SlideShare a Scribd company logo
1 of 33
Download to read offline
Blow-up in a degenerate
Keller—Segel system
Day : February 24, 2018 (Sat.) at Tokyo Univ. of Science Kagurazaka campus
Takahiro Hashira (Tokyo Univ. of Science)
第153回神楽坂解析セミナー
This talk is based on the joint work with Prof. Sachiko Ishida (Chiba Univ.)
and Prof. Tomomi Yokota (Tokyo Univ. of Science)
Problem and background
Sketch of the proof
Summary
Our result
2/11
Plan of this talk
𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
ቐ
This system describes a biological phenomenon chemotaxis.
3/11
Keller—Segel system
Introduction 𝒖 ∶ density of cells
𝒗 ∶ concentration of signal substance
How do cells behave?
The cell slime molds move towards higher concentration
of the signal substance.
This system was proposed by Keller—Segel (1970)
𝚫𝒖
The diffusion term
3/11
𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
ቐ
Keller—Segel system
Introduction 𝒖 ∶ density of cells
𝒗 ∶ concentration of signal substance
cells
𝚫𝒖
The diffusion term
3/11
𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
ቐ
Keller—Segel system
Introduction 𝒖 ∶ density of cells
𝒗 ∶ concentration of signal substance
発展
nonlinear type: 𝛁 ⋅ 𝑫 𝒖, 𝒗 𝛁𝒖
degenerate type: 𝚫𝒖 𝒎
develop
etc.
3/11
𝚫𝒖
The diffusion term
𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
ቐ
Keller—Segel system
Introduction 𝒖 ∶ density of cells
𝒗 ∶ concentration of signal substance
発展
nonlinear type: 𝛁 ⋅ 𝑫 𝒖, 𝒗 𝛁𝒖
degenerate type: 𝚫𝒖 𝒎
etc.
3/11
𝚫𝒖
The diffusion term
𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
ቐ
Keller—Segel system
Introduction 𝒖 ∶ density of cells
𝒗 ∶ concentration of signal substance
−𝛁 ⋅ 𝒖𝛁𝒗
The chemotaxis term
develop
発展
nonlinear type: 𝛁 ⋅ 𝑫 𝒖, 𝒗 𝛁𝒖
degenerate type: 𝚫𝒖 𝒎
etc.
3/11
𝚫𝒖
The diffusion term
𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
ቐ
Keller—Segel system
Introduction 𝒖 ∶ density of cells
𝒗 ∶ concentration of signal substance
−𝛁 ⋅ 𝒖𝛁𝒗
The chemotaxis term
develop
発展
nonlinear type: 𝛁 ⋅ 𝑫 𝒖, 𝒗 𝛁𝒖
degenerate type: 𝚫𝒖 𝒎
etc.
3/11
𝚫𝒖
The diffusion term
𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
ቐ
Keller—Segel system
Introduction 𝒖 ∶ density of cells
𝒗 ∶ concentration of signal substance
−𝛁 ⋅ 𝒖𝛁𝒗
The chemotaxis term
develop
3/11
𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
ቐ
Keller—Segel system
Introduction 𝒖 ∶ density of cells
𝒗 ∶ concentration of signal substance
v.s.
blow-up boundedness
● Herrero—Velazquez (1997),
Horstmann—Wang (2001),
Winkler (2013)
𝐬𝐮𝐩
𝒙∈ഥ𝛀
|𝒖 𝒙, 𝒕 | → ∞ 𝒕 → ∃𝑻 𝟎
∃ 𝒖 𝟎, 𝒗 𝟎 : initial data s.t.
● Nagai—Senba—Yoshida (1997),
Nagai—Ogawa (2011),
Winkler (2010), Cao (2015)
∃ 𝒖 𝟎, 𝒗 𝟎 : initial data ∃𝑪 > 𝟎 s.t.
𝐬𝐮𝐩
𝒙∈ഥ𝛀
( 𝒖 𝒙, 𝒕 + |𝒗(𝒙, 𝒕)|) ≤ 𝑪
∀𝒕 ∈ 𝟎, ∞
Aggregation Diffusion
𝒖 𝒕 = ∆𝒖 𝒎 − 𝛁 ∙ 𝒖 𝒒−𝟏 𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝛁𝒖 𝒎 ∙ = 𝛁𝒗 ∙ = 𝟎,
𝒖 𝒙, 𝟎 = 𝒖 𝟎(𝒙), 𝒗 𝒙, 𝟎 = 𝒗 𝟎(𝒙),
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝝏𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 .
(KS)
In this talk we consider the following degenerate Keller—Segel system:
𝒖 𝟎 ≥ 𝟎 in 𝛀 , 𝒖 𝟎 ∈ 𝑳∞
𝛀 , 𝛁𝒖 𝟎
𝒎
∈ 𝑳 𝟐
𝛀 ,
𝒗 𝟎 ≥ 𝟎 in 𝛀 , 𝒗 𝟎 ∈ 𝑾 𝟏,∞ 𝛀 .
𝛀 ≔ 𝒙 ∈ ℝ 𝑵
𝒙 < 𝑹} (𝑵 ≥ 𝟐, 𝑹 > 𝟎)
𝒖, 𝒗 : unknown functions
4/11
ν ν
Problem
𝒎 ≥ 𝟏, 𝒒 ≥ 𝟐 : constants, ν: the outer normal vector of 𝝏𝛀
𝒖 𝟎 , 𝒗 𝟎 : given functions such that
Finite or infinite time blow-up𝒒 > 𝒎 +
𝟐
𝑵
𝒒 < 𝒎 +
𝟐
𝑵
Tao—Winkler (2012), Ishida—Seki—Yokota (2014)
´
Ishida—Yokota (2013)
(KS) : 𝒖 𝒕 = 𝚫𝒖 𝒎 − 𝛁 ⋅ 𝒖 𝒒−𝟏 𝛁𝒗𝒖 𝒖𝒎 𝒒−𝟏
𝒎 : power of diffusion
𝒒 : power of aggregation
5/11
Global existence and boundedness𝒒 < 𝒎 +
𝟐
𝑵
