SlideShare a Scribd company logo
1 of 21
RECURRENCE
RELATIONS
(MATHEMATICS T.A. EC-IV SEMESTER)
SUBJECT TEACHER: PROF. A.A. BASOLE
GROUP MEMBERS
1. YASHWANT HAMPIHOLI (74)
2. YUVRAJ GUPTA (75)
3. PARTHO GHOSH (76)
4. ADARSH THAKUR (77)
5. AKSHAY PURWAR (78)
6. LUCKY THAKUR (79)
7. SHUBHAM SRIVASTAVA (80)
WHAT IS RECURRENCE RELATION?
The concept of recurrence relations deals with recursive definitions
of mathematical functions or sequences. Solving a recurrence
relation involves, in finding "closed formβ€œ solution of the function.
Recurrence relations are a fundamental mathematical tool since
they can be used to represent mathematical functions/sequences
that cannot be easily represented non-recursively. An example, is
the Fibonacci sequence. Recurrence relations are largely employed
in the design and analysis of algorithms.
RECURRENCE FORMULAE FOR BESSEL’S FUNCTION
𝑱 𝒏 𝒙
1.
𝒅 𝒙 𝒏 𝑱 𝒏(𝒙)
𝒅𝒙
= 𝒙 𝒏
𝑱 π’βˆ’πŸ(𝒙)
2.
𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙)
𝒅𝒙
= βˆ’π’™βˆ’π’
𝑱 𝒏+𝟏(𝒙)
3. 𝑱 𝒏 𝒙 =
𝒙
πŸπ’
𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙)
4. 𝑱 𝒏
β€²
𝒙 =
𝟏
𝟐
𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙)
5. 𝑱 𝒏
β€²
𝒙 =
𝒏
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙)
6. 𝑱 𝒏+𝟏 𝒙 =
πŸπ’
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 π’βˆ’πŸ(𝒙)
PROOF FOR FIRST RECURRENCE RELATION OF
𝑱 𝒏 𝒙
𝒅 𝒙 𝒏 𝑱 𝒏(𝒙)
𝒅𝒙
= 𝒙 𝒏
𝑱 π’βˆ’πŸ(𝒙)
Proof: Since,
𝑱 𝒏 𝒙 =
𝒓=𝟎
∞
βˆ’πŸ 𝒓
𝒙
𝟐
𝒏+πŸπ’“ 𝟏
𝒓! πšͺ 𝐧 + 𝐫 + 𝟏
βˆ’ (𝟏)
Multiplying equation (1) by π‘₯ 𝑛, we have
𝒙 𝒏
𝑱 𝒏 𝒙 =
𝒓=𝟎
∞
βˆ’πŸ 𝒓 𝒙 𝟐 𝒏+𝒓
𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏
βˆ’ (𝟐)
CONTINUED…
Differentiating equation (2) with respect to β€˜x’ on both sides
∴
𝒅 𝒙 𝒏 𝑱 𝒏 𝒙
𝒅𝒙
=
𝒓=𝟎
∞
βˆ’πŸ 𝒓 𝟐 𝒏 + 𝒓 𝒙 𝟐 𝒏+𝒓 βˆ’πŸ
𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏
= 𝒙 𝒏
𝒓=𝟎
∞
βˆ’πŸ 𝒓 𝒙 𝟐 π’βˆ’πŸ+πŸπ’“
𝒓! πšͺ 𝒏 βˆ’ 𝟏 + 𝒓 + 𝟏
= 𝒙 𝒏 𝑱 π’βˆ’πŸ 𝒙
PROOF FOR SECOND RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝒅 π’™βˆ’π’
𝑱 𝒏(𝒙)
𝒅𝒙
= βˆ’π’™βˆ’π’
𝑱 𝒏+𝟏(𝒙)
Proof: Since,
𝑱 𝒏 𝒙 =
𝒓=𝟎
∞
βˆ’πŸ 𝒓
𝒙
𝟐
𝒏+πŸπ’“ 𝟏
𝒓! πšͺ 𝐧 + 𝐫 + 𝟏
βˆ’ (𝟏)
Multiplying equation (1) by π‘₯βˆ’π‘›, we have
π’™βˆ’π’ 𝑱 𝒏 𝒙 =
𝒓=𝟎
∞
βˆ’πŸ 𝒓 𝒙 πŸπ’“
𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏
βˆ’ 𝟐
CONTINUED…
Differentiating equation (2) with respect to β€˜x’ on both sides
∴
𝒅 π’™βˆ’π’ 𝑱 𝒏 𝒙
𝒅𝒙
=
𝒓=𝟎
∞
βˆ’πŸ 𝒓 πŸπ’“ 𝒙 πŸπ’“βˆ’πŸ
𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏
= βˆ’π’™βˆ’π’
𝒓=𝟏
∞
βˆ’πŸ π’“βˆ’πŸ 𝒙 𝒏+𝟏+𝟐 π’“βˆ’πŸ
𝟐 𝒏+𝟏+𝟐 π’“βˆ’πŸ 𝒓 βˆ’ 𝟏 ! πšͺ 𝒏 + 𝒓 + 𝟏
= βˆ’π’™βˆ’π’
π’Œ=𝟎
∞
βˆ’πŸ π’Œ
𝒙 𝟐 𝒏+𝟏+πŸπ’Œ
π’Œ! πšͺ 𝒏 + 𝟏 + π’Œ + 𝟏
= βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 , π’˜π’‰π’†π’“π’† π’Œ = 𝒓 βˆ’ 𝟏
PROOF FOR THIRD RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝑱 𝒏 𝒙 =
𝒙
πŸπ’
𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙)
Proof: Since,
𝒅 π’™βˆ’π’
𝑱 𝒏(𝒙)
𝒅𝒙
= βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 … (πŸ’)
