SlideShare a Scribd company logo
1 of 11
Download to read offline
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 2 Issue 5 ǁ May. 2013 ǁ PP.69-79
www.ijesi.org 69 | P a g e
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF
UNIVALENT FUNCTIONS
CHENA RAM AND SAROJ SOLANKI
Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur, Rajasthan, India.
ABSTRACT: In this paper, we study a new class of functions defined by Wright generalized hypergeometric
function. Characterization property, the result on modified Hadamard product and integral transform are
obtained. Distortion theorem and radii of starlikeness and convexity are also obtained.
KEY WORDS: Analytic function, Uniformly convex, Wright generalized hypergeometric function, Linear
operator , Hadamard product.
I. INTRODUCTION
Let 𝐴 denote the class of functions of the form
𝑓 𝑧 = 𝑧 + 𝑎 𝑛 𝑧 𝑛
∞
𝑛=2
, 𝑎 𝑛 ≥ 0 1.1
which are analytic and univalent in the unit disk 𝑈 = 𝑧: 𝑧 ∈ ℂ and 𝑧 < 1 .
A function 𝑓 ∈ 𝐴 is said to be in the class of uniformly convex functions of order 𝛾, denoted by
𝑈𝐶𝑉 𝛾 cf.[5] if
Re
𝑧𝑓′′(𝑧)
𝑓′(𝑧)
+ 1 − 𝛾 ≥ 𝜂
𝑧𝑓′′ 𝑧
𝑓′ 𝑧
− 1 , (1.2)
and is said to be in a corresponding subclass of 𝑈𝐶𝑉 𝛾 denoted by 𝑆𝑝 𝛾 if
Re
𝑧𝑓′(𝑧)
𝑓(𝑧)
− 𝛾 ≥ 𝜂
𝑧𝑓′ 𝑧
𝑓 𝑧
− 1 , (1.3)
where −1 ≤ 𝛾 ≤ 1 and 𝑧 ∈ 𝑈.
The class of uniformly convex and uniformly starlike function has been studied by Goodman 1], [2 and Ma
and Minda [11].
If 𝑓(𝑧) of the form (1.1) in class 𝐴 and function 𝑔(𝑧) ∈ 𝐴 defined as
𝑔 𝑧 = 𝑧 + 𝑏 𝑛 𝑧 𝑛
, (1.4)
∞
𝑛=2
then the Hadamard product of 𝑓 𝑧 and 𝑔 𝑧 is given by
𝑓 ∗ 𝑔 𝑧 = 𝑧 + 𝑎 𝑛 𝑏 𝑛 𝑧 𝑛
. (1.5)
∞
𝑛=2
Let 𝑇 denote the subclass of 𝐴 consisting of functions of the form cf. [7]
𝑓 𝑧 = 𝑧 − 𝑎 𝑛 𝑧 𝑛
∞
𝑛=2
, 𝑎 𝑛 ≥ 0 . (1.6)
A function 𝜓 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
; 𝑧 is studied by R.K. Raina [9] as
𝜓 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
; 𝑧 = 𝜔 𝑧 𝜓𝑠𝑞 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 , (1.7)
where
𝜔 =
1
s
j
 Γ 𝛽𝑗
1
q
j
 Γ 𝛼𝑗
, 𝑞, 𝑠 ∈ 𝑁0 (1.8)
and 𝜓𝑠𝑞 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
; 𝑧 is the Wright generalized hypergeometric function introduced by Wright [3] as
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 70 | P a g e
𝜓𝑠𝑞 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
; 𝑧 =
1
q
j
 Γ 𝛼𝑗 + 𝐴𝑗 𝑛 𝑧 𝑛
1
s
j
 Γ 𝛽𝑗 +𝐵𝑗 𝑛 𝑛 !
∞
𝑛=0
, 𝑧 ∈ 𝑈 (1.9)
by making use of the Hadamard product, Raina [9] defined a linear operator Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧 ∶
𝑇 → 𝑇 as
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧 = 𝜓 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
; 𝑧 ∗ 𝑓(𝑧)
= 𝑧 − 𝜎𝑛
∞
𝑛=2
𝑎 𝑛 𝑧 𝑛
, (1.10)
where
𝜎𝑛 =
𝜔
1
q
j
 Γ(𝛼𝑗 + 𝐴𝑗 (𝑛 − 1))
1
s
j
 Γ 𝛽𝑗 +𝐵𝑗 𝑛 − 1) 𝑛 − 1 !
(1.11)
and 𝜔 is defined by equation (1.8).
Definition 1. A function 𝑓 ∈ 𝐴 for −1 ≤ 𝛾 < 1 is said to be in the class 𝑇∗
(𝛾) if and only if
Re
𝑧 Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞
; 𝛽 𝑗 𝐵 𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞
; 𝛽 𝑗 𝐵 𝑗 1,𝑠
𝑓 𝑧
− 𝛾 ≥
𝑧 Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞
; 𝛽 𝑗 𝐵 𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞
; 𝛽 𝑗 𝐵 𝑗 1,𝑠
𝑓 𝑧
−1 , 𝑧 ∈ 𝑈. (1.12)
Definition 2. A function 𝑓 ∈ 𝐴 for −1 ≤ 𝛾 < 1 is said to be in the class 𝑈𝐶𝑉𝑇∗
(𝛾) if and only if
Re 1 +
𝑧 Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞
; 𝛽 𝑗 𝐵 𝑗 1,𝑠
𝑓 𝑧
′′
Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞
; 𝛽 𝑗 𝐵 𝑗 1,𝑠
𝑓 𝑧
′ − 𝛾 ≥
𝑧 Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞
; 𝛽 𝑗 𝐵 𝑗 1,𝑠
𝑓 𝑧
′′
Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞
; 𝛽 𝑗 𝐵 𝑗 1,𝑠
𝑓 𝑧
′ −1 , 𝑧 ∈ 𝑈. (1.13)
II. CHARACTERIZATION PROPERTY
Theorem 2.1. A function 𝑓 𝑧 defined by (1.6) is in the class 𝑇∗
(𝛾) if and only if
2𝑛 − 1 − 𝛾 𝜎𝑛 𝑎 𝑛 ≤
∞
𝑛=2
1 − 𝛾, −1 ≤ 𝛾 < 1 . (2.1)
The result is sharp for the function
𝑓 𝑧 = 𝑧 −
1 − 𝛾
2𝑛 − 1 − 𝛾 𝜎𝑛
𝑧 𝑛
,
where 𝜎𝑛 =
1
s
j
 Γ 𝛽𝑗
1
q
j
 Γ(𝛼𝑗 + 𝐴𝑗 (𝑛 − 1))
1
q
j
 Γ 𝛼𝑗
1
s
j
 Γ 𝛽𝑗 +𝐵𝑗 𝑛 − 1) 𝑛 − 1 !
.
Proof. It is sufficient to show that
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 71 | P a g e
𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
− 1 ≤ Re
𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
− 𝛾 ,
𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
− 1 − Re
𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
− 1 ≤ 1 − 𝛾
we have
𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
− 1 − Re
𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
− 1
≤ 2
𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
− 1
≤ 2
1 − 

2n
𝑛𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1
1 − 

2n
𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1
− 1
or,
≤ 2


2n
(𝑛 − 1)𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1
1 − 

2n
𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1
≤ 1 − 𝛾.
The above inequality must hold for all 𝑧 in 𝑈. Letting 𝑧 → 1−
, we have
≤
2 

2n
(𝑛 − 1)𝜎𝑛 𝑎 𝑛
1 − 

2n
𝜎𝑛 𝑎 𝑛
≤ 1 − 𝛾 .
Therefore,
2𝑛 − 1 − 𝛾 𝜎𝑛
∞
𝑛=2
𝑎 𝑛 ≤ 1 − 𝛾 .
Conversely, if 𝑓 ∈ 𝑇∗
(𝛾) and 𝑧 is real then (2.1) gives
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 72 | P a g e
1 − 

2n
𝑛𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1
1 − 

2n
𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1
− 𝛾 ≥


2n
𝑛 − 1 𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1
1 − 

2n
𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1
,
by letting 𝑧 → 1−
along the real axis, we get
1 − 

