SlideShare a Scribd company logo
1 of 12
Download to read offline
VII
Mechanical Wave
Mechanical Wave
Classification of waves
(i). Medium
;Mechanical and Electromagnetic waves
(ii). Direction of particles of medium
;Transverse and Longitudinal waves
(iii). Motion of wave
;Stationary and progressive waves
In elastic mediums,
Tensile Stress, 𝑺 𝒏
𝑆 𝑛 =
𝐹
𝐴 π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™
π‘ƒπ‘Ž
***Similar to pressure
***𝐴 π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ is the perpendicular area to
the force.
Tensile Strain, 𝜱 𝒕
Ξ¦ 𝑑 =
βˆ†πΏ
𝐿0
Young’s Modulus, 𝒀
π‘Œ =
𝑆 𝑛
Ξ¦ 𝑑
π‘ƒπ‘Ž
***It is vary from one material to
another. Same material has the same π‘Œ.
Shear Stress, 𝑺 𝒕
𝑆𝑑 =
𝐹
𝐴 π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘
π‘ƒπ‘Ž
Shear Strain, 𝜱 𝒔
Ξ¦ 𝑠 =
βˆ†π‘₯
𝐿0
Shear Modulus, 𝑹
𝑅 =
𝑆𝑑
Ξ¦ 𝑠
π‘ƒπ‘Ž
Pressure in fluid
πΉβˆ’πΉ
𝐿0 βˆ†πΏ
𝐴
𝐹
βˆ’πΉ
𝐿0
βˆ†π‘₯ 𝐴
𝐹
π‘‰π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™
π‘‰π‘“π‘–π‘›π‘Žπ‘™
Hydrostatic pressure, 𝑷
𝑃 =
𝐹
𝐴
π‘ƒπ‘Ž
***equivalent to stress
Volume Strain, 𝜱 𝒔
Ξ¦ 𝑉 =
𝑉𝑓 βˆ’ 𝑉𝑖
𝑉𝑖
=
βˆ†π‘‰
𝑉𝑖
Bulk Modulus, 𝑩
𝐡 = βˆ’
βˆ†π‘ƒ
Ξ¦ 𝑉
π‘ƒπ‘Ž
***πΆπ‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘¦ =
1
𝐡
Stress-Strain Curve
Strain can reflect the force applied
𝐴 β†’ 𝐡; linear variation, elastic behavior
***The gradient = Young’s Modulus
𝐢 β†’ 𝐷; Plastic behavior
𝐡 = π‘ƒπ‘Ÿπ‘œπ‘π‘œπ‘Ÿπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘™π‘–π‘šπ‘–π‘‘
𝐢 = πΈπ‘™π‘Žπ‘ π‘‘π‘–π‘ π‘™π‘–π‘šπ‘–π‘‘
𝐷 = πΉπ‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ π‘π‘œπ‘–π‘›π‘‘
π‘†π‘‘π‘Ÿπ‘’π‘ π‘ 
π‘†π‘‘π‘Ÿπ‘Žπ‘–π‘›π΄
𝐡
𝐢
𝐷
Equation of mechanical waves
𝑦 = 𝑓 π‘₯ = π‘₯2
For moving wave,
𝑦 = 𝑓 π‘₯ Β± 𝑠 = 𝑓 π‘₯ Β± 𝑣𝑑
However, the shape of wave is
Sinusoidal or Simple harmonic wave,
and not parabola
∴ 𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜π‘₯
For moving wave,
𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑)
For wave movingto the right,
𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ βˆ’ 𝑣𝑑)
For wave movingto the left,
𝑦 = 𝑓 π‘₯ = 𝐴 sin π‘˜(π‘₯ + 𝑣𝑑)
𝑦 = π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘Ž π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ 
𝐴 = π‘Žπ‘šπ‘π‘™π‘–π‘‘π‘’π‘‘π‘’
π‘˜ = π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘€π‘Žπ‘£π‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ
Ξ» = π‘€π‘Žπ‘£π‘’π‘™π‘’π‘›π‘”β„Žπ‘‘
𝑓 π‘₯ = π‘₯2
𝑓 π‘₯ = (π‘₯ βˆ’ 𝑣𝑑)2
𝑓 π‘₯ = (π‘₯ + 𝑣𝑑)2
π‘₯
𝑦
𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑)
π‘˜ =
2πœ‹
Ξ»
=
πœ”
𝑣
𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑)
Suppose the wave moves to the right.
At 𝑑 = 0, 𝑑0
The position of a particle is π‘₯0
∴ 𝑦(π‘₯0, 𝑑0) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯0 βˆ’ 𝑣𝑑0)
The other position of the adjacent
particle that is in phase is π‘₯0 + Ξ»
∴ 𝑦 π‘₯0 + πœ†, 𝑑0 = 𝐴 𝑠𝑖𝑛 π‘˜ π‘₯0 + πœ† βˆ’ 𝑣𝑑0
However, the points which are in phase
have the same displacement (𝑦)
∴ 𝑦 π‘₯0, 𝑑0 = 𝑦 π‘₯0 + Ξ», 𝑑0
𝐴 𝑠𝑖𝑛 π‘˜(π‘₯0 βˆ’ 𝑣𝑑0) = 𝐴 𝑠𝑖𝑛 π‘˜ π‘₯0 + πœ† βˆ’ 𝑣𝑑0
𝑠𝑖𝑛(π‘˜π‘₯0 βˆ’ π‘˜π‘£π‘‘0) = 𝑠𝑖𝑛 π‘˜π‘₯0 + π’Œπ€ βˆ’ π‘˜π‘£π‘‘0
∴ π‘˜πœ† = 0 π‘œπ‘Ÿ π‘˜πœ† = 2πœ‹
Since, πœ† =
𝑣
𝑓
π‘˜π‘£ = 2πœ‹π‘“ = πœ”
Summary
𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑)
π‘˜ =
2πœ‹
Ξ»
=
πœ”
𝑣
𝑣 =
𝑓
Ξ»
πœ” = 2π‘“πœ‹ =
2πœ‹
𝑇
π‘˜ =
πœ”
𝑣
In reality, at 𝑑0, 𝑦 may not equation to 0
Thus, the general equation is,
𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ Β± πœ”π‘‘ + πœ™)
πœ™ 𝑖𝑠 π‘Ž π‘β„Žπ‘Žπ‘ π‘’ π‘ β„Žπ‘–π‘“π‘‘
***All angles are in radian.
π·π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ = 𝑦(π‘₯, 𝑑)
π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦
π΄π‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›
Wave equation
πœ•2
𝑦
πœ•π‘₯2
= βˆ’π‘˜2
𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ = βˆ’π‘˜2
𝑦
πœ•2
𝑦
πœ•π‘‘2
= βˆ’πœ”2
𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ = βˆ’πœ”2
𝑦
∴
πœ•2 𝑦
πœ•π‘₯2
πœ•2 𝑦
πœ•π‘‘2
=
πœ”2
π‘˜2
= 𝑣2
∴
πœ•2
𝑦
πœ•π‘₯2
=
1
𝑣2
πœ•2
𝑦
πœ•π‘‘2
***Motion equation which can be
arranged in this form is a sinusoidal
wave.
𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ Β± πœ”π‘‘)
𝑒(π‘₯0, 𝑑0) =
πœ•π‘¦
πœ•π‘‘ π‘₯=π‘₯0,𝑑=𝑑0
π‘Ž π‘₯0, 𝑑0 =
πœ•π‘’
πœ•π‘‘ π‘₯=π‘₯0,𝑑=𝑑0
=
πœ•2 𝑦
πœ•π‘‘2
π‘₯=π‘₯0,𝑑=𝑑0
Interference
Constructive interference
Destructive inference
Standing Wave
Suppose there are 2 identical waves ,
one moves to the left and the other
move to the right, combine together.
Wave1;
𝑦1(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ + πœ”π‘‘)
Wave2;
𝑦2(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)
∴ 𝑦 = 𝑦1 + 𝑦1