On differentiating both sides of equation (1) with respect to β€˜x’:
𝒙 𝒏
𝑱 𝒏
β€²
𝒙 + 𝒏𝒙 π’βˆ’πŸ
𝑱 𝒏 𝒙 = 𝒙 𝒏
𝑱 π’βˆ’πŸ 𝒙 … (𝟐)
CONTINUED…
On dividing equation (2) by π‘₯ 𝑛
:
𝑱 𝒏
β€²
𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 … (πŸ‘)
Since,
𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙)
𝒅𝒙
= βˆ’π’™βˆ’π’
𝑱 𝒏+𝟏 𝒙 … (πŸ’)
On differentiating both sides of equation (4) with respect to β€˜x’:
βˆ’π‘± 𝒏
β€² 𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … πŸ“
CONTINUED…
πŸπ’
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙 … (πŸ”)
i.e.,
𝑱 𝒏 𝒙 =
𝒙
πŸπ’
𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙) … (πŸ•)
PROOF FOR FOURTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝑱 𝒏
β€²
𝒙 =
𝟏
𝟐
𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙)
Proof: Since we know that
βˆ’π‘± 𝒏
β€² 𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … 𝟏
And
𝑱 𝒏
β€² 𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 … (𝟐)
CONTINUED…
So on subtracting equation (1) from (2), we get
πŸπ‘± 𝒏
β€² 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏 𝒙 … πŸ‘
i.e. ,
𝑱 𝒏
β€² 𝒙 =
𝟏
𝟐
𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) … (πŸ—)
PROOF FOR FIFTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝑱 𝒏
β€²
𝒙 =
𝒏
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙)
Proof: Since we know that
βˆ’π‘± 𝒏
β€²
𝒙 +
𝒏
𝒙
𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … 𝟏
The equation (1) can also be represented as:
𝑱 𝒏
β€² 𝒙 =
𝒏
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏 𝒙
PROOF FOR SIXTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙
𝑱 𝒏+𝟏 𝒙 =
πŸπ’
𝒙
𝑱 𝒏 𝒙 βˆ’ 𝑱 π’βˆ’πŸ(𝒙)
Proof: Since we know that
πŸπ’
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙 … (𝟏)
The equation (1) can also be represented as:
πŸπ’
𝒙
𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙
RECURRENCE FORMULAE FOR 𝑷 𝒏 𝒙
1. 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ(𝒙)
2. 𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
3. πŸπ’ + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+𝟏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
4. 𝑷 𝒏
β€²
𝒙 = 𝒙𝑷 π’βˆ’πŸ
β€²
𝒙 + 𝒏𝑷 π’βˆ’πŸ(𝒙)
5. 𝟏 βˆ’ 𝒙 𝟐
𝑷 𝒏
β€²
𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]
PROOF FOR FIRST RECURRENCE RELATION OF 𝑷 𝒏(𝒙)
𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ(𝒙)
Proof: We know that
(𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
)βˆ’ 𝟏 𝟐
=
𝒏=𝟎
∞
𝑷 𝒏 𝒙 𝒕 𝒏
… (𝟏)
Differentiating (1) partially w.r.t. t, we get
βˆ’
𝟏
𝟐
𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐
βˆ’πŸπ’™ + πŸπ’• = 𝒏𝑷 𝒏 (𝒙)𝒕 π’βˆ’πŸ
Or 𝒙 βˆ’ 𝒕 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐
= (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
) 𝒏𝑷 𝒏(𝒙)𝒕 π’βˆ’πŸ
Or 𝒙 βˆ’ 𝒕 𝑷 𝒏 𝒙 𝒕 𝒏
= (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
) 𝒏𝑷 𝒏 𝒙 𝒕 π’βˆ’πŸ
Equating coefficients of 𝑑 𝑛
from both sides, we get