2n
𝑛𝜎𝑛 𝑎 𝑛
1 − 

2n
𝜎𝑛 𝑎 𝑛
−


2n
𝑛 − 1 𝜎𝑛 𝑎 𝑛
1 − 

2n
𝜎𝑛 𝑎 𝑛
≥ 𝛾,
1 − (2𝑛 − 1)
∞
𝑛=2
𝜎𝑛 𝑎 𝑛 ≥ 1 − 𝛾 1 − 𝜎𝑛 𝑎 𝑛
∞
𝑛=2
,
which yields the required result, where 𝜎𝑛 is given by (1.11).
Corollary 2.1. Let the function 𝑓(𝑧) defined by (1.6) be in the class 𝑇∗
(𝛾), then
𝑎 𝑛 ≤
1 − 𝛾
2𝑛 − 1 − 𝛾 𝜎𝑛
, 𝑛 ≥ 2,
where
𝜎𝑛 =
1
s
j
 Γ 𝛽𝑗
1
q
j
 Γ(𝛼𝑗 + 𝐴𝑗 (𝑛 − 1))
1
q
j
 Γ 𝛼𝑗
1
s
j
 Γ 𝛽𝑗 +𝐵𝑗 𝑛 − 1) 𝑛 − 1 !
, 𝑛 ≥ 2.
III. Growth and Distortion theorems
Theorem II.1. Let the function 𝑓 𝑧 defined by (1.6) be in the class 𝑇∗
𝛾 , then
𝑧 −
1−𝛾
3−𝛾
𝑧 2
≤ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧 ≤ 𝑧 +
1−𝛾
3−𝛾
𝑧 2
(3.1)
and
1 − 2
1−𝛾
3−𝛾
𝑧 ≤ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
≤ 1 + 2
1−𝛾
3−𝛾
𝑧 . (3.2)
Equality holds for the function
𝑓 𝑧 = 𝑧 −
1 − 𝛾
3 − 𝛾
𝑧2
𝜎2
,
where 𝜎2 =
1
s
j
 Γ 𝛽 𝑗
1
q
j
 Γ(𝛼 𝑗 +𝐴 𝑗 )
1
q
j
 Γ 𝛼 𝑗
1
s
j
 Γ 𝛽 𝑗 +𝐵 𝑗
, 𝑛 ≥ 2. 3.3
Proof. Let 𝑓(𝑧) ∈ 𝑇∗
𝛾 . By using(1.10), we get
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 73 | P a g e
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧 ≤ 𝑧 + 𝜎𝑛
∞
𝑛=2
𝑎 𝑛 𝑧 𝑛
,
by using (2.1) i.e.
𝜎𝑛
∞
𝑛=2
𝑎 𝑛 ≤
1 − 𝛾
2𝑛 − 1 − 𝛾
=
1 − 𝛾
3 − 𝛾
, 𝑛 ≥ 2,
then, we obtain
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧 ≤ 𝑧 + 𝑧 2
𝑎 𝑛 𝜎𝑛 ,
∞
𝑛=2
Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧 ≤ 𝑧 1 +
1−𝛾
3−𝛾
𝑧 , (3.4)
and Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧 ≥ 𝑧 1 −
1−𝛾
3−𝛾
𝑧 . (3.5)
Similarly Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
≥ 1 − 2
1−𝛾
3−𝛾
𝑧 , (3.6)
And Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧
′
≤ 1 + 2
1−𝛾
3−𝛾
𝑧 . (3.7)
By using (3.4) and (3.5), we obtain
𝑧 −
1 − 𝛾
3 − 𝛾
𝑧 2
≤ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
𝑓 𝑧 ≤ 𝑧 +
1 − 𝛾
3 − 𝛾
𝑧 2
,
and by using (3.6) and (3.7), we get
1 − 2
1−𝛾
3−𝛾
𝑧 ≤ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞
; 𝛽𝑗 𝐵𝑗 1,𝑠
; 𝑧 𝑓 𝑧
′
≤ 1 + 2
1−𝛾
3−𝛾
𝑧 .
The bounds (3.1) and (3.2) are attained for functions 𝑓 𝑧 given by
𝑓 𝑧 = 𝑧 −
1 − 𝛾
3 − 𝛾 𝜎2
𝑧2
,
where 𝜎2 is given by (3.3).
Theorem III.2 Let the function 𝑓 𝑧 defined by (1.6) and
𝑔 𝑧 = 𝑧 − 𝑏 𝑛 𝑧 𝑛
∞
𝑛=2
(3.8)
be in the class 𝑇∗
(𝛾). Then the function 𝑕(𝑧) defined by
𝑕 𝑧 = 1 − 𝜆 𝑓 𝑧 + 𝜆𝑔 𝑧 = 𝑧 − 𝑞 𝑛 𝑧 𝑛
,
∞
𝑛=2
3.9
where 𝑞 𝑛 = 1 − 𝜆 𝑎 𝑛 + 𝜆𝑏 𝑛 , (0 ≤ 𝜆 ≤ 1) is also in class 𝑇∗
𝛾
Proof. By using (2.1) for 𝑓 𝑧 and 𝑔(𝑧), we have
2𝑛 − 1 − 𝛾 𝜎𝑛 𝑎 𝑛 ≤ 1 − 𝛾
∞
𝑛=2
(3.10)
And
2𝑛 − 1 − 𝛾 𝜎𝑛 𝑏 𝑛 ≤ 1 − 𝛾 .
∞
𝑛=2
(3.11)
On using (3.10) and (3.11) in (3.9), we get
𝑕 𝑧 = 1 − 𝜆 𝑧 − 𝑎 𝑛 𝑧 𝑛
∞
𝑛=2
+ 𝜆 𝑧 − 𝑏 𝑛 𝑧 𝑛
∞
𝑛=2
,
= 𝑧 − [ 1 − 𝜆
∞
𝑛=2
𝑎 𝑛 + 𝜆𝑏 𝑛 ]𝑧 𝑛
,
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 74 | P a g e
then
2𝑛 − 1 − 𝛾 𝜎𝑛 [ 1 − 𝜆 𝑎 𝑛 + 𝜆𝑏 𝑛 ]
∞
𝑛=2
= 2𝑛 − 1 − 𝛾 1 − 𝜆 𝜎𝑛 𝑎 𝑛 +
∞
𝑛=2
𝜆 2𝑛 − 1 − 𝛾 𝜎𝑛 𝑏 𝑛 ,
∞
𝑛=2
≤ 1 − 𝜆 1 − 𝛾 + 𝜆 1 − 𝛾 ,
≤ 1 − 𝛾 .
So 𝑕(𝑧) is also in the class 𝑇∗
(𝛾).
IV CLOSURE THEOREM
Theorem 4.1. Let the functions
𝑓𝑗 𝑧 = 𝑧 − 𝑎 𝑛,𝑗
∞
𝑛=2
𝑧 𝑛
, 𝑗 = 1,2, … … … 𝑚 (4.1)
be in the classes 𝑇∗
𝛾𝑗 𝑗 = 1,2, … … … 𝑚 respectively. Then the function 𝑕(𝑧) defined by
𝑕 𝑧 = 𝑧 −
1
𝑚
𝑎 𝑛,𝑗
𝑚
𝑗 =1
∞
𝑛=2
𝑧 𝑛
(4.2)
is in the class 𝑇∗
(𝛾), where
𝛾 = min1≤𝑗 ≤𝑚 𝛾𝑗 , with 0 ≤ 𝛾𝑗 < 1. (4.3)
Proof. Since 𝑓𝑗 ∈ 𝑇∗
𝛾𝑗 , (𝑗 = 1,2, … … … 𝑚). By using (2.1) in (4.2), we get
𝜎𝑛 2𝑛 − 1 − 𝛾
1
𝑚
𝑎 𝑛,𝑗
𝑚
𝑗 =1
∞
𝑛=2
=
1
𝑚
2𝑛 − 1 − 𝛾 𝜎𝑛
∞
𝑛=2
𝑎 𝑛,𝑗
𝑚
𝑗=1
≤
1
𝑚
1 − 𝛾𝑗
𝑚
𝑗 =1
≤ 1 − 𝛾 by using 4.3 .
Hence 𝑕 ∈ 𝑇∗
𝛾 so the proof is completed.
V Results involving modified Hadamard product
Let 𝑓 𝑧 and 𝑔(𝑧) defined by (1.6) and (3.8) respectively. Then
𝑓 ∗ 𝑔)(𝑧 = 𝑧 − 𝑎 𝑛 𝑏 𝑛 𝑧 𝑛
∞
𝑛=2
be the modified Hadamard product of function 𝑓(𝑧) and 𝑔(𝑧).
Theorem 5.1. For functions
𝑓𝑗 𝑧 = 𝑧 − 𝑎 𝑛,𝑗
∞
𝑛=2
𝑧 𝑛
, 𝑎 𝑛,𝑗 ≥ 0; 𝑧 ∈ 𝑈; 𝑗 = 1,2 ,
let 𝑓1(𝑧) ∈ 𝑇∗
(𝛾) and 𝑓2 𝑧 ∈ 𝑇∗
𝜂 . Then (𝑓1 ∗ 𝑓2) 𝑧 ∈ 𝑇∗
𝜉 ,
where 𝜉 = 1 −
2 1−𝛾 1−𝛽
3−𝛾 3−𝛽 𝜎2− 1−𝛾 1−𝛽
(5.1)
and 𝜎2 =
1
s
j
 Γ 𝛽𝑗
1
q
j
 Γ(𝛼𝑗 + 𝐴𝑗 )
1
q
j
 Γ 𝛼𝑗
1
s
j
 Γ 𝛽𝑗 +𝐵𝑗
. 5.2
The result is best possible for the functions
𝑓1 = 𝑧 −
1−𝛾
3−𝛾 𝜎2
𝑧2
, (5.3)
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 75 | P a g e
𝑓2 = 𝑧 −
1−𝜂
3−𝜂 𝜎2
𝑧2
. (5.4)
Proof . By using (2.1), it is sufficient to prove that
2𝑛 − 1 − 𝜉
1 − 𝜉
∞
𝑛=2
𝜎𝑛 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 1, (5.5)
where ξ is defined by (5.1) under the hypothesis, it follows from (2.1)
2𝑛 − 1 − 𝛾
1 − 𝛾
∞
𝑛=2
𝜎𝑛 𝑎 𝑛,1 ≤ 1 (5.6)
and
2𝑛 − 1 − 𝜂
1 − 𝜂
∞
𝑛=2
𝜎𝑛 𝑎 𝑛,2 ≤ 1. (5.7)
By using Cauchy-Schwarz inequality
2𝑛 − 1 − 𝛾
1
2 2𝑛 − 1 − 𝜂
1
2
1 − 𝛾 1 − 𝜂
∞
𝑛=2
𝜎𝑛 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 1, (5.8)
thus, to find largest 𝜉 such that
2𝑛 − 1 − 𝜉
1 − 𝜉
∞
𝑛=2
𝜎𝑛 𝑎 𝑛,1 𝑎 𝑛,2 ≤
2𝑛 − 1 − 𝛾
1