Ishida—Yokota (2012), Ishida—Seki—Yokota (2014)
Known result
(KS) : 𝒖 𝒕 = 𝚫(𝒖 + 𝜺) 𝒎−𝛁 ⋅ 𝒖 + 𝜺 𝒒−𝟐 𝒖𝛁𝒗 (𝜺 > 𝟎)𝜺
Cieslak—Stinner (2012, 2014)
𝒒 > 𝒎 +
𝟐
𝑵
Finite-time blow-up
Global existence and boundedness
Finite or infinite time blow-up𝒒 > 𝒎 +
𝟐
𝑵
Ishida—Yokota (2013)
(KS) : 𝒖 𝒕 = 𝚫𝒖 𝒎 − 𝛁 ⋅ 𝒖 𝒒−𝟏 𝛁𝒗𝒖 𝒖𝒎 𝒒−𝟏
𝒎 : power of diffusion
𝒒 : power of aggregation
5/11
Known result
(KS) : 𝒖 𝒕 = 𝚫(𝒖 + 𝜺) 𝒎−𝛁 ⋅ 𝒖 + 𝜺 𝒒−𝟐 𝒖𝛁𝒗 (𝜺 > 𝟎)𝜺
Cieslak—Stinner (2012, 2014)
𝒒 > 𝒎 +
𝟐
𝑵
Finite-time blow-up
´
The purpose of this study
To build conditions for initial data such that
the corresponding solution of (KS) blows up in finite time.
There is a gap between two results.
Main theorem
Let 𝑵 ≥ 𝟐, 𝒎 ≥ 𝟏, 𝒒 ≥ 𝟐, and assume that 𝑵, 𝒎, 𝒒 satisfy
(super-critical condition).
For all 𝑴, 𝑨 > 𝟎 there exist constants 𝑲 𝑴, 𝑨 , 𝑻 𝑴, 𝑨 > 𝟎 such that for any
𝒒 > 𝒎 +
𝟐
𝑵
𝒖 𝟎, 𝒗 𝟎 ∈ 𝑩 𝑴, 𝑨
≔ 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑳∞ 𝛀 × 𝑾 𝟏,∞ 𝛀 𝛁𝒖 𝟎
𝒎
∈ 𝑳 𝟐 𝛀 , 𝑮 𝒖 𝟎 ∈ 𝑳 𝟏 𝛀 ,
𝒖 𝟎, 𝒗 𝟎: radially symmetric and nonnegative,
න
𝛀
𝒖 𝟎 = 𝑴 , 𝒗 𝟎 𝑯 𝟏(𝛀) ≤ 𝑨, 𝑭 𝒖 𝟎, 𝒗 𝟎 ≤ −𝑲(𝑴, 𝑨)
ቄ
ቄ
※
6/11
𝑭 𝒖 𝟎, 𝒗 𝟎 ≔
𝟏
𝟐
𝒗 𝟎 𝑯 𝟏 𝛀
𝟐
− න
𝛀
𝒖 𝟎 𝒗 𝟎 + න
𝛀
𝑮 𝒖 𝟎 .𝑮 𝒖 𝟎 ≔ න
𝒔 𝟎
𝒖 𝟎
න
𝒔 𝟎
𝝈
𝒎𝝉 𝒎−𝒒
𝒅𝝉 𝒔𝝈,
⟹
each corresponding weak solution 𝒖, 𝒗 of (KS) blows up at 𝑻 ≤ 𝑻 𝑴, 𝑨 < ∞,
i.e.,
max
𝐥𝐢𝐦 𝐬𝐮𝐩
𝒕→𝑻
𝒖(⋅, 𝒕) 𝑳∞(𝛀) = ∞.
max
Main theorem
Let 𝑵 ≥ 𝟐, 𝒎 ≥ 𝟏, 𝒒 ≥ 𝟐, and assume that 𝑵, 𝒎, 𝒒 satisfy
(super-critical condition).
For all 𝑴, 𝑨 > 𝟎 there exist constants 𝑲 𝑴, 𝑨 , 𝑻 𝑴, 𝑨 > 𝟎 such that for any
𝒒 > 𝒎 +
𝟐
𝑵
𝒖 𝟎, 𝒗 𝟎 ∈ 𝑩 𝑴, 𝑨
≔ 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑳∞ 𝛀 × 𝑾 𝟏,∞ 𝛀 𝛁𝒖 𝟎
𝒎
∈ 𝑳 𝟐 𝛀 , 𝑮 𝒖 𝟎 ∈ 𝑳 𝟏 𝛀 ,
𝒖 𝟎, 𝒗 𝟎: radially symmetric and nonnegative,
න
𝛀
𝒖 𝟎 = 𝑴 , 𝒗 𝟎 𝑯 𝟏(𝛀) ≤ 𝑨, 𝑭 𝒖 𝟎, 𝒗 𝟎 ≤ −𝑲(𝑴, 𝑨)
ቄ
ቄ
6/11
⟹
each corresponding weak solution 𝒖, 𝒗 of (KS) blows up at 𝑻 ≤ 𝑻 𝑴, 𝑨 < ∞,
i.e.,
max
𝐥𝐢𝐦 𝐬𝐮𝐩
𝒕→𝑻
𝒖(⋅, 𝒕) 𝑳∞(𝛀) = ∞.
max
aggregation > diffusion ⟹ Finite-time blow-up!!
Dissipation rate of (KS) :
Lyapunov function of (KS) : 𝑮 𝒖 ≔ 𝐥𝐢𝐦
𝜹→𝟎
න
𝒔 𝟎
𝒖
න
𝒔 𝟎
𝝈
𝒎𝝉 𝒎−𝟏
𝝉 𝒒−𝟏 + 𝜹
𝒅𝝉𝒅𝝈
𝑫 𝒖, 𝒗 ≔ න
𝛀
𝒗 𝒕
𝟐
+ 𝐥𝐢𝐦
𝜹→𝟎
න
𝛀
𝛁𝒖 𝒎 − 𝒖 𝒒−𝟏 𝛁𝒗
𝒖 Τ𝒒−𝟏 𝟐 + 𝜹
𝟐
11/17/11
𝑭 𝒖, 𝒗 ≔
𝟏
𝟐
න
𝛀
𝛁𝒗 𝟐 +
𝟏
𝟐
න
𝛀
𝒗 𝟐 − න
𝛀
𝒖𝒗 + න
𝛀
𝑮(𝒖)
Outline of the proof
𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏
𝜽
,
∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t.
𝒕 ∈ 𝟎, 𝑻
Our goal
11/17/11
𝑭 𝒖, 𝒗 ≔
𝟏
𝟐
න
𝛀
𝛁𝒗 𝟐 +
𝟏
𝟐
න
𝛀
𝒗 𝟐 − න
𝛀
𝒖𝒗 + න
𝛀
𝑮(𝒖)
Outline of the proof
𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏
𝜽
,
∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t.
𝒕 ∈ 𝟎, 𝑻
Our goal
≥ 𝟎 ≥ 𝟎 ≥ 𝟎≤ 𝟎
න
𝛀
𝒖𝒗Estimate 𝑫 𝒖, 𝒗by
Lyapunov function of (KS) : 𝑮 𝒖 ≔ 𝐥𝐢𝐦
𝜹→𝟎
න
𝒔 𝟎
𝒖
න
𝒔 𝟎
𝝈
𝒎𝝉 𝒎−𝟏
𝝉 𝒒−𝟏 + 𝜹
𝒅𝝉𝒅𝝈
Step 1
Step 2
Step 3
Step 4 න
𝛀
𝒖𝒗
න
𝛀
𝒖𝒗 න
𝛀
𝛁𝒗 𝟐
Estimate by
𝑫 𝒖, 𝒗
7/11
𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏
𝜽
,
∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t.
𝒕 ∈ 𝟎, 𝑻
Our goal
Outline of the proof
Estimate by
𝛀
𝒓 𝟎
𝑹
න
𝛀 𝑩 𝒓 𝟎
𝛁𝒗 𝟐 𝑫 𝒖, 𝒗Estimate by
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 𝑫 𝒖, 𝒗Estimate by
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ −𝑪 𝟏 න
𝟎
𝒓 𝟎
𝒓 𝑵 𝒖𝒗 𝒓 + 𝜹 න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 + 𝑪 𝟐 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝑪 𝟑 𝒗 𝑳 𝟐
𝟐
OK!!
Left-hand side
8/11
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
( 𝒖 > 𝟎 )𝒇 ≔ −𝒓 𝟏−𝑵
𝒓 𝑵−𝟏
𝒗 𝒓 𝒓
+ 𝒗 − 𝒖 , 𝒈 ≔
𝒖 𝒎
𝒓 − 𝒖 𝒒−𝟏
𝒗 𝒓
𝒖( Τ𝒒−𝟏) 𝟐
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝒓 𝟎 𝒈 𝑳 𝟐
𝟐
+ 𝒗 𝑳 𝟐
𝟐
+ 𝟏න
𝛀
𝑮(𝒖)
Key Lemma
𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
Sketch of the proof
8/11
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
( 𝒖 > 𝟎 )𝒇 ≔ −𝒓 𝟏−𝑵