𝒙𝑷 𝒏 𝒙 βˆ’ 𝑷 π’βˆ’πŸ 𝒙 = 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 βˆ’ πŸπ’π’™π‘· 𝒏 𝒙 + (𝒏 βˆ’ 𝟏)𝑷 π’βˆ’πŸ(𝒙)
PROOF FOR SECOND RECURRENCE RELATION OF 𝑷 𝒏(𝒙)
𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
Proof: We know that
(𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
)βˆ’ 𝟏 𝟐
=
𝒏=𝟎
∞
𝑷 𝒏 𝒙 𝒕 𝒏
… (𝟏)
Differentiating (1) partially w.r.t. x, we get
βˆ’
𝟏
𝟐
𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐
. πŸπ’• = 𝑷 𝒏′(𝒙)𝒕 𝒏
i.e., 𝒕(𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐
)βˆ’ πŸ‘ 𝟐
= 𝑷 𝒏
β€²
𝒙 𝒕 𝒏
…(2)
Again differentiating (1) partially w.r.t. t, we have
𝒙 βˆ’ 𝒕 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐
= 𝒏𝑷 𝒏 𝒙 𝒕 π’βˆ’πŸ
…(3)
Dividing (3) by (2), we get
𝒙 βˆ’ 𝒕
𝒕
=
𝒏 𝑷 𝒏(𝒙)𝒕 π’βˆ’πŸ
𝑷 𝒏
β€²(𝒙)𝒕 𝒏
i.e. 𝒏𝑷 𝒏 𝒙 𝒕 𝒏
= (𝒙 βˆ’ 𝒕) 𝑷 𝒏′ 𝒙 𝒕 𝒏
…(4)
Equating coefficient of 𝑑 𝑛
from both sides of equation (4) we get:
𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
PROOF FOR THIRD RECURRENCE RELATION OF 𝑷 𝒏(𝒙)
πŸπ’ + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+𝟏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
(𝒙)
Proof: Since we know that:
𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ 𝒙 … (𝟏)
Differentiating (1) w.r.t. x, we get
𝒏 + 𝟏 𝑷 𝒏+𝟏
β€²
𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ
β€²
𝒙 … 𝟐
Substituting for nπ‘₯𝑃𝑛
β€²
π‘₯ π‘“π‘Ÿπ‘œπ‘š π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Ÿπ‘’π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘π‘’ π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› 𝑖𝑛 (2), we obtain
𝒏 + 𝟏 𝑷 𝒏+𝟏
β€²
𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 + 𝑷 π’βˆ’πŸ
β€²
𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸβ€²(𝒙)
Or 𝟐𝐧 + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+πŸβ€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸβ€²(𝒙)
PROOF FOR FOURTH RECURRENCE RELATION
OF 𝑷 𝒏(𝒙)
𝑷 𝒏
β€²
𝒙 = 𝒙𝑷 π’βˆ’πŸ
β€²
𝒙 + 𝒏𝑷 π’βˆ’πŸ 𝒙
Proof: Since we know that:
𝒏 + 𝟏 𝑷 𝒏+𝟏
β€²
𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏
β€² 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ
β€²
𝒙 … (𝟏)
Rewriting (1) as:
𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + 𝒏 + 𝟏 𝒙𝑷 𝒏
,
𝒙 + 𝒏 𝒙𝑷 𝒏
,
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
,
𝒙
= πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + 𝒏 + 𝟏 𝒙𝑷 𝒏
,
𝒙 + 𝒏 𝟐 𝑷 𝒏(𝒙)
= 𝒏 + 𝟏 𝒙𝑷 𝒏
,
𝒙 + 𝒏 𝟐 + πŸπ’ + 𝟏 𝑷 𝒏 𝒙
Or 𝑷 𝒏+𝟏
β€²
𝒙 = 𝒙𝑷 𝒏
β€² 𝒙 + (𝒏 + 𝟏)𝑷 𝒙 …(2)
Replacing n by (n-1) in equation (2), we get the required equation
PROOF FOR FIFTH RECURRENCE RELATION OF 𝑷 𝒏(𝒙)
𝟏 βˆ’ 𝒙 𝟐
𝑷 𝒏
β€²
𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]
Proof: Rewriting second and fourth recurrence relation of 𝑃𝑛 π‘₯ as:
𝒙𝑷 𝒏
β€²
𝒙 βˆ’ 𝑷 π’βˆ’πŸ
β€²
𝒙 = 𝒏𝑷 𝒏 𝒙 …(1)
and 𝑷 𝒏
β€² 𝒙 βˆ’ 𝒙𝑷 π’βˆ’πŸ
β€²
𝒙 = 𝒏𝑷 π’βˆ’πŸ 𝒙 …(2)
Multiplying (1) by x and subtracting from (2), we get
𝟏 βˆ’ 𝒙 𝟐
𝑷 𝒏
β€²
𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]
Recurrence relation of Bessel's and Legendre's function

