOs04g0649200
LpOs04g0649100
Lpbcd266
BAC127-K20
BAC65-A01
BAC79-L12
LpOs06g0607900
LpDUF247
LpOs03g0193400
LpOs06g0607800
LpOs11g0242400
LpOs10g0419600
LpOs06g0607900
LpOs04g0274400
Rice chr.4
Brachypodium Bd5
Perennial ryegrass
Z locus region
Conserved genes
Specific genes
F1 Hybrid Breeding
and SI Allele Prediction
48
 Advances in Forage Systems Biology
Summary
 Genome, Transcriptome, Proteome, Metabolome and Phenome
 Forage Symbiomes and Microbiomes – Exploiting Supplementary
Genomes
 Lessons from Systems Biology of Forage Symbiomes
 Integrative, Genomics-Assisted Hybrid Breeding of Symbiota
 Prospects for Trebling Genetic Gain
49
Acknowledgements
P. Badenhorst, N. Cogan, H. Daetwyler, S. Davidson,
P. Ekanayake, S. Felitti, J. Forster, K. Fulgueras, K. Guthridge,
M. Hand, B. Hayes, M. Hayden, I. Hettiarachchi, D. Isenegger,
J. Kaur, G. Latipbayeva, T. Le, Z. Lin, Z. Liu, C. Ludeman,
E. Ludlow, R. Mann, L. Pembleton, M. Rabinovich,
M. Ramsperger, P. Rigault, S. Rochfort, T. Sawbridge, K. Shields,
L. Schultz, H. Shinozuka, K. Smith, G.Tao, P. Tian, P.X. Tian,
J. Tibbits, Y. Ran, E. van Zijll de Jong, J. Wang, T. Webster
C. Inch, S. van der Heijden, M. Willocks
Cluster 1 Cluster 3Cluster 2 Cluster 4
Cluster 5 Cluster 7 Cluster 8Cluster 6
Cluster 9 Cluster 10 Cluster 11 Heat map depiction of average cluster
expression.
Columns are
Cluster Number, Cluster popn., Cluster
Diversity .
Cluster 1 Cluster 3Cluster 2 Cluster 4
Cluster 5 Cluster 7 Cluster 8Cluster 6
Cluster 9 Cluster 10 Cluster 11
Cluster 1 Cluster 3Cluster 2 Cluster 4
Cluster 5 Cluster 7 Cluster 8Cluster 6
Cluster 9 Cluster 10 Cluster 11 Heat map depiction of average cluster
expression.
Columns are
Cluster Number, Cluster popn., Cluster
Diversity .
Heat map depiction of average cluster
expression.
Columns are
Cluster Number, Cluster popn., Cluster
Diversity .
Samples in order
Leaf Free Root Free Leaf ST Root ST
Replete Ca K NH4 NO3 PO4 Replete Ca K NH4 NO3 PO4 Replete Ca K NH4 NO3 PO4 Replete Ca K NH4 NO3 PO4
Plant Transcriptome in Symbiota
 11 clusters generated by Self Organizing Trees Algorithm analysis of endophyte-regulated plant genes
 Cluster 1: root-expressed genes repressed by endophytes
 Clusters 3 and 4: root-expressed genes induced by endophytes
Patterns of Expression in Endophyte-Regulated Plant Genes
51
Plant Transcriptome in Symbiota
 Cluster 2: root-expressed genes
repressed by endophytes as well as
root-expressed genes induced by
endophytes
 Differential gene expression
driven by NH4 responsiveness
Patterns of Expression in Endophyte-Regulated Plant Genes
Hierarchical clustering of genes in cluster 2Hierarchical clustering of genes in cluster 2
 Endophyte-regulated
plant genes differentially
regulated in roots
depending on nutritional
symbiota status
52
53
1. Alkaloid (LEPJ) profiles of symbiota
(i.e. E+) versus E- isogenic host plants
2. Alkaloid profiles of symbiota with diverse
endophyte panel in a single isogenic host
3. Alkaloid (LEPJ) profiles of symbiota with
endophytes from different taxonomic
groups across same host panel
Metabolic Profiling of Novel Symbiota in Isogenic Hosts
Detailed characterisation of known
alkaloids and their precursors
Metabolome Analysis of Symbiota
 Analysis of Gp x Ge effects on symbiota stability and toxin profile53
We MUST We NEED
2XProductivity
Growth 3XGenetic
Gain
5555
Field-Based Phenomics
Low-Cost, High-Throughput, Field-Based Phenotyping: Pheno-Lab
Method Consumables Assets Labour Total Cost Time/sample (min)
NIR 0 0.61 10.75 11.36 15
HPLC 7.23 7.08 0.56 14.86 40.47
Enzymatic Assay 1.37 0.27 0.67 2.31 1.17
MALDI-TOF 1.79 0.42 1.05 3.26 1.48
In-field NIR and yield 0 0.61 1.43 2.04 2
Costs ($) per sample (i.e. plant)
 Accurate, low-cost, high-throughput phenotyping of forages
56
0
0.1
0.2
0.3
0.4
0.5
0.6
control
1
2
3
*4
5
6
7
8
9
10
11
12
13
14
15
16
*17
18
NEA12 colonies treated (no.)
Sizeofmycelia(cm,LogN)
*
**
Analysis of growth rate in culture
after 8 weeks
Initial Screen: Analysis of variance identified two
colonies significantly different to the control
NEA12v17 grows significantly faster (p<0.01**)
NEA12v4 grows significantly slower (p<0.05*)
Validation Screen: Student’s t-tests identified
two colonies significantly different to the control
NEA12v17 grows significantly faster (p<0.01**)
NEA12v15 grows significantly slower (p<0.01**)
Analysis of growth rate in culture
over 5 weeks
In Vitro Growth of NEA12 Variant Strains
Phenome Analysis of Variant Endophytes
 Altered phenotypes (e.g. growth rates) observed in variant endophytes56
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5
Week
Growth(mm)
NEA12
NEA12v4
NEA12v5
NEA12v6
NEA12v13
NEA12v14
NEA12v15
NEA12v17
57
Gene present Gene absent Gene partially present
Pangenome Analysis of Endophytes
Sequence Diversity in Alkaloid Production Genes
 Identification of core and flexible genomes in Neotyphodium endophytes
57
58
easH easA
Intergenic deletions in eas gene cluster in AR1 endophyte
AR1
(Ergo-)
ST
(Ergo+)
CONTIG_29770
lpsBeasG easF easE
CONTIG_29770
Pangenome Analysis of Endophytes
Sequence Diversity in Alkaloid Production Genes
 Intergenic deletions and SNP causing truncated lpsA also lead to inability to produce ergovaline
58
59
Phenome Analysis of Variant Endophytes
Antifungal Bioassays of NEA12 Variant Strains
Drechslera brizae (11 dpi) Phoma sorghina (11 dpi)
NEA12 v14
NEA12 v13
NEA12 v6
NEA12 v5
NEA12
Rhizoctonia cerealis (9 dpi)
NEA12 v14
NEA12 v13
NEA12 v6
NEA12 v5
NEA12
NEA12 v14
NEA12 v13
NEA12 v6
NEA12 v5
NEA12
 Altered phenotypes (e.g. bioactivities) observed in variant endophytes
59
 F1 Hybrid Breeding Designs
 Endophyte Trait Diversity
Some Key Considerations
 Endophyte Deployment
 Self-Incompatibility
 Value Modelling and Impact Delivery
 Accurate, Low-Cost Genotypes and Phenotypes
60
Selection for Symbiota Stability
61
Germination of seeds after AA
treatment and storage
Growth of germinated seedlings
in soil for eight weeks
Assessment of endophyte status by
ELISA
Accelerated ageing treatment
• Optimised conditions identified (e.g. 80% humidity, 4-7 days)
• Variation identified between endophytes and grass cultivar combinations
Predicting Endophyte Stability in Stored Seed and Selecting
Stable Associations Using Accelerated Ageing
62
Experimental Work Flow for Colchicine Mutagenesis
n
nucleus
n and 2n?
Colchicine treatment
(0-0.2% w/v)
3 weeks, 22oC, 150rpm, dark
Protoplast
preparation
4 weeks, 22oC, dark
Colony
subculture
Analyse for change in nuclei
size via flow cytometry
Stained cells
Colony
regeneration
A
C D
B
BA
C
D
Protoplast
preparation
(single colonies)
4 weeks, 22oC, dark
SYBR Green I
staining of nuclei
Generation of Novel N. lolii Genotypes
De Novo Generation of Variant Endophytes
62
63
Experimental Work Flow for X-Ray Mutagenesis
Detection of target gene mutants using high through-put multiplex PCR
analysis for target gene presence and absence and by genome survey
sequencing
Single colonies
isolated
Mutant
detection
Protoplast
preparation
Potato dextrose broth
for 4-14 days
Recovery period (10-14 days)
Repeated radiation
Exposure to ionising radiation
caesium source
(10-30 Gy)- )
Recovery: 4 -6 weeks, 22oC, dark- o
BA BAA
-
-
15 days, 22oC, dark
Generation of Novel N. lolii Genotypes
De Novo Generation of Variant Endophytes
 X-ray mutagenesis for generation of variant endophytes
63
64
De Novo Generation of Variant Endophytes
Generation of Fluorescently Marked Endophytes
ST:sgfpE1:DsRed NEA12:sgfp
e
e
e
e
e
e
Reporter Endophytes to Develop Endophyte Hybridisation
Methodologies and Study Host Colonisation
 Agrobacterium-mediated transformation of N. lolii
and LpTG-3 endophytes with fluorescent reporter genes64
65
De Novo Generation of Variant Endophytes
65
Proof-of-Concept for Enhancing Bio-protective Properties
 Agrobacterium-mediated transformation of janthitrem-producing
endophyte for perA expression and peramine production
248.15022
N
H
O
O
H O
O
O
O
H O
H
C h e m i c a l F o r m u l a : C 3 9 H 5 1 N O 7
E x a c t M a s s : 6 4 5 . 3 6 6 5 5
N
N
O
N
N H 2
H 2 N
C h e m i c a l F o r m u l a : C1 2 H1 7 N 5 O
E x a c t M a s s : 2 4 7 . 1 4 3 3 1
Janthitrem I
peramine
[M+H]
[M+H] 646.37238
pEND0025
20395 bp
25bp RB
25bp LB
attB1
attB2
SpecR/ StrepR
pBR322 origin
PVSI origin
PVSI STA region
hph
PerA gene
p gpd
P trpC
T trpC
T trpC
Peramine Biosynthesis perA Gene
Expression Vector
Generation of Transgenic LpTG-3 Endophytes for Peramine Production
N. lolii ST LpTG-2 NEA11 LpTG-3 NEA12
P P J
201bp
PerA gene
414bp
Selectable marker gene
66
HTP method as NIR reference Environmental and meteorological
data gathering of each trial site
Harvesting of plant material
 No Sample Preparation
e.g. oven drying and
grinding
 In-Field Biomass
 In-Field Forage Quality
Forage Mobile Pheno-Lab Digital Image Library
Field-Based Phenomics
66
67
0.00
100.00
200.00
300.00
400.00
500.00
600.00
EBASE
EBASE1M
EBASE1M-Ppeak
EBASE1M+Ppeak
EBASE+3.04%DMY_Milk
EBASE+9.92%DMY_SR
EBASE1C
EBASE1SR
Economicvalue(AU$perhectare)
RelativetoBASEscenario
Scenario
Economic Value of Forage Traits
(Elliott, relative to base scenario)
Modelling Value and Delivering Impact
67