= 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ + πœ”π‘‘) + 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)
= 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯ π‘π‘œπ‘  πœ”π‘‘
Thus, the new amplitude is 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯.
When 𝑠𝑖𝑛 π‘˜π‘₯ = Β±1, Anti-node
When 𝑠𝑖𝑛 π‘˜π‘₯ = 0, Node
When 𝑠𝑖𝑛 π‘˜π‘₯ = Β±1, Anti-node
π΅π‘Žπ‘ π‘–π‘ π‘Žπ‘›π‘”π‘™π‘’ =
πœ‹
2
∴ π‘˜π‘₯ =
πœ‹
2
,
3πœ‹
2
,
5πœ‹
2
, …
Since π‘˜ =
πœ”
𝑣
=
2πœ‹π‘“
𝑓λ
=
2πœ‹
Ξ»
,
2πœ‹
Ξ»
π‘₯ =
πœ‹
2
,
3πœ‹
2
,
5πœ‹
2
, …
π‘₯ =
Ξ»
4
,
3Ξ»
4
,
5Ξ»
4
, …
When 𝑠𝑖𝑛 π‘˜π‘₯ = 0, Node
π΅π‘Žπ‘ π‘–π‘ π‘Žπ‘›π‘”π‘™π‘’ = 0
∴ π‘˜π‘₯ = 0, πœ‹, 3πœ‹, …
π‘₯ = 0,
Ξ»
2
, Ξ»,
3Ξ»
2
, …
𝑦(π‘₯, 𝑑) = 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯ π‘π‘œπ‘  πœ”π‘‘
Anti-node
π‘₯ =
𝑛λ
4
; 𝑛 = 1, 3, 5, …
Fixed end Free end
Reflected
waves
changedπœ™
by πœ‹
unchanged
πœ™
At the
boundary
Node Anti-node
Refractive
index, 𝑛
low οƒ  high high οƒ  low
Speed high οƒ  low low οƒ  high
Reflection of wave
1. Reflection from a fixed/hard
boundary
2. Reflection from a free/soft boundary
Anti-node
π‘₯ =
𝑛λ
4
; 𝑛 = 1, 3, 5, …
Node
π‘₯ =
𝑛λ
2
; 𝑛 = 0, 1, 2, …
π‘Žπ‘› 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑑 π‘€π‘Žπ‘£π‘’
π‘Ž π‘Ÿπ‘’π‘‘π‘™π‘’π‘π‘‘π‘’π‘‘ π‘€π‘Žπ‘£π‘’
π‘Žπ‘› 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑑 π‘€π‘Žπ‘£π‘’
π‘Ž π‘Ÿπ‘’π‘‘π‘™π‘’π‘π‘‘π‘’π‘‘ π‘€π‘Žπ‘£π‘’
***a reflected wave is identical to the
incident wave except moving in an
opposite direction, and a phase shift
may change.
Thus, the interference of incident waves
and reflected waves may result in
standing waves.
String
The fundamental tone
Ξ»1 = 2𝑙
𝑓1 =
1
2
𝑣
𝑙
𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦
***the fundamental frequency is the
minimum frequency required to form
standing waves.
***the 1st harmonic
Harmonic; how many time is the
frequency greater than the fundamental
frequency, 𝑓1.
𝑁
𝐴
𝐴𝐴
𝑁
𝐴 𝑁𝑁
Ξ»
2
Ξ»
4
𝑁 = π‘›π‘œπ‘‘π‘’
𝐴 = π‘Žπ‘›π‘‘π‘– βˆ’ π‘›π‘œπ‘‘π‘’
𝑁
𝑁
𝑙
The first overtone
Ξ»2 = 𝑙
𝑓2 =
𝑣
𝑙
= 2𝑓1
***the 2nd harmonic,
𝑓2
𝑓1
= 2.
The second overtone
Ξ»3 =
2
3
𝑙
𝑓2 =
3
2
𝑣
𝑙
= 3𝑓1
***the 3rd harmonic,
𝑓2
𝑓1
= 3.
***Natural frequencies are any
frequencies required to form standing
waves.
𝑙
𝑙
𝑣 =
𝑇
πœ‡
Velocity of the string
𝑇 = π‘ π‘‘π‘Ÿπ‘–π‘›π‘” π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑁
πœ‡ = π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦
π‘˜π‘”
π‘š
***linear density; a measure of mass
per unit of length
Open ended pipe
The fundamental tone
Ξ»1 = 2𝑙
𝑓1 =
1
2
𝑣
𝑙
𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦
***the 1st harmonic
The first overtone
Ξ»2 = 𝑙
𝑓2 =
𝑣
𝑙
= 2𝑓1
***the 2nd harmonic,
𝑓2
𝑓1
= 2.
𝑙
𝑙
The second overtone
Ξ»3 =
2
3
𝑙
𝑓2 =
3
2
𝑣
𝑙
= 3𝑓1
***the 3rd harmonic,
𝑓2
𝑓1
= 3.
Close ended pipe
The fundamental tone
Ξ»1 = 4𝑙
𝑓1 =
1
4
𝑣
𝑙
𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦
***the 1st harmonic
The first overtone
Ξ»2 =
4
3
𝑙
𝑓2 =
3
4
𝑣
𝑙
= 3𝑓1
***the 3rd harmonic,
𝑓2
𝑓1
=3.
The second overtone
Ξ»3 =
4
5
𝑙
𝑓2 =
5
4
𝑣
𝑙
= 5𝑓1
***the 5th harmonic,
𝑓2
𝑓1
= 5.
***The harmonics of close ended pipe
are only odd numbers.
Velocity of wave inside the pipe
𝑙
𝑙
𝑙
𝑙
𝑣 =
𝐡
𝜌
Resonance
; the tendency of a system to
oscillate at a greater amplitude at
some frequencies (natural
frequencies) than at others.
All system has its own frequency. If
a force is applied with the same
frequency of the system, the
damage is largest as it can reach
the maximum amplitude.
Modulation and Beat
The interference of 2 waves with
the same amplitude and direction,
but different π‘˜ and πœ”
Wave1;
𝑦1(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜1 π‘₯ βˆ’ πœ”1 𝑑)
Wave2;
𝑦2(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜2 π‘₯ βˆ’ πœ”2 𝑑)
𝑦 = 𝑦1 + 𝑦2
𝑦
= 2𝐡 π‘π‘œπ‘ (π‘˜ π‘šπ‘œπ‘‘ π‘₯ βˆ’ πœ” π‘šπ‘œπ‘‘ 𝑑) 𝑠𝑖𝑛(π‘˜ π‘Žπ‘£ π‘₯ βˆ’ πœ” π‘Žπ‘£ 𝑑)
When, π‘˜ π‘šπ‘œπ‘‘ =
π‘˜2βˆ’π‘˜1
2
,π‘˜ π‘Žπ‘£ =
π‘˜2+π‘˜1
2
And, πœ” π‘šπ‘œπ‘‘ =
πœ”2βˆ’πœ”1
2
,πœ” π‘Žπ‘£ =
πœ”2+πœ”1
2
π‘“π‘π‘’π‘Žπ‘‘ = 𝑓1 βˆ’ 𝑓2
𝑓 π‘šπ‘œπ‘‘ =
πœ” π‘šπ‘œπ‘‘
2πœ‹
=
1
2
𝑓2 βˆ’ 𝑓1
Since,
𝑦
= 2𝐡 π‘π‘œπ‘ (π‘˜ π‘šπ‘œπ‘‘ π‘₯ βˆ’ πœ” π‘šπ‘œπ‘‘ 𝑑) 𝑠𝑖𝑛(π‘˜ π‘Žπ‘£ π‘₯ βˆ’ πœ” π‘Žπ‘£ 𝑑)
can be expressed in the form of
𝑦 = 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘
When 𝐴 = 2𝐡 π‘π‘œπ‘ (π‘˜ π‘šπ‘œπ‘‘ π‘₯ βˆ’ πœ” π‘šπ‘œπ‘‘ 𝑑)
∴ We define,
𝐴 π‘šπ‘œπ‘‘ = 2𝐡 π‘π‘œπ‘ (π‘˜ π‘šπ‘œπ‘‘ π‘₯ βˆ’ πœ” π‘šπ‘œπ‘‘ 𝑑)
***The amplitude of the combined wave
is a sinusoidal function also.
The average velocity of the combined
wave,𝑣 π‘β„Žπ‘Žπ‘ π‘’ = 𝑣 π‘Žπ‘£ =
πœ” π‘Žπ‘£
π‘˜ π‘Žπ‘£
π‘¦π‘‘π‘œπ‘‘π‘Žπ‘™propagates with π‘“π‘Ž 𝑣, 𝑣 π‘Žπ‘£
The Envelope propagates with 𝑓 π‘šπ‘œπ‘‘, 𝑣𝑔