More Related Content

What's hot

Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
Β 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equationDnyaneshwarPardeshi1
Β 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
Β 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
Β 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationAbhishek Choksi
Β 
Schrodinger's time independent wave equation
Schrodinger's time independent wave equationSchrodinger's time independent wave equation
Schrodinger's time independent wave equationKhushbooSharma226
Β 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and EigenvectorsVinod Srivastava
Β 
Overlap Add, Overlap Save(digital signal processing)
Overlap Add, Overlap Save(digital signal processing)Overlap Add, Overlap Save(digital signal processing)
Overlap Add, Overlap Save(digital signal processing)Gourab Ghosh
Β 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Hassaan Saleem
Β 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theoremAbhishek Chauhan
Β 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
Β 
Application of-differential-equation-in-real-life
Application of-differential-equation-in-real-lifeApplication of-differential-equation-in-real-life
Application of-differential-equation-in-real-lifeRazwanul Ghani
Β 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
Β 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of MatricesAmenahGondal1
Β 

What's hot (20)

Continiuty Equation
Continiuty EquationContiniuty Equation
Continiuty Equation
Β 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Β 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
Β 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
Β 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
Β 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s Equation
Β 
Fourier transforms
Fourier transforms Fourier transforms
Fourier transforms
Β 
Schrodinger's time independent wave equation
Schrodinger's time independent wave equationSchrodinger's time independent wave equation
Schrodinger's time independent wave equation
Β 
Analytic function
Analytic functionAnalytic function
Analytic function
Β 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
Β 
Overlap Add, Overlap Save(digital signal processing)
Overlap Add, Overlap Save(digital signal processing)Overlap Add, Overlap Save(digital signal processing)
Overlap Add, Overlap Save(digital signal processing)
Β 
Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)Helmholtz equation (Motivations and Solutions)
Helmholtz equation (Motivations and Solutions)
Β 
Gram-Schmidt process
Gram-Schmidt processGram-Schmidt process
Gram-Schmidt process
Β 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
Β 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
Β 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
Β 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
Β 
Application of-differential-equation-in-real-life
Application of-differential-equation-in-real-lifeApplication of-differential-equation-in-real-life
Application of-differential-equation-in-real-life
Β 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
Β 
Diagonalization of Matrices
Diagonalization of MatricesDiagonalization of Matrices
Diagonalization of Matrices
Β 