More Related Content

What's hot

Genetic Modification in Papaya and Fritos® Corn Chips
Genetic Modification in Papaya and Fritos® Corn ChipsGenetic Modification in Papaya and Fritos® Corn Chips
Genetic Modification in Papaya and Fritos® Corn Chips
Lester Rosario
 
Fatin fyp ppt sbnr
Fatin fyp ppt sbnrFatin fyp ppt sbnr
Fatin fyp ppt sbnr
hamikah
 
Advances in Breast Tumor Biomarker Discovery Methods
Advances in Breast Tumor Biomarker Discovery MethodsAdvances in Breast Tumor Biomarker Discovery Methods
Advances in Breast Tumor Biomarker Discovery Methods
Thermo Fisher Scientific
 
Hbv genotypes in libya
Hbv genotypes in libyaHbv genotypes in libya
Hbv genotypes in libya
Milud Salem
 
AMPLIFICATION OF rpoB, kat G & mab A (fab G1)- inh A PROMOTOR DNA SEQUENCES B...
AMPLIFICATION OF rpoB, kat G & mab A (fab G1)- inh A PROMOTOR DNA SEQUENCES B...AMPLIFICATION OF rpoB, kat G & mab A (fab G1)- inh A PROMOTOR DNA SEQUENCES B...
AMPLIFICATION OF rpoB, kat G & mab A (fab G1)- inh A PROMOTOR DNA SEQUENCES B...
SSR Institute of International Journal of Life Sciences
 
1-s2.0-S2211124715009225-main
1-s2.0-S2211124715009225-main1-s2.0-S2211124715009225-main
1-s2.0-S2211124715009225-main
Anirudh Prahallad
 
2010 Acta Horticolturae 26-07-2010
2010 Acta Horticolturae 26-07-20102010 Acta Horticolturae 26-07-2010
2010 Acta Horticolturae 26-07-2010
Marco Cucurachi
 
Gene expression profile of the tumor microenvironment from 40 NSCLC FFPE and ...
Gene expression profile of the tumor microenvironment from 40 NSCLC FFPE and ...Gene expression profile of the tumor microenvironment from 40 NSCLC FFPE and ...
Gene expression profile of the tumor microenvironment from 40 NSCLC FFPE and ...
Thermo Fisher Scientific
 

What's hot (20)

Genetic Modification in Papaya and Fritos® Corn Chips
Genetic Modification in Papaya and Fritos® Corn ChipsGenetic Modification in Papaya and Fritos® Corn Chips
Genetic Modification in Papaya and Fritos® Corn Chips
 
Seminar presenation 2022.pptx
Seminar presenation 2022.pptxSeminar presenation 2022.pptx
Seminar presenation 2022.pptx
 
Fatin fyp ppt sbnr
Fatin fyp ppt sbnrFatin fyp ppt sbnr
Fatin fyp ppt sbnr
 
Katagiri i 110614
Katagiri i 110614Katagiri i 110614
Katagiri i 110614
 
Expression of luxS
Expression of luxSExpression of luxS
Expression of luxS
 
Deshpande et al.,Retrovirology 2016
Deshpande et al.,Retrovirology 2016Deshpande et al.,Retrovirology 2016
Deshpande et al.,Retrovirology 2016
 
Gene expression on rat1 fibroblast cells after transformation by evi1
Gene expression on rat1 fibroblast cells after transformation by evi1Gene expression on rat1 fibroblast cells after transformation by evi1
Gene expression on rat1 fibroblast cells after transformation by evi1
 
Tobacco ring e3 ligase nt rfp1 mediates romance
Tobacco ring e3 ligase nt rfp1 mediates romanceTobacco ring e3 ligase nt rfp1 mediates romance
Tobacco ring e3 ligase nt rfp1 mediates romance
 
8th Internation Wheat Conference E.Alwan poster
8th Internation Wheat Conference E.Alwan poster8th Internation Wheat Conference E.Alwan poster
8th Internation Wheat Conference E.Alwan poster
 
Advances in Breast Tumor Biomarker Discovery Methods
Advances in Breast Tumor Biomarker Discovery MethodsAdvances in Breast Tumor Biomarker Discovery Methods
Advances in Breast Tumor Biomarker Discovery Methods
 
1998 pfmdr
1998 pfmdr 1998 pfmdr
1998 pfmdr
 
Plant Pathogen Booklet
Plant Pathogen BookletPlant Pathogen Booklet
Plant Pathogen Booklet
 
Hbv genotypes in libya
Hbv genotypes in libyaHbv genotypes in libya
Hbv genotypes in libya
 
AMPLIFICATION OF rpoB, kat G & mab A (fab G1)- inh A PROMOTOR DNA SEQUENCES B...
AMPLIFICATION OF rpoB, kat G & mab A (fab G1)- inh A PROMOTOR DNA SEQUENCES B...AMPLIFICATION OF rpoB, kat G & mab A (fab G1)- inh A PROMOTOR DNA SEQUENCES B...
AMPLIFICATION OF rpoB, kat G & mab A (fab G1)- inh A PROMOTOR DNA SEQUENCES B...
 
1-s2.0-S2211124715009225-main
1-s2.0-S2211124715009225-main1-s2.0-S2211124715009225-main
1-s2.0-S2211124715009225-main
 
Detection of stx gene of e
Detection of stx gene of eDetection of stx gene of e
Detection of stx gene of e
 
2010 Acta Horticolturae 26-07-2010
2010 Acta Horticolturae 26-07-20102010 Acta Horticolturae 26-07-2010
2010 Acta Horticolturae 26-07-2010
 
potential drug targets for COVID-19
potential drug targets for COVID-19 potential drug targets for COVID-19
potential drug targets for COVID-19
 
Gene expression profile of the tumor microenvironment from 40 NSCLC FFPE and ...
Gene expression profile of the tumor microenvironment from 40 NSCLC FFPE and ...Gene expression profile of the tumor microenvironment from 40 NSCLC FFPE and ...
Gene expression profile of the tumor microenvironment from 40 NSCLC FFPE and ...
 
SuperSelective Primers for Multiplex Real-time PCR Assays that Assess the Abu...
SuperSelective Primers for Multiplex Real-time PCR Assays that Assess the Abu...SuperSelective Primers for Multiplex Real-time PCR Assays that Assess the Abu...
SuperSelective Primers for Multiplex Real-time PCR Assays that Assess the Abu...
 

Viewers also liked

Dairyvaluechain main
Dairyvaluechain mainDairyvaluechain main
Dairyvaluechain main
Bakalcha Bari
 
Agroforestry based forage production systems for hills
Agroforestry based forage production systems for hillsAgroforestry based forage production systems for hills
Agroforestry based forage production systems for hills
Sunil Kumar
 

Viewers also liked (20)

CSA Symposium 2016 - Khalil Brown - Day 2 Session 1B
CSA Symposium 2016 - Khalil Brown - Day 2 Session 1BCSA Symposium 2016 - Khalil Brown - Day 2 Session 1B
CSA Symposium 2016 - Khalil Brown - Day 2 Session 1B
 
Maass - Using the 'livestock ladder' to exit poverty
Maass - Using the 'livestock ladder' to exit poverty Maass - Using the 'livestock ladder' to exit poverty
Maass - Using the 'livestock ladder' to exit poverty
 
Additional Forage in Livestock and Dairy Operations - Schwab
Additional Forage in Livestock and Dairy Operations - SchwabAdditional Forage in Livestock and Dairy Operations - Schwab
Additional Forage in Livestock and Dairy Operations - Schwab
 
Ifm forage guide_2014
Ifm forage guide_2014Ifm forage guide_2014
Ifm forage guide_2014
 
Dr pc patel resume linkedin final
Dr pc patel resume  linkedin finalDr pc patel resume  linkedin final
Dr pc patel resume linkedin final
 
Dairyvaluechain main
Dairyvaluechain mainDairyvaluechain main
Dairyvaluechain main
 
Forages and the gradual shift towards more intensive management
Forages and the gradual shift towards more intensive managementForages and the gradual shift towards more intensive management
Forages and the gradual shift towards more intensive management
 
Fodder socio economic
Fodder socio economicFodder socio economic
Fodder socio economic
 
L4 forage mixtures
L4 forage mixturesL4 forage mixtures
L4 forage mixtures
 
My seminar on oat 2015
My seminar on oat 2015My seminar on oat 2015
My seminar on oat 2015
 
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...
Assessing needs: Forage demands and feed gaps from dairy and dual purpose val...
 
sialge and its agribusiness aspects
sialge and its agribusiness aspectssialge and its agribusiness aspects
sialge and its agribusiness aspects
 
Forage production technology in west bengal pdf
Forage production technology in west bengal pdfForage production technology in west bengal pdf
Forage production technology in west bengal pdf
 
Technologies to Improve Livestock Productivity in Drylands, Dr. Barbara Risch...
Technologies to Improve Livestock Productivity in Drylands, Dr. Barbara Risch...Technologies to Improve Livestock Productivity in Drylands, Dr. Barbara Risch...
Technologies to Improve Livestock Productivity in Drylands, Dr. Barbara Risch...
 