2 2𝑛 − 1 − 𝜂
1
2
1 − 𝛾 1 − 𝜂
∞
𝑛=2
𝜎𝑛 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 1,
𝑎 𝑛,1 𝑎 𝑛,2 ≤
2𝑛−1−𝛾
1
2 2𝑛−1−𝜂
1
2 (1−𝜉)
1−𝛾 1−𝜂 2𝑛−1−𝜉
, for 𝑛 ≥ 2 (5.9)
then (5.8) reduces to,
𝑎 𝑛,1 𝑎 𝑛,2 ≤
1−𝛾 1−𝜂
2𝑛−1−𝛾
1
2 2𝑛−1−𝜂
1
2 𝜎 𝑛
, for 𝑛 ≥ 2 (5.10)
it is sufficient to find the largest 𝜎 such that
1 − 𝛾 1 − 𝜂
2𝑛 − 1 − 𝛾
1
2 2𝑛 − 1 − 𝜂
1
2 𝜎𝑛
≤
2𝑛 − 1 − 𝛾
1
2 2𝑛 − 1 − 𝜂
1
2 (1 − 𝜉)
1 − 𝛾 1 − 𝜂 2𝑛 − 1 − 𝜉
, for 𝑛 ≥ 2
2𝑛 − 1 − 𝜉
1 − 𝜉
≤
2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛
1 − 𝛾 1 − 𝜂
, (5.11)
𝜉 2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 − 1 − 𝛾 1 − 𝜂
≤ 2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 − 2𝑛 − 2 + 1 1 − 𝛾 1 − 𝜂 ,
≤ 2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 − 1 − 𝛾 1 − 𝜂 − 2 𝑛 − 1 1 − 𝛾 1 − 𝜂 ,
𝜉 ≤ 1 −
2(𝑛 − 1) 1 − 𝛾 1 − 𝜂
2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 − 1 − 𝛾 1 − 𝜂
,
where
𝜎𝑛 =
1
s
j
 Γ 𝛽𝑗
1
q
j
 Γ(𝛼𝑗 + 𝐴𝑗 (𝑛 − 1))
1
q
j
 Γ 𝛼𝑗
1
s
j
 Γ 𝛽𝑗 +𝐵𝑗 𝑛 − 1) 𝑛 − 1 !
for 𝑛 ≥ 2.
𝜎𝑛 is decreasing function of 𝑛(𝑛 ≥ 2), we get
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 76 | P a g e
0 ≤ 𝜎𝑛 ≤ 𝜎2 =
1
s
j
 Γ 𝛽𝑗
1
q
j
 Γ(𝛼𝑗 + 𝐴𝑗 )
1
q
j
 Γ 𝛼𝑗
1
s
j
 Γ 𝛽𝑗 +𝐵𝑗
.
𝜉 = 1 −
2 1 − 𝛾 1 − 𝜂
3 − 𝛾 3 − 𝜂 𝜎2 − 1 − 𝛾 1 − 𝜂
,
where 𝜎2 is given by (5.2).This completes the proof of Theorem.
Theorem V.2. Let the functions
𝑓𝑗 𝑧 = 𝑧 − 𝑎 𝑛,𝑗
∞
𝑛=2
𝑧 𝑛
, 𝑎 𝑛,𝑗 ≥ 0; 𝐽 = 1,2
be in the class 𝑇∗
𝛾 . Then 𝑓1 ∗ 𝑓2 𝑧 ∈ 𝑇∗
𝜌 , where
𝜌 = 1 −
2 1 − 𝛾 2
3 − 𝛾 2 𝜎2 − 1 − 𝛾 2
and 𝜎2 is given by (5.2).
Proof. if we set 𝛾 = 𝜂 in the above Theorem, the results follows.
Theorem V.3. Let the function 𝑓 𝑧 defined by (1.6) be in the class 𝑇∗
(𝛾)
and also let
𝑔 𝑧 = 𝑧 − 𝑏 𝑛 𝑧 𝑛
∞
𝑛=2
, for 𝑏 𝑛 ≤ 1 . (5.12)
Then 𝑓 ∗ 𝑔 𝑧 ∈ 𝑇∗
𝛾 .
Proof. By using (2.1), we get
𝜎 𝑛 2 𝑛 − 1 − 𝛾 𝑎 𝑛 𝑏 𝑛
∞
𝑛 =2
= 𝜎 𝑛 2 𝑛 − 1 − 𝛾 𝑎 𝑛 𝑏 𝑛
∞
𝑛 =2
≤ 𝜎 𝑛 2 𝑛 − 1 − 𝛾 𝑎 𝑛 ,
∞
𝑛 =2
≤ 1 − 𝛾 ,
where 𝜎 𝑛 is given by (5.2). Hence it follows that 𝑓 ∗ 𝑔 𝑧 ∈ 𝑇 ∗
𝛾
Theorem 5.4. Let the functions
𝑓 𝑗 𝑧 = 𝑧 − 𝑎 𝑛 , 𝑗
∞
𝑛 =2
𝑧 𝑛
, 𝑗 = 1,2 (5.13)
be in the class 𝑇 ∗
( 𝛾 ). Then the function 𝑕 𝑧 defined by
𝑕 𝑧 = 𝑧 − ( 𝑎 𝑛 ,1
2
+ 𝑎 𝑛 ,2
2
∞
𝑛 =2
) 𝑧 𝑛
(5.14)
is in the class 𝑇 ∗
Δ , where
Δ = 1 −
4(1− 𝛾 )2
3− 𝛾 2 𝜎 2−2(1− 𝛾 )2 (5.15)
and 𝜎 2 is given by (5.2).
Proof. By using theorem 2.1, it is sufficient to prove that
𝜎 𝑛
2 𝑛 − 1 − Δ
1 − Δ
∞
𝑛 =2
( 𝑎 𝑛 ,1
2
+ 𝑎 𝑛 ,2
2
) ≤ 1, (5.16)
where 𝑓 𝑗 ∈ 𝑇 ∗
𝛾 𝑗 𝑗 = 1,2 . Then
𝜎 𝑛
∞
𝑛 =2
2 𝑛 − 1 − 𝛾
1 − 𝛾
𝑎 𝑛 ,1 ≤ 1,
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 77 | P a g e
𝜎 𝑛
2 𝑛 − 1 − 𝛾
1 − 𝛾
2
𝑎 𝑛 ,1
2
∞
𝑛 =2
≤ 1, (5.17)
And 𝜎 𝑛
∞
𝑛 =2
2 𝑛 −1− 𝛾
1− 𝛾
𝑎 𝑛 ,2 ≤ 1,
𝜎 𝑛
2 𝑛 − 1 − 𝛾
1 − 𝛾
2
𝑎 𝑛 ,2
2
∞
𝑛 =2
≤ 1, (5.18)
then
1
2
𝜎 𝑛
2 𝑛 − 1 − 𝛾
1 − 𝛾
2∞
𝑛 =2
𝑎 𝑛 ,1
2
+ 𝑎 𝑛 ,2
2
≤ 1. (5.19)
By comparing (5.16) and (5.19), we obtain
2
2 𝑛 − 1 − Δ
1 − Δ
= 𝜎 𝑛
2 𝑛 − 1 − 𝛾
1 − 𝛾
2
,
therefore,
Δ 2 𝑛 − 1 − 𝛾 2
𝜎 𝑛 − 2 1 − 𝛾 2
= 2 𝑛 − 1 − 𝛾 2
𝜎 𝑛 − 2 2 𝑛 − 1 1 − 𝛾 2
,
Δ = 1 −
4( 𝑛 − 1) 1 − 𝛾 2
2 𝑛 − 1 − 𝛾 2 𝜎 𝑛 − 2 1 − 𝛾 2
.
Δ = 1 −
4 1 − 𝛾 2
3 − 𝛾 2 𝜎 2 − 2 1 − 𝛾 2
, 𝑛 ≥ 2,
which proves the Theorem.
VI. INTEGRAL TRANSFORM OF THE CLASS 𝑻 ∗
( 𝜸 )
Let the function 𝑓 𝑧 ∈ 𝑇 ∗
( 𝛾 ). Then The integral transform
𝑉 𝜆 𝑓 𝑧 = 𝜆 𝑡
𝑓 𝑡𝑧
𝑡
1
0
𝑑𝑡 , 6.1
where 𝜆 is a real valued, non negative weight function normalized so that
𝜆 𝑡
1
0
𝑑𝑡 = 1. 6.2
Since special cases of 𝜆 ( 𝑡 ) are particularly interesting such as
𝜆 𝑡 = 1 + 𝑐 𝑡 𝑐
, 𝑐 > −1 , 6.3
for which 𝑉 𝜆 is known as Bernadi operator and
𝜆 𝑡 =
1 + 𝑐 𝛿
Γ 𝛿
𝑡 𝑐
log
1
𝑡
𝛿 −1
, 𝑐 > −1, 𝛿 ≥ 0 6.4
this gives the Komatu operator cf. 12 .
ThoremVI.1. Let the function 𝑓 ∈ 𝑇 ∗
𝛾 , then 𝑉 𝜆 ( 𝑓 ) ∈ 𝑇 ∗
( 𝛾 ).
Proof. By using (6.1) and (6.4), we have
𝑉 𝜆 𝑓 =
𝑐 + 1 𝛿
Γ 𝛿
−1 𝛿 −1
𝑡 𝑐
(log 𝑡 ) 𝛿 −1
𝑧 − 𝑎 𝑛 𝑧 𝑛
𝑡 𝑛 −1
∞
𝑛 =2
𝑑𝑡
1
0
,
=
𝑐 + 1 𝛿 −1 𝛿 −1
Γ 𝛿
𝑡 𝑐
(log 𝑡 ) 𝛿 −1
𝑧 − 𝑎 𝑛 𝑧 𝑛
𝑡 𝑛 −1
∞
𝑛 =2
1
0
,
𝑉 𝜆 𝑓 = 𝑧 −
𝑐 + 1
𝑐 + 𝑛
𝛿
𝑎 𝑛 𝑧 𝑛
, (6.5)
∞
𝑛 =2
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 78 | P a g e
by (2.1), 𝑓 ∈ 𝑇 ∗
𝛾 , if and only if
2 𝑛 − 1 − 𝛾
1 − 𝛾
1
s
j
 Γ 𝛽 𝑗
1
q
j
 Γ( 𝛼 𝑗
+ 𝐴 𝑗 ( 𝑛 − 1))
1
q
j
 Γ 𝛼 𝑗
1
s
j
 Γ 𝛽 𝑗 + 𝐵 𝑗 𝑛 − 1) 𝑛 − 1 !
∞
𝑛 =2
𝑐 + 1
𝑐 + 𝑛
𝛿
𝑎 𝑛 ≤ 1,
since
𝑐 + 1
𝑐 + 𝑛
< 1, therefore,
2 𝑛 − 1 − 𝛾
1 − 𝛾
1
s
j
 Γ 𝛽 𝑗
1
q
j
 Γ( 𝛼 𝑗
+ 𝐴 𝑗 ( 𝑛 − 1))
1
q
j
 Γ 𝛼 𝑗
1
s
j
 Γ 𝛽 𝑗 + 𝐵 𝑗 𝑛 − 1) 𝑛 − 1 !
∞
𝑛 =2
𝑎 𝑛 ≤ 1.
Proof is completes.
Theorem 6.2. Let the function 𝑓 ∈ 𝑇 ∗
𝛾 . Then 𝑉 𝜆 ( 𝑓 ) is starlike of order 𝜁 0 ≤ 𝜁 < 1 in 𝑧 < 𝑅1, where
𝑅1 = inf
𝑛
𝑐 + 𝑛
𝑐 + 1
𝛿
1 − 𝜁 2 𝑛 − 1 − 𝛾 𝜎 𝑛
𝑛 − 𝜁 1 − 𝛾
1
𝑛 −1
(6.6)
and 𝜎 𝑛 is given by (1.11).
Proof. It suffices to prove that
𝑧 𝑉 𝜆 𝑓 ( 𝑧 ) ′
𝑉 𝜆 𝑓 ( 𝑧 )
− 1 < 1 − 𝜁 , (6.7)
− 