𝑣𝑔 =
πœ” π‘šπ‘œπ‘‘
π‘˜ π‘šπ‘œπ‘‘
=
πœ”2 βˆ’ πœ”1
π‘˜2 βˆ’ π‘˜1
=
π‘‘πœ”
π‘‘π‘˜
𝑣 π‘Žπ‘£ =
πœ” π‘Žπ‘£
π‘˜ π‘Žπ‘£
π‘¦π‘‘π‘œπ‘‘π‘Žπ‘™
πΈπ‘›π‘£π‘’π‘™π‘œπ‘π‘’ (𝐴 π‘šπ‘œπ‘‘)
𝑣𝑔 =
πœ”2 βˆ’ πœ”1
π‘˜2 βˆ’ π‘˜1
=
π‘‘πœ”
π‘‘π‘˜
String
𝑣 = π‘£π‘’π‘™π‘œπ‘ π‘–π‘‘π‘¦
𝑇 = π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑁
πœ‡ = π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦
π‘˜π‘”
π‘š
The rate of energy transfer,
𝑱
𝒔
πΈπ‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑃𝐸 + 𝐾𝐸
For Kinetic Energy,
𝐾𝐸 =
1
2
π‘šπ‘’2
𝑑𝐾𝐸 =
1
2
π‘‘π‘š 𝑒2
Since, 𝑒 =
πœ•π‘¦
πœ•π‘‘
𝑒 =
πœ•
πœ•π‘‘
𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑒 = 𝐴
πœ•
πœ•π‘‘
𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑒 = βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘)
And
πœ‡ =
π‘‘π‘š
𝑑π‘₯
π‘œπ‘Ÿ π‘‘π‘š = πœ‡π‘‘π‘₯
∴ 𝑑𝐾𝐸 =
1
2
πœ‡π‘‘π‘₯ βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2
𝑑𝐾𝐸
𝑑𝑑
=
1
2
πœ‡
𝑑π‘₯
𝑑𝑑
βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2
𝑑𝐾𝐸
𝑑𝑑
=
1
2
πœ‡π‘£πœ”2
𝐴2
π‘π‘œπ‘ 2
(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑑𝐾𝐸
𝑑𝑑
=
1
2
πœ‡π‘£πœ”2
𝐴2
π‘π‘œπ‘ 2
(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
=
1
2
πœ‡π‘£πœ”2
𝐴2
1
𝑇
π‘π‘œπ‘ 2
(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑇
0
𝑑𝑑
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
=
1
2
πœ‡π‘£πœ”2
𝐴2
1
2
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
=
1
4
πœ‡π‘£πœ”2
𝐴2
From Equipartition Theorem,
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
=
𝑑𝑃𝐸
𝑑𝑑 π‘Žπ‘£
∴
𝑑𝐸
𝑑𝑑 π‘Žπ‘£
=
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
+
𝑑𝑃𝐸
𝑑𝑑 π‘Žπ‘£
𝑑𝐸
𝑑𝑑 π‘Žπ‘£
=
1
2
πœ‡π‘£πœ”2
𝐴2
Wave velocity in a fluid
𝐡 = π΅π‘’π‘™π‘˜ π‘€π‘œπ‘‘π‘’π‘™π‘’π‘ 
𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘‘β„Žπ‘’ 𝑓𝑙𝑒𝑖𝑑
𝑣 =
𝑇
πœ‡
𝑑𝐸
𝑑𝑑 π‘Žπ‘£
=
1
2
πœ‡π‘£πœ”2 𝐴 π‘šπ‘Žπ‘₯
2
𝑣 =
𝐡
𝜌
Longitudinal Waves
We have another function to represent
longitudinal waves, using Pressure
𝑃 π‘₯, 𝑑
At (a), the air particles are at
equilibrium point with the cross-
sectional diameter (of the column of the
air ) of 𝐷.
When the longitudinal wave is produced
in (b). Air particles move with different
rate, causing the change in pressure.
Since, Bulk Modulus, 𝐡 = βˆ’
βˆ†π‘ƒ
Ξ¦ 𝑉
And Ξ¦ 𝑉 =
βˆ†π‘‰
𝑉𝑖
𝐡 = βˆ’
βˆ†π‘ƒ
βˆ†π‘‰/𝑉𝑖
(a).
(b).
𝑦 𝑦 + βˆ†π‘¦
𝐷
βˆ†π‘₯
𝑝0
𝑝0 + 𝑝
𝐡 = βˆ’
βˆ†π‘ƒ
βˆ†π‘‰/𝑉𝑖
𝐡 = βˆ’
𝑃𝑓 βˆ’ 𝑃𝑖
𝑉𝑓 βˆ’ 𝑉𝑖 /𝑉𝑖
𝐡 = βˆ’
𝑝0 + 𝑝 βˆ’ 𝑝0
βˆ†π‘₯ + βˆ†π‘¦ 𝐷 βˆ’ βˆ†π‘₯𝐷 /βˆ†π‘₯𝐷
𝐡 = βˆ’
𝑝
βˆ†π‘¦/βˆ†π‘₯
𝑝 = βˆ’π΅
βˆ†π‘¦
βˆ†π‘₯
Since, y π‘₯, 𝑑 = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)
∴ 𝑝 = βˆ’π΅
πœ• 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘
πœ•π‘₯
𝑝 = βˆ’π΅π΄π‘˜ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘
𝑝 = βˆ’π‘ƒ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘
We define,
𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆 π‘¨π’Žπ’‘π’π’Šπ’•π’–π’…π’†, 𝑃 = π΅π΄π‘˜
Since, 𝑣 =
𝐡
𝜌
, 𝐡 = πœŒπ‘£2
∴ 𝑃 = πœŒπ‘£2
π΄π‘˜
𝑝 = βˆ’π΅
πœ•π‘¦
πœ•π‘₯
𝑦(π‘₯, 𝑑)𝑝 π‘₯, 𝑑 βˆ’π΅
πœ•
πœ•π‘₯
𝑃 = π΅π΄π‘˜ = πœŒπ‘£2 π΄π‘˜
Since,
When y π‘₯, 𝑑 = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘),
𝑝 = βˆ’π‘ƒ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘
We can express,
𝑝 = 𝑃 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ βˆ’
πœ‹
2
Therefore, the shapes of the 2 graphs are
the same.
However, the π‘β„Žπ‘Žπ‘ π‘’ π‘ β„Žπ‘–π‘“π‘‘, πœ™ =
πœ‹
2
π‘œπ‘Ÿ 90Β°
The rate of energy transfer or the
longitudinal wave
πΈπ‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑃𝐸 + 𝐾𝐸
For Kinetic Energy,
𝐾𝐸 =
1
2
π‘šπ‘’2
𝑑𝐾𝐸 =
1
2
π‘‘π‘š 𝑒2
Since, 𝑒 =
πœ•π‘¦
πœ•π‘‘
𝑒 =
πœ•
πœ•π‘‘
𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑒 = 𝐴
πœ•
πœ•π‘‘
𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑒 = βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘)
And
𝜌 =
π‘‘π‘š
𝑑𝑉
π‘œπ‘Ÿ π‘‘π‘š = 𝜌 𝑑𝑣 = 𝜌 𝐷𝑑π‘₯
; 𝐷 = π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘Žπ‘Ÿπ‘’π‘Ž
∴ 𝑑𝐾𝐸 =
1
2
πœŒπ·π‘‘π‘₯ βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2
𝑑𝐾𝐸
𝑑𝑑
=
1
2
𝜌𝐷
𝑑π‘₯
𝑑𝑑
βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2
𝑑𝐾𝐸
𝑑𝑑
=
1
2
πœŒπ·π‘£πœ”2 𝐴2 π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
=
1
2
πœŒπ·π‘£πœ”2 𝐴2
1
𝑇
π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘)
𝑇
0
𝑑𝑑
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
=
1
2
πœŒπ·π‘£πœ”2
𝐴2
1
2
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
=
1
4
πœŒπ·π‘£πœ”2
𝐴2
From Equipartition Theorem,
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
=
𝑑𝑃𝐸
𝑑𝑑 π‘Žπ‘£
∴
𝑑𝐸
𝑑𝑑 π‘Žπ‘£
=
𝑑𝐾𝐸
𝑑𝑑 π‘Žπ‘£
+
𝑑𝑃𝐸
𝑑𝑑 π‘Žπ‘£
𝑑𝐸
𝑑𝑑 π‘Žπ‘£
=
1
2
πœŒπ·π‘£πœ”2
𝐴2
𝑑𝐸
𝑑𝑑 π‘Žπ‘£
=
1
2
πœŒπ·π‘£πœ”2 𝐴 π‘šπ‘Žπ‘₯
2