Agroforestry based forage production systems for hills
Agroforestry based forage production systems for hillsAgroforestry based forage production systems for hills
Agroforestry based forage production systems for hills
 
Nutrifeed Ho
Nutrifeed HoNutrifeed Ho
Nutrifeed Ho
 
feed and fodder status in india
feed and fodder status in indiafeed and fodder status in india
feed and fodder status in india
 
Fodder crops
Fodder cropsFodder crops
Fodder crops
 
fodder crops
fodder cropsfodder crops
fodder crops
 
Forage Capability Model of Federal Range Lands
Forage Capability Model of Federal Range LandsForage Capability Model of Federal Range Lands
Forage Capability Model of Federal Range Lands
 

Similar to 2015. German Spangenberg. Advances and prospects in forage systems biology and molecular breeding

Techniques of-biotechnology-mcclean-good
Techniques of-biotechnology-mcclean-goodTechniques of-biotechnology-mcclean-good
Techniques of-biotechnology-mcclean-good
ana_isa_barbosa
 
Gutell 022.mbp.1992.52.0075
Gutell 022.mbp.1992.52.0075Gutell 022.mbp.1992.52.0075
Gutell 022.mbp.1992.52.0075
Robin Gutell
 

Similar to 2015. German Spangenberg. Advances and prospects in forage systems biology and molecular breeding (20)

The biodegradation of Polystyrene
The biodegradation of PolystyreneThe biodegradation of Polystyrene
The biodegradation of Polystyrene
 
Techniques of-biotechnology-mcclean-good
Techniques of-biotechnology-mcclean-goodTechniques of-biotechnology-mcclean-good
Techniques of-biotechnology-mcclean-good
 
PHD_Thesis_presentation
PHD_Thesis_presentationPHD_Thesis_presentation
PHD_Thesis_presentation
 
Vijay protiomics current
Vijay protiomics currentVijay protiomics current
Vijay protiomics current
 
Validation of RNA interference by RNA-Seq: How to see the big picture - Brend...
Validation of RNA interference by RNA-Seq: How to see the big picture - Brend...Validation of RNA interference by RNA-Seq: How to see the big picture - Brend...
Validation of RNA interference by RNA-Seq: How to see the big picture - Brend...
 
Self Introduction
Self IntroductionSelf Introduction
Self Introduction
 
Allele mining in orphan underutilized crops
Allele mining in orphan underutilized cropsAllele mining in orphan underutilized crops
Allele mining in orphan underutilized crops
 
Transgenic Plant
Transgenic PlantTransgenic Plant
Transgenic Plant
 
Multiplex Assays for Studying Gene Regulation and Cell Function
Multiplex Assays for Studying Gene Regulation and Cell FunctionMultiplex Assays for Studying Gene Regulation and Cell Function
Multiplex Assays for Studying Gene Regulation and Cell Function
 
Chloroplast transformation
Chloroplast transformationChloroplast transformation
Chloroplast transformation
 
Chloroplast transformation
Chloroplast transformationChloroplast transformation
Chloroplast transformation
 
R genes in Plants
R genes in PlantsR genes in Plants
R genes in Plants
 
Gutell 022.mbp.1992.52.0075
Gutell 022.mbp.1992.52.0075Gutell 022.mbp.1992.52.0075
Gutell 022.mbp.1992.52.0075
 
Whole genome sequencing of Bacillus subtilis a gram positive organism
Whole genome sequencing of Bacillus subtilis a gram positive organismWhole genome sequencing of Bacillus subtilis a gram positive organism
Whole genome sequencing of Bacillus subtilis a gram positive organism
 
Cloning and extracellular expression of recombinant tissue plasminogen activa...
Cloning and extracellular expression of recombinant tissue plasminogen activa...Cloning and extracellular expression of recombinant tissue plasminogen activa...
Cloning and extracellular expression of recombinant tissue plasminogen activa...
 
Cloning and Extracellular Expression of Recombinant Tissue Plasminogen Activa...
Cloning and Extracellular Expression of Recombinant Tissue Plasminogen Activa...Cloning and Extracellular Expression of Recombinant Tissue Plasminogen Activa...
Cloning and Extracellular Expression of Recombinant Tissue Plasminogen Activa...
 
Cloning and extracellular expression of recombinant tissue plasminogen activa...
Cloning and extracellular expression of recombinant tissue plasminogen activa...Cloning and extracellular expression of recombinant tissue plasminogen activa...
Cloning and extracellular expression of recombinant tissue plasminogen activa...
 
Cloning_Expression_Outer_Membrane_Protein_Omp38_Aeromonas_hydrophila_Escheric...
Cloning_Expression_Outer_Membrane_Protein_Omp38_Aeromonas_hydrophila_Escheric...Cloning_Expression_Outer_Membrane_Protein_Omp38_Aeromonas_hydrophila_Escheric...
Cloning_Expression_Outer_Membrane_Protein_Omp38_Aeromonas_hydrophila_Escheric...
 
Cloning and Extracellular Expression of Recombinant Tissue Plasminogen Activa...
Cloning and Extracellular Expression of Recombinant Tissue Plasminogen Activa...Cloning and Extracellular Expression of Recombinant Tissue Plasminogen Activa...
Cloning and Extracellular Expression of Recombinant Tissue Plasminogen Activa...
 
CLONING AND EXTRACELLULAR EXPRESSION OF RECOMBINANT TISSUE PLASMINOGEN ACTIVA...
CLONING AND EXTRACELLULAR EXPRESSION OF RECOMBINANT TISSUE PLASMINOGEN ACTIVA...CLONING AND EXTRACELLULAR EXPRESSION OF RECOMBINANT TISSUE PLASMINOGEN ACTIVA...
CLONING AND EXTRACELLULAR EXPRESSION OF RECOMBINANT TISSUE PLASMINOGEN ACTIVA...
 

More from FOODCROPS

More from FOODCROPS (20)

2019. jauhar ali. genomics assisted breeding for climate smart rice varieties
2019. jauhar ali. genomics assisted breeding for climate smart rice varieties2019. jauhar ali. genomics assisted breeding for climate smart rice varieties
2019. jauhar ali. genomics assisted breeding for climate smart rice varieties
 
2018. jauhar ali. green super rice breeding technology achievements and advances
2018. jauhar ali. green super rice breeding technology achievements and advances2018. jauhar ali. green super rice breeding technology achievements and advances
2018. jauhar ali. green super rice breeding technology achievements and advances
 
2012. chang xiang mao. hybrid rice development in and outside china
2012. chang xiang mao. hybrid rice development in and outside china2012. chang xiang mao. hybrid rice development in and outside china
2012. chang xiang mao. hybrid rice development in and outside china
 
2018. tm thiyagarajan. intercultivation in rice
2018. tm thiyagarajan. intercultivation in rice2018. tm thiyagarajan. intercultivation in rice
2018. tm thiyagarajan. intercultivation in rice
 
2018. gwas data cleaning
2018. gwas data cleaning2018. gwas data cleaning
2018. gwas data cleaning
 
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...
2016. kayondo si. associatonn mapping identifies qt ls underlying cassava bro...
 
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...
2017. Phương pháp backcrossing giả định quy tụ nhanh chống các tính trạng kin...
 
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...
2017. ung dung tin sinh xac dinh tinh chong chiu cay trong (c d ha) [compatib...
 
2017. Giới thiệu giống lúa CNC11
2017. Giới thiệu giống lúa CNC112017. Giới thiệu giống lúa CNC11
2017. Giới thiệu giống lúa CNC11
 
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...
2017. TS Cao Lệ Quyên. Nghiên cứu phân lập và chuyển gen liên quan đến tính c...
 
2017. Nhìn về quá khứ định hướng tương lai
2017.  Nhìn về quá khứ định hướng tương lai2017.  Nhìn về quá khứ định hướng tương lai
2017. Nhìn về quá khứ định hướng tương lai
 
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...
2017. TS Cồ Thị Thuỳ Vân. Một số kết quả nổi bật và định hướng nghiên cứu về ...
 
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...
2017. Nguyễn Thị Ngọc Lan. Nghiên cứu nhận dạng phân tử một số nguồn gen đậu ...
 
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm
2017. Con đường từ phân tích thực tiễn đến phòng thí nghiệm
 
2017. TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...
2017.  TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...2017.  TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...
2017. TS Nguyễn Văn Cửu. Xác định đặc tính gen chống chịu ngập ở lúa vùng Đô...
 
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới 2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới
2017. TS Đồng Thị Kim Cúc. Giới thiệu một số giống lạc mới
 
2015. ming tsair chan. the application of plant transformation
2015. ming tsair chan. the application of plant transformation2015. ming tsair chan. the application of plant transformation
2015. ming tsair chan. the application of plant transformation
 
2007. stephen chanock. technologic issues in gwas and follow up studies
2007. stephen chanock. technologic issues in gwas and follow up studies2007. stephen chanock. technologic issues in gwas and follow up studies
2007. stephen chanock. technologic issues in gwas and follow up studies
 
2016. daisuke tsugama. next generation sequencing (ngs) for plant research
2016. daisuke tsugama. next generation sequencing (ngs) for plant research2016. daisuke tsugama. next generation sequencing (ngs) for plant research
2016. daisuke tsugama. next generation sequencing (ngs) for plant research
 
2017. Genome học hiện trạng và triển vọng
2017. Genome học hiện trạng và triển vọng2017. Genome học hiện trạng và triển vọng
2017. Genome học hiện trạng và triển vọng
 

Recently uploaded

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Sérgio Sacani
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
Cherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 

Recently uploaded (20)

Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
Early Development of Mammals (Mouse and Human).pdf
Early Development of Mammals (Mouse and Human).pdfEarly Development of Mammals (Mouse and Human).pdf
Early Development of Mammals (Mouse and Human).pdf
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Concept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdfConcept of gene and Complementation test.pdf
Concept of gene and Complementation test.pdf
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 