2n
𝑛 − 1
𝑐 + 1
𝑐 + 𝑛
𝛿
𝑎 𝑛 𝑧 𝑛 −1
1 − 

2n
𝑐 + 1
𝑐 + 𝑛
𝛿
𝑎 𝑛 𝑧 𝑛 −1
< 1 − 𝜁 ,
therefore
𝑛 − 1
𝑐 + 1
𝑐 + 𝑛
𝛿
𝑎 𝑛 𝑧 𝑛 −1
≤ 1 − 𝜁 − 1 − 𝜁
𝑐 + 1
𝑐 + 𝑛
𝛿
𝑎 𝑛 𝑧 𝑛 −1
∞
𝑛 =2
∞
𝑛 =2
,
𝑎 𝑛 𝑧 𝑛 −1
≤
𝑐 + 𝑛
𝑐 + 1
𝛿
1 − 𝜁
𝑛 − 𝜁
∞
𝑛 =2
, 6.8
(6.8) is true if
𝑧 ≤
𝑐 + 𝑛
𝑐 + 1
𝛿
1 − 𝜁 2 𝑛 − 1 − 𝛾 𝜎 𝑛
𝑛 − 𝜁 1 − 𝛾
1
𝑛 −1 , 𝑛 ≥ 2, 6.9
where 𝜎 𝑛 is defined by (1.11).
Proof of the Theorem is completed.
Theorem 6.3. Let the function 𝑓 ∈ 𝑇 ∗
𝛾 . Then 𝑉 𝜆 ( 𝑓 ) is convex of order 𝜁 0 ≤ 𝜁 < 1 in 𝑧 < 𝑅2, where
𝑅2 = inf
𝑛
𝑐 + 𝑛
𝑐 + 1
𝛿
1 − 𝜁 2 𝑛 − 1 − 𝛾
𝑛 𝑛 − 𝜁 1 − 𝛾
𝜎 𝑛
1
𝑛 −1
, 6.10
and 𝜎 𝑛 is defined by (1.11).
Proof. The proof of the Theorem can be obtained as Theorem 6.2.
REFERENCES
[1]. A.W. Goodman (1991): On uniformly convex functions, Ann. Polon. Math., 56, 87-92.
[2]. A.W. Goodman (1991): On uniformly starlike functions, J. Math. Anal. and Appl., 155, 364-370.
[3]. E. M. Wright (1935): The asymptotic expansion of the hyper-geometric functions I, J. London, Math. Soc., 10, 286-293
INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT
www.ijesi.org 79 | P a g e
[4]. F. Ronning (1993): Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118,
189-196.
[5]. F. Ronning (1995): Integral representations for bounded starlike functions, Anal. Prolon. Math., 60, 289-297.
[6]. G. Murugusundaramoorthy, T. Rosy and M. Darus (2005): A subclass of uniformly convex functions associated with certain
fractional calculus operators, 6(3), Art 86. I 1-21.
[7]. H. Silverman (1975): Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, 109-116.
[8]. R. Bharati, R. Parvathan and A. Swaminathan (1997): On subclass of uniformly convex functions and corresponding class of
starlike functions. Tamkang J. of Math., 28(1), 17-33.
[9]. R.K. Raina (2006): Certain subclasses of analytic functions with fixed argument of coefficients involving the wright’s function,
Tamsui Oxford J. of Math. Sci., 22(1).
[10]. Schild and H. Silverman (1975): Convolution of univalent functions with negative
[11]. coefficients, Ann. Univ. Marie curie-sklodowska sect. A, 29, 99-107.
[12]. W. Ma and D. Minda, (1992): Uniformly convex functions, Ann. Polon. Math., 57,165-175.
[13]. Y.C. Kim and F. Ronning (2001): Integral transform of certain subclasses of analytic
[14]. functions, J. Math. Anal. Appl., 258, 466-489.

More Related Content

What's hot

Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Nurkhalifah Anwar
 
Πρόσθεση και Αφαίρεση κλασμάτων
Πρόσθεση και Αφαίρεση κλασμάτωνΠρόσθεση και Αφαίρεση κλασμάτων
Πρόσθεση και Αφαίρεση κλασμάτωνteaghet
 
Some approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorsSome approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorseSAT Journals
 
On generating functions of biorthogonal polynomials
On generating functions of biorthogonal polynomialsOn generating functions of biorthogonal polynomials
On generating functions of biorthogonal polynomialseSAT Journals
 
Ta 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra linealTa 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra linealjhonatanVsquezArriag
 
Bo2422422286
Bo2422422286Bo2422422286
Bo2422422286IJMER
 
Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Alexander Decker
 
Polynomial function 10
Polynomial function 10Polynomial function 10
Polynomial function 10AjayQuines
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةMohammedRazzaqSalman
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionIJMERJOURNAL
 
Numerical Approximation of Filtration Processes through Porous Media
Numerical Approximation of Filtration Processes through Porous MediaNumerical Approximation of Filtration Processes through Porous Media
Numerical Approximation of Filtration Processes through Porous MediaRaheel Ahmed
 
Gauge Theory for Beginners.pptx
Gauge Theory for Beginners.pptxGauge Theory for Beginners.pptx
Gauge Theory for Beginners.pptxHassaan Saleem
 

What's hot (19)

Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
 
Week 12
Week 12Week 12
Week 12
 
Πρόσθεση και Αφαίρεση κλασμάτων
Πρόσθεση και Αφαίρεση κλασμάτωνΠρόσθεση και Αφαίρεση κλασμάτων
Πρόσθεση και Αφαίρεση κλασμάτων
 
Some approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operatorsSome approximation properties of modified baskakov stancu operators
Some approximation properties of modified baskakov stancu operators
 
On generating functions of biorthogonal polynomials
On generating functions of biorthogonal polynomialsOn generating functions of biorthogonal polynomials
On generating functions of biorthogonal polynomials
 
Ma2002 1.12 rm
Ma2002 1.12 rmMa2002 1.12 rm
Ma2002 1.12 rm
 
Ta 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra linealTa 2018-1-2404-24109 algebra lineal
Ta 2018-1-2404-24109 algebra lineal
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Bo2422422286
Bo2422422286Bo2422422286
Bo2422422286
 
Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...Development of implicit rational runge kutta schemes for second order ordinar...
Development of implicit rational runge kutta schemes for second order ordinar...
 