More Related Content

What's hot

Angularmomentum
AngularmomentumAngularmomentum
AngularmomentumGabino Corona
Β 
The wkb approximation..
The wkb approximation..The wkb approximation..
The wkb approximation..DHRUBANKA Sarma
Β 
Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics The Chinese University of Hong Kong
Β 
Maths partial differential equation Poster
Maths partial differential equation PosterMaths partial differential equation Poster
Maths partial differential equation PosterEr. Ashish Pandey
Β 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikamiranteogbonna
Β 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsSolo Hermelin
Β 
Schrodinger's time independent wave equation
Schrodinger's time independent wave equationSchrodinger's time independent wave equation
Schrodinger's time independent wave equationKhushbooSharma226
Β 
Important Notes - JEE - Physics - Simple Harmonic Motion
Important Notes - JEE - Physics - Simple Harmonic MotionImportant Notes - JEE - Physics - Simple Harmonic Motion
Important Notes - JEE - Physics - Simple Harmonic MotionEdnexa
Β 
Coordinate systems
Coordinate systemsCoordinate systems
Coordinate systemsAmeenSoomro1
Β 
Hamilton application
Hamilton applicationHamilton application
Hamilton applicationSamad Akbar
Β 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamicsSolo Hermelin
Β 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equationsVenkata.Manish Reddy
Β 
Introduction to tensor calculus
Introduction to tensor calculusIntroduction to tensor calculus
Introduction to tensor calculusmartin pomares calero
Β 
5.8 rectilinear motion
5.8 rectilinear motion5.8 rectilinear motion
5.8 rectilinear motiondicosmo178
Β 
Schrodinger eqn
Schrodinger eqnSchrodinger eqn
Schrodinger eqnshubham singh
Β 
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)Pooja M
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220foxtrot jp R
Β 