2015. German Spangenberg. Advances and prospects in forage systems biology and molecular breeding

  • 1. Advances and Prospects in Forage Systems Biology and Molecular Breeding German Spangenberg
  • 2. 2 Systems Biology: from Genome to Phenome
  • 3. 3 Systems Biology for Transformational Through-Value Chain Impact Forage yield Forage quality Forage persistence Biotic stress tolerance Abiotic stress tolerance Feed efficiency Milk composition Methane Core genetic traits Milk composition Products Health Nutrition Plant symbiome Rumen microbiome Animal symbiome Milk biome
  • 4. Systems Biology of Forage Grass Symbiomes and Microbiomes N H O O HO O O O HO H Chemical Formula: C39 H51 NO7 Exact Mass: 645.36655 N H N H HN O N O NHO H O O Chemical Formula: C29 H35 N5 O5 Exact Mass: 533.26382 N N O N NH2 H2N Chemical Formula: C12 H17 N5 O Exact Mass: 247.14331 Janthitrem I ergovaline peramine [M+H]+ 248.15022 [M+H]+ 646.37238 [M+H]+ 534.27002 N H O HO O O H O H O O H H Chemical Formula: C42 H55 NO7 Exact Mass: 685.39785 [M+H]+ 686.40369 Lolitrem B N H O O HO O O O HO H Chemical Formula: C39 H51 NO7 Exact Mass: 645.36655 N H N H HN O N O NHO H O O Chemical Formula: C29 H35 N5 O5 Exact Mass: 533.26382 N N O N NH2 H2N Chemical Formula: C12 H17 N5 O Exact Mass: 247.14331 Janthitrem I ergovaline peramine [M+H]+ 248.15022 [M+H]+ 646.37238 [M+H]+ 534.27002 N H O HO O O H O H O O H H Chemical Formula: C42 H55 NO7 Exact Mass: 685.39785 [M+H]+ 686.40369 Lolitrem B
  • 5. 5 • Asexual filamentous fungi (phylum Ascomycota, family Clavicipitaceae) that form mutualistic symbioses with temperate grasses (subfamily Pooideae) • Seed transmissible • Protect host grasses from biotic (e.g. insects and vertebrate herbivores) and abiotic (e.g. drought) stresses • Produce several bioactive secondary metabolites in planta • Evolved from sexual grass choke Epichloë pathogens Neotyphodium spp. Endophytes E. festucae Loss of sexual state N. lolii (c. 29 + 4 Mb) N. lolii x E. typhina Interspecific hybridisation N. sp. LpTG-2 (c. 55 + 6 Mb)
  • 6. 6 From Endophyte Discovery to Pangenome Analysis Exploiting Global Genetic Diversity – Endophytes from Perennial Ryegrass  Genetically similar endophytes have a similar toxin profile and origin  Endophytes with reduced toxicity effects are genetically divergent from the main group  Selection of novel candidate endophytes based on:  DNA profiles  Geographic origin  Toxin profiles Endophytes cluster into groups based on geographical origin and toxin production  Ability to predict likely toxin production based on genotypic profile Genetic similarity 0.12 0.34 0.56 0.78 1.00 Genetic similarity 0.12 0.34 0.56 0.78 1.00 Middle East Eastern Europe Northern Europe Lolitrem B Peramine Middle East Mediterranean Western Europe New World Lolitrem B Ergovaline Peramine Mediterranean Western Europe Eastern Europe Ergovaline Peramine Peramine LpTG-2 N. lolii LpTG-3  A broadly-applicable approach for discovery of novel endophytes Janthitrem
  • 7. 7  In vitro cultures of candidate endophytes  Endophyte genotypes confirmation  Long-term cryopreservation of endophyte cultures Species No. Isolates Examples N. lolii 70 ST, NEA2, NEA3, NEA5, NEA6, NEA10, 42 novel endophytes N. coenophialum 43 E34, E6, 22 novel endophytes LpTG-2 7 NEA4, NEA11, 3 novel endophytes LpTG-3 5 NEA12, E1 FaTG-2 4 8907 and 3 novel endophytes FaTG-3 6 NEA21, NEA23 N. uncinatum 1 E81 Total 136 Discovering Genetically Novel Endophytes  A broad-based, germplasm collection of novel, genetically diverse endophytes7
  • 8. 8 E9 G4 ST C9 NA6 Lp19 AR1 NEA3 Genetic similarity 0.12 0.34 0.56 0.78 1.00 Genetic similarity 0.12 0.34 0.56 0.78 1.00 Middle East Eastern Europe Northern Europe Lolitrem Peramine Middle East Mediterranean Western Europe New World Lolitrem Ergovaline Peramine Mediterranean Western Europe Eastern Europe Ergovaline Peramine Peramine NEA12, 15310,15311 E1 Ef E2368 N. lolii LpTG-3 NEA10 15335 15441 NEA2 15714 NEA6 15931 F2 A1 NEA11 NEA4 LpTG-2  Over 80 ryegrass endophyte strains sequenced 16 N. lolii 3 LpTG-2 4 LpTG-3  Reference genome construction - ST  Representatives of global diversity of perennial ryegrass endophytes  Current commercial endophytes [e.g. AR1, NEA2, NEA3 and NEA4]  New endophytes in pre-commercial development [e.g. NEA10, NEA11, NEA12]  Within cluster analysis of genetic diversity - Endophytes from distinct geographical origins [e.g. ST (Grasslands Samson) – NA6 (Morocco) and C9 (Spain)] - Endophytes from the same geographical origin [e.g. NEA12 (France) – 15310 and 15311] Pangenome Analysis of Endophytes  Pangenome analysis across spectrum of genetic, geographic and taxonomic diversity of endophytes from perennial ryegrass 8
  • 9. 9 Gene present Gene absent Gene partially present Pangenome Analysis of Endophytes Sequence Diversity in Alkaloid Production Genes  Identification of core and flexible genomes in Neotyphodium endophytes 9
  • 10. 10 Establishing Symbiota in Isogenic Hosts Developing Diverse Perennial Ryegrass Isogenic Host Panel Host cultivar Characteristics Number of TCR genotypesa TCR genotype used for inoculation Tolosa Distinct forage type 1 Tol 03 Bronsyn Standard forage type with robust endophyte performance 3 Bro 08 Impact Late flowering, dense tillering forage type 3 Imp 04 Meridian Early flowering forage type 1 Mer 05 Barsandra Turf type 1 San 02 Bealey Tetraploid forage type 2 Bea 02 Barsintra Tetraploid forage type 4 Sin 04 Barfest Intergeneric hybrid between Lolium species parents 3 Fest 02  Materials for symbiome analysis to dissect endophyte and grass host effects 10
  • 11. 11 Establishing Symbiota in Isogenic Hosts Inoculating Novel Endophytes into Perennial Ryegrass Isogenic Host Panel  Establishing defined symbiota to study Gp x Ge effects11
  • 12. 12 Endophyte Transcriptome in Symbiota  Perennial ryegrass symbiota; isogenic background; with/without ST endophyte  6 growth conditions: complete media; Low NO3, Low NH4, Low K, Low PO4 and Low Ca  RNAseq libraries; shoots and roots; sequence reads mapped using BLASTn; plant and endophyte transcripts  Endophyte genic sequence reads only observed in tillers of symbiota  Endophyte transcriptome only in symbiotum shoots genes 0 50000 100000 150000 200000 250000 300000 350000 Full Ca K NH 4 NO 3 PO 4 Full Ca K NH 4 NO 3 PO 4 Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Leaves Roots Reads mapped to endophyte genes with an overlap >40 bp and a percent identity of greater >98genes 0 50000 100000 150000 200000 250000 300000 350000 Full Ca K NH 4 NO3 PO4 Full Ca K NH4 NO3 PO4 Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Free ST Shoots Roots Reads mapped to endophyte genes with an overlap >40 bpand a percent identity of greater >98
  • 13. 13 0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 LpL_ FR F U LL1_8 0_40 LpL_ FR C a1_ 80_40 LpL_ FR K 1_80_40 LpL_ FR N H 1_80 _40 LpL_ FR N O 1_80_40 LpL_ FR P O 1_80 _40 LpL_ S T FU LL 1_80_40 LpL_ S T C a1_80_40 LpL_ S T K 1_80_ 40 LpL_ S T N H 1 _80_40 LpL_ S T N O 1_80 _40 LpL_ S T P O 1 _80_40 mito cp rRNA gene Number of reads mapping to plant genes from leaf libraries 0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 LpL_ FR F U LL1_8 0_40 LpL_ FR C a1_ 80_40 LpL_ FR K 1_80_40 LpL_ FR N H 1_80 _40 LpL_ FR N O 1_80_40 LpL_ FR P O 1_80 _40 LpL_ S T FU LL 1_80_40 LpL_ S T C a1_80_40 LpL_ S T K 1_80_ 40 LpL_ S T N H 1 _80_40 LpL_ S T N O 1_80 _40 LpL_ S T P O 1 _80_40 mito cp rRNA gene Number of reads mapping to plant genes from leaf libraries Plant Transcriptome in Symbiota 0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 LpL_ FR F U LL1_8 0_40 LpL_ FR C a1_ 80_40 LpL_ FR K 1_80_40 LpL_ FR N H 1_80 _40 LpL_ FR N O 1_80_40 LpL_ FR P O 1_80 _40 LpL_ S T FU LL 1_80_40 LpL_ S T C a1_80_40 LpL_ S T K 1_80_ 40 LpL_ S T N H 1 _80_40 LpL_ S T N O 1_80 _40 LpL_ S T P O 1 _80_40 mito cp rRNA gene_sum Number of reads mapping to plant genes from leaf libraries 0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 LpL_ FR F U LL1_8 0_40 LpL_ FR C a1_ 80_40 LpL_ FR K 1_80_40 LpL_ FR N H 1_80 _40 LpL_ FR N O 1_80_40 LpL_ FR P O 1_80 _40 LpL_ S T FU LL 1_80_40 LpL_ S T C a1_80_40 LpL_ S T K 1_80_ 40 LpL_ S T N H 1 _80_40 LpL_ S T N O 1_80 _40 LpL_ S T P O 1 _80_40 mito cp rRNA gene_sum Number of reads mapping to plant genes from leaf libraries  Number of sequence reads mapped to plant sequences in shoot libraries (2.4 to 20.8 million reads per library)  Counts mapping to genes used to identify endophyte-induced or repressed plant genes in symbiota shoots  Of 918 endophyte-regulated plant genes 68 are differentially regulated in shoots (51 induced and 15 repressed) Shoot Transcriptome: Endophyte-Regulated Plant Genes 13