Similar to Recurrence relation of Bessel's and Legendre's function

06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx62AniketVishwakarma
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
Β 
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...IJMER
Β 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULESNumanUsama
Β 
Teoria NumΓ©rica (Palestra 01)
Teoria NumΓ©rica (Palestra 01)Teoria NumΓ©rica (Palestra 01)
Teoria NumΓ©rica (Palestra 01)Eugenio Souza
Β 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein PolynomialsIOSR Journals
Β 
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingJordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingIOSR Journals
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
Β 
Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Vitthal Jadhav
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
Β 
Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Alona Hall
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
Β 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...IJMER
Β 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy NumbersIOSR Journals
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
Β 

Similar to Recurrence relation of Bessel's and Legendre's function (20)

06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx
Β 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Β 
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
Β 
1. Probability.pdf
1. Probability.pdf1. Probability.pdf
1. Probability.pdf
Β 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
Β 
Teoria NumΓ©rica (Palestra 01)
Teoria NumΓ©rica (Palestra 01)Teoria NumΓ©rica (Palestra 01)
Teoria NumΓ©rica (Palestra 01)
Β 
On Bernstein Polynomials
On Bernstein PolynomialsOn Bernstein Polynomials
On Bernstein Polynomials
Β 
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime RingJordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Jordan Higher (𝜎, 𝜏)-Centralizer on Prime Ring
Β 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
Β 
C0560913
C0560913C0560913
C0560913
Β 
Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
Β 
B0560508
B0560508B0560508
B0560508
Β 
Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)
Β 
Integration
IntegrationIntegration
Integration
Β 
Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
Β 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Β 
On Series of Fuzzy Numbers
On Series of Fuzzy NumbersOn Series of Fuzzy Numbers
On Series of Fuzzy Numbers
Β 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
Β 

Recently uploaded

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
Β 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
Β 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
Β 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Β 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
Β 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
Β 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
Β 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
Β 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
Β 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)Dr. Mazin Mohamed alkathiri
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdfssuser54595a
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
Β 

Recently uploaded (20)

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
Β 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
Β 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Β 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Β 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
Β 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
Β 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
Β 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Β 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
Β 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
Β 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
Β 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
Β 