What's hot (19)

Angularmomentum
AngularmomentumAngularmomentum
Angularmomentum
Β 
The wkb approximation..
The wkb approximation..The wkb approximation..
The wkb approximation..
Β 
Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics
Β 
Maths partial differential equation Poster
Maths partial differential equation PosterMaths partial differential equation Poster
Maths partial differential equation Poster
Β 
Jawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanikaJawaban soal-latihan1mekanika
Jawaban soal-latihan1mekanika
Β 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Β 
Schrodinger's time independent wave equation
Schrodinger's time independent wave equationSchrodinger's time independent wave equation
Schrodinger's time independent wave equation
Β 
Important Notes - JEE - Physics - Simple Harmonic Motion
Important Notes - JEE - Physics - Simple Harmonic MotionImportant Notes - JEE - Physics - Simple Harmonic Motion
Important Notes - JEE - Physics - Simple Harmonic Motion
Β 
Coordinate systems
Coordinate systemsCoordinate systems
Coordinate systems
Β 
Hamilton application
Hamilton applicationHamilton application
Hamilton application
Β 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
Β 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equations
Β 
Introduction to tensor calculus
Introduction to tensor calculusIntroduction to tensor calculus
Introduction to tensor calculus
Β 
5.8 rectilinear motion
5.8 rectilinear motion5.8 rectilinear motion
5.8 rectilinear motion
Β 
Lagrange
LagrangeLagrange
Lagrange
Β 
Schrodinger eqn
Schrodinger eqnSchrodinger eqn
Schrodinger eqn
Β 
Lagrangian formulation 1
Lagrangian formulation 1Lagrangian formulation 1
Lagrangian formulation 1
Β 
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
Β 
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
The klein gordon field in two-dimensional rindler space-time -sqrdupdt41220
Β 

Viewers also liked

Electromagnetic Waves
Electromagnetic WavesElectromagnetic Waves
Electromagnetic WavesJoan Shinkle
Β 
Rayleigh Fading Channel In Mobile Digital Communication System
Rayleigh Fading Channel In Mobile Digital Communication SystemRayleigh Fading Channel In Mobile Digital Communication System
Rayleigh Fading Channel In Mobile Digital Communication SystemOUM SAOKOSAL
Β 
Small scale fading and multipath measurements
Small scale fading and multipath measurementsSmall scale fading and multipath measurements
Small scale fading and multipath measurementsVrince Vimal
Β 
Carnot cycle
Carnot cycleCarnot cycle
Carnot cycleYasir Hashmi
Β 
Heat engine 2nd law
Heat engine 2nd lawHeat engine 2nd law
Heat engine 2nd lawAmy Hopkins
Β 
Energy thermodynamic cycles
Energy thermodynamic cyclesEnergy thermodynamic cycles
Energy thermodynamic cyclestinuvalsapaul
Β 
21 Irrefutable Laws of Leadership John C Maxwell
21 Irrefutable Laws of Leadership   John C Maxwell21 Irrefutable Laws of Leadership   John C Maxwell
21 Irrefutable Laws of Leadership John C MaxwellLatrina
Β 
Ultrasound Physics
Ultrasound PhysicsUltrasound Physics
Ultrasound Physicsu.surgery
Β 
01 basic principles of ultrasound & basic term
01 basic principles of ultrasound & basic term01 basic principles of ultrasound & basic term
01 basic principles of ultrasound & basic termJuan Alcatruz
Β 
Carnot cycle
Carnot cycleCarnot cycle
Carnot cycleAyaz Khan
Β 
Introduction to contract law - offer by Maxwell ranasinghe
Introduction to contract law  - offer by Maxwell ranasingheIntroduction to contract law  - offer by Maxwell ranasinghe
Introduction to contract law - offer by Maxwell ranasingheMaxwell Ranasinghe
Β 
Lecture 14 maxwell-boltzmann distribution. heat capacities
Lecture 14   maxwell-boltzmann distribution. heat capacitiesLecture 14   maxwell-boltzmann distribution. heat capacities
Lecture 14 maxwell-boltzmann distribution. heat capacitiesAlbania Energy Association
Β 
Lecture 05 mechanical waves. transverse waves.
Lecture 05   mechanical waves. transverse waves.Lecture 05   mechanical waves. transverse waves.
Lecture 05 mechanical waves. transverse waves.Albania Energy Association
Β 
Lecture 18 second law of thermodynamics. carnot's cycle
Lecture 18   second law of thermodynamics. carnot's cycleLecture 18   second law of thermodynamics. carnot's cycle
Lecture 18 second law of thermodynamics. carnot's cycleAlbania Energy Association
Β 
Application of first law thermodynamics (yoga n zian)
Application of first law thermodynamics (yoga n zian)Application of first law thermodynamics (yoga n zian)
Application of first law thermodynamics (yoga n zian)qiebti
Β 

Viewers also liked (16)

Electromagnetic Waves
Electromagnetic WavesElectromagnetic Waves
Electromagnetic Waves
Β 
Rayleigh Fading Channel In Mobile Digital Communication System
Rayleigh Fading Channel In Mobile Digital Communication SystemRayleigh Fading Channel In Mobile Digital Communication System
Rayleigh Fading Channel In Mobile Digital Communication System
Β 
Small scale fading and multipath measurements
Small scale fading and multipath measurementsSmall scale fading and multipath measurements
Small scale fading and multipath measurements
Β 
Carnot cycle
Carnot cycleCarnot cycle
Carnot cycle
Β 
Heat engine 2nd law
Heat engine 2nd lawHeat engine 2nd law
Heat engine 2nd law
Β 
Energy thermodynamic cycles
Energy thermodynamic cyclesEnergy thermodynamic cycles
Energy thermodynamic cycles
Β 
21 Irrefutable Laws of Leadership John C Maxwell
21 Irrefutable Laws of Leadership   John C Maxwell21 Irrefutable Laws of Leadership   John C Maxwell
21 Irrefutable Laws of Leadership John C Maxwell
Β 
Ultrasound Physics
Ultrasound PhysicsUltrasound Physics
Ultrasound Physics
Β 
01 basic principles of ultrasound & basic term
01 basic principles of ultrasound & basic term01 basic principles of ultrasound & basic term
01 basic principles of ultrasound & basic term
Β 
Carnot cycle
Carnot cycleCarnot cycle
Carnot cycle
Β 
Introduction to contract law - offer by Maxwell ranasinghe
Introduction to contract law  - offer by Maxwell ranasingheIntroduction to contract law  - offer by Maxwell ranasinghe
Introduction to contract law - offer by Maxwell ranasinghe
Β 
Carnot cycle
Carnot cycleCarnot cycle
Carnot cycle
Β 
Lecture 14 maxwell-boltzmann distribution. heat capacities
Lecture 14   maxwell-boltzmann distribution. heat capacitiesLecture 14   maxwell-boltzmann distribution. heat capacities
Lecture 14 maxwell-boltzmann distribution. heat capacities
Β 
Lecture 05 mechanical waves. transverse waves.
Lecture 05   mechanical waves. transverse waves.Lecture 05   mechanical waves. transverse waves.
Lecture 05 mechanical waves. transverse waves.
Β 
Lecture 18 second law of thermodynamics. carnot's cycle
Lecture 18   second law of thermodynamics. carnot's cycleLecture 18   second law of thermodynamics. carnot's cycle
Lecture 18 second law of thermodynamics. carnot's cycle
Β 
Application of first law thermodynamics (yoga n zian)
Application of first law thermodynamics (yoga n zian)Application of first law thermodynamics (yoga n zian)
Application of first law thermodynamics (yoga n zian)
Β 

Similar to 7). mechanical waves (finished)

3). work & energy (finished)
3). work & energy (finished)3). work & energy (finished)
3). work & energy (finished)PhysicsLover
Β 
6). oscillatory motion (finished)
6). oscillatory motion (finished)6). oscillatory motion (finished)
6). oscillatory motion (finished)PhysicsLover
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...AIMST University
Β 
Industrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdfIndustrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdfBurdwan University
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxHassaan Saleem
Β 
LC oscillations.pdf
LC oscillations.pdfLC oscillations.pdf
LC oscillations.pdfMTharunKumar3
Β 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxHassaan Saleem
Β 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves PosterChristopher Wai
Β 
METEORITE SHOOTING AS A DIFFUSION PROBLEM
METEORITE SHOOTING AS A DIFFUSION PROBLEMMETEORITE SHOOTING AS A DIFFUSION PROBLEM
METEORITE SHOOTING AS A DIFFUSION PROBLEMJournal For Research
Β 
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Burdwan University
Β 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbchettanagarwal
Β 
Chapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxChapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxPooja M
Β 
cinematica de particulas
cinematica de particulascinematica de particulas
cinematica de particulaslavadoarroyo
Β 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
Β 
Gravitational field and potential, escape velocity, universal gravitational l...
Gravitational field and potential, escape velocity, universal gravitational l...Gravitational field and potential, escape velocity, universal gravitational l...
Gravitational field and potential, escape velocity, universal gravitational l...lovizabasharat
Β 

Similar to 7). mechanical waves (finished) (20)

3). work & energy (finished)
3). work & energy (finished)3). work & energy (finished)
3). work & energy (finished)
Β 
6). oscillatory motion (finished)
6). oscillatory motion (finished)6). oscillatory motion (finished)
6). oscillatory motion (finished)
Β 
Waveguides
WaveguidesWaveguides
Waveguides
Β 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Β 
Industrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdfIndustrial Instrumentation-Mathematical Expressions.pdf
Industrial Instrumentation-Mathematical Expressions.pdf
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
Β 
Review of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptxReview of Seiberg Witten duality.pptx
Review of Seiberg Witten duality.pptx
Β 
LC oscillations.pdf
LC oscillations.pdfLC oscillations.pdf
LC oscillations.pdf
Β 
Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)
Β 
Magnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptxMagnetic Monopoles, Duality and SUSY.pptx
Magnetic Monopoles, Duality and SUSY.pptx
Β 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
Β 
METEORITE SHOOTING AS A DIFFUSION PROBLEM
METEORITE SHOOTING AS A DIFFUSION PROBLEMMETEORITE SHOOTING AS A DIFFUSION PROBLEM
METEORITE SHOOTING AS A DIFFUSION PROBLEM
Β 
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Β 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
Β 
Chapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptxChapter 5 - Oscillation.pptx
Chapter 5 - Oscillation.pptx
Β 
Derivadas
DerivadasDerivadas
Derivadas
Β 
lec2.ppt
lec2.pptlec2.ppt
lec2.ppt
Β 
cinematica de particulas
cinematica de particulascinematica de particulas
cinematica de particulas
Β 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
Β 
Gravitational field and potential, escape velocity, universal gravitational l...
Gravitational field and potential, escape velocity, universal gravitational l...Gravitational field and potential, escape velocity, universal gravitational l...
Gravitational field and potential, escape velocity, universal gravitational l...
Β 

More from PhysicsLover

All phy note for O lvl
All phy note for O lvlAll phy note for O lvl
All phy note for O lvlPhysicsLover
Β 
9). transport phenomena (finished)
9). transport phenomena (finished)9). transport phenomena (finished)
9). transport phenomena (finished)PhysicsLover
Β 
8). kinetic theory of gas (finished)
8). kinetic theory of gas (finished)8). kinetic theory of gas (finished)
8). kinetic theory of gas (finished)PhysicsLover
Β 
5). rigid body (finished)
5). rigid body (finished)5). rigid body (finished)
5). rigid body (finished)PhysicsLover
Β 
4). system of particles (finished)
4). system of particles (finished)4). system of particles (finished)
4). system of particles (finished)PhysicsLover
Β 
2). dynamics (finished)
2). dynamics (finished)2). dynamics (finished)
2). dynamics (finished)PhysicsLover
Β 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)PhysicsLover
Β 

More from PhysicsLover (7)

All phy note for O lvl
All phy note for O lvlAll phy note for O lvl
All phy note for O lvl
Β 
9). transport phenomena (finished)
9). transport phenomena (finished)9). transport phenomena (finished)
9). transport phenomena (finished)
Β 
8). kinetic theory of gas (finished)
8). kinetic theory of gas (finished)8). kinetic theory of gas (finished)
8). kinetic theory of gas (finished)
Β 
5). rigid body (finished)
5). rigid body (finished)5). rigid body (finished)
5). rigid body (finished)
Β 
4). system of particles (finished)
4). system of particles (finished)4). system of particles (finished)
4). system of particles (finished)
Β 
2). dynamics (finished)
2). dynamics (finished)2). dynamics (finished)
2). dynamics (finished)
Β 
10). thermodynamics (finished)
10). thermodynamics (finished)10). thermodynamics (finished)
10). thermodynamics (finished)
Β 

Recently uploaded

Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
Β 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
Β 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
Β 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
Β 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
Β 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
Β 
Integration and Automation in Practice: CI/CD in MuleΒ Integration and Automat...
Integration and Automation in Practice: CI/CD in MuleΒ Integration and Automat...Integration and Automation in Practice: CI/CD in MuleΒ Integration and Automat...
Integration and Automation in Practice: CI/CD in MuleΒ Integration and Automat...Patryk Bandurski
Β 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
Β 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
Β 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
Β 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
Β 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
Β 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
Β 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
Β 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
Β 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
Β 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsAndrey Dotsenko
Β 

Recently uploaded (20)

Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
Β 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
Β 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Β 
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort ServiceHot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Hot Sexy call girls in Panjabi Bagh πŸ” 9953056974 πŸ” Delhi escort Service
Β 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
Β 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
Β 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
Β 
Integration and Automation in Practice: CI/CD in MuleΒ Integration and Automat...
Integration and Automation in Practice: CI/CD in MuleΒ Integration and Automat...Integration and Automation in Practice: CI/CD in MuleΒ Integration and Automat...
Integration and Automation in Practice: CI/CD in MuleΒ Integration and Automat...
Β 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
Β 
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
Β 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
Β 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
Β 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Β 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
Β 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
Β 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
Β 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
Β 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
Β 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Β 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Β 

7). mechanical waves (finished)

  • 2. Mechanical Wave Classification of waves (i). Medium ;Mechanical and Electromagnetic waves (ii). Direction of particles of medium ;Transverse and Longitudinal waves (iii). Motion of wave ;Stationary and progressive waves In elastic mediums, Tensile Stress, 𝑺 𝒏 𝑆 𝑛 = 𝐹 𝐴 π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ π‘ƒπ‘Ž ***Similar to pressure ***𝐴 π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ is the perpendicular area to the force. Tensile Strain, 𝜱 𝒕 Ξ¦ 𝑑 = βˆ†πΏ 𝐿0 Young’s Modulus, 𝒀 π‘Œ = 𝑆 𝑛 Ξ¦ 𝑑 π‘ƒπ‘Ž ***It is vary from one material to another. Same material has the same π‘Œ. Shear Stress, 𝑺 𝒕 𝑆𝑑 = 𝐹 𝐴 π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ π‘ƒπ‘Ž Shear Strain, 𝜱 𝒔 Ξ¦ 𝑠 = βˆ†π‘₯ 𝐿0 Shear Modulus, 𝑹 𝑅 = 𝑆𝑑 Ξ¦ 𝑠 π‘ƒπ‘Ž Pressure in fluid πΉβˆ’πΉ 𝐿0 βˆ†πΏ 𝐴 𝐹 βˆ’πΉ 𝐿0 βˆ†π‘₯ 𝐴 𝐹 π‘‰π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘‰π‘“π‘–π‘›π‘Žπ‘™
  • 3. Hydrostatic pressure, 𝑷 𝑃 = 𝐹 𝐴 π‘ƒπ‘Ž ***equivalent to stress Volume Strain, 𝜱 𝒔 Ξ¦ 𝑉 = 𝑉𝑓 βˆ’ 𝑉𝑖 𝑉𝑖 = βˆ†π‘‰ 𝑉𝑖 Bulk Modulus, 𝑩 𝐡 = βˆ’ βˆ†π‘ƒ Ξ¦ 𝑉 π‘ƒπ‘Ž ***πΆπ‘œπ‘šπ‘π‘Ÿπ‘’π‘ π‘ π‘–π‘π‘–π‘™π‘–π‘‘π‘¦ = 1 𝐡 Stress-Strain Curve Strain can reflect the force applied 𝐴 β†’ 𝐡; linear variation, elastic behavior ***The gradient = Young’s Modulus 𝐢 β†’ 𝐷; Plastic behavior 𝐡 = π‘ƒπ‘Ÿπ‘œπ‘π‘œπ‘Ÿπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘™π‘–π‘šπ‘–π‘‘ 𝐢 = πΈπ‘™π‘Žπ‘ π‘‘π‘–π‘ π‘™π‘–π‘šπ‘–π‘‘ 𝐷 = πΉπ‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ π‘π‘œπ‘–π‘›π‘‘ π‘†π‘‘π‘Ÿπ‘’π‘ π‘  π‘†π‘‘π‘Ÿπ‘Žπ‘–π‘›π΄ 𝐡 𝐢 𝐷 Equation of mechanical waves 𝑦 = 𝑓 π‘₯ = π‘₯2 For moving wave, 𝑦 = 𝑓 π‘₯ Β± 𝑠 = 𝑓 π‘₯ Β± 𝑣𝑑 However, the shape of wave is Sinusoidal or Simple harmonic wave, and not parabola ∴ 𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ For moving wave, 𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑) For wave movingto the right, 𝑦 = 𝑓 π‘₯ = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ βˆ’ 𝑣𝑑) For wave movingto the left, 𝑦 = 𝑓 π‘₯ = 𝐴 sin π‘˜(π‘₯ + 𝑣𝑑) 𝑦 = π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘Ž π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘  𝐴 = π‘Žπ‘šπ‘π‘™π‘–π‘‘π‘’π‘‘π‘’ π‘˜ = π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘€π‘Žπ‘£π‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ Ξ» = π‘€π‘Žπ‘£π‘’π‘™π‘’π‘›π‘”β„Žπ‘‘ 𝑓 π‘₯ = π‘₯2 𝑓 π‘₯ = (π‘₯ βˆ’ 𝑣𝑑)2 𝑓 π‘₯ = (π‘₯ + 𝑣𝑑)2 π‘₯ 𝑦 𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑) π‘˜ = 2πœ‹ Ξ» = πœ” 𝑣
  • 4. 𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑) Suppose the wave moves to the right. At 𝑑 = 0, 𝑑0 The position of a particle is π‘₯0 ∴ 𝑦(π‘₯0, 𝑑0) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯0 βˆ’ 𝑣𝑑0) The other position of the adjacent particle that is in phase is π‘₯0 + Ξ» ∴ 𝑦 π‘₯0 + πœ†, 𝑑0 = 𝐴 𝑠𝑖𝑛 π‘˜ π‘₯0 + πœ† βˆ’ 𝑣𝑑0 However, the points which are in phase have the same displacement (𝑦) ∴ 𝑦 π‘₯0, 𝑑0 = 𝑦 π‘₯0 + Ξ», 𝑑0 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯0 βˆ’ 𝑣𝑑0) = 𝐴 𝑠𝑖𝑛 π‘˜ π‘₯0 + πœ† βˆ’ 𝑣𝑑0 𝑠𝑖𝑛(π‘˜π‘₯0 βˆ’ π‘˜π‘£π‘‘0) = 𝑠𝑖𝑛 π‘˜π‘₯0 + π’Œπ€ βˆ’ π‘˜π‘£π‘‘0 ∴ π‘˜πœ† = 0 π‘œπ‘Ÿ π‘˜πœ† = 2πœ‹ Since, πœ† = 𝑣 𝑓 π‘˜π‘£ = 2πœ‹π‘“ = πœ” Summary 𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛 π‘˜(π‘₯ Β± 𝑣𝑑) π‘˜ = 2πœ‹ Ξ» = πœ” 𝑣 𝑣 = 𝑓 Ξ» πœ” = 2π‘“πœ‹ = 2πœ‹ 𝑇 π‘˜ = πœ” 𝑣 In reality, at 𝑑0, 𝑦 may not equation to 0 Thus, the general equation is, 𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ Β± πœ”π‘‘ + πœ™) πœ™ 𝑖𝑠 π‘Ž π‘β„Žπ‘Žπ‘ π‘’ π‘ β„Žπ‘–π‘“π‘‘ ***All angles are in radian. π·π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘ = 𝑦(π‘₯, 𝑑) π‘‰π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ π΄π‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› Wave equation πœ•2 𝑦 πœ•π‘₯2 = βˆ’π‘˜2 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ = βˆ’π‘˜2 𝑦 πœ•2 𝑦 πœ•π‘‘2 = βˆ’πœ”2 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ = βˆ’πœ”2 𝑦 ∴ πœ•2 𝑦 πœ•π‘₯2 πœ•2 𝑦 πœ•π‘‘2 = πœ”2 π‘˜2 = 𝑣2 ∴ πœ•2 𝑦 πœ•π‘₯2 = 1 𝑣2 πœ•2 𝑦 πœ•π‘‘2 ***Motion equation which can be arranged in this form is a sinusoidal wave. 𝑦(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ Β± πœ”π‘‘) 𝑒(π‘₯0, 𝑑0) = πœ•π‘¦ πœ•π‘‘ π‘₯=π‘₯0,𝑑=𝑑0 π‘Ž π‘₯0, 𝑑0 = πœ•π‘’ πœ•π‘‘ π‘₯=π‘₯0,𝑑=𝑑0 = πœ•2 𝑦 πœ•π‘‘2 π‘₯=π‘₯0,𝑑=𝑑0
  • 5. Interference Constructive interference Destructive inference Standing Wave Suppose there are 2 identical waves , one moves to the left and the other move to the right, combine together. Wave1; 𝑦1(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ + πœ”π‘‘) Wave2; 𝑦2(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘) ∴ 𝑦 = 𝑦1 + 𝑦1 = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ + πœ”π‘‘) + 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘) = 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯ π‘π‘œπ‘  πœ”π‘‘ Thus, the new amplitude is 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯. When 𝑠𝑖𝑛 π‘˜π‘₯ = Β±1, Anti-node When 𝑠𝑖𝑛 π‘˜π‘₯ = 0, Node When 𝑠𝑖𝑛 π‘˜π‘₯ = Β±1, Anti-node π΅π‘Žπ‘ π‘–π‘ π‘Žπ‘›π‘”π‘™π‘’ = πœ‹ 2 ∴ π‘˜π‘₯ = πœ‹ 2 , 3πœ‹ 2 , 5πœ‹ 2 , … Since π‘˜ = πœ” 𝑣 = 2πœ‹π‘“ 𝑓λ = 2πœ‹ Ξ» , 2πœ‹ Ξ» π‘₯ = πœ‹ 2 , 3πœ‹ 2 , 5πœ‹ 2 , … π‘₯ = Ξ» 4 , 3Ξ» 4 , 5Ξ» 4 , … When 𝑠𝑖𝑛 π‘˜π‘₯ = 0, Node π΅π‘Žπ‘ π‘–π‘ π‘Žπ‘›π‘”π‘™π‘’ = 0 ∴ π‘˜π‘₯ = 0, πœ‹, 3πœ‹, … π‘₯ = 0, Ξ» 2 , Ξ», 3Ξ» 2 , … 𝑦(π‘₯, 𝑑) = 2𝐴 𝑠𝑖𝑛 π‘˜π‘₯ π‘π‘œπ‘  πœ”π‘‘ Anti-node π‘₯ = 𝑛λ 4 ; 𝑛 = 1, 3, 5, …
  • 6. Fixed end Free end Reflected waves changedπœ™ by πœ‹ unchanged πœ™ At the boundary Node Anti-node Refractive index, 𝑛 low οƒ  high high οƒ  low Speed high οƒ  low low οƒ  high Reflection of wave 1. Reflection from a fixed/hard boundary 2. Reflection from a free/soft boundary Anti-node π‘₯ = 𝑛λ 4 ; 𝑛 = 1, 3, 5, … Node π‘₯ = 𝑛λ 2 ; 𝑛 = 0, 1, 2, … π‘Žπ‘› 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑑 π‘€π‘Žπ‘£π‘’ π‘Ž π‘Ÿπ‘’π‘‘π‘™π‘’π‘π‘‘π‘’π‘‘ π‘€π‘Žπ‘£π‘’ π‘Žπ‘› 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑑 π‘€π‘Žπ‘£π‘’ π‘Ž π‘Ÿπ‘’π‘‘π‘™π‘’π‘π‘‘π‘’π‘‘ π‘€π‘Žπ‘£π‘’ ***a reflected wave is identical to the incident wave except moving in an opposite direction, and a phase shift may change. Thus, the interference of incident waves and reflected waves may result in standing waves. String The fundamental tone Ξ»1 = 2𝑙 𝑓1 = 1 2 𝑣 𝑙 𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ ***the fundamental frequency is the minimum frequency required to form standing waves. ***the 1st harmonic Harmonic; how many time is the frequency greater than the fundamental frequency, 𝑓1. 𝑁 𝐴 𝐴𝐴 𝑁 𝐴 𝑁𝑁 Ξ» 2 Ξ» 4 𝑁 = π‘›π‘œπ‘‘π‘’ 𝐴 = π‘Žπ‘›π‘‘π‘– βˆ’ π‘›π‘œπ‘‘π‘’ 𝑁 𝑁 𝑙
  • 7. The first overtone Ξ»2 = 𝑙 𝑓2 = 𝑣 𝑙 = 2𝑓1 ***the 2nd harmonic, 𝑓2 𝑓1 = 2. The second overtone Ξ»3 = 2 3 𝑙 𝑓2 = 3 2 𝑣 