  • 14. 14 Plant Transcriptome in Symbiota Root Transcriptome: Endophyte-Regulated Plant Genes  Number of sequence reads mapped to plant sequences in root libraries (2.4 to 20.8 million reads per library)  Counts mapping to genes used to identify endophyte-induced or repressed plant genes in symbiota roots 0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 LpR _F R F U LL1_80_4 0 LpR _F R C a1_80 _40 LpR _F R K 1_ 80_40 LpR _F R N H 1_80_4 0 LpR _F R N O 1 _80_40 LpR _F R P O 1_80_4 0 LpR _S TF U LL1_8 0_40 LpR _S TC a1 _80_40 LpR _S TK 1_80_40 LpR _S TN H 1_8 0_40 LpR _S TN O 1_t80_ 40 LpR _S TP O 1_8 0_40 mito cp rRNA gene_ Number of reads mapping to plant genes from root libraries 0 5,000,000 10,000,000 15,000,000 20,000,000 25,000,000 30,000,000 LpR _F R F U LL1_80_4 0 LpR _F R C a1_80 _40 LpR _F R K 1_ 80_40 LpR _F R N H 1_80_4 0 LpR _F R N O 1 _80_40 LpR _F R P O 1_80_4 0 LpR _S TF U LL1_8 0_40 LpR _S TC a1 _80_40 LpR _S TK 1_80_40 LpR _S TN H 1_8 0_40 LpR _S TN O 1_t80_ 40 LpR _S TP O 1_8 0_40 mito cp rRNA gene_ Number of reads mapping to plant genes from root libraries 0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 LpL_ FR F U LL1_8 0_40 LpL_ FR C a1_ 80_40 LpL_ FR K 1_80_40 LpL_ FR N H 1_80 _40 LpL_ FR N O 1_80_40 LpL_ FR P O 1_80 _40 LpL_ S T FU LL 1_80_40 LpL_ S T C a1_80_40 LpL_ S T K 1_80_ 40 LpL_ S T N H 1 _80_40 LpL_ S T N O 1_80 _40 LpL_ S T P O 1 _80_40 mito cp rRNA gene_sum Number of reads mapping to plant genes from leaf libraries 0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 LpL_ FR F U LL1_8 0_40 LpL_ FR C a1_ 80_40 LpL_ FR K 1_80_40 LpL_ FR N H 1_80 _40 LpL_ FR N O 1_80_40 LpL_ FR P O 1_80 _40 LpL_ S T FU LL 1_80_40 LpL_ S T C a1_80_40 LpL_ S T K 1_80_ 40 LpL_ S T N H 1 _80_40 LpL_ S T N O 1_80 _40 LpL_ S T P O 1 _80_40 mito cp rRNA gene_sum Number of reads mapping to plant genes from leaf libraries  Of 918 endophyte-regulated plant genes 728 are differentially regulated in roots (529 induced and 167 repressed) 14
  • 15. Plant Transcriptome in Symbiota  Cluster 3: root-expressed genes induced by endophytes, but expressed at lower level in endophyte-free plants  Largest cluster of endophyte-regulated plant genes  Annotation of endophyte-regulated plant genes  Defence response genes  Chitin responsive genes  Innate immunity genes Patterns of Expression in Endophyte-Regulated Plant Genes Part of cluster 3 hierachical clusterPart of cluster 3 hierachical cluster  Symbiotum transcriptional response to endophyte presence is up-regulation of defence-related genes in roots15
  • 16. Plant Transcriptome in Symbiota Hierarchical clustering of C1Hierarchical clustering of C1  Cluster 1: root-expressed genes repressed by endophytes  Annotation of endophyte-regulated plant genes  Transcription regulators  Max2 F-box LRR gene in signalling of strigolactones Patterns of Expression in Endophyte-Regulated Plant Genes  Clusters 10 and 11: shoot-expressed genes repressed by endophyte  Annotation of 15 endophyte-regulated plant genes  3 MADS-box genes  2 blue light photoreceptors  1 cytokinin oxidase  Carbohydrate metabolism and transporters 16
  • 17. 17 Peramine N-formylloline Lolitrem B Metabolome Analysis of Symbiota Ergovaline Metabolic Profiling of Natural Symbiota  Metabolic profiling across spectrum of genetic, geographic and taxonomic diversity of endophytes from perennial ryegrass 17
  • 18. 18 Barsandra TolosaImpact Lolitrem B 0.00 0.50 1.00 1.50 2.00 2.50 3.00 NEA10 NEA11 NEA12 E1 STxxx b a Ergovaline 0.00 0.50 1.00 1.50 2.00 2.50 3.00 NEA10 NEA11 NEA12 E1 STxxx * Janthitrem 0.00 0.50 1.00 1.50 2.00 2.50 NEA10 NEA11 NEA12 E1 ST x a ab b xx Peramine 0.00 0.50 1.00 1.50 2.00 NEA10 NEA11 NEA12 E1 ST b a a * *b a xxx NEA10 NEA11 NEA12 E1 ST LolitremBErgovalineJanthitremPeramine Metabolome Analysis of Symbiota Metabolic Profiling of Novel Symbiota in Isogenic Hosts  Strong Gp x Ge effects on alkaloid toxin profiles in defined symbiota with novel endophytes18 Endophyte strain Putative toxin profile Endogenous toxin profile Isogenic (confirmed) toxin profile Taxon NEA10 Unknown -/E/n.d a -/E/P/- (Y) N. lolii NEA11 E+P -/E/n.d a -/E/P/- (Y) Lp TG-2 NEA12 Unknown -/-/- -/-/-/J (Y) Lp TG-3 E1 Unknown n.d -/-/-/- ST L/E/P L/E/P/- (Y) N. lolii a Peramine not measured Lp TG-3
  • 19. 19 Metabolome Analysis of Symbiota XX X X Adapted from Young et al, 2009  10 lolitrem biosynthetic genes  3 gene clusters  2 deletions (LtmE, LtmJ) Pathway Analysis – Lolitrem Biosynthesis 19
  • 20. 20 Compound Bea02 Bro08 Imp04 San02 Tol03 Imp04 Bea02 Bro08 Imp04 San02 Tol03 Imp04 San02 Tol03 Bro08 Imp04 Bea02 Bro08 San02 Tol03 E- E- E- E- E- NEA10 NEA11 NEA11 NEA11 NEA11 NEA11 NEA12 NEA12 NEA12 E1 E1 ST ST ST ST paspaline - - - - - + + + + + + + + + + + + + + + 13-desoxy paxilline - - - - - + + + + + + + + + - - + + + + paxilline - - - - - + + + + + + + +(Trace) +(Trace) - - + + + + terpendole I - - - - - + + + + + + + - + - - + + + + prenylate terpendole I - - - - - + + + + + + + - + - - + + + + terpendole C - - - - - + + + + + + + - + - - + + + + lolitriol - - - - - - - - - - - - - - - - + + + + lolitrem E - - - - - - - - - - - - - - - - + + + + lolitrem B - - - - - - - - - - - - - - - - + + + + lolitrem J - - - - - - - - - - - - - - - - - - - - lolitrem K - - - - - - - - - - - - - - - - + + + + paspalicine - - - - - + + + + + + + - + - - + + + + paspalicinol - - - - - + + + + + + + + + - - + + + + paspalininol - - - - - + + + + + + + - + - - + + + + paspalinine - - - - - + + + + + + + - + - - + + + + aflatrem - - - - - + + + + - + + - + - - + + - + tryptophan + + + + + + + + + + + + + + + + + + + + chanoclavine - - - - - + + + + + + - - - - - + + + + secolysergine - - - - - - - - + + - - - - - - + + + + agroclavine - - + + + + + + + + + + - - - + + + + + setoclavine - - - + + + + + + + + - + + - + + + + + elymoclavine - - - - - + + + + + + - - - - - + + + + lysergic acid + + + + + + + + + + + + + + + + + + + + lysergyl peptide lactam - - - - - + + - + - + - - - - - + + + + lysergyl alanine - - - - - + + + + + + - - - - - + + + + lysergamide - - - - - + + + + + + - - - - - + + + + ergovaline - - - - - + +(Trace) + + +(Trace) + - - - - - +(Trace) + + + lysergol - - - - - + + + + + + - - - - - + + + + Peramine +(Trace) +(Trace) +(Trace) +(Trace) +(Trace) + + + + + + +(Trace) +(Trace) +(Trace) +(Trace) +(Trace) + + + + Imidacloprid - - - - + - - - - + + - + + - - - - + - 4-Hydroxy-imidacloprid + - + + + + + + + + + + + + + + + + + + Janthitrem I - - - - - - - - - - - + + + + +(Trace) - - - - Janthitrem A - - - - - - - - - - - - - + + - + + + + Janthitrem B - - - - - - - - - - - + + + + + - - - - Janthitrem C + + + + + + + + + + + + + + + + + + + + Peramine Janthitrem Host-EndophyteSymbiota Lolitrems Aflatrem Ergot Alkaloids Metabolome Analysis of Symbiota Pathway Analyses – Lolitrems, Aflatrem, Ergot Alkaloids, Peramine and Janthitrems 20
  • 21. 21 Assessing Endophyte Stability and Symbiota Performance Barsandra E- ST NEA11 NEA12 Bronsyn A. Number of inoculations performed ST NEA10 NEA11 NEA12 Total Bea02 40 30 70 Bro08 80 75 155 Imp04 90 50 140 San02 80 50 130 Tol03 80 40 120 Total 0 370 0 245 615 B. Number of inoculations tested ST NEA10 NEA11 NEA12 Total Bea02 31 21 52 Bro08 59 50 109 Imp04 60 21 81 San02 64 31 95 Tol03 32 27 59 Total 246 150 396 C. Number of successful inoculations ST NEA10 NEA11 NEA12 Total Bea02 0 1 1 Bro08 1 0 1 Imp04 1 2 3 San02 0 1 1 Tol03 0 2 2 Total 2 6 8 D. Percent of successful inoculations ST NEA10 NEA11 NEA12 Total Bea02 0 1 1.0 Bro08 1.7 0 1.7 Imp04 1.7 9.5 11.2 San02 0 3.2 3.2 Tol03 0 7.4 7.4 Total 3.4 21.2 24.5 Stable association Unstable association Stable association Unstable association E- ST NEA11 NEA12 Phenome Analysis of Symbiota 21