Module 6 the chain rule
Module 6 the chain ruleModule 6 the chain rule
Module 6 the chain rule
 
Polynomial function 10
Polynomial function 10Polynomial function 10
Polynomial function 10
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
 
C0560913
C0560913C0560913
C0560913
 
Numerical Approximation of Filtration Processes through Porous Media
Numerical Approximation of Filtration Processes through Porous MediaNumerical Approximation of Filtration Processes through Porous Media
Numerical Approximation of Filtration Processes through Porous Media
 
Act math lnes
Act math   lnesAct math   lnes
Act math lnes
 
CCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCC
 
Gauge Theory for Beginners.pptx
Gauge Theory for Beginners.pptxGauge Theory for Beginners.pptx
Gauge Theory for Beginners.pptx
 

Viewers also liked

Bahan poster jagung(2)
Bahan poster jagung(2)Bahan poster jagung(2)
Bahan poster jagung(2)rizky hadi
 
Websites' evaluation (Webquest)
Websites' evaluation (Webquest)Websites' evaluation (Webquest)
Websites' evaluation (Webquest)marinoromi
 
Lara Croft, That Thing analysis
Lara Croft, That Thing analysisLara Croft, That Thing analysis
Lara Croft, That Thing analysisSiobhanRalph
 
Meilleures photos d 'actualite de l'an 2009
Meilleures photos d 'actualite de l'an 2009 Meilleures photos d 'actualite de l'an 2009
Meilleures photos d 'actualite de l'an 2009 Kostas Tampakis
 
Evangelio San Marcos 13, 24 32
Evangelio San Marcos 13,  24 32Evangelio San Marcos 13,  24 32
Evangelio San Marcos 13, 24 32monica eljuri
 
Web Content Personalization: Three Case Studies
Web Content Personalization: Three Case StudiesWeb Content Personalization: Three Case Studies
Web Content Personalization: Three Case StudiesForaker
 

Viewers also liked (11)

Bahan poster jagung(2)
Bahan poster jagung(2)Bahan poster jagung(2)
Bahan poster jagung(2)
 
What is web personalization
What is web personalizationWhat is web personalization
What is web personalization
 
Websites' evaluation (Webquest)
Websites' evaluation (Webquest)Websites' evaluation (Webquest)
Websites' evaluation (Webquest)
 
Lara Croft, That Thing analysis
Lara Croft, That Thing analysisLara Croft, That Thing analysis
Lara Croft, That Thing analysis
 
Meilleures photos d 'actualite de l'an 2009
Meilleures photos d 'actualite de l'an 2009 Meilleures photos d 'actualite de l'an 2009
Meilleures photos d 'actualite de l'an 2009
 
Global Warming
Global WarmingGlobal Warming
Global Warming
 
Evangelio San Marcos 13, 24 32
Evangelio San Marcos 13,  24 32Evangelio San Marcos 13,  24 32
Evangelio San Marcos 13, 24 32
 
Monster Hunter
Monster HunterMonster Hunter
Monster Hunter
 
Web personalization
Web personalizationWeb personalization
Web personalization
 
Isite Design Path To Personalization
Isite Design Path To PersonalizationIsite Design Path To Personalization
Isite Design Path To Personalization
 
Web Content Personalization: Three Case Studies
Web Content Personalization: Three Case StudiesWeb Content Personalization: Three Case Studies
Web Content Personalization: Three Case Studies
 

Similar to J256979

publisher in research
publisher in researchpublisher in research
publisher in researchrikaseorika
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationIJERA Editor
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Demetrio Ccesa Rayme
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...iosrjce
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions iosrjce
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mappinginventionjournals
 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...IJMER
 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesIOSR Journals
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Rai University
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Lecture 5 backpropagation
Lecture 5 backpropagationLecture 5 backpropagation
Lecture 5 backpropagationParveenMalik18
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
 

Similar to J256979 (20)

publisher in research
publisher in researchpublisher in research
publisher in research
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
 
E0561719
E0561719E0561719
E0561719
 
Backpropagation
BackpropagationBackpropagation
Backpropagation
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...A Class of Polynomials Associated with Differential Operator and with a Gener...
A Class of Polynomials Associated with Differential Operator and with a Gener...
 
On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions On Certain Classess of Multivalent Functions
On Certain Classess of Multivalent Functions
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
 
Matrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence SpacesMatrix Transformations on Some Difference Sequence Spaces
Matrix Transformations on Some Difference Sequence Spaces
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 
Periodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral EquationsPeriodic Solutions for Non-Linear Systems of Integral Equations
Periodic Solutions for Non-Linear Systems of Integral Equations
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Lecture 5 backpropagation
Lecture 5 backpropagationLecture 5 backpropagation
Lecture 5 backpropagation
 
A05330107
A05330107A05330107
A05330107
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 

Recently uploaded

My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 

Recently uploaded (20)