𝒓 𝑵−𝟏
𝒗 𝒓 𝒓
+ 𝒗 − 𝒖 , 𝒈 ≔
𝒖 𝒎
𝒓 − 𝒖 𝒒−𝟏
𝒗 𝒓
𝒖( Τ𝒒−𝟏) 𝟐
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝒓 𝟎 𝒈 𝑳 𝟐
𝟐
+ 𝒗 𝑳 𝟐
𝟐
+ 𝟏න
𝛀
𝑮(𝒖)
Key Lemma
𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
Known method by[ ]Cieslak—Stinner (2012)´ 𝒖 𝒕 = 𝚫 𝒖 + 𝜺 𝒎
− 𝛁 ⋅ 𝒖 𝒒−𝟐
𝒖𝛁𝒗+ 𝜺
Key Point!!
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ −𝑪 𝟏 න
𝟎
𝒓 𝟎
𝒓 𝑵 𝒖𝒗 𝒓 + 𝜹 න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 + 𝑪 𝟐 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝑪 𝟑 𝒗 𝑳 𝟐
𝟐
Sketch of the proof
OK!!
− න
𝟎
𝒓 𝟎
𝒓 𝑵
𝒖𝒗 𝒓 = − න
𝟎
𝒓 𝟎
𝒓 𝑵
𝒎(𝒖 + 𝜺) 𝒎−𝟏
(𝒖 ) 𝒒−𝟐
𝒖 𝒓 + න
𝟎
𝒓 𝟎
𝒓 𝑵
𝒖𝒈 𝜺
(𝒖 ) Τ𝒒−𝟐 𝟐+ 𝜺 + 𝜺
Left-hand side
8/11
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
( 𝒖 > 𝟎 )𝒇 ≔ −𝒓 𝟏−𝑵
𝒓 𝑵−𝟏
𝒗 𝒓 𝒓
+ 𝒗 − 𝒖 , 𝒈 ≔
𝒖 𝒎
𝒓 − 𝒖 𝒒−𝟏
𝒗 𝒓
𝒖( Τ𝒒−𝟏) 𝟐
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝒓 𝟎 𝒈 𝑳 𝟐
𝟐
+ 𝒗 𝑳 𝟐
𝟐
+ 𝟏න
𝛀
𝑮(𝒖)
Key Lemma
𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
Known method by[ ]Cieslak—Stinner (2012)´ 𝒖 𝒕 = 𝚫 𝒖 + 𝜺 𝒎
− 𝛁 ⋅ 𝒖 𝒒−𝟐
𝒖𝛁𝒗+ 𝜺
Key Point!!
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ −𝑪 𝟏 න
𝟎
𝒓 𝟎
𝒓 𝑵 𝒖𝒗 𝒓 + 𝜹 න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 + 𝑪 𝟐 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝑪 𝟑 𝒗 𝑳 𝟐
𝟐
Sketch of the proof
OK!!
− න
𝟎
𝒓 𝟎
𝒓 𝑵
𝒖𝒗 𝒓 = − න
𝟎
𝒓 𝟎
𝒓 𝑵
𝒎(𝒖 + 𝜺) 𝒎−𝟏
(𝒖 ) 𝒒−𝟐
𝒖 𝒓 + න
𝟎
𝒓 𝟎
𝒓 𝑵
𝒖𝒈 𝜺
(𝒖 ) Τ𝒒−𝟐 𝟐+ 𝜺 + 𝜺
≤
𝒓 𝟎
𝒖 𝑳 𝟏 𝒈 𝜺 𝑳 𝟐
𝜺 𝒒−𝟐 /𝟐
ൗ𝟏
𝟐
=
𝑴𝒓 𝟎
𝒈 𝜺 𝑳 𝟐
𝜺 𝒒−𝟐 /𝟐
𝒖(𝒕) 𝑳 𝟏 = 𝒖 𝟎 𝑳 𝟏 =: 𝑴
Mass conservation law𝜺 = 𝟎 and 𝒒 > 𝟐
Our problem
Left-hand side
8/11
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
( 𝒖 > 𝟎 )𝒇 ≔ −𝒓 𝟏−𝑵
𝒓 𝑵−𝟏
𝒗 𝒓 𝒓
+ 𝒗 − 𝒖 , 𝒈 ≔
𝒖 𝒎
𝒓 − 𝒖 𝒒−𝟏
𝒗 𝒓
𝒖( Τ𝒒−𝟏) 𝟐
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝒓 𝟎 𝒈 𝑳 𝟐
𝟐
+ 𝒗 𝑳 𝟐
𝟐
+ 𝟏න
𝛀
𝑮(𝒖)
Key Lemma
𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
Key Point!!
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ −𝑪 𝟏 න
𝟎
𝒓 𝟎
𝒓 𝑵 𝒖𝒗 𝒓 + 𝜹 න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 + 𝑪 𝟐 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝑪 𝟑 𝒗 𝑳 𝟐
𝟐
Sketch of the proof
OK!!
− න
𝟎
𝒓 𝟎
𝒓 𝑵
𝒖𝒗 𝒓 = − න
𝒖≥𝒔 𝟎
𝒓 𝑵
𝒖𝒗 𝒓 − න
{𝒖≤𝒔 𝟎}
𝒓 𝑵
𝒖𝒗 𝒓
𝒒 > 𝒎 +
𝟐
𝑵
Key Lemma can be proved
Separate the interval!!
from the upper boundedness of 𝒖
We can make න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐
Left-hand side
We can apply the known method
Step 1
Step 2
Step 3
Step 4 න
𝛀
𝒖𝒗
න
𝛀
𝒖𝒗 න
𝛀
𝛁𝒗 𝟐
Estimate by
𝑫 𝒖, 𝒗
7/11
𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏
𝜽
,
∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t.
𝒕 ∈ 𝟎, 𝑻
Our goal
Outline of the proof
Estimate by
න
𝛀 𝑩 𝒓 𝟎
𝛁𝒗 𝟐 𝑫 𝒖, 𝒗Estimate by
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 𝑫 𝒖, 𝒗Estimate by
න
𝟎
𝒕
𝑫 𝒖 𝒔 , 𝒗 𝒔 𝒅𝒔 + 𝑭 𝒖 𝒕 , 𝒗 𝒕 = 𝑭 𝒖 𝟎, 𝒗 𝟎 , 𝒕 ∈ 𝟎, 𝑻
Proposition
10/11
Proof of main theorem
𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏
𝜽
,
∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t.
𝒕 ∈ 𝟎, 𝑻
Our goal
𝚽 𝒕 ≔ න
𝟎
𝒕
− 𝑭 𝒖 𝒔 , 𝒗 𝒔
𝟏
𝜽
𝒅𝒔 − 𝑭 𝒖 𝟎, 𝒗 𝟎𝒅
𝒅𝒕
𝚽 𝒕 ≥ 𝜹 𝟎 𝚽 𝒕
𝟏
𝜽
𝚽 𝒕 → ∞ as 𝒕 → ∃𝑻 𝟎
∴ → ∞ as 𝒕 → 𝑻 𝟎.𝒖(⋅, 𝒕) 𝑳∞(𝛀)
𝟏
𝜽
> 𝟏 ⟹ 𝚽 blows up in finite time
11/11
𝒖𝒕 = ∆𝒖 𝒎 − 𝛁 ∙ 𝒖 𝒒−𝟏 𝛁𝒗 ,
𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎,
𝒙 ∈ 𝛀 , 𝒕 > 𝟎.
(KS) ቐ
Summary
𝒒 > 𝒎 +
𝟐
𝑵
Our result
𝑵 ≥ 𝟑, 𝒎 ≥ 𝟏,
Blow-up behavior
𝒒 = 𝟐 > 𝒎 +
𝟐
𝑵
⟹ Result 1 𝒖 ∶ radially symmetric Blow-up point is only the origin
Result 2 Singularity like the Dirac delta function
⟹
In this talk we considered the following degenerate Keller—Segel system:
, 𝒖 satisfies some condition
Finite-time blow-up
定義 (weak solution)
𝛀 × 𝟎, 𝑻 で定義された球対称な非負値関数の組 𝒖, 𝒗 で次を
満たすものを(KS)の 𝟎, 𝑻 上の弱解という:
𝒖 ∈ 𝑳∞
𝟎, 𝑻; 𝑳∞
𝛀 , 𝒖 𝒎
∈ 𝑳∞
𝟎, 𝑻; 𝑯 𝟏
𝛀 , 𝒖
𝒎+𝟏
𝟐 ∈ 𝑯 𝟏
𝟎, 𝒕; 𝑳 𝟐
𝛀 ,
𝒗 ∈ 𝑳∞
𝟎, 𝑻; 𝑾 𝟏,∞
𝛀 , 𝒗 𝒕 ∈ 𝑳 𝟐
𝟎, 𝑻; 𝑳 𝟐
𝛀 .
∀𝝋 ∈ 𝑳 𝟏
𝟎, 𝑻; 𝑯 𝟏
𝛀 ∩ 𝑾 𝟏,𝟏
𝟎, 𝑻; 𝑳 𝟐
𝛀 with supp𝝋 𝒙 ⊂ 𝟎, 𝑻 ;
න
𝟎
𝑻
න
𝛀
(𝛁𝒖 𝒎 ⋅ 𝛁 𝝋 − 𝒖 𝒒−𝟏 𝛁𝒖 ⋅ 𝛁𝝋 − 𝒖𝝋 𝒕) 𝒅𝒙𝒅𝒕 = න
𝛀
𝒖 𝟎 𝒙 𝝋 𝒙, 𝟎 𝒅𝒙 ,
න
𝟎
𝑻
න
𝛀
(𝛁𝒗 ⋅ 𝛁 𝝋 + 𝒗𝝋 − 𝒖𝝋 − 𝒗𝝋 𝒕) 𝒅𝒙𝒅𝒕 = න
𝛀
𝒗 𝟎 𝒙 𝝋 𝒙, 𝟎 𝒅𝒙 .
∃𝑲 > 𝟎 s.t.
𝟐𝒆−𝟐𝒕
𝒎 + 𝟏 𝟐 න
𝟎
𝒕
න
𝛀
𝝏
𝝏𝒔
𝒖
𝒎+𝟏
𝟐
𝟐
𝒅𝒙𝒅𝒔 +
𝟏
𝟐𝒎
න
𝛀
𝛁𝒖 𝒎 𝒕 𝟐 𝒅𝒙 ≤ 𝑲, a.a. 𝒕 ∈ 𝟎, 𝑻 .
for all 𝒕 < 𝑻.
ただし 𝑲 は 𝒖 𝟎 𝑳 𝟐, 𝛁𝒖 𝟎
𝒎
𝑳 𝟐, 𝒗 𝟎 𝑾 𝟏,∞, 𝒖 𝑳∞(𝟎,𝑻;𝑳∞(𝛀)), 𝒎, 𝒒, 𝑵, 𝛀 に依存する定数.
6/15
𝒖 𝒕 = 𝛁 ⋅ 𝝓 𝒖 𝛁𝒖 − 𝝍 𝒖 𝛁𝒗 ,
𝒗 𝒕 = 𝚫𝒗 − 𝒗 + 𝒖 ,
𝒙 ∈ 𝛀, 𝒕 > 𝟎,
𝒙 ∈ 𝛀, 𝒕 > 𝟎.
に対するcritical-condition [Winkler (2009)]
(E)
(E)
∃𝒔 𝟎 > 𝟏 ∃𝜺 ∈ 𝟎, 𝟏 ∃𝑲, 𝒌 > 𝟎 s.t.
න
𝒔 𝟎
𝒔
𝝈𝝓 𝝈
𝝍 𝝈
𝒅𝝈 ≤
𝑲
𝒔
𝐥𝐨𝐠 𝒔
,
𝑵 − 𝟐 − 𝜺
𝑵
න
𝒔 𝟎
𝒔
න
𝒔 𝟎
𝝈
𝝓 𝝉
𝝍 𝝉
𝒅𝝉𝒅𝝈 + 𝑲𝒔,
න
𝒔 𝟎
𝒔
න
𝒔 𝟎
𝝈
𝝓 𝝉
𝝍 𝝉
𝒅𝝉𝒅𝝈 ≤
𝒌𝒔 𝐥𝐨𝐠 𝒔 𝜽
𝒌𝒔 𝟐−𝜶
if 𝑵 = 𝟐,
if 𝑵 ≥ 𝟑,
if 𝑵 = 𝟐,
if 𝑵 ≥ 𝟑,
with some 𝜽 ∈ 𝟎, 𝟏 ,
with some 𝜶 >
𝟐
𝑵
,
補足スライド(一般のKeller—Segel 系について)
for all 𝒔 ≥ 𝒔 𝟎.
ቐ
非有界な(E)の解を与える
初期値 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑪∞
𝛀
𝟐
が存在
本研究で得られたこと
有限時刻で爆発する弱解を与える
初期値が存在する.
𝒒 < 𝒎 +
𝟐
𝑵
𝒒 > 𝒎 +
𝟐
𝑵
𝒖 𝒕 = 𝚫𝒖 𝒎
− 𝛁 ⋅ (𝒖 𝒒−𝟏
𝛁𝒗),
𝒗 𝒕 = 𝚫𝒗 − 𝒗 + 𝒖,
𝒙 ∈ 𝛀, 𝒕 > 𝟎,
𝒙 ∈ 𝛀, 𝒕 > 𝟎.
(KS)
補足スライド(先行研究の詳細1)
𝟐 = 𝒎 +
𝟐
𝑵
, 𝒖 𝟎 𝑳 𝟏 < ∃𝑴 𝒄
𝟐 = 𝒎 +
𝟐
𝑵
, 𝒖 𝟎 𝑳 𝟏 > ∃𝑴 𝒄
Blanchet—Laurençot (2013)
(𝛀 = ℝ 𝑵
の場合)
(𝛀 = ℝ 𝑵
の場合)
Laurençot—Mizoguchi (2017)
時間大域的弱解が存在する.
有限時刻で爆発する
弱解を与える初期値が存在する.
𝒒 = 𝟐 ,
ቐ
𝒒 = 𝟐 , 𝑵 = 𝟑 or 𝟒,
Ishida—Yokota (2012)
(𝛀 = ℝ 𝑵
の場合)
𝒒 ≥ 𝒎 +
𝟐
𝑵
, 𝒖 𝟎, ∆𝒗 𝟎 : enough small 時間大域的弱解が存在する.
Ishida—Yokota (2012), Ishida—Seki—Yokota (2014)
時間大域的弱解が存在し, 一様に有界.
補足スライド(先行研究の詳細2)
Keller—Segel 系の有限時刻爆発についての先行研究
𝒖 𝒕 = 𝚫𝒖 𝒎 − 𝛁 ⋅ (𝒖 𝒒−𝟏 𝛁𝒗)
𝒖 𝒕 = 𝚫𝒖 − 𝛁 ⋅ ( 𝒖 𝛁𝒗)
𝒖 𝒕 = 𝚫 𝒖 + 𝜺 𝒎 − 𝛁 ⋅ ( 𝒖 + 𝜺 𝒒−𝟐 𝒖 𝛁𝒗)
𝟐 = 𝒎 +
𝟐
𝑵
, 𝒖 𝟎 𝑳 𝟏 > ∃𝑴 𝒄
Laurençot—Mizoguchi (2017)
有限時刻で爆発する
弱解を与える初期値が存在する.
𝒒 = 𝟐 , 𝑵 = 𝟑 or 𝟒,
本研究で得られたこと
有限時刻で爆発する弱解を与える
初期値が存在する.𝒒 > 𝒎 +
𝟐
𝑵
Winkler (2013)
𝑵 ≥ 𝟑
Cieslak—Stinner (2012, 2014)
有限時刻爆発解を与える初期値が存在する.𝒒 > 𝒎 +
𝟐
𝑵
´
有限時刻爆発解を与える初期値が存在する.
補足スライド(爆発解の挙動について)
結果1, 2
𝑵 ≥ 3, 𝒎 ≥ 𝟏, 𝒒 = 𝟐 とし, 𝒎, 𝒒 は
を満たすものとする.また, (𝒖, 𝒗)を有限時刻 𝑻 で爆発する(KS)の弱解とする.
𝒒 = 𝟐 > 𝒎 +
𝟐
𝑵
(i) 𝒖 ∈ 𝑳∞ 𝟎, 𝑻; 𝑳 (𝛀)
𝑵(𝟐 − 𝒎)
𝟐
𝒖 は原点においてのみ爆発する.⟹
, 𝒖, 𝒗 は球対称
(ii) 𝐥𝐢𝐦
𝒕→𝑻
න
𝛀
𝒖 𝒙, 𝒕 𝝍 𝒙 𝒅𝒙
𝑵(𝟐 − 𝒎)
𝟐
が存在するすべての 𝝍 ∈ 𝑪 𝒄 ℝ 𝑵 に対して
⟹ 𝒖 は爆発点 𝒙 𝟎 において
次の意味でデルタ関数的な特異性をもつ:
∃𝑴 𝒙 𝟎 > 𝟎 ∃𝑹 > 𝟎 ∃ 𝒕 𝒏 ⊂ 𝟎, 𝑻 with 𝒕 𝒏 → 𝑻 as 𝒏 → ∞,
∃𝒇 ∈ 𝑳 𝟏
𝑩 𝒙 𝟎, 𝑹 ∩ 𝛀 ∩ 𝑳∞
𝑨 𝒙 𝟎, 𝒓, 𝑹 ∩ 𝛀 for all 𝒓 ∈ (𝟎, 𝑹) s.t.,
※ただし 𝜹 ⋅ は, Diracのデルタ関数とする.
𝒖 𝒕 𝒏 → 𝑴 𝒙 𝟎 𝜹 ⋅ −𝒙 𝟎 + 𝒇 weakly* in 𝑳∞
𝑩 𝒙 𝟎, 𝑹 .
𝑵(𝟐 − 𝒎)
𝟐
𝒏 → ∞
補足スライド(有限時刻爆発解を与える初期値について)
𝑩 𝑴, 𝑨 ≔ 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑳∞
𝛀 × 𝑾 𝟏,∞
𝛀 𝛁𝒖 𝟎
𝒎
∈ 𝑳 𝟐
𝛀 , 𝑮 𝒖 𝟎 ∈ 𝑳 𝟏
𝛀 ,
𝒖 𝟎, 𝒗 𝟎 ∶ 非負の球対称関数,න
𝛀
𝒖 𝟎 = 𝑴 , 𝒗 𝟎 𝑯 𝟏(𝛀) ≤ 𝑨,
𝑭 𝒖 𝟎, 𝒗 𝟎 ≤ −𝑲(𝑴, 𝑨)
ቄ
ቄ
𝑴 > 𝟎 とする.
このとき,次で定められた 𝒖 𝜼, 𝒗 𝜼 に対し,∃𝜼 𝟎 > 𝟎 s.t. 𝒖 𝜼, 𝒗 𝜼 ∈ 𝑩 𝑴, 𝑨 ∀𝜼 ∈ 𝟎, 𝜼 𝟎 :
𝒖 𝜼 𝒙 ≔ 𝒂 𝜼 ⋅ 𝜼 𝜷−𝑵
𝒙 𝟐
+ 𝜼 𝟐 −
𝜷
𝟐, 𝒗 𝜼 𝒙 ≔
𝜼 𝜹−𝜸
𝒙 𝟐
+ 𝜼 𝟐 −
𝜹
𝟐, if 𝑵 ≥ 𝟑.
if 𝑵 = 𝟐,𝐥𝐨𝐠
𝑹
𝜼
−𝜿
𝐥𝐨𝐠
𝑹 𝟐
𝒙 𝟐 + 𝜼 𝟐
,
൞
ただし, 𝜷 > 𝑵, 𝜸 ∈ 𝟏 − 𝒒 + 𝒎 𝑵, 𝑵 − 𝟐 ,
𝜹 >
𝑵
𝟐
, 𝒂 𝜼 ≔
𝜼 𝑵−𝜷
𝑴
‫׬‬𝛀
𝒙 𝟐 + 𝜼 𝟐 Τ−𝜷 𝟐 𝒅𝒙
.
イメージ
− න
𝟎
𝒓 𝟎
𝒓 𝑵 𝒖𝒗 𝒓 = − න
𝒖≥𝒔 𝟎
𝒓 𝑵 𝒖𝒗 𝒓 − න
{𝒖≤𝒔 𝟎}
𝒓 𝑵 𝒖𝒗 𝒓
Separate the interval!!
න
𝑩 𝒓 𝟎
𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐
𝟐
+ 𝒓 𝟎 𝒈 𝑳 𝟐
𝟐
+ 𝒗 𝑳 𝟐
𝟐
+ 𝟏න
𝛀
𝑮(𝒖)
Key Lemma
𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗
∃𝝁 ∈ [𝟎, 𝟐)
∃𝑪 > 𝟎 s.t.
Key Point!!
We can apply the known method
− න
𝒖≥𝒔 𝟎
𝒓 𝑵 𝒖𝒗 𝒓 = − න
𝒖≥𝒔 𝟎
𝒓 𝑵 𝒖 𝒎−𝒒+𝟏 𝒖 𝒓 − න
𝒖≥𝒔 𝟎
𝒓 𝑵 𝒖
𝟑−𝒒
𝟐 𝒈 =: 𝑰 𝟏 + 𝑰 𝟐
𝑰 𝟏 = − න
𝒖≥𝒔 𝟎
𝒓 𝑵
𝒖 𝒎−𝒒+𝟏
𝒖 𝒓 = 𝑵 න
𝒖≥𝒔 𝟎
𝒓 𝑵−𝟏
𝑯 𝒖 − න
𝝏 𝒖≥𝒔 𝟎
𝒓 𝑵
𝑯(𝒖) 𝒅𝑺
Integration by parts
𝑯 𝒖 ≔ න
𝒔 𝟎
𝒖
𝝈 𝒎−𝒒+𝟏
𝒅𝝈where
𝒔 𝟎
𝐎 𝒓 𝟎
𝒓
① ②
③
Collecting values ①, ② and ③,
we see that
𝑰 𝟏 ≤ 𝑵 න
𝒖≥𝒔 𝟎
𝒓 𝑵−𝟏
𝑯 𝒖

More Related Content

Similar to Blow up in a degenerate keller--segel system(Eng.)

Relativity
RelativityRelativity
Relativity
edgardoangeles1
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
PhysicsLover
 

Similar to Blow up in a degenerate keller--segel system(Eng.) (20)

Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 
Regularisation & Auxiliary Information in OOD Detection
Regularisation & Auxiliary Information in OOD DetectionRegularisation & Auxiliary Information in OOD Detection
Regularisation & Auxiliary Information in OOD Detection
 
Relativity
RelativityRelativity
Relativity
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
J256979
J256979J256979
J256979
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 7 Rombel 3
 
ゲーム理論NEXT 戦略形協力ゲーム第9回 -結託耐性ナッシュ均衡関連定理-
ゲーム理論NEXT 戦略形協力ゲーム第9回 -結託耐性ナッシュ均衡関連定理-ゲーム理論NEXT 戦略形協力ゲーム第9回 -結託耐性ナッシュ均衡関連定理-
ゲーム理論NEXT 戦略形協力ゲーム第9回 -結託耐性ナッシュ均衡関連定理-
 
SUEC 高中 Adv Maths (Trigo Function Part 3)
SUEC 高中 Adv Maths (Trigo Function Part 3)SUEC 高中 Adv Maths (Trigo Function Part 3)
SUEC 高中 Adv Maths (Trigo Function Part 3)
 
Teoria Numérica (Palestra 01)
Teoria Numérica (Palestra 01)Teoria Numérica (Palestra 01)
Teoria Numérica (Palestra 01)
 
Section 11: Normal Subgroups
Section 11: Normal SubgroupsSection 11: Normal Subgroups
Section 11: Normal Subgroups
 
Recurrence relation of Bessel's and Legendre's function
Recurrence relation of Bessel's and Legendre's functionRecurrence relation of Bessel's and Legendre's function
Recurrence relation of Bessel's and Legendre's function
 
07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidos07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidos
 
ゲーム理論BASIC 第39回 -交渉集合とカーネル-
ゲーム理論BASIC 第39回 -交渉集合とカーネル-ゲーム理論BASIC 第39回 -交渉集合とカーネル-
ゲーム理論BASIC 第39回 -交渉集合とカーネル-
 
Complete Residue Systems.pptx
Complete Residue Systems.pptxComplete Residue Systems.pptx
Complete Residue Systems.pptx
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx
 
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏Action
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏ActionSequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏Action
Sequence Entropy and the Complexity Sequence Entropy For 𝒁𝒏Action
 
FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdf
 

Recently uploaded

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Cherry
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
Cherry
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
RaunakRastogi4
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Cherry
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Cherry
 

Recently uploaded (20)

Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 

Blow up in a degenerate keller--segel system(Eng.)

  • 1. Blow-up in a degenerate Keller—Segel system Day : February 24, 2018 (Sat.) at Tokyo Univ. of Science Kagurazaka campus Takahiro Hashira (Tokyo Univ. of Science) 第153回神楽坂解析セミナー This talk is based on the joint work with Prof. Sachiko Ishida (Chiba Univ.) and Prof. Tomomi Yokota (Tokyo Univ. of Science)
  • 2. Problem and background Sketch of the proof Summary Our result 2/11 Plan of this talk
  • 3. 𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. ቐ This system describes a biological phenomenon chemotaxis. 3/11 Keller—Segel system Introduction 𝒖 ∶ density of cells 𝒗 ∶ concentration of signal substance How do cells behave? The cell slime molds move towards higher concentration of the signal substance. This system was proposed by Keller—Segel (1970)
  • 4. 𝚫𝒖 The diffusion term 3/11 𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. ቐ Keller—Segel system Introduction 𝒖 ∶ density of cells 𝒗 ∶ concentration of signal substance cells
  • 5. 𝚫𝒖 The diffusion term 3/11 𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. ቐ Keller—Segel system Introduction 𝒖 ∶ density of cells 𝒗 ∶ concentration of signal substance
  • 6. 発展 nonlinear type: 𝛁 ⋅ 𝑫 𝒖, 𝒗 𝛁𝒖 degenerate type: 𝚫𝒖 𝒎 develop etc. 3/11 𝚫𝒖 The diffusion term 𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. ቐ Keller—Segel system Introduction 𝒖 ∶ density of cells 𝒗 ∶ concentration of signal substance
  • 7. 発展 nonlinear type: 𝛁 ⋅ 𝑫 𝒖, 𝒗 𝛁𝒖 degenerate type: 𝚫𝒖 𝒎 etc. 3/11 𝚫𝒖 The diffusion term 𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. ቐ Keller—Segel system Introduction 𝒖 ∶ density of cells 𝒗 ∶ concentration of signal substance −𝛁 ⋅ 𝒖𝛁𝒗 The chemotaxis term develop
  • 8. 発展 nonlinear type: 𝛁 ⋅ 𝑫 𝒖, 𝒗 𝛁𝒖 degenerate type: 𝚫𝒖 𝒎 etc. 3/11 𝚫𝒖 The diffusion term 𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. ቐ Keller—Segel system Introduction 𝒖 ∶ density of cells 𝒗 ∶ concentration of signal substance −𝛁 ⋅ 𝒖𝛁𝒗 The chemotaxis term develop
  • 9. 発展 nonlinear type: 𝛁 ⋅ 𝑫 𝒖, 𝒗 𝛁𝒖 degenerate type: 𝚫𝒖 𝒎 etc. 3/11 𝚫𝒖 The diffusion term 𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. ቐ Keller—Segel system Introduction 𝒖 ∶ density of cells 𝒗 ∶ concentration of signal substance −𝛁 ⋅ 𝒖𝛁𝒗 The chemotaxis term develop
  • 10. 3/11 𝒖 𝒕 = ∆𝒖 − 𝛁 ∙ 𝒖𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. ቐ Keller—Segel system Introduction 𝒖 ∶ density of cells 𝒗 ∶ concentration of signal substance v.s. blow-up boundedness ● Herrero—Velazquez (1997), Horstmann—Wang (2001), Winkler (2013) 𝐬𝐮𝐩 𝒙∈ഥ𝛀 |𝒖 𝒙, 𝒕 | → ∞ 𝒕 → ∃𝑻 𝟎 ∃ 𝒖 𝟎, 𝒗 𝟎 : initial data s.t. ● Nagai—Senba—Yoshida (1997), Nagai—Ogawa (2011), Winkler (2010), Cao (2015) ∃ 𝒖 𝟎, 𝒗 𝟎 : initial data ∃𝑪 > 𝟎 s.t. 𝐬𝐮𝐩 𝒙∈ഥ𝛀 ( 𝒖 𝒙, 𝒕 + |𝒗(𝒙, 𝒕)|) ≤ 𝑪 ∀𝒕 ∈ 𝟎, ∞ Aggregation Diffusion
  • 11. 𝒖 𝒕 = ∆𝒖 𝒎 − 𝛁 ∙ 𝒖 𝒒−𝟏 𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝛁𝒖 𝒎 ∙ = 𝛁𝒗 ∙ = 𝟎, 𝒖 𝒙, 𝟎 = 𝒖 𝟎(𝒙), 𝒗 𝒙, 𝟎 = 𝒗 𝟎(𝒙), 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝝏𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 . (KS) In this talk we consider the following degenerate Keller—Segel system: 𝒖 𝟎 ≥ 𝟎 in 𝛀 , 𝒖 𝟎 ∈ 𝑳∞ 𝛀 , 𝛁𝒖 𝟎 𝒎 ∈ 𝑳 𝟐 𝛀 , 𝒗 𝟎 ≥ 𝟎 in 𝛀 , 𝒗 𝟎 ∈ 𝑾 𝟏,∞ 𝛀 . 𝛀 ≔ 𝒙 ∈ ℝ 𝑵 𝒙 < 𝑹} (𝑵 ≥ 𝟐, 𝑹 > 𝟎) 𝒖, 𝒗 : unknown functions 4/11 ν ν Problem 𝒎 ≥ 𝟏, 𝒒 ≥ 𝟐 : constants, ν: the outer normal vector of 𝝏𝛀 𝒖 𝟎 , 𝒗 𝟎 : given functions such that
  • 12. Finite or infinite time blow-up𝒒 > 𝒎 + 𝟐 𝑵 𝒒 < 𝒎 + 𝟐 𝑵 Tao—Winkler (2012), Ishida—Seki—Yokota (2014) ´ Ishida—Yokota (2013) (KS) : 𝒖 𝒕 = 𝚫𝒖 𝒎 − 𝛁 ⋅ 𝒖 𝒒−𝟏 𝛁𝒗𝒖 𝒖𝒎 𝒒−𝟏 𝒎 : power of diffusion 𝒒 : power of aggregation 5/11 Global existence and boundedness𝒒 < 𝒎 + 𝟐 𝑵 Ishida—Yokota (2012), Ishida—Seki—Yokota (2014) Known result (KS) : 𝒖 𝒕 = 𝚫(𝒖 + 𝜺) 𝒎−𝛁 ⋅ 𝒖 + 𝜺 𝒒−𝟐 𝒖𝛁𝒗 (𝜺 > 𝟎)𝜺 Cieslak—Stinner (2012, 2014) 𝒒 > 𝒎 + 𝟐 𝑵 Finite-time blow-up Global existence and boundedness
  • 13. Finite or infinite time blow-up𝒒 > 𝒎 + 𝟐 𝑵 Ishida—Yokota (2013) (KS) : 𝒖 𝒕 = 𝚫𝒖 𝒎 − 𝛁 ⋅ 𝒖 𝒒−𝟏 𝛁𝒗𝒖 𝒖𝒎 𝒒−𝟏 𝒎 : power of diffusion 𝒒 : power of aggregation 5/11 Known result (KS) : 𝒖 𝒕 = 𝚫(𝒖 + 𝜺) 𝒎−𝛁 ⋅ 𝒖 + 𝜺 𝒒−𝟐 𝒖𝛁𝒗 (𝜺 > 𝟎)𝜺 Cieslak—Stinner (2012, 2014) 𝒒 > 𝒎 + 𝟐 𝑵 Finite-time blow-up ´ The purpose of this study To build conditions for initial data such that the corresponding solution of (KS) blows up in finite time. There is a gap between two results.
  • 14. Main theorem Let 𝑵 ≥ 𝟐, 𝒎 ≥ 𝟏, 𝒒 ≥ 𝟐, and assume that 𝑵, 𝒎, 𝒒 satisfy (super-critical condition). For all 𝑴, 𝑨 > 𝟎 there exist constants 𝑲 𝑴, 𝑨 , 𝑻 𝑴, 𝑨 > 𝟎 such that for any 𝒒 > 𝒎 + 𝟐 𝑵 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑩 𝑴, 𝑨 ≔ 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑳∞ 𝛀 × 𝑾 𝟏,∞ 𝛀 𝛁𝒖 𝟎 𝒎 ∈ 𝑳 𝟐 𝛀 , 𝑮 𝒖 𝟎 ∈ 𝑳 𝟏 𝛀 , 𝒖 𝟎, 𝒗 𝟎: radially symmetric and nonnegative, න 𝛀 𝒖 𝟎 = 𝑴 , 𝒗 𝟎 𝑯 𝟏(𝛀) ≤ 𝑨, 𝑭 𝒖 𝟎, 𝒗 𝟎 ≤ −𝑲(𝑴, 𝑨) ቄ ቄ ※ 6/11 𝑭 𝒖 𝟎, 𝒗 𝟎 ≔ 𝟏 𝟐 𝒗 𝟎 𝑯 𝟏 𝛀 𝟐 − න 𝛀 𝒖 𝟎 𝒗 𝟎 + න 𝛀 𝑮 𝒖 𝟎 .𝑮 𝒖 𝟎 ≔ න 𝒔 𝟎 𝒖 𝟎 න 𝒔 𝟎 𝝈 𝒎𝝉 𝒎−𝒒 𝒅𝝉 𝒔𝝈, ⟹ each corresponding weak solution 𝒖, 𝒗 of (KS) blows up at 𝑻 ≤ 𝑻 𝑴, 𝑨 < ∞, i.e., max 𝐥𝐢𝐦 𝐬𝐮𝐩 𝒕→𝑻 𝒖(⋅, 𝒕) 𝑳∞(𝛀) = ∞. max
  • 15. Main theorem Let 𝑵 ≥ 𝟐, 𝒎 ≥ 𝟏, 𝒒 ≥ 𝟐, and assume that 𝑵, 𝒎, 𝒒 satisfy (super-critical condition). For all 𝑴, 𝑨 > 𝟎 there exist constants 𝑲 𝑴, 𝑨 , 𝑻 𝑴, 𝑨 > 𝟎 such that for any 𝒒 > 𝒎 + 𝟐 𝑵 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑩 𝑴, 𝑨 ≔ 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑳∞ 𝛀 × 𝑾 𝟏,∞ 𝛀 𝛁𝒖 𝟎 𝒎 ∈ 𝑳 𝟐 𝛀 , 𝑮 𝒖 𝟎 ∈ 𝑳 𝟏 𝛀 , 𝒖 𝟎, 𝒗 𝟎: radially symmetric and nonnegative, න 𝛀 𝒖 𝟎 = 𝑴 , 𝒗 𝟎 𝑯 𝟏(𝛀) ≤ 𝑨, 𝑭 𝒖 𝟎, 𝒗 𝟎 ≤ −𝑲(𝑴, 𝑨) ቄ ቄ 6/11 ⟹ each corresponding weak solution 𝒖, 𝒗 of (KS) blows up at 𝑻 ≤ 𝑻 𝑴, 𝑨 < ∞, i.e., max 𝐥𝐢𝐦 𝐬𝐮𝐩 𝒕→𝑻 𝒖(⋅, 𝒕) 𝑳∞(𝛀) = ∞. max aggregation > diffusion ⟹ Finite-time blow-up!!
  • 16. Dissipation rate of (KS) : Lyapunov function of (KS) : 𝑮 𝒖 ≔ 𝐥𝐢𝐦 𝜹→𝟎 න 𝒔 𝟎 𝒖 න 𝒔 𝟎 𝝈 𝒎𝝉 𝒎−𝟏 𝝉 𝒒−𝟏 + 𝜹 𝒅𝝉𝒅𝝈 𝑫 𝒖, 𝒗 ≔ න 𝛀 𝒗 𝒕 𝟐 + 𝐥𝐢𝐦 𝜹→𝟎 න 𝛀 𝛁𝒖 𝒎 − 𝒖 𝒒−𝟏 𝛁𝒗 𝒖 Τ𝒒−𝟏 𝟐 + 𝜹 𝟐 11/17/11 𝑭 𝒖, 𝒗 ≔ 𝟏 𝟐 න 𝛀 𝛁𝒗 𝟐 + 𝟏 𝟐 න 𝛀 𝒗 𝟐 − න 𝛀 𝒖𝒗 + න 𝛀 𝑮(𝒖) Outline of the proof 𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏 𝜽 , ∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t. 𝒕 ∈ 𝟎, 𝑻 Our goal
  • 17. 11/17/11 𝑭 𝒖, 𝒗 ≔ 𝟏 𝟐 න 𝛀 𝛁𝒗 𝟐 + 𝟏 𝟐 න 𝛀 𝒗 𝟐 − න 𝛀 𝒖𝒗 + න 𝛀 𝑮(𝒖) Outline of the proof 𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏 𝜽 , ∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t. 𝒕 ∈ 𝟎, 𝑻 Our goal ≥ 𝟎 ≥ 𝟎 ≥ 𝟎≤ 𝟎 න 𝛀 𝒖𝒗Estimate 𝑫 𝒖, 𝒗by Lyapunov function of (KS) : 𝑮 𝒖 ≔ 𝐥𝐢𝐦 𝜹→𝟎 න 𝒔 𝟎 𝒖 න 𝒔 𝟎 𝝈 𝒎𝝉 𝒎−𝟏 𝝉 𝒒−𝟏 + 𝜹 𝒅𝝉𝒅𝝈
  • 18. Step 1 Step 2 Step 3 Step 4 න 𝛀 𝒖𝒗 න 𝛀 𝒖𝒗 න 𝛀 𝛁𝒗 𝟐 Estimate by 𝑫 𝒖, 𝒗 7/11 𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏 𝜽 , ∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t. 𝒕 ∈ 𝟎, 𝑻 Our goal Outline of the proof Estimate by 𝛀 𝒓 𝟎 𝑹 න 𝛀 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 𝑫 𝒖, 𝒗Estimate by න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 𝑫 𝒖, 𝒗Estimate by
  • 19. න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ −𝑪 𝟏 න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 + 𝜹 න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 + 𝑪 𝟐 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝑪 𝟑 𝒗 𝑳 𝟐 𝟐 OK!! Left-hand side 8/11 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. ( 𝒖 > 𝟎 )𝒇 ≔ −𝒓 𝟏−𝑵 𝒓 𝑵−𝟏 𝒗 𝒓 𝒓 + 𝒗 − 𝒖 , 𝒈 ≔ 𝒖 𝒎 𝒓 − 𝒖 𝒒−𝟏 𝒗 𝒓 𝒖( Τ𝒒−𝟏) 𝟐 න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝒓 𝟎 𝒈 𝑳 𝟐 𝟐 + 𝒗 𝑳 𝟐 𝟐 + 𝟏න 𝛀 𝑮(𝒖) Key Lemma 𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. Sketch of the proof
  • 20. 8/11 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. ( 𝒖 > 𝟎 )𝒇 ≔ −𝒓 𝟏−𝑵 𝒓 𝑵−𝟏 𝒗 𝒓 𝒓 + 𝒗 − 𝒖 , 𝒈 ≔ 𝒖 𝒎 𝒓 − 𝒖 𝒒−𝟏 𝒗 𝒓 𝒖( Τ𝒒−𝟏) 𝟐 න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝒓 𝟎 𝒈 𝑳 𝟐 𝟐 + 𝒗 𝑳 𝟐 𝟐 + 𝟏න 𝛀 𝑮(𝒖) Key Lemma 𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. Known method by[ ]Cieslak—Stinner (2012)´ 𝒖 𝒕 = 𝚫 𝒖 + 𝜺 𝒎 − 𝛁 ⋅ 𝒖 𝒒−𝟐 𝒖𝛁𝒗+ 𝜺 Key Point!! න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ −𝑪 𝟏 න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 + 𝜹 න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 + 𝑪 𝟐 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝑪 𝟑 𝒗 𝑳 𝟐 𝟐 Sketch of the proof OK!! − න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 = − න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒎(𝒖 + 𝜺) 𝒎−𝟏 (𝒖 ) 𝒒−𝟐 𝒖 𝒓 + න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒈 𝜺 (𝒖 ) Τ𝒒−𝟐 𝟐+ 𝜺 + 𝜺 Left-hand side
  • 21. 8/11 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. ( 𝒖 > 𝟎 )𝒇 ≔ −𝒓 𝟏−𝑵 𝒓 𝑵−𝟏 𝒗 𝒓 𝒓 + 𝒗 − 𝒖 , 𝒈 ≔ 𝒖 𝒎 𝒓 − 𝒖 𝒒−𝟏 𝒗 𝒓 𝒖( Τ𝒒−𝟏) 𝟐 න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝒓 𝟎 𝒈 𝑳 𝟐 𝟐 + 𝒗 𝑳 𝟐 𝟐 + 𝟏න 𝛀 𝑮(𝒖) Key Lemma 𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. Known method by[ ]Cieslak—Stinner (2012)´ 𝒖 𝒕 = 𝚫 𝒖 + 𝜺 𝒎 − 𝛁 ⋅ 𝒖 𝒒−𝟐 𝒖𝛁𝒗+ 𝜺 Key Point!! න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ −𝑪 𝟏 න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 + 𝜹 න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 + 𝑪 𝟐 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝑪 𝟑 𝒗 𝑳 𝟐 𝟐 Sketch of the proof OK!! − න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 = − න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒎(𝒖 + 𝜺) 𝒎−𝟏 (𝒖 ) 𝒒−𝟐 𝒖 𝒓 + න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒈 𝜺 (𝒖 ) Τ𝒒−𝟐 𝟐+ 𝜺 + 𝜺 ≤ 𝒓 𝟎 𝒖 𝑳 𝟏 𝒈 𝜺 𝑳 𝟐 𝜺 𝒒−𝟐 /𝟐 ൗ𝟏 𝟐 = 𝑴𝒓 𝟎 𝒈 𝜺 𝑳 𝟐 𝜺 𝒒−𝟐 /𝟐 𝒖(𝒕) 𝑳 𝟏 = 𝒖 𝟎 𝑳 𝟏 =: 𝑴 Mass conservation law𝜺 = 𝟎 and 𝒒 > 𝟐 Our problem Left-hand side
  • 22. 8/11 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. ( 𝒖 > 𝟎 )𝒇 ≔ −𝒓 𝟏−𝑵 𝒓 𝑵−𝟏 𝒗 𝒓 𝒓 + 𝒗 − 𝒖 , 𝒈 ≔ 𝒖 𝒎 𝒓 − 𝒖 𝒒−𝟏 𝒗 𝒓 𝒖( Τ𝒒−𝟏) 𝟐 න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝒓 𝟎 𝒈 𝑳 𝟐 𝟐 + 𝒗 𝑳 𝟐 𝟐 + 𝟏න 𝛀 𝑮(𝒖) Key Lemma 𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. Key Point!! න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ −𝑪 𝟏 න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 + 𝜹 න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 + 𝑪 𝟐 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝑪 𝟑 𝒗 𝑳 𝟐 𝟐 Sketch of the proof OK!! − න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 = − න 𝒖≥𝒔 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 − න {𝒖≤𝒔 𝟎} 𝒓 𝑵 𝒖𝒗 𝒓 𝒒 > 𝒎 + 𝟐 𝑵 Key Lemma can be proved Separate the interval!! from the upper boundedness of 𝒖 We can make න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 Left-hand side We can apply the known method
  • 23. Step 1 Step 2 Step 3 Step 4 න 𝛀 𝒖𝒗 න 𝛀 𝒖𝒗 න 𝛀 𝛁𝒗 𝟐 Estimate by 𝑫 𝒖, 𝒗 7/11 𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏 𝜽 , ∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t. 𝒕 ∈ 𝟎, 𝑻 Our goal Outline of the proof Estimate by න 𝛀 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 𝑫 𝒖, 𝒗Estimate by න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 𝑫 𝒖, 𝒗Estimate by
  • 24. න 𝟎 𝒕 𝑫 𝒖 𝒔 , 𝒗 𝒔 𝒅𝒔 + 𝑭 𝒖 𝒕 , 𝒗 𝒕 = 𝑭 𝒖 𝟎, 𝒗 𝟎 , 𝒕 ∈ 𝟎, 𝑻 Proposition 10/11 Proof of main theorem 𝑭 𝒖 𝒕 , 𝒗 𝒕 ≥ −𝑪 𝑫 𝒖 𝒕 , 𝒗 𝒕 + 𝟏 𝜽 , ∃𝜽 ∈ 𝟎, 𝟏 ∃𝑪 > 𝟎 s.t. 𝒕 ∈ 𝟎, 𝑻 Our goal 𝚽 𝒕 ≔ න 𝟎 𝒕 − 𝑭 𝒖 𝒔 , 𝒗 𝒔 𝟏 𝜽 𝒅𝒔 − 𝑭 𝒖 𝟎, 𝒗 𝟎𝒅 𝒅𝒕 𝚽 𝒕 ≥ 𝜹 𝟎 𝚽 𝒕 𝟏 𝜽 𝚽 𝒕 → ∞ as 𝒕 → ∃𝑻 𝟎 ∴ → ∞ as 𝒕 → 𝑻 𝟎.𝒖(⋅, 𝒕) 𝑳∞(𝛀) 𝟏 𝜽 > 𝟏 ⟹ 𝚽 blows up in finite time
  • 25. 11/11 𝒖𝒕 = ∆𝒖 𝒎 − 𝛁 ∙ 𝒖 𝒒−𝟏 𝛁𝒗 , 𝒗 𝒕 = ∆𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎, 𝒙 ∈ 𝛀 , 𝒕 > 𝟎. (KS) ቐ Summary 𝒒 > 𝒎 + 𝟐 𝑵 Our result 𝑵 ≥ 𝟑, 𝒎 ≥ 𝟏, Blow-up behavior 𝒒 = 𝟐 > 𝒎 + 𝟐 𝑵 ⟹ Result 1 𝒖 ∶ radially symmetric Blow-up point is only the origin Result 2 Singularity like the Dirac delta function ⟹ In this talk we considered the following degenerate Keller—Segel system: , 𝒖 satisfies some condition Finite-time blow-up
  • 26.
  • 27. 定義 (weak solution) 𝛀 × 𝟎, 𝑻 で定義された球対称な非負値関数の組 𝒖, 𝒗 で次を 満たすものを(KS)の 𝟎, 𝑻 上の弱解という: 𝒖 ∈ 𝑳∞ 𝟎, 𝑻; 𝑳∞ 𝛀 , 𝒖 𝒎 ∈ 𝑳∞ 𝟎, 𝑻; 𝑯 𝟏 𝛀 , 𝒖 𝒎+𝟏 𝟐 ∈ 𝑯 𝟏 𝟎, 𝒕; 𝑳 𝟐 𝛀 , 𝒗 ∈ 𝑳∞ 𝟎, 𝑻; 𝑾 𝟏,∞ 𝛀 , 𝒗 𝒕 ∈ 𝑳 𝟐 𝟎, 𝑻; 𝑳 𝟐 𝛀 . ∀𝝋 ∈ 𝑳 𝟏 𝟎, 𝑻; 𝑯 𝟏 𝛀 ∩ 𝑾 𝟏,𝟏 𝟎, 𝑻; 𝑳 𝟐 𝛀 with supp𝝋 𝒙 ⊂ 𝟎, 𝑻 ; න 𝟎 𝑻 න 𝛀 (𝛁𝒖 𝒎 ⋅ 𝛁 𝝋 − 𝒖 𝒒−𝟏 𝛁𝒖 ⋅ 𝛁𝝋 − 𝒖𝝋 𝒕) 𝒅𝒙𝒅𝒕 = න 𝛀 𝒖 𝟎 𝒙 𝝋 𝒙, 𝟎 𝒅𝒙 , න 𝟎 𝑻 න 𝛀 (𝛁𝒗 ⋅ 𝛁 𝝋 + 𝒗𝝋 − 𝒖𝝋 − 𝒗𝝋 𝒕) 𝒅𝒙𝒅𝒕 = න 𝛀 𝒗 𝟎 𝒙 𝝋 𝒙, 𝟎 𝒅𝒙 . ∃𝑲 > 𝟎 s.t. 𝟐𝒆−𝟐𝒕 𝒎 + 𝟏 𝟐 න 𝟎 𝒕 න 𝛀 𝝏 𝝏𝒔 𝒖 𝒎+𝟏 𝟐 𝟐 𝒅𝒙𝒅𝒔 + 𝟏 𝟐𝒎 න 𝛀 𝛁𝒖 𝒎 𝒕 𝟐 𝒅𝒙 ≤ 𝑲, a.a. 𝒕 ∈ 𝟎, 𝑻 . for all 𝒕 < 𝑻. ただし 𝑲 は 𝒖 𝟎 𝑳 𝟐, 𝛁𝒖 𝟎 𝒎 𝑳 𝟐, 𝒗 𝟎 𝑾 𝟏,∞, 𝒖 𝑳∞(𝟎,𝑻;𝑳∞(𝛀)), 𝒎, 𝒒, 𝑵, 𝛀 に依存する定数. 6/15
  • 28. 𝒖 𝒕 = 𝛁 ⋅ 𝝓 𝒖 𝛁𝒖 − 𝝍 𝒖 𝛁𝒗 , 𝒗 𝒕 = 𝚫𝒗 − 𝒗 + 𝒖 , 𝒙 ∈ 𝛀, 𝒕 > 𝟎, 𝒙 ∈ 𝛀, 𝒕 > 𝟎. に対するcritical-condition [Winkler (2009)] (E) (E) ∃𝒔 𝟎 > 𝟏 ∃𝜺 ∈ 𝟎, 𝟏 ∃𝑲, 𝒌 > 𝟎 s.t. න 𝒔 𝟎 𝒔 𝝈𝝓 𝝈 𝝍 𝝈 𝒅𝝈 ≤ 𝑲 𝒔 𝐥𝐨𝐠 𝒔 , 𝑵 − 𝟐 − 𝜺 𝑵 න 𝒔 𝟎 𝒔 න 𝒔 𝟎 𝝈 𝝓 𝝉 𝝍 𝝉 𝒅𝝉𝒅𝝈 + 𝑲𝒔, න 𝒔 𝟎 𝒔 න 𝒔 𝟎 𝝈 𝝓 𝝉 𝝍 𝝉 𝒅𝝉𝒅𝝈 ≤ 𝒌𝒔 𝐥𝐨𝐠 𝒔 𝜽 𝒌𝒔 𝟐−𝜶 if 𝑵 = 𝟐, if 𝑵 ≥ 𝟑, if 𝑵 = 𝟐, if 𝑵 ≥ 𝟑, with some 𝜽 ∈ 𝟎, 𝟏 , with some 𝜶 > 𝟐 𝑵 , 補足スライド(一般のKeller—Segel 系について) for all 𝒔 ≥ 𝒔 𝟎. ቐ 非有界な(E)の解を与える 初期値 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑪∞ 𝛀 𝟐 が存在
  • 29. 本研究で得られたこと 有限時刻で爆発する弱解を与える 初期値が存在する. 𝒒 < 𝒎 + 𝟐 𝑵 𝒒 > 𝒎 + 𝟐 𝑵 𝒖 𝒕 = 𝚫𝒖 𝒎 − 𝛁 ⋅ (𝒖 𝒒−𝟏 𝛁𝒗), 𝒗 𝒕 = 𝚫𝒗 − 𝒗 + 𝒖, 𝒙 ∈ 𝛀, 𝒕 > 𝟎, 𝒙 ∈ 𝛀, 𝒕 > 𝟎. (KS) 補足スライド(先行研究の詳細1) 𝟐 = 𝒎 + 𝟐 𝑵 , 𝒖 𝟎 𝑳 𝟏 < ∃𝑴 𝒄 𝟐 = 𝒎 + 𝟐 𝑵 , 𝒖 𝟎 𝑳 𝟏 > ∃𝑴 𝒄 Blanchet—Laurençot (2013) (𝛀 = ℝ 𝑵 の場合) (𝛀 = ℝ 𝑵 の場合) Laurençot—Mizoguchi (2017) 時間大域的弱解が存在する. 有限時刻で爆発する 弱解を与える初期値が存在する. 𝒒 = 𝟐 , ቐ 𝒒 = 𝟐 , 𝑵 = 𝟑 or 𝟒, Ishida—Yokota (2012) (𝛀 = ℝ 𝑵 の場合) 𝒒 ≥ 𝒎 + 𝟐 𝑵 , 𝒖 𝟎, ∆𝒗 𝟎 : enough small 時間大域的弱解が存在する. Ishida—Yokota (2012), Ishida—Seki—Yokota (2014) 時間大域的弱解が存在し, 一様に有界.
  • 30. 補足スライド(先行研究の詳細2) Keller—Segel 系の有限時刻爆発についての先行研究 𝒖 𝒕 = 𝚫𝒖 𝒎 − 𝛁 ⋅ (𝒖 𝒒−𝟏 𝛁𝒗) 𝒖 𝒕 = 𝚫𝒖 − 𝛁 ⋅ ( 𝒖 𝛁𝒗) 𝒖 𝒕 = 𝚫 𝒖 + 𝜺 𝒎 − 𝛁 ⋅ ( 𝒖 + 𝜺 𝒒−𝟐 𝒖 𝛁𝒗) 𝟐 = 𝒎 + 𝟐 𝑵 , 𝒖 𝟎 𝑳 𝟏 > ∃𝑴 𝒄 Laurençot—Mizoguchi (2017) 有限時刻で爆発する 弱解を与える初期値が存在する. 𝒒 = 𝟐 , 𝑵 = 𝟑 or 𝟒, 本研究で得られたこと 有限時刻で爆発する弱解を与える 初期値が存在する.𝒒 > 𝒎 + 𝟐 𝑵 Winkler (2013) 𝑵 ≥ 𝟑 Cieslak—Stinner (2012, 2014) 有限時刻爆発解を与える初期値が存在する.𝒒 > 𝒎 + 𝟐 𝑵 ´ 有限時刻爆発解を与える初期値が存在する.
  • 31. 補足スライド(爆発解の挙動について) 結果1, 2 𝑵 ≥ 3, 𝒎 ≥ 𝟏, 𝒒 = 𝟐 とし, 𝒎, 𝒒 は を満たすものとする.また, (𝒖, 𝒗)を有限時刻 𝑻 で爆発する(KS)の弱解とする. 𝒒 = 𝟐 > 𝒎 + 𝟐 𝑵 (i) 𝒖 ∈ 𝑳∞ 𝟎, 𝑻; 𝑳 (𝛀) 𝑵(𝟐 − 𝒎) 𝟐 𝒖 は原点においてのみ爆発する.⟹ , 𝒖, 𝒗 は球対称 (ii) 𝐥𝐢𝐦 𝒕→𝑻 න 𝛀 𝒖 𝒙, 𝒕 𝝍 𝒙 𝒅𝒙 𝑵(𝟐 − 𝒎) 𝟐 が存在するすべての 𝝍 ∈ 𝑪 𝒄 ℝ 𝑵 に対して ⟹ 𝒖 は爆発点 𝒙 𝟎 において 次の意味でデルタ関数的な特異性をもつ: ∃𝑴 𝒙 𝟎 > 𝟎 ∃𝑹 > 𝟎 ∃ 𝒕 𝒏 ⊂ 𝟎, 𝑻 with 𝒕 𝒏 → 𝑻 as 𝒏 → ∞, ∃𝒇 ∈ 𝑳 𝟏 𝑩 𝒙 𝟎, 𝑹 ∩ 𝛀 ∩ 𝑳∞ 𝑨 𝒙 𝟎, 𝒓, 𝑹 ∩ 𝛀 for all 𝒓 ∈ (𝟎, 𝑹) s.t., ※ただし 𝜹 ⋅ は, Diracのデルタ関数とする. 𝒖 𝒕 𝒏 → 𝑴 𝒙 𝟎 𝜹 ⋅ −𝒙 𝟎 + 𝒇 weakly* in 𝑳∞ 𝑩 𝒙 𝟎, 𝑹 . 𝑵(𝟐 − 𝒎) 𝟐 𝒏 → ∞
  • 32. 補足スライド(有限時刻爆発解を与える初期値について) 𝑩 𝑴, 𝑨 ≔ 𝒖 𝟎, 𝒗 𝟎 ∈ 𝑳∞ 𝛀 × 𝑾 𝟏,∞ 𝛀 𝛁𝒖 𝟎 𝒎 ∈ 𝑳 𝟐 𝛀 , 𝑮 𝒖 𝟎 ∈ 𝑳 𝟏 𝛀 , 𝒖 𝟎, 𝒗 𝟎 ∶ 非負の球対称関数,න 𝛀 𝒖 𝟎 = 𝑴 , 𝒗 𝟎 𝑯 𝟏(𝛀) ≤ 𝑨, 𝑭 𝒖 𝟎, 𝒗 𝟎 ≤ −𝑲(𝑴, 𝑨) ቄ ቄ 𝑴 > 𝟎 とする. このとき,次で定められた 𝒖 𝜼, 𝒗 𝜼 に対し,∃𝜼 𝟎 > 𝟎 s.t. 𝒖 𝜼, 𝒗 𝜼 ∈ 𝑩 𝑴, 𝑨 ∀𝜼 ∈ 𝟎, 𝜼 𝟎 : 𝒖 𝜼 𝒙 ≔ 𝒂 𝜼 ⋅ 𝜼 𝜷−𝑵 𝒙 𝟐 + 𝜼 𝟐 − 𝜷 𝟐, 𝒗 𝜼 𝒙 ≔ 𝜼 𝜹−𝜸 𝒙 𝟐 + 𝜼 𝟐 − 𝜹 𝟐, if 𝑵 ≥ 𝟑. if 𝑵 = 𝟐,𝐥𝐨𝐠 𝑹 𝜼 −𝜿 𝐥𝐨𝐠 𝑹 𝟐 𝒙 𝟐 + 𝜼 𝟐 , ൞ ただし, 𝜷 > 𝑵, 𝜸 ∈ 𝟏 − 𝒒 + 𝒎 𝑵, 𝑵 − 𝟐 , 𝜹 > 𝑵 𝟐 , 𝒂 𝜼 ≔ 𝜼 𝑵−𝜷 𝑴 ‫׬‬𝛀 𝒙 𝟐 + 𝜼 𝟐 Τ−𝜷 𝟐 𝒅𝒙 . イメージ
  • 33. − න 𝟎 𝒓 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 = − න 𝒖≥𝒔 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 − න {𝒖≤𝒔 𝟎} 𝒓 𝑵 𝒖𝒗 𝒓 Separate the interval!! න 𝑩 𝒓 𝟎 𝛁𝒗 𝟐 ≤ 𝝁 + 𝑪 𝒓 𝟎 𝒇 𝑳 𝟐 𝟐 + 𝒓 𝟎 𝒈 𝑳 𝟐 𝟐 + 𝒗 𝑳 𝟐 𝟐 + 𝟏න 𝛀 𝑮(𝒖) Key Lemma 𝒓 𝟎 ⋅ 𝑫 𝒖, 𝒗 ∃𝝁 ∈ [𝟎, 𝟐) ∃𝑪 > 𝟎 s.t. Key Point!! We can apply the known method − න 𝒖≥𝒔 𝟎 𝒓 𝑵 𝒖𝒗 𝒓 = − න 𝒖≥𝒔 𝟎 𝒓 𝑵 𝒖 𝒎−𝒒+𝟏 𝒖 𝒓 − න 𝒖≥𝒔 𝟎 𝒓 𝑵 𝒖 𝟑−𝒒 𝟐 𝒈 =: 𝑰 𝟏 + 𝑰 𝟐 𝑰 𝟏 = − න 𝒖≥𝒔 𝟎 𝒓 𝑵 𝒖 𝒎−𝒒+𝟏 𝒖 𝒓 = 𝑵 න 𝒖≥𝒔 𝟎 𝒓 𝑵−𝟏 𝑯 𝒖 − න 𝝏 𝒖≥𝒔 𝟎 𝒓 𝑵 𝑯(𝒖) 𝒅𝑺 Integration by parts 𝑯 𝒖 ≔ න 𝒔 𝟎 𝒖 𝝈 𝒎−𝒒+𝟏 𝒅𝝈where 𝒔 𝟎 𝐎 𝒓 𝟎 𝒓 ① ② ③ Collecting values ①, ② and ③, we see that 𝑰 𝟏 ≤ 𝑵 න 𝒖≥𝒔 𝟎 𝒓 𝑵−𝟏 𝑯 𝒖