Recurrence relation of Bessel's and Legendre's function

  • 1. RECURRENCE RELATIONS (MATHEMATICS T.A. EC-IV SEMESTER) SUBJECT TEACHER: PROF. A.A. BASOLE GROUP MEMBERS 1. YASHWANT HAMPIHOLI (74) 2. YUVRAJ GUPTA (75) 3. PARTHO GHOSH (76) 4. ADARSH THAKUR (77) 5. AKSHAY PURWAR (78) 6. LUCKY THAKUR (79) 7. SHUBHAM SRIVASTAVA (80)
  • 2. WHAT IS RECURRENCE RELATION? The concept of recurrence relations deals with recursive definitions of mathematical functions or sequences. Solving a recurrence relation involves, in finding "closed formβ€œ solution of the function. Recurrence relations are a fundamental mathematical tool since they can be used to represent mathematical functions/sequences that cannot be easily represented non-recursively. An example, is the Fibonacci sequence. Recurrence relations are largely employed in the design and analysis of algorithms.
  • 3. RECURRENCE FORMULAE FOR BESSEL’S FUNCTION 𝑱 𝒏 𝒙 1. 𝒅 𝒙 𝒏 𝑱 𝒏(𝒙) 𝒅𝒙 = 𝒙 𝒏 𝑱 π’βˆ’πŸ(𝒙) 2. 𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙) 𝒅𝒙 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏(𝒙) 3. 𝑱 𝒏 𝒙 = 𝒙 πŸπ’ 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙) 4. 𝑱 𝒏 β€² 𝒙 = 𝟏 𝟐 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) 5. 𝑱 𝒏 β€² 𝒙 = 𝒏 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) 6. 𝑱 𝒏+𝟏 𝒙 = πŸπ’ 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 π’βˆ’πŸ(𝒙)
  • 4. PROOF FOR FIRST RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝒅 𝒙 𝒏 𝑱 𝒏(𝒙) 𝒅𝒙 = 𝒙 𝒏 𝑱 π’βˆ’πŸ(𝒙) Proof: Since, 𝑱 𝒏 𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 𝟐 𝒏+πŸπ’“ 𝟏 𝒓! πšͺ 𝐧 + 𝐫 + 𝟏 βˆ’ (𝟏) Multiplying equation (1) by π‘₯ 𝑛, we have 𝒙 𝒏 𝑱 𝒏 𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 𝟐 𝒏+𝒓 𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏 βˆ’ (𝟐)
  • 5. CONTINUED… Differentiating equation (2) with respect to β€˜x’ on both sides ∴ 𝒅 𝒙 𝒏 𝑱 𝒏 𝒙 𝒅𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝟐 𝒏 + 𝒓 𝒙 𝟐 𝒏+𝒓 βˆ’πŸ 𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏 = 𝒙 𝒏 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 𝟐 π’βˆ’πŸ+πŸπ’“ 𝒓! πšͺ 𝒏 βˆ’ 𝟏 + 𝒓 + 𝟏 = 𝒙 𝒏 𝑱 π’βˆ’πŸ 𝒙
  • 6. PROOF FOR SECOND RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙) 𝒅𝒙 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏(𝒙) Proof: Since, 𝑱 𝒏 𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 𝟐 𝒏+πŸπ’“ 𝟏 𝒓! πšͺ 𝐧 + 𝐫 + 𝟏 βˆ’ (𝟏) Multiplying equation (1) by π‘₯βˆ’π‘›, we have π’™βˆ’π’ 𝑱 𝒏 𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 𝒙 πŸπ’“ 𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏 βˆ’ 𝟐
  • 7. CONTINUED… Differentiating equation (2) with respect to β€˜x’ on both sides ∴ 𝒅 π’™βˆ’π’ 𝑱 𝒏 𝒙 𝒅𝒙 = 𝒓=𝟎 ∞ βˆ’πŸ 𝒓 πŸπ’“ 𝒙 πŸπ’“βˆ’πŸ 𝟐 𝒏+πŸπ’“ 𝒓! πšͺ 𝒏 + 𝒓 + 𝟏 = βˆ’π’™βˆ’π’ 𝒓=𝟏 ∞ βˆ’πŸ π’“βˆ’πŸ 𝒙 𝒏+𝟏+𝟐 π’“βˆ’πŸ 𝟐 𝒏+𝟏+𝟐 π’“βˆ’πŸ 𝒓 βˆ’ 𝟏 ! πšͺ 𝒏 + 𝒓 + 𝟏 = βˆ’π’™βˆ’π’ π’Œ=𝟎 ∞ βˆ’πŸ π’Œ 𝒙 𝟐 𝒏+𝟏+πŸπ’Œ π’Œ! πšͺ 𝒏 + 𝟏 + π’Œ + 𝟏 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 , π’˜π’‰π’†π’“π’† π’Œ = 𝒓 βˆ’ 𝟏
  • 8. PROOF FOR THIRD RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝒙 πŸπ’ 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙) Proof: Since, 𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙) 𝒅𝒙 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 … (πŸ’) On differentiating both sides of equation (1) with respect to β€˜x’: 𝒙 𝒏 𝑱 𝒏 β€² 𝒙 + 𝒏𝒙 π’βˆ’πŸ 𝑱 𝒏 𝒙 = 𝒙 𝒏 𝑱 π’βˆ’πŸ 𝒙 … (𝟐)
  • 9. CONTINUED… On dividing equation (2) by π‘₯ 𝑛 : 𝑱 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 … (πŸ‘) Since, 𝒅 π’™βˆ’π’ 𝑱 𝒏(𝒙) 𝒅𝒙 = βˆ’π’™βˆ’π’ 𝑱 𝒏+𝟏 𝒙 … (πŸ’) On differentiating both sides of equation (4) with respect to β€˜x’: βˆ’π‘± 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … πŸ“
  • 10. CONTINUED… πŸπ’ 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙 … (πŸ”) i.e., 𝑱 𝒏 𝒙 = 𝒙 πŸπ’ 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏(𝒙) … (πŸ•)
  • 11. PROOF FOR FOURTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝑱 𝒏 β€² 𝒙 = 𝟏 𝟐 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) Proof: Since we know that βˆ’π‘± 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … 𝟏 And 𝑱 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 … (𝟐)
  • 12. CONTINUED… So on subtracting equation (1) from (2), we get πŸπ‘± 𝒏 β€² 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏 𝒙 … πŸ‘ i.e. , 𝑱 𝒏 β€² 𝒙 = 𝟏 𝟐 𝑱 π’βˆ’πŸ 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) … (πŸ—)
  • 13. PROOF FOR FIFTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝑱 𝒏 β€² 𝒙 = 𝒏 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏(𝒙) Proof: Since we know that βˆ’π‘± 𝒏 β€² 𝒙 + 𝒏 𝒙 𝑱 𝒏 𝒙 = 𝑱 𝒏+𝟏 𝒙 … 𝟏 The equation (1) can also be represented as: 𝑱 𝒏 β€² 𝒙 = 𝒏 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 𝒏+𝟏 𝒙
  • 14. PROOF FOR SIXTH RECURRENCE RELATION OF 𝑱 𝒏 𝒙 𝑱 𝒏+𝟏 𝒙 = πŸπ’ 𝒙 𝑱 𝒏 𝒙 βˆ’ 𝑱 π’βˆ’πŸ(𝒙) Proof: Since we know that πŸπ’ 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙 … (𝟏) The equation (1) can also be represented as: πŸπ’ 𝒙 𝑱 𝒏 𝒙 = 𝑱 π’βˆ’πŸ 𝒙 + 𝑱 𝒏+𝟏 𝒙
  • 15. RECURRENCE FORMULAE FOR 𝑷 𝒏 𝒙 1. 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ(𝒙) 2. 𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙) 3. πŸπ’ + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+𝟏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙) 4. 𝑷 𝒏 β€² 𝒙 = 𝒙𝑷 π’βˆ’πŸ β€² 𝒙 + 𝒏𝑷 π’βˆ’πŸ(𝒙) 5. 𝟏 βˆ’ 𝒙 𝟐 𝑷 𝒏 β€² 𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]
  • 16. PROOF FOR FIRST RECURRENCE RELATION OF 𝑷 𝒏(𝒙) 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ(𝒙) Proof: We know that (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 )βˆ’ 𝟏 𝟐 = 𝒏=𝟎 ∞ 𝑷 𝒏 𝒙 𝒕 𝒏 … (𝟏) Differentiating (1) partially w.r.t. t, we get βˆ’ 𝟏 𝟐 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐 βˆ’πŸπ’™ + πŸπ’• = 𝒏𝑷 𝒏 (𝒙)𝒕 π’βˆ’πŸ Or 𝒙 βˆ’ 𝒕 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐 = (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 ) 𝒏𝑷 𝒏(𝒙)𝒕 π’βˆ’πŸ Or 𝒙 βˆ’ 𝒕 𝑷 𝒏 𝒙 𝒕 𝒏 = (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 ) 𝒏𝑷 𝒏 𝒙 𝒕 π’βˆ’πŸ Equating coefficients of 𝑑 𝑛 from both sides, we get 𝒙𝑷 𝒏 𝒙 βˆ’ 𝑷 π’βˆ’πŸ 𝒙 = 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 βˆ’ πŸπ’π’™π‘· 𝒏 𝒙 + (𝒏 βˆ’ 𝟏)𝑷 π’βˆ’πŸ(𝒙)
  • 17. PROOF FOR SECOND RECURRENCE RELATION OF 𝑷 𝒏(𝒙) 𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙) Proof: We know that (𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 )βˆ’ 𝟏 𝟐 = 𝒏=𝟎 ∞ 𝑷 𝒏 𝒙 𝒕 𝒏 … (𝟏) Differentiating (1) partially w.r.t. x, we get βˆ’ 𝟏 𝟐 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐 . πŸπ’• = 𝑷 𝒏′(𝒙)𝒕 𝒏 i.e., 𝒕(𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 )βˆ’ πŸ‘ 𝟐 = 𝑷 𝒏 β€² 𝒙 𝒕 𝒏 …(2) Again differentiating (1) partially w.r.t. t, we have 𝒙 βˆ’ 𝒕 𝟏 βˆ’ πŸπ’™π’• + 𝒕 𝟐 βˆ’ πŸ‘ 𝟐 = 𝒏𝑷 𝒏 𝒙 𝒕 π’βˆ’πŸ …(3) Dividing (3) by (2), we get 𝒙 βˆ’ 𝒕 𝒕 = 𝒏 𝑷 𝒏(𝒙)𝒕 π’βˆ’πŸ 𝑷 𝒏 β€²(𝒙)𝒕 𝒏 i.e. 𝒏𝑷 𝒏 𝒙 𝒕 𝒏 = (𝒙 βˆ’ 𝒕) 𝑷 𝒏′ 𝒙 𝒕 𝒏 …(4) Equating coefficient of 𝑑 𝑛 from both sides of equation (4) we get: 𝒏𝑷 𝒏 𝒙 = 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙)
  • 18. PROOF FOR THIRD RECURRENCE RELATION OF 𝑷 𝒏(𝒙) πŸπ’ + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+𝟏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² (𝒙) Proof: Since we know that: 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ 𝒙 … (𝟏) Differentiating (1) w.r.t. x, we get 𝒏 + 𝟏 𝑷 𝒏+𝟏 β€² 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ β€² 𝒙 … 𝟐 Substituting for nπ‘₯𝑃𝑛 β€² π‘₯ π‘“π‘Ÿπ‘œπ‘š π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Ÿπ‘’π‘π‘’π‘Ÿπ‘Ÿπ‘’π‘›π‘π‘’ π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘œπ‘› 𝑖𝑛 (2), we obtain 𝒏 + 𝟏 𝑷 𝒏+𝟏 β€² 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏 𝒙 + 𝑷 π’βˆ’πŸ β€² 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸβ€²(𝒙) Or 𝟐𝐧 + 𝟏 𝑷 𝒏 𝒙 = 𝑷 𝒏+πŸβ€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸβ€²(𝒙)
  • 19. PROOF FOR FOURTH RECURRENCE RELATION OF 𝑷 𝒏(𝒙) 𝑷 𝒏 β€² 𝒙 = 𝒙𝑷 π’βˆ’πŸ β€² 𝒙 + 𝒏𝑷 π’βˆ’πŸ 𝒙 Proof: Since we know that: 𝒏 + 𝟏 𝑷 𝒏+𝟏 β€² 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + πŸπ’ + 𝟏 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝒏𝑷 π’βˆ’πŸ β€² 𝒙 … (𝟏) Rewriting (1) as: 𝒏 + 𝟏 𝑷 𝒏+𝟏 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + 𝒏 + 𝟏 𝒙𝑷 𝒏 , 𝒙 + 𝒏 𝒙𝑷 𝒏 , 𝒙 βˆ’ 𝑷 π’βˆ’πŸ , 𝒙 = πŸπ’ + 𝟏 𝑷 𝒏 𝒙 + 𝒏 + 𝟏 𝒙𝑷 𝒏 , 𝒙 + 𝒏 𝟐 𝑷 𝒏(𝒙) = 𝒏 + 𝟏 𝒙𝑷 𝒏 , 𝒙 + 𝒏 𝟐 + πŸπ’ + 𝟏 𝑷 𝒏 𝒙 Or 𝑷 𝒏+𝟏 β€² 𝒙 = 𝒙𝑷 𝒏 β€² 𝒙 + (𝒏 + 𝟏)𝑷 𝒙 …(2) Replacing n by (n-1) in equation (2), we get the required equation
  • 20. PROOF FOR FIFTH RECURRENCE RELATION OF 𝑷 𝒏(𝒙) 𝟏 βˆ’ 𝒙 𝟐 𝑷 𝒏 β€² 𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)] Proof: Rewriting second and fourth recurrence relation of 𝑃𝑛 π‘₯ as: 𝒙𝑷 𝒏 β€² 𝒙 βˆ’ 𝑷 π’βˆ’πŸ β€² 𝒙 = 𝒏𝑷 𝒏 𝒙 …(1) and 𝑷 𝒏 β€² 𝒙 βˆ’ 𝒙𝑷 π’βˆ’πŸ β€² 𝒙 = 𝒏𝑷 π’βˆ’πŸ 𝒙 …(2) Multiplying (1) by x and subtracting from (2), we get 𝟏 βˆ’ 𝒙 𝟐 𝑷 𝒏 β€² 𝒙 = 𝒏[𝑷 π’βˆ’πŸ 𝒙 βˆ’ 𝒙𝑷 𝒏(𝒙)]