  • 22. 22 Assessing Endophyte Effect on Symbiota PerformanceShoot Fresh Weight in Response to Nitrate 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 E- NEA10 NEA11 NEA12 ST Host-Endophyte Association FreshWeight(g) 0.5 mM NO3- 2.5 mM NO3- 10.0 mM NO3- Shoot fresh weight Tiller Number in Response to Nitrate 0 10 20 30 40 50 60 70 80 E- NEA10 NEA11 NEA12 ST Host-Endophyte Association TillerNumber 0.5 mM NO3- 2.5 mM NO3- 10.0 mM NO3- Tiller number Root fresh weight Root Fresh Weight in Response to Nitrate 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 E- NEA10 NEA11 NEA12 ST Host-Endophyte Association RootFreshWeight(g) 0.5 mM NO3- 2.5 mM NO3- 10.0 mM NO3- Root Dry Weight in Response to Nitrate 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 E- NEA10 NEA11 NEA12 ST Host-Endophyte Association RootDryWeight(g) 0.5 mM NO3- 2.5 mM NO3- 10.0 mM NO3- Root dry weight Shoot Fresh Weight in Response to Nitrate 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 E- NEA10 NEA11 NEA12 ST Host-Endophyte Association FreshWeight(g) 0.5 mM NO3- 2.5 mM NO3- 10.0 mM NO3- Shoot fresh weight Tiller Number in Response to Nitrate 0 10 20 30 40 50 60 70 80 E- NEA10 NEA11 NEA12 ST Host-Endophyte Association TillerNumber 0.5 mM NO3- 2.5 mM NO3- 10.0 mM NO3- Tiller number Root fresh weight Root Fresh Weight in Response to Nitrate 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 E- NEA10 NEA11 NEA12 ST Host-Endophyte Association RootFreshWeight(g) 0.5 mM NO3- 2.5 mM NO3- 10.0 mM NO3- Root Dry Weight in Response to Nitrate 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 E- NEA10 NEA11 NEA12 ST Host-Endophyte Association RootDryWeight(g) 0.5 mM NO3- 2.5 mM NO3- 10.0 mM NO3- Root dry weight 0.5 mM NO3 - 2.5 mM NO3 - 10.0 mM NO3 - Phenome Analysis of Symbiota 22
  • 23. 23 23 N-formylloline Peramine • Perennial ryegrass and • Tall fescue  Establish symbiota with both: NEA21 Morocco NEA23 Tunisia  Novel endophytes for broad deployment discovered and characterised23 Novel Fungal Endophytes for Forage Grasses Discovering Endophytes with Novel Bioactivity and Broad Host Specificity
  • 24. 24 Forage Grass Microbiomes Meta-Transcriptomics of Ryegrass Microbiomes Alphaproteobacteria, 654 Gammaproteobacteria, 493 Betaproteobacteria, 421 Actinobacteria, 341 Bacteroidetes, 294 Cyanobacteria/Chloroplast , 235 Firmicutes, 136 Chlamydiae, 6 Spirochaetes, 12 Chloroflexi, 15 Planctomycetes, 31 Deltaproteobacteria, 59 Deinococcus-Thermus, 23 Nitrospira, 4 Tenericutes, 10 Epsilonproteobacteria, 7 Acidobacteria, 3 Fusobacteria, 2 Chrysiogenetes, 2 Deferribacteres, 2 Verrucomicrobia, 17  Diverse bacterial microbiomes revealed in forage grasses  Rapid and cost effective RNA profiling of plant microbiomes • Shoot and root microbiomes • Meta-transcriptomics (16S rRNA) • Over 2700 bacterial phyla in perennial ryegrass microbiome 24
  • 25. 25 Forage Grass Microbiomes Shoot and Root Microbiomes in Perennial Ryegrass Hierarchical clustering of bacterial counts classifies root treatments but not shoot treatments.  Meta-transcriptomics reveals differences in bacterial species predominance in shoot and root microbiomes  Root microbiome profiles ‘descriptive’ of treatment (e.g. nutritional status) 25
  • 26. 26 Forage Grass Microbiomes Shoot and Root Microbiomes in Perennial RyegrassL_F_FULL1 L_F_FULL3 L_F_FULL5 L_F_Ca2 L_F_Ca4 L_F_K1 L_F_K3 L_F_K5 L_F_NH2 L_F_NH4 L_F_NO1 L_F_NO3 L_F_NO5 L_F_P02* L_F_P04* L_S_FULL1 L_S_FULL3 L_S_FULL5 L_S_Ca2 L_S_Ca4 L_S_K1 L_S_K3 L_S_K5 L_S_NH2 L_S_NH4 L_S_NO1 L_S_NO3 L_S_NO5 L_S_P02* L_S_P04* R_F_FULL1 R_F_FULL3 R_F_FULL5 R_F_Ca2 R_F_Ca4 R_F_K1 R_F_K3 R_F_K5 R_F_NH2 R_F_NH4 R_F_NO1 R_F_NOL3 R_F_NO5 R_F_PO2 R_F_PO4 R_S_FULL1 R_S_FULL3 R_S_FULL5 R_S_Ca2 R_S_Ca4 R_S_K1 R_S_K3 R_S_K5 R_S_NH2 R_S_NH4 R_S_NO1 R_S_NO3 R_S_NO5 R_S_PO2 R_S_PO4 Azospirillum sp 0 50 100 150 200 250 Azospirillum sp Azospirillum sp Azospirillum amazonense Azospirillum sp Azospirillum sp Azospirillum amazonense Azospirillum brasilense Azospirillum brasilense Azospirillum lipoferum Azospirillum sp Azospirillum sp Azospirillum brasilense  Analysis of bacterial microbiome in symbiota reveals range of bacterial species known to be N fixers and phytostimulators of grasses  Azospirillum species induced in number (under low N)  Associative nitrogen fixation  Synthesis of phytohormones 26
  • 27. Integrative, Genomics-Assisted F1 Hybrid Breeding of Forage Grass Symbiota
  • 28. Lessons and Prospects? 1. Breeding and Selection of Host Grass Only Current Paradigm 2. Few Selective Recombinations in Long Breeding Cycle 4. Evaluation of Symbiota (i.e. Grass-Endophyte Associations) 3. Inoculation of Single Unselected Endophytes 5. Seed Generational Advance Limiting Heterosis 6. No Hybrid Varieties Limiting Value Capture 28
  • 29. Lessons and Prospects? 1. Ab Initio Breeding and Selection of Symbiota New Paradigm? 2. More Selective Recombinations in Shorter Breeding Cycle 4. More Accurate Evaluation of Symbiota 3. Exploit Broader Endophyte Diversity and Endophyte Effects 5. Exploit Heterosis and High-Impact Traits 6. Hybrid Varieties Enhancing Value Capture 29
  • 30.  Capture Ab Initio Plant Genotype X Endophyte Genotype Effects  Capture and Exploit Broader Endophyte Genotype Effects on Symbiota Performance  Extend Concept of Synthetic Varieties to Both Partners of the Symbiotum i.e. Grass Host and Endophyte → Deploy multiple endophyte and grass genotypes in populations selected for optimal symbiota compatibility and performance → Breed and select ab initio symbiota for optimal symbiota compatibility and performance rather than breed and select grass host only followed by endophyte inoculation and symbiota evaluation → Exploit significant endophyte genotype effects on symbiota performance well beyond pest resistance (and reduced animal toxicosis) What Does This Mean? 30
  • 31.  Maximise Heterosis in Farmers’ Seed  Deliver F1 Hybrid Symbiota Varieties for Maximal On-Farm Impact  Reduce Generation Interval and Increase Selection Intensity of Symbiota → Tailor genomic selection interventions in breeding cycle building on simulated breeding schemes and sward-relevant phenotypes → Implement integrative, F1 hybrid symbiota breeding schemes building on self-incompatibility allele typing → Produce F1 hybrid seed of symbiota deploying multiple endophytes and high-impact traits What Does This Mean? 31
  • 32. Overcoming Bottle-Necks • New tools for efficient, robust, low-cost, large-scale generation of grass-endophyte symbiota  Method applicable to inoculation of 10s of endophytes in 100s of grass genotypes  Method applicable to inoculation of novel and designer endophytes with de novo generated genetic variation [i.e. induced mutagenesis (ionizing radiation, colchicine), genome editing, transgenesis]  Enabling tool for next-generation ab initio molecular breeding, selection and evaluation of grass-endophyte symbiota [rather than breeding and selection of grass host followed by endophyte inoculation and symbiota evaluation only] High-Throughput, Large-Scale Endophyte Inoculation 32
  • 33. Day 1 Day 3 Days 4-5 Days 6-7 Days 8-10Day 1 Day 3 Days 4-5 Days 6-7 Days 8-10 Production of Artificial Seeds Large-Scale Generation of Symbiota Coating with single or multiple Ca-alginate matrix layers of ryegrass mature seed-derived embryos Assessing germination frequency of artificial seeds 33
  • 34.  Inoculation of isolated seed-derived embryos with endophyte mycelia followed by Ca-alginate coating into artificial seeds or double-coating of isolated seed-derived embryos with endophyte- containing inner Ca- alginate matrix Coating seed-derived embryos with multiple endophytes into viable symbiota artificial seeds a b c First coating Second coatingEndophyte outgrowth Germinating symbiota Large-Scale Inoculation of Endophytes into Artificial Seeds Large-Scale Generation of Symbiota  Generating > 1,000 viable symbiota artificial seeds per FTE and day  Established symbiota plants with live endophytes in <50% artificial seeds. 34
  • 35. Predicting Endophyte Stability in Stored Seed and Selecting Stable Associations Using Accelerated Ageing  A method for Accelerated Ageing [i.e. 80% -100% RH for 4-7 days] of seed (natural and artificial) with resident endophytes developed  The method allows to predict endophyte stability in stored seed [range of endophytes assessed in single and different host genetic backgrounds]  The method allows to rank novel endophytes according to predicted stability/viability in stored seed [range of endophytes assessed in single host genetic background]  The method allows to select and rank symbiota according to their stability Overcoming Bottle-Necks 35
  • 36. 36 NEA12 0 20 40 60 80 100 120 Alto Bealey Bronsyn Trojan Control 80% 4d 80% 7d 100% 4d 100% 7d NEA10 0 20 40 60 80 100 120 Alto Bealey Bronsyn Trojan Control 80% 4d 80% 7d 100% 4d 100% 7d NEA11 0 20 40 60 80 100 120 Alto Bealey Bronsyn Trojan Control 80% 4d 80% 7d 100% 4d 100% 7d E1 E1 0 20 40 60 80 100 120 Al to Beal ey Br onsyn T r oj an Endo E1 0 20 40 60 80 100 120 A l t o B eal ey B r onsyn T r oj an E ndo Cont r ol 80%4d 80%7d 100%4d 100%7d  Accelerated ageing [i.e. 100%RH for 4d or 7d] allows ranking endophytes for compatibility and selecting for endophyte genotype-host genotype stability Using Accelerated Ageing to Select for Symbiota Viability and Stability  Assessed endophyte viability and stability of symbiota after accelerated ageing treatment of seed Selection for Symbiota Stability 36