My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 

J256979

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 2 Issue 5 ǁ May. 2013 ǁ PP.69-79 www.ijesi.org 69 | P a g e INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS CHENA RAM AND SAROJ SOLANKI Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur, Rajasthan, India. ABSTRACT: In this paper, we study a new class of functions defined by Wright generalized hypergeometric function. Characterization property, the result on modified Hadamard product and integral transform are obtained. Distortion theorem and radii of starlikeness and convexity are also obtained. KEY WORDS: Analytic function, Uniformly convex, Wright generalized hypergeometric function, Linear operator , Hadamard product. I. INTRODUCTION Let 𝐴 denote the class of functions of the form 𝑓 𝑧 = 𝑧 + 𝑎 𝑛 𝑧 𝑛 ∞ 𝑛=2 , 𝑎 𝑛 ≥ 0 1.1 which are analytic and univalent in the unit disk 𝑈 = 𝑧: 𝑧 ∈ ℂ and 𝑧 < 1 . A function 𝑓 ∈ 𝐴 is said to be in the class of uniformly convex functions of order 𝛾, denoted by 𝑈𝐶𝑉 𝛾 cf.[5] if Re 𝑧𝑓′′(𝑧) 𝑓′(𝑧) + 1 − 𝛾 ≥ 𝜂 𝑧𝑓′′ 𝑧 𝑓′ 𝑧 − 1 , (1.2) and is said to be in a corresponding subclass of 𝑈𝐶𝑉 𝛾 denoted by 𝑆𝑝 𝛾 if Re 𝑧𝑓′(𝑧) 𝑓(𝑧) − 𝛾 ≥ 𝜂 𝑧𝑓′ 𝑧 𝑓 𝑧 − 1 , (1.3) where −1 ≤ 𝛾 ≤ 1 and 𝑧 ∈ 𝑈. The class of uniformly convex and uniformly starlike function has been studied by Goodman 1], [2 and Ma and Minda [11]. If 𝑓(𝑧) of the form (1.1) in class 𝐴 and function 𝑔(𝑧) ∈ 𝐴 defined as 𝑔 𝑧 = 𝑧 + 𝑏 𝑛 𝑧 𝑛 , (1.4) ∞ 𝑛=2 then the Hadamard product of 𝑓 𝑧 and 𝑔 𝑧 is given by 𝑓 ∗ 𝑔 𝑧 = 𝑧 + 𝑎 𝑛 𝑏 𝑛 𝑧 𝑛 . (1.5) ∞ 𝑛=2 Let 𝑇 denote the subclass of 𝐴 consisting of functions of the form cf. [7] 𝑓 𝑧 = 𝑧 − 𝑎 𝑛 𝑧 𝑛 ∞ 𝑛=2 , 𝑎 𝑛 ≥ 0 . (1.6) A function 𝜓 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 ; 𝑧 is studied by R.K. Raina [9] as 𝜓 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 ; 𝑧 = 𝜔 𝑧 𝜓𝑠𝑞 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 , (1.7) where 𝜔 = 1 s j  Γ 𝛽𝑗 1 q j  Γ 𝛼𝑗 , 𝑞, 𝑠 ∈ 𝑁0 (1.8) and 𝜓𝑠𝑞 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 ; 𝑧 is the Wright generalized hypergeometric function introduced by Wright [3] as
  • 2. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 70 | P a g e 𝜓𝑠𝑞 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 ; 𝑧 = 1 q j  Γ 𝛼𝑗 + 𝐴𝑗 𝑛 𝑧 𝑛 1 s j  Γ 𝛽𝑗 +𝐵𝑗 𝑛 𝑛 ! ∞ 𝑛=0 , 𝑧 ∈ 𝑈 (1.9) by making use of the Hadamard product, Raina [9] defined a linear operator Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ∶ 𝑇 → 𝑇 as Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 = 𝜓 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 ; 𝑧 ∗ 𝑓(𝑧) = 𝑧 − 𝜎𝑛 ∞ 𝑛=2 𝑎 𝑛 𝑧 𝑛 , (1.10) where 𝜎𝑛 = 𝜔 1 q j  Γ(𝛼𝑗 + 𝐴𝑗 (𝑛 − 1)) 1 s j  Γ 𝛽𝑗 +𝐵𝑗 𝑛 − 1) 𝑛 − 1 ! (1.11) and 𝜔 is defined by equation (1.8). Definition 1. A function 𝑓 ∈ 𝐴 for −1 ≤ 𝛾 < 1 is said to be in the class 𝑇∗ (𝛾) if and only if Re 𝑧 Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞 ; 𝛽 𝑗 𝐵 𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞 ; 𝛽 𝑗 𝐵 𝑗 1,𝑠 𝑓 𝑧 − 𝛾 ≥ 𝑧 Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞 ; 𝛽 𝑗 𝐵 𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞 ; 𝛽 𝑗 𝐵 𝑗 1,𝑠 𝑓 𝑧 −1 , 𝑧 ∈ 𝑈. (1.12) Definition 2. A function 𝑓 ∈ 𝐴 for −1 ≤ 𝛾 < 1 is said to be in the class 𝑈𝐶𝑉𝑇∗ (𝛾) if and only if Re 1 + 𝑧 Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞 ; 𝛽 𝑗 𝐵 𝑗 1,𝑠 𝑓 𝑧 ′′ Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞 ; 𝛽 𝑗 𝐵 𝑗 1,𝑠 𝑓 𝑧 ′ − 𝛾 ≥ 𝑧 Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞 ; 𝛽 𝑗 𝐵 𝑗 1,𝑠 𝑓 𝑧 ′′ Ξ 𝑝 𝛼 𝑗 𝐴 𝑗 1,𝑞 ; 𝛽 𝑗 𝐵 𝑗 1,𝑠 𝑓 𝑧 ′ −1 , 𝑧 ∈ 𝑈. (1.13) II. CHARACTERIZATION PROPERTY Theorem 2.1. A function 𝑓 𝑧 defined by (1.6) is in the class 𝑇∗ (𝛾) if and only if 2𝑛 − 1 − 𝛾 𝜎𝑛 𝑎 𝑛 ≤ ∞ 𝑛=2 1 − 𝛾, −1 ≤ 𝛾 < 1 . (2.1) The result is sharp for the function 𝑓 𝑧 = 𝑧 − 1 − 𝛾 2𝑛 − 1 − 𝛾 𝜎𝑛 𝑧 𝑛 , where 𝜎𝑛 = 1 s j  Γ 𝛽𝑗 1 q j  Γ(𝛼𝑗 + 𝐴𝑗 (𝑛 − 1)) 1 q j  Γ 𝛼𝑗 1 s j  Γ 𝛽𝑗 +𝐵𝑗 𝑛 − 1) 𝑛 − 1 ! . Proof. It is sufficient to show that
  • 3. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 71 | P a g e 𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 − 1 ≤ Re 𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 − 𝛾 , 𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 − 1 − Re 𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 − 1 ≤ 1 − 𝛾 we have 𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 − 1 − Re 𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 − 1 ≤ 2 𝑧 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 − 1 ≤ 2 1 −   2n 𝑛𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1 1 −   2n 𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1 − 1 or, ≤ 2   2n (𝑛 − 1)𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1 1 −   2n 𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1 ≤ 1 − 𝛾. The above inequality must hold for all 𝑧 in 𝑈. Letting 𝑧 → 1− , we have ≤ 2   2n (𝑛 − 1)𝜎𝑛 𝑎 𝑛 1 −   2n 𝜎𝑛 𝑎 𝑛 ≤ 1 − 𝛾 . Therefore, 2𝑛 − 1 − 𝛾 𝜎𝑛 ∞ 𝑛=2 𝑎 𝑛 ≤ 1 − 𝛾 . Conversely, if 𝑓 ∈ 𝑇∗ (𝛾) and 𝑧 is real then (2.1) gives