  • 37. 37 Rapid Early Assay of Endophyte Viability in Symbiota 37 Overcoming Bottle-Necks A fast, reliable and low-cost method for determining endophyte viability in perennial ryegrass seeds, seedlings and established symbiota Assay Requirements: 1. Rapid determination: 3-5 day old epicotyls 2. Robust and reliable 3. Sensitive for use in single seed to seed batches 4. Specific to Neotyphodium endophytes (i.e. does not detect other fungi) 5. Detects live endophyte only Seed with endophyte
  • 38. 3838 Assaying Endophyte Viability Metabolomics-Based Assay Assays developed based on: • Genotyping • Early gene expression • Production of indicator metabolites Seed germination Harvest epicotyls Dark Light Day 1 Day 4 Day 5 Day 6 Metabolite extraction Direct Injection MS Set-up Data analysis With Endophyte Without Endophyte Detection of E- seed  Rapid (≤6 days), low cost (<$1/sample) assay – 5X cheaper and 5X faster
  • 39. 3939 Increasing Accuracy and Reducing Cost of Phenotyping  Low-cost, high-throughput, accurate methods for large-scale phenotyping of individual plants for herbage quality traits  Robust, reliable methods enabled by automated workflows Overcoming Bottle-Necks  Low-cost, high-throughput, accurate methods for large-scale, multisite phenotyping of key traits at sward level  Field-based phenomics (from individual plant to farmer’s paddock)  Laboratory-based molecular phenomics  Generating low-cost, high-throughput, accurate, relevant phenotypes for genomics-assisted molecular breeding
  • 40. 40 Rainout Shelters  Precise water-stress treatments Automated Assessments  Vegetative biomass  Quality traits – CP/WSC/ME/Minerals  Persistence traits – Biomass over time  Stress related traits Active Optical Sensors  Canopy greenness & photosynthetic capacity  Normalised difference vegetative index output  Forage quality Field-Based Phenomics 40
  • 41. 41 Non-Destructive Forage Yield Estimation Using Normalized Difference Vegetation Index Field-Based Phenomics GreenSeeker Aphex hexacopter 41
  • 42. 42 peramine 0 10000000 20000000 30000000 40000000 50000000 60000000 70000000 80000000 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109113 117 121 125 129 133 137 141 145 149 153 157 161 165 169 173 177 Sample ID AmountofPeramine lolitrem B 0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 Sample ID amountoflolitremB ergovaline 0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176 Sample ID amountofergovaline peramine ergovaline lolitrem B  Exploiting genotype x genotype interactions  Overcoming limitations of current paradigm: breeding hosts and evaluating symbiota  Setting the basis for molecular breeding of symbiota  Proof of concept in semi- quantitative toxin profiling of symbiota breeding population (i.e. 80 Bealey NEA2/NEA6)  Significant variation in alkaloid profile and content Molecular Phenomics of Symbiota Molecular Phenotyping to Enable Symbiota Selection 42
  • 43. 43 Molecular Phenomics of Symbiota 0 10000000 20000000 30000000 40000000 50000000 60000000 70000000 80000000 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175 lolitrem B ergovaline peramine 0 10000000 20000000 30000000 40000000 50000000 60000000 70000000 80000000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 lolitrem B ergovaline peramine Top 20 peramine producing symbiota Molecular Phenotyping to Enable Symbiota Selection  Selection of symbiota within breeding population with favourable toxin profiles • high peramine, low ergovaline, no lolitrem B  Molecular breeding of symbiota capturing ab initio Gp x Ge effects 43
  • 44. 4444  Refined breeding schemes  Phenotyping tools at acceptable cost  Genotyping tools at acceptable costs  Computational tools to handle data and empowering breeders Genomic Selection Selection candidates Genotypes Selected parents Estimated breeding values Prediction equation Genomic Breeding Value = w1x1+w2x2+w3x3…….. Reference population Genotypes Phenotypes Increasing Rate of Genetic Gain via Genomic Selection Overcoming Bottle-Necks
  • 45. 4545 Rates of Selective Breeding, Genetic Gain and Improvement M1 B M2 (A) (B) (C) (D) (E) Genomic selection Update prediction equation Multi-site environment trials F1 Production Seed production (F2 Production) Selection under grazing and/or visual assessment Varietal construction Seed production Multi-environment plot trials 1 varietal release Base population establishment c. 1,000 – 10,000 Individuals c. 100,000 Individuals Reduction in individuals by a factor of 10 Selective Recombination Non-Selective Recombination Selective Recombination c. 1-10 Varieties Multi-environment plot trials Less than 100 varieties Non-Selective Recombination Less than 100 varieties F1 Production Seed production (F2 Production) Selection under grazing and/or visual assessment Varietal construction Seed production Multi-environment plot trials 1 varietal release Base population establishment c. 1,000 – 10,000 Individuals c. 100,000 Individuals Reduction in individuals by a factor of 10 Selective Recombination Non-Selective Recombination Selective Recombination c. 1-10 Varieties Multi-environment plot trials Less than 100 varieties Non-Selective Recombination Less than 100 varieties F1 Production Seed production (F2 Production) Selection under grazing and/or visual assessment Varietal construction Seed production Multi-environment plot trials 1 varietal release Base population establishment c. 1,000 – 10,000 Individuals c. 100,000 Individuals Reduction in individuals by a factor of 10 Selective Recombination Non-Selective Recombination Selective Recombination c. 1-10 Varieties Multi-environment plot trials Less than 100 varieties Non-Selective Recombination Less than 100 varieties 2 selective recombination steps – 10 years 2 selective recombination steps – 3 years Genomic Selection  Computational simulation of commercial ryegrass breeding program to optimise application of genomic selection  Genomic-estimated breeding values for key traits in ryegrass breeding
  • 46. 4646 Exploiting Heterosis via Novel Hybrid Breeding Scheme  Candidate genes for Self-Incompatibility loci (S and Z) discovered and functionally characterised  An F1 hybrid breeding scheme designed and being piloted Overcoming Bottle-Necks Fertilisation S1Z1 S1Z2 S2Z2 S1Z3 S3Z1 S3Z3 S1S2Z1Z2 S1S2Z1Z2 S1Z1 S1Z2 S2Z1 S2Z2 Pistil Pollen (haploid) (diploid) Pistil Anther  A method for SI allele prediction developed
  • 47. 4747 Os04g0645100(TC101821) Os04g0645200 Os04g0645500 Os04g0645600 Os04g0645700 Os04g0645900 Os04g0646100 Os04g0646500 Os04g0646700 Os04g0646800 Os04g0646900 Os04g0647100 Os04g0647200 Os04g0647300(TC116908) Os04g0647800(TC89057) Os04g0647900 Os04g0648000 Os04g0648200 Os04g0648400 Os04g0648500 Os04g0648600 Os04g0648700 Os04g0648800 Os04g0648900 Os04g0649100 Os04g0649200 Os04g0649500 Os04g0649600 Os04g0649700 Os04g0649900 Os04g0650000(bcd266) BAC8-E18 BAC 119-E12 BAC50-H02 BAC118-B23 BAC87-P20 BAC67-H10 BAC85-A01 BAC27-A19 BAC93-M20 BAC90-J24 LpTC101821 LpVQ LpOs04g0645500 LpOs04g0645600 LpTC116908 LpTC89057 LpOs04g0648400 LpOs04g0648500 LpOs04g0648600 LpOs04g0648700 LpOs04g0648800 LpOs04g0648900 LpOs04g0649200 LpOs04g0649100 Lpbcd266 BAC127-K20 BAC65-A01 BAC79-L12 LpOs06g0607900 LpDUF247 LpOs03g0193400 LpOs06g0607800 LpOs11g0242400 LpOs10g0419600 LpOs06g0607900 LpOs04g0274400 Rice chr.4 Brachypodium Bd5 Perennial ryegrass Z locus region Conserved genes Specific genes Os04g0645100(TC101821) Os04g0645200 Os04g0645500 Os04g0645600 Os04g0645700 Os04g0645900 Os04g0646100 Os04g0646500 Os04g0646700 Os04g0646800 Os04g0646900 Os04g0647100 Os04g0647200 Os04g0647300(TC116908) Os04g0647800(TC89057) Os04g0647900 Os04g0648000 Os04g0648200 Os04g0648400 Os04g0648500 Os04g0648600 Os04g0648700 Os04g0648800 Os04g0648900 Os04g0649100 Os04g0649200 Os04g0649500 Os04g0649600 Os04g0649700 Os04g0649900 Os04g0650000(bcd266) BAC8-E18 BAC 119-E12 BAC50-H02 BAC118-B23 BAC87-P20 BAC67-H10 BAC85-A01 BAC27-A19 BAC93-M20 BAC90-J24 LpTC101821 LpVQ LpOs04g0645500 LpOs04g0645600 LpTC116908 LpTC89057 LpOs04g0648400 LpOs04g0648500 LpOs04g0648600 LpOs04g0648700 LpOs04g0648800 LpOs04g0648900 LpOs04g0649200 LpOs04g0649100 Lpbcd266 BAC127-K20 BAC65-A01 BAC79-L12 LpOs06g0607900 LpDUF247 LpOs03g0193400 LpOs06g0607800 LpOs11g0242400 LpOs10g0419600 LpOs06g0607900 LpOs04g0274400 Rice chr.4 Brachypodium Bd5 Perennial ryegrass Z locus region Conserved genes Specific genes F1 Hybrid Breeding and SI Allele Prediction
  • 48. 48  Advances in Forage Systems Biology Summary  Genome, Transcriptome, Proteome, Metabolome and Phenome  Forage Symbiomes and Microbiomes – Exploiting Supplementary Genomes  Lessons from Systems Biology of Forage Symbiomes  Integrative, Genomics-Assisted Hybrid Breeding of Symbiota  Prospects for Trebling Genetic Gain
  • 49. 49 Acknowledgements P. Badenhorst, N. Cogan, H. Daetwyler, S. Davidson, P. Ekanayake, S. Felitti, J. Forster, K. Fulgueras, K. Guthridge, M. Hand, B. Hayes, M. Hayden, I. Hettiarachchi, D. Isenegger, J. Kaur, G. Latipbayeva, T. Le, Z. Lin, Z. Liu, C. Ludeman, E. Ludlow, R. Mann, L. Pembleton, M. Rabinovich, M. Ramsperger, P. Rigault, S. Rochfort, T. Sawbridge, K. Shields, L. Schultz, H. Shinozuka, K. Smith, G.Tao, P. Tian, P.X. Tian, J. Tibbits, Y. Ran, E. van Zijll de Jong, J. Wang, T. Webster C. Inch, S. van der Heijden, M. Willocks
  • 50.
  • 51. Cluster 1 Cluster 3Cluster 2 Cluster 4 Cluster 5 Cluster 7 Cluster 8Cluster 6 Cluster 9 Cluster 10 Cluster 11 Heat map depiction of average cluster expression. Columns are Cluster Number, Cluster popn., Cluster Diversity . Cluster 1 Cluster 3Cluster 2 Cluster 4 Cluster 5 Cluster 7 Cluster 8Cluster 6 Cluster 9 Cluster 10 Cluster 11 Cluster 1 Cluster 3Cluster 2 Cluster 4 Cluster 5 Cluster 7 Cluster 8Cluster 6 Cluster 9 Cluster 10 Cluster 11 Heat map depiction of average cluster expression. Columns are Cluster Number, Cluster popn., Cluster Diversity . Heat map depiction of average cluster expression. Columns are Cluster Number, Cluster popn., Cluster Diversity . Samples in order Leaf Free Root Free Leaf ST Root ST Replete Ca K NH4 NO3 PO4 Replete Ca K NH4 NO3 PO4 Replete Ca K NH4 NO3 PO4 Replete Ca K NH4 NO3 PO4 Plant Transcriptome in Symbiota  11 clusters generated by Self Organizing Trees Algorithm analysis of endophyte-regulated plant genes  Cluster 1: root-expressed genes repressed by endophytes  Clusters 3 and 4: root-expressed genes induced by endophytes Patterns of Expression in Endophyte-Regulated Plant Genes 51
  • 52. Plant Transcriptome in Symbiota  Cluster 2: root-expressed genes repressed by endophytes as well as root-expressed genes induced by endophytes  Differential gene expression driven by NH4 responsiveness Patterns of Expression in Endophyte-Regulated Plant Genes Hierarchical clustering of genes in cluster 2Hierarchical clustering of genes in cluster 2  Endophyte-regulated plant genes differentially regulated in roots depending on nutritional symbiota status 52
  • 53. 53 1. Alkaloid (LEPJ) profiles of symbiota (i.e. E+) versus E- isogenic host plants 2. Alkaloid profiles of symbiota with diverse endophyte panel in a single isogenic host 3. Alkaloid (LEPJ) profiles of symbiota with endophytes from different taxonomic groups across same host panel Metabolic Profiling of Novel Symbiota in Isogenic Hosts Detailed characterisation of known alkaloids and their precursors Metabolome Analysis of Symbiota  Analysis of Gp x Ge effects on symbiota stability and toxin profile53
  • 54. We MUST We NEED 2XProductivity Growth 3XGenetic Gain
  • 55. 5555 Field-Based Phenomics Low-Cost, High-Throughput, Field-Based Phenotyping: Pheno-Lab Method Consumables Assets Labour Total Cost Time/sample (min) NIR 0 0.61 10.75 11.36 15 HPLC 7.23 7.08 0.56 14.86 40.47 Enzymatic Assay 1.37 0.27 0.67 2.31 1.17 MALDI-TOF 1.79 0.42 1.05 3.26 1.48 In-field NIR and yield 0 0.61 1.43 2.04 2 Costs ($) per sample (i.e. plant)  Accurate, low-cost, high-throughput phenotyping of forages
  • 56. 56 0 0.1 0.2 0.3 0.4 0.5 0.6 control 1 2 3 *4 5 6 7 8 9 10 11 12 13 14 15 16 *17 18 NEA12 colonies treated (no.) Sizeofmycelia(cm,LogN) * ** Analysis of growth rate in culture after 8 weeks Initial Screen: Analysis of variance identified two colonies significantly different to the control NEA12v17 grows significantly faster (p<0.01**) NEA12v4 grows significantly slower (p<0.05*) Validation Screen: Student’s t-tests identified two colonies significantly different to the control NEA12v17 grows significantly faster (p<0.01**) NEA12v15 grows significantly slower (p<0.01**) Analysis of growth rate in culture over 5 weeks In Vitro Growth of NEA12 Variant Strains Phenome Analysis of Variant Endophytes  Altered phenotypes (e.g. growth rates) observed in variant endophytes56 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 Week Growth(mm) NEA12 NEA12v4 NEA12v5 NEA12v6 NEA12v13 NEA12v14 NEA12v15 NEA12v17
  • 57. 57 Gene present Gene absent Gene partially present Pangenome Analysis of Endophytes Sequence Diversity in Alkaloid Production Genes  Identification of core and flexible genomes in Neotyphodium endophytes 57
  • 58. 58 easH easA Intergenic deletions in eas gene cluster in AR1 endophyte AR1 (Ergo-) ST (Ergo+) CONTIG_29770 lpsBeasG easF easE CONTIG_29770 Pangenome Analysis of Endophytes Sequence Diversity in Alkaloid Production Genes  Intergenic deletions and SNP causing truncated lpsA also lead to inability to produce ergovaline 58
  • 59. 59 Phenome Analysis of Variant Endophytes Antifungal Bioassays of NEA12 Variant Strains Drechslera brizae (11 dpi) Phoma sorghina (11 dpi) NEA12 v14 NEA12 v13 NEA12 v6 NEA12 v5 NEA12 Rhizoctonia cerealis (9 dpi) NEA12 v14 NEA12 v13 NEA12 v6 NEA12 v5 NEA12 NEA12 v14 NEA12 v13 NEA12 v6 NEA12 v5 NEA12  Altered phenotypes (e.g. bioactivities) observed in variant endophytes 59
  • 60.  F1 Hybrid Breeding Designs  Endophyte Trait Diversity Some Key Considerations  Endophyte Deployment  Self-Incompatibility  Value Modelling and Impact Delivery  Accurate, Low-Cost Genotypes and Phenotypes 60
  • 61. Selection for Symbiota Stability 61 Germination of seeds after AA treatment and storage Growth of germinated seedlings in soil for eight weeks Assessment of endophyte status by ELISA Accelerated ageing treatment • Optimised conditions identified (e.g. 80% humidity, 4-7 days) • Variation identified between endophytes and grass cultivar combinations Predicting Endophyte Stability in Stored Seed and Selecting Stable Associations Using Accelerated Ageing
  • 62. 62 Experimental Work Flow for Colchicine Mutagenesis n nucleus n and 2n? Colchicine treatment (0-0.2% w/v) 3 weeks, 22oC, 150rpm, dark Protoplast preparation 4 weeks, 22oC, dark Colony subculture Analyse for change in nuclei size via flow cytometry Stained cells Colony regeneration A C D B BA C D Protoplast preparation (single colonies) 4 weeks, 22oC, dark SYBR Green I staining of nuclei Generation of Novel N. lolii Genotypes De Novo Generation of Variant Endophytes 62
  • 63. 63 Experimental Work Flow for X-Ray Mutagenesis Detection of target gene mutants using high through-put multiplex PCR analysis for target gene presence and absence and by genome survey sequencing Single colonies isolated Mutant detection Protoplast preparation Potato dextrose broth for 4-14 days Recovery period (10-14 days) Repeated radiation Exposure to ionising radiation caesium source (10-30 Gy)- ) Recovery: 4 -6 weeks, 22oC, dark- o BA BAA - - 15 days, 22oC, dark Generation of Novel N. lolii Genotypes De Novo Generation of Variant Endophytes  X-ray mutagenesis for generation of variant endophytes 63
  • 64. 64 De Novo Generation of Variant Endophytes Generation of Fluorescently Marked Endophytes ST:sgfpE1:DsRed NEA12:sgfp e e e e e e Reporter Endophytes to Develop Endophyte Hybridisation Methodologies and Study Host Colonisation  Agrobacterium-mediated transformation of N. lolii and LpTG-3 endophytes with fluorescent reporter genes64
  • 65. 65 De Novo Generation of Variant Endophytes 65 Proof-of-Concept for Enhancing Bio-protective Properties  Agrobacterium-mediated transformation of janthitrem-producing endophyte for perA expression and peramine production 248.15022 N H O O H O O O O H O H C h e m i c a l F o r m u l a : C 3 9 H 5 1 N O 7 E x a c t M a s s : 6 4 5 . 3 6 6 5 5 N N O N N H 2 H 2 N C h e m i c a l F o r m u l a : C1 2 H1 7 N 5 O E x a c t M a s s : 2 4 7 . 1 4 3 3 1 Janthitrem I peramine [M+H] [M+H] 646.37238 pEND0025 20395 bp 25bp RB 25bp LB attB1 attB2 SpecR/ StrepR pBR322 origin PVSI origin PVSI STA region hph PerA gene p gpd P trpC T trpC T trpC Peramine Biosynthesis perA Gene Expression Vector Generation of Transgenic LpTG-3 Endophytes for Peramine Production N. lolii ST LpTG-2 NEA11 LpTG-3 NEA12 P P J 201bp PerA gene 414bp Selectable marker gene
  • 66. 66 HTP method as NIR reference Environmental and meteorological data gathering of each trial site Harvesting of plant material  No Sample Preparation e.g. oven drying and grinding  In-Field Biomass  In-Field Forage Quality Forage Mobile Pheno-Lab Digital Image Library Field-Based Phenomics 66