  • 4. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 72 | P a g e 1 −   2n 𝑛𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1 1 −   2n 𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1 − 𝛾 ≥   2n 𝑛 − 1 𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1 1 −   2n 𝜎𝑛 𝑎 𝑛 𝑧 𝑛−1 , by letting 𝑧 → 1− along the real axis, we get 1 −   2n 𝑛𝜎𝑛 𝑎 𝑛 1 −   2n 𝜎𝑛 𝑎 𝑛 −   2n 𝑛 − 1 𝜎𝑛 𝑎 𝑛 1 −   2n 𝜎𝑛 𝑎 𝑛 ≥ 𝛾, 1 − (2𝑛 − 1) ∞ 𝑛=2 𝜎𝑛 𝑎 𝑛 ≥ 1 − 𝛾 1 − 𝜎𝑛 𝑎 𝑛 ∞ 𝑛=2 , which yields the required result, where 𝜎𝑛 is given by (1.11). Corollary 2.1. Let the function 𝑓(𝑧) defined by (1.6) be in the class 𝑇∗ (𝛾), then 𝑎 𝑛 ≤ 1 − 𝛾 2𝑛 − 1 − 𝛾 𝜎𝑛 , 𝑛 ≥ 2, where 𝜎𝑛 = 1 s j  Γ 𝛽𝑗 1 q j  Γ(𝛼𝑗 + 𝐴𝑗 (𝑛 − 1)) 1 q j  Γ 𝛼𝑗 1 s j  Γ 𝛽𝑗 +𝐵𝑗 𝑛 − 1) 𝑛 − 1 ! , 𝑛 ≥ 2. III. Growth and Distortion theorems Theorem II.1. Let the function 𝑓 𝑧 defined by (1.6) be in the class 𝑇∗ 𝛾 , then 𝑧 − 1−𝛾 3−𝛾 𝑧 2 ≤ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ≤ 𝑧 + 1−𝛾 3−𝛾 𝑧 2 (3.1) and 1 − 2 1−𝛾 3−𝛾 𝑧 ≤ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ ≤ 1 + 2 1−𝛾 3−𝛾 𝑧 . (3.2) Equality holds for the function 𝑓 𝑧 = 𝑧 − 1 − 𝛾 3 − 𝛾 𝑧2 𝜎2 , where 𝜎2 = 1 s j  Γ 𝛽 𝑗 1 q j  Γ(𝛼 𝑗 +𝐴 𝑗 ) 1 q j  Γ 𝛼 𝑗 1 s j  Γ 𝛽 𝑗 +𝐵 𝑗 , 𝑛 ≥ 2. 3.3 Proof. Let 𝑓(𝑧) ∈ 𝑇∗ 𝛾 . By using(1.10), we get
  • 5. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 73 | P a g e Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ≤ 𝑧 + 𝜎𝑛 ∞ 𝑛=2 𝑎 𝑛 𝑧 𝑛 , by using (2.1) i.e. 𝜎𝑛 ∞ 𝑛=2 𝑎 𝑛 ≤ 1 − 𝛾 2𝑛 − 1 − 𝛾 = 1 − 𝛾 3 − 𝛾 , 𝑛 ≥ 2, then, we obtain Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ≤ 𝑧 + 𝑧 2 𝑎 𝑛 𝜎𝑛 , ∞ 𝑛=2 Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ≤ 𝑧 1 + 1−𝛾 3−𝛾 𝑧 , (3.4) and Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ≥ 𝑧 1 − 1−𝛾 3−𝛾 𝑧 . (3.5) Similarly Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ ≥ 1 − 2 1−𝛾 3−𝛾 𝑧 , (3.6) And Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ′ ≤ 1 + 2 1−𝛾 3−𝛾 𝑧 . (3.7) By using (3.4) and (3.5), we obtain 𝑧 − 1 − 𝛾 3 − 𝛾 𝑧 2 ≤ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 𝑓 𝑧 ≤ 𝑧 + 1 − 𝛾 3 − 𝛾 𝑧 2 , and by using (3.6) and (3.7), we get 1 − 2 1−𝛾 3−𝛾 𝑧 ≤ Ξ 𝑝 𝛼𝑗 𝐴𝑗 1,𝑞 ; 𝛽𝑗 𝐵𝑗 1,𝑠 ; 𝑧 𝑓 𝑧 ′ ≤ 1 + 2 1−𝛾 3−𝛾 𝑧 . The bounds (3.1) and (3.2) are attained for functions 𝑓 𝑧 given by 𝑓 𝑧 = 𝑧 − 1 − 𝛾 3 − 𝛾 𝜎2 𝑧2 , where 𝜎2 is given by (3.3). Theorem III.2 Let the function 𝑓 𝑧 defined by (1.6) and 𝑔 𝑧 = 𝑧 − 𝑏 𝑛 𝑧 𝑛 ∞ 𝑛=2 (3.8) be in the class 𝑇∗ (𝛾). Then the function 𝑕(𝑧) defined by 𝑕 𝑧 = 1 − 𝜆 𝑓 𝑧 + 𝜆𝑔 𝑧 = 𝑧 − 𝑞 𝑛 𝑧 𝑛 , ∞ 𝑛=2 3.9 where 𝑞 𝑛 = 1 − 𝜆 𝑎 𝑛 + 𝜆𝑏 𝑛 , (0 ≤ 𝜆 ≤ 1) is also in class 𝑇∗ 𝛾 Proof. By using (2.1) for 𝑓 𝑧 and 𝑔(𝑧), we have 2𝑛 − 1 − 𝛾 𝜎𝑛 𝑎 𝑛 ≤ 1 − 𝛾 ∞ 𝑛=2 (3.10) And 2𝑛 − 1 − 𝛾 𝜎𝑛 𝑏 𝑛 ≤ 1 − 𝛾 . ∞ 𝑛=2 (3.11) On using (3.10) and (3.11) in (3.9), we get 𝑕 𝑧 = 1 − 𝜆 𝑧 − 𝑎 𝑛 𝑧 𝑛 ∞ 𝑛=2 + 𝜆 𝑧 − 𝑏 𝑛 𝑧 𝑛 ∞ 𝑛=2 , = 𝑧 − [ 1 − 𝜆 ∞ 𝑛=2 𝑎 𝑛 + 𝜆𝑏 𝑛 ]𝑧 𝑛 ,
  • 6. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 74 | P a g e then 2𝑛 − 1 − 𝛾 𝜎𝑛 [ 1 − 𝜆 𝑎 𝑛 + 𝜆𝑏 𝑛 ] ∞ 𝑛=2 = 2𝑛 − 1 − 𝛾 1 − 𝜆 𝜎𝑛 𝑎 𝑛 + ∞ 𝑛=2 𝜆 2𝑛 − 1 − 𝛾 𝜎𝑛 𝑏 𝑛 , ∞ 𝑛=2 ≤ 1 − 𝜆 1 − 𝛾 + 𝜆 1 − 𝛾 , ≤ 1 − 𝛾 . So 𝑕(𝑧) is also in the class 𝑇∗ (𝛾). IV CLOSURE THEOREM Theorem 4.1. Let the functions 𝑓𝑗 𝑧 = 𝑧 − 𝑎 𝑛,𝑗 ∞ 𝑛=2 𝑧 𝑛 , 𝑗 = 1,2, … … … 𝑚 (4.1) be in the classes 𝑇∗ 𝛾𝑗 𝑗 = 1,2, … … … 𝑚 respectively. Then the function 𝑕(𝑧) defined by 𝑕 𝑧 = 𝑧 − 1 𝑚 𝑎 𝑛,𝑗 𝑚 𝑗 =1 ∞ 𝑛=2 𝑧 𝑛 (4.2) is in the class 𝑇∗ (𝛾), where 𝛾 = min1≤𝑗 ≤𝑚 𝛾𝑗 , with 0 ≤ 𝛾𝑗 < 1. (4.3) Proof. Since 𝑓𝑗 ∈ 𝑇∗ 𝛾𝑗 , (𝑗 = 1,2, … … … 𝑚). By using (2.1) in (4.2), we get 𝜎𝑛 2𝑛 − 1 − 𝛾 1 𝑚 𝑎 𝑛,𝑗 𝑚 𝑗 =1 ∞ 𝑛=2 = 1 𝑚 2𝑛 − 1 − 𝛾 𝜎𝑛 ∞ 𝑛=2 𝑎 𝑛,𝑗 𝑚 𝑗=1 ≤ 1 𝑚 1 − 𝛾𝑗 𝑚 𝑗 =1 ≤ 1 − 𝛾 by using 4.3 . Hence 𝑕 ∈ 𝑇∗ 𝛾 so the proof is completed. V Results involving modified Hadamard product Let 𝑓 𝑧 and 𝑔(𝑧) defined by (1.6) and (3.8) respectively. Then 𝑓 ∗ 𝑔)(𝑧 = 𝑧 − 𝑎 𝑛 𝑏 𝑛 𝑧 𝑛 ∞ 𝑛=2 be the modified Hadamard product of function 𝑓(𝑧) and 𝑔(𝑧). Theorem 5.1. For functions 𝑓𝑗 𝑧 = 𝑧 − 𝑎 𝑛,𝑗 ∞ 𝑛=2 𝑧 𝑛 , 𝑎 𝑛,𝑗 ≥ 0; 𝑧 ∈ 𝑈; 𝑗 = 1,2 , let 𝑓1(𝑧) ∈ 𝑇∗ (𝛾) and 𝑓2 𝑧 ∈ 𝑇∗ 𝜂 . Then (𝑓1 ∗ 𝑓2) 𝑧 ∈ 𝑇∗ 𝜉 , where 𝜉 = 1 − 2 1−𝛾 1−𝛽 3−𝛾 3−𝛽 𝜎2− 1−𝛾 1−𝛽 (5.1) and 𝜎2 = 1 s j  Γ 𝛽𝑗 1 q j  Γ(𝛼𝑗 + 𝐴𝑗 ) 1 q j  Γ 𝛼𝑗 1 s j  Γ 𝛽𝑗 +𝐵𝑗 . 5.2 The result is best possible for the functions 𝑓1 = 𝑧 − 1−𝛾 3−𝛾 𝜎2 𝑧2 , (5.3)
  • 7. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 75 | P a g e 𝑓2 = 𝑧 − 1−𝜂 3−𝜂 𝜎2 𝑧2 . (5.4) Proof . By using (2.1), it is sufficient to prove that 2𝑛 − 1 − 𝜉 1 − 𝜉 ∞ 𝑛=2 𝜎𝑛 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 1, (5.5) where ξ is defined by (5.1) under the hypothesis, it follows from (2.1) 2𝑛 − 1 − 𝛾 1 − 𝛾 ∞ 𝑛=2 𝜎𝑛 𝑎 𝑛,1 ≤ 1 (5.6) and 2𝑛 − 1 − 𝜂 1 − 𝜂 ∞ 𝑛=2 𝜎𝑛 𝑎 𝑛,2 ≤ 1. (5.7) By using Cauchy-Schwarz inequality 2𝑛 − 1 − 𝛾 1 2 2𝑛 − 1 − 𝜂 1 2 1 − 𝛾 1 − 𝜂 ∞ 𝑛=2 𝜎𝑛 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 1, (5.8) thus, to find largest 𝜉 such that 2𝑛 − 1 − 𝜉 1 − 𝜉 ∞ 𝑛=2 𝜎𝑛 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 2𝑛 − 1 − 𝛾 1 2 2𝑛 − 1 − 𝜂 1 2 1 − 𝛾 1 − 𝜂 ∞ 𝑛=2 𝜎𝑛 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 1, 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 2𝑛−1−𝛾 1 2 2𝑛−1−𝜂 1 2 (1−𝜉) 1−𝛾 1−𝜂 2𝑛−1−𝜉 , for 𝑛 ≥ 2 (5.9) then (5.8) reduces to, 𝑎 𝑛,1 𝑎 𝑛,2 ≤ 1−𝛾 1−𝜂 2𝑛−1−𝛾 1 2 2𝑛−1−𝜂 1 2 𝜎 𝑛 , for 𝑛 ≥ 2 (5.10) it is sufficient to find the largest 𝜎 such that 1 − 𝛾 1 − 𝜂 2𝑛 − 1 − 𝛾 1 2 2𝑛 − 1 − 𝜂 1 2 𝜎𝑛 ≤ 2𝑛 − 1 − 𝛾 1 2 2𝑛 − 1 − 𝜂 1 2 (1 − 𝜉) 1 − 𝛾 1 − 𝜂 2𝑛 − 1 − 𝜉 , for 𝑛 ≥ 2 2𝑛 − 1 − 𝜉 1 − 𝜉 ≤ 2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 1 − 𝛾 1 − 𝜂 , (5.11) 𝜉 2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 − 1 − 𝛾 1 − 𝜂 ≤ 2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 − 2𝑛 − 2 + 1 1 − 𝛾 1 − 𝜂 , ≤ 2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 − 1 − 𝛾 1 − 𝜂 − 2 𝑛 − 1 1 − 𝛾 1 − 𝜂 , 𝜉 ≤ 1 − 2(𝑛 − 1) 1 − 𝛾 1 − 𝜂 2𝑛 − 1 − 𝛾 2𝑛 − 1 − 𝜂 𝜎𝑛 − 1 − 𝛾 1 − 𝜂 , where 𝜎𝑛 = 1 s j  Γ 𝛽𝑗 1 q j  Γ(𝛼𝑗 + 𝐴𝑗 (𝑛 − 1)) 1 q j  Γ 𝛼𝑗 1 s j  Γ 𝛽𝑗 +𝐵𝑗 𝑛 − 1) 𝑛 − 1 ! for 𝑛 ≥ 2. 𝜎𝑛 is decreasing function of 𝑛(𝑛 ≥ 2), we get
  • 8. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 76 | P a g e 0 ≤ 𝜎𝑛 ≤ 𝜎2 = 1 s j  Γ 𝛽𝑗 1 q j  Γ(𝛼𝑗 + 𝐴𝑗 ) 1 q j  Γ 𝛼𝑗 1 s j  Γ 𝛽𝑗 +𝐵𝑗 . 𝜉 = 1 − 2 1 − 𝛾 1 − 𝜂 3 − 𝛾 3 − 𝜂 𝜎2 − 1 − 𝛾 1 − 𝜂 , where 𝜎2 is given by (5.2).This completes the proof of Theorem. Theorem V.2. Let the functions 𝑓𝑗 𝑧 = 𝑧 − 𝑎 𝑛,𝑗 ∞ 𝑛=2 𝑧 𝑛 , 𝑎 𝑛,𝑗 ≥ 0; 𝐽 = 1,2 be in the class 𝑇∗ 𝛾 . Then 𝑓1 ∗ 𝑓2 𝑧 ∈ 𝑇∗ 𝜌 , where 𝜌 = 1 − 2 1 − 𝛾 2 3 − 𝛾 2 𝜎2 − 1 − 𝛾 2 and 𝜎2 is given by (5.2). Proof. if we set 𝛾 = 𝜂 in the above Theorem, the results follows. Theorem V.3. Let the function 𝑓 𝑧 defined by (1.6) be in the class 𝑇∗ (𝛾) and also let 𝑔 𝑧 = 𝑧 − 𝑏 𝑛 𝑧 𝑛 ∞ 𝑛=2 , for 𝑏 𝑛 ≤ 1 . (5.12) Then 𝑓 ∗ 𝑔 𝑧 ∈ 𝑇∗ 𝛾 . Proof. By using (2.1), we get 𝜎 𝑛 2 𝑛 − 1 − 𝛾 𝑎 𝑛 𝑏 𝑛 ∞ 𝑛 =2 = 𝜎 𝑛 2 𝑛 − 1 − 𝛾 𝑎 𝑛 𝑏 𝑛 ∞ 𝑛 =2 ≤ 𝜎 𝑛 2 𝑛 − 1 − 𝛾 𝑎 𝑛 , ∞ 𝑛 =2 ≤ 1 − 𝛾 , where 𝜎 𝑛 is given by (5.2). Hence it follows that 𝑓 ∗ 𝑔 𝑧 ∈ 𝑇 ∗ 𝛾 Theorem 5.4. Let the functions 𝑓 𝑗 𝑧 = 𝑧 − 𝑎 𝑛 , 𝑗 ∞ 𝑛 =2 𝑧 𝑛 , 𝑗 = 1,2 (5.13) be in the class 𝑇 ∗ ( 𝛾 ). Then the function 𝑕 𝑧 defined by 𝑕 𝑧 = 𝑧 − ( 𝑎 𝑛 ,1 2 + 𝑎 𝑛 ,2 2 ∞ 𝑛 =2 ) 𝑧 𝑛 (5.14) is in the class 𝑇 ∗ Δ , where Δ = 1 − 4(1− 𝛾 )2 3− 𝛾 2 𝜎 2−2(1− 𝛾 )2 (5.15) and 𝜎 2 is given by (5.2). Proof. By using theorem 2.1, it is sufficient to prove that 𝜎 𝑛 2 𝑛 − 1 − Δ 1 − Δ ∞ 𝑛 =2 ( 𝑎 𝑛 ,1 2 + 𝑎 𝑛 ,2 2 ) ≤ 1, (5.16) where 𝑓 𝑗 ∈ 𝑇 ∗ 𝛾 𝑗 𝑗 = 1,2 . Then 𝜎 𝑛 ∞ 𝑛 =2 2 𝑛 − 1 − 𝛾 1 − 𝛾 𝑎 𝑛 ,1 ≤ 1,
  • 9. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 77 | P a g e 𝜎 𝑛 2 𝑛 − 1 − 𝛾 1 − 𝛾 2 𝑎 𝑛 ,1 2 ∞ 𝑛 =2 ≤ 1, (5.17) And 𝜎 𝑛 ∞ 𝑛 =2 2 𝑛 −1− 𝛾 1− 𝛾 𝑎 𝑛 ,2 ≤ 1, 𝜎 𝑛 2 𝑛 − 1 − 𝛾 1 − 𝛾 2 𝑎 𝑛 ,2 2 ∞ 𝑛 =2 ≤ 1, (5.18) then 1 2 𝜎 𝑛 2 𝑛 − 1 − 𝛾 1 − 𝛾 2∞ 𝑛 =2 𝑎 𝑛 ,1 2 + 𝑎 𝑛 ,2 2 ≤ 1. (5.19) By comparing (5.16) and (5.19), we obtain 2 2 𝑛 − 1 − Δ 1 − Δ = 𝜎 𝑛 2 𝑛 − 1 − 𝛾 1 − 𝛾 2 , therefore, Δ 2 𝑛 − 1 − 𝛾 2 𝜎 𝑛 − 2 1 − 𝛾 2 = 2 𝑛 − 1 − 𝛾 2 𝜎 𝑛 − 2 2 𝑛 − 1 1 − 𝛾 2 , Δ = 1 − 4( 𝑛 − 1) 1 − 𝛾 2 2 𝑛 − 1 − 𝛾 2 𝜎 𝑛 − 2 1 − 𝛾 2 . Δ = 1 − 4 1 − 𝛾 2 3 − 𝛾 2 𝜎 2 − 2 1 − 𝛾 2 , 𝑛 ≥ 2, which proves the Theorem. VI. INTEGRAL TRANSFORM OF THE CLASS 𝑻 ∗ ( 𝜸 ) Let the function 𝑓 𝑧 ∈ 𝑇 ∗ ( 𝛾 ). Then The integral transform 𝑉 𝜆 𝑓 𝑧 = 𝜆 𝑡 𝑓 𝑡𝑧 𝑡 1 0 𝑑𝑡 , 6.1 where 𝜆 is a real valued, non negative weight function normalized so that 𝜆 𝑡 1 0 𝑑𝑡 = 1. 6.2 Since special cases of 𝜆 ( 𝑡 ) are particularly interesting such as 𝜆 𝑡 = 1 + 𝑐 𝑡 𝑐 , 𝑐 > −1 , 6.3 for which 𝑉 𝜆 is known as Bernadi operator and 𝜆 𝑡 = 1 + 𝑐 𝛿 Γ 𝛿 𝑡 𝑐 log 1 𝑡 𝛿 −1 , 𝑐 > −1, 𝛿 ≥ 0 6.4 this gives the Komatu operator cf. 12 . ThoremVI.1. Let the function 𝑓 ∈ 𝑇 ∗ 𝛾 , then 𝑉 𝜆 ( 𝑓 ) ∈ 𝑇 ∗ ( 𝛾 ). Proof. By using (6.1) and (6.4), we have 𝑉 𝜆 𝑓 = 𝑐 + 1 𝛿 Γ 𝛿 −1 𝛿 −1 𝑡 𝑐 (log 𝑡 ) 𝛿 −1 𝑧 − 𝑎 𝑛 𝑧 𝑛 𝑡 𝑛 −1 ∞ 𝑛 =2 𝑑𝑡 1 0 , = 𝑐 + 1 𝛿 −1 𝛿 −1 Γ 𝛿 𝑡 𝑐 (log 𝑡 ) 𝛿 −1 𝑧 − 𝑎 𝑛 𝑧 𝑛 𝑡 𝑛 −1 ∞ 𝑛 =2 1 0 , 𝑉 𝜆 𝑓 = 𝑧 − 𝑐 + 1 𝑐 + 𝑛 𝛿 𝑎 𝑛 𝑧 𝑛 , (6.5) ∞ 𝑛 =2
  • 10. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 78 | P a g e by (2.1), 𝑓 ∈ 𝑇 ∗ 𝛾 , if and only if 2 𝑛 − 1 − 𝛾 1 − 𝛾 1 s j  Γ 𝛽 𝑗 1 q j  Γ( 𝛼 𝑗 + 𝐴 𝑗 ( 𝑛 − 1)) 1 q j  Γ 𝛼 𝑗 1 s j  Γ 𝛽 𝑗 + 𝐵 𝑗 𝑛 − 1) 𝑛 − 1 ! ∞ 𝑛 =2 𝑐 + 1 𝑐 + 𝑛 𝛿 𝑎 𝑛 ≤ 1, since 𝑐 + 1 𝑐 + 𝑛 < 1, therefore, 2 𝑛 − 1 − 𝛾 1 − 𝛾 1 s j  Γ 𝛽 𝑗 1 q j  Γ( 𝛼 𝑗 + 𝐴 𝑗 ( 𝑛 − 1)) 1 q j  Γ 𝛼 𝑗 1 s j  Γ 𝛽 𝑗 + 𝐵 𝑗 𝑛 − 1) 𝑛 − 1 ! ∞ 𝑛 =2 𝑎 𝑛 ≤ 1. Proof is completes. Theorem 6.2. Let the function 𝑓 ∈ 𝑇 ∗ 𝛾 . Then 𝑉 𝜆 ( 𝑓 ) is starlike of order 𝜁 0 ≤ 𝜁 < 1 in 𝑧 < 𝑅1, where 𝑅1 = inf 𝑛 𝑐 + 𝑛 𝑐 + 1 𝛿 1 − 𝜁 2 𝑛 − 1 − 𝛾 𝜎 𝑛 𝑛 − 𝜁 1 − 𝛾 1 𝑛 −1 (6.6) and 𝜎 𝑛 is given by (1.11). Proof. It suffices to prove that 𝑧 𝑉 𝜆 𝑓 ( 𝑧 ) ′ 𝑉 𝜆 𝑓 ( 𝑧 ) − 1 < 1 − 𝜁 , (6.7) −   2n 𝑛 − 1 𝑐 + 1 𝑐 + 𝑛 𝛿 𝑎 𝑛 𝑧 𝑛 −1 1 −   2n 𝑐 + 1 𝑐 + 𝑛 𝛿 𝑎 𝑛 𝑧 𝑛 −1 < 1 − 𝜁 , therefore 𝑛 − 1 𝑐 + 1 𝑐 + 𝑛 𝛿 𝑎 𝑛 𝑧 𝑛 −1 ≤ 1 − 𝜁 − 1 − 𝜁 𝑐 + 1 𝑐 + 𝑛 𝛿 𝑎 𝑛 𝑧 𝑛 −1 ∞ 𝑛 =2 ∞ 𝑛 =2 , 𝑎 𝑛 𝑧 𝑛 −1 ≤ 𝑐 + 𝑛 𝑐 + 1 𝛿 1 − 𝜁 𝑛 − 𝜁 ∞ 𝑛 =2 , 6.8 (6.8) is true if 𝑧 ≤ 𝑐 + 𝑛 𝑐 + 1 𝛿 1 − 𝜁 2 𝑛 − 1 − 𝛾 𝜎 𝑛 𝑛 − 𝜁 1 − 𝛾 1 𝑛 −1 , 𝑛 ≥ 2, 6.9 where 𝜎 𝑛 is defined by (1.11). Proof of the Theorem is completed. Theorem 6.3. Let the function 𝑓 ∈ 𝑇 ∗ 𝛾 . Then 𝑉 𝜆 ( 𝑓 ) is convex of order 𝜁 0 ≤ 𝜁 < 1 in 𝑧 < 𝑅2, where 𝑅2 = inf 𝑛 𝑐 + 𝑛 𝑐 + 1 𝛿 1 − 𝜁 2 𝑛 − 1 − 𝛾 𝑛 𝑛 − 𝜁 1 − 𝛾 𝜎 𝑛 1 𝑛 −1 , 6.10 and 𝜎 𝑛 is defined by (1.11). Proof. The proof of the Theorem can be obtained as Theorem 6.2. REFERENCES [1]. A.W. Goodman (1991): On uniformly convex functions, Ann. Polon. Math., 56, 87-92. [2]. A.W. Goodman (1991): On uniformly starlike functions, J. Math. Anal. and Appl., 155, 364-370. [3]. E. M. Wright (1935): The asymptotic expansion of the hyper-geometric functions I, J. London, Math. Soc., 10, 286-293
  • 11. INTEGRAL TRANSFORM OF CERTAIN SUBCLASSES OF UNIVALENT www.ijesi.org 79 | P a g e [4]. F. Ronning (1993): Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, 189-196. [5]. F. Ronning (1995): Integral representations for bounded starlike functions, Anal. Prolon. Math., 60, 289-297. [6]. G. Murugusundaramoorthy, T. Rosy and M. Darus (2005): A subclass of uniformly convex functions associated with certain fractional calculus operators, 6(3), Art 86. I 1-21. [7]. H. Silverman (1975): Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51, 109-116. [8]. R. Bharati, R. Parvathan and A. Swaminathan (1997): On subclass of uniformly convex functions and corresponding class of starlike functions. Tamkang J. of Math., 28(1), 17-33. [9]. R.K. Raina (2006): Certain subclasses of analytic functions with fixed argument of coefficients involving the wright’s function, Tamsui Oxford J. of Math. Sci., 22(1). [10]. Schild and H. Silverman (1975): Convolution of univalent functions with negative [11]. coefficients, Ann. Univ. Marie curie-sklodowska sect. A, 29, 99-107. [12]. W. Ma and D. Minda, (1992): Uniformly convex functions, Ann. Polon. Math., 57,165-175. [13]. Y.C. Kim and F. Ronning (2001): Integral transform of certain subclasses of analytic [14]. functions, J. Math. Anal. Appl., 258, 466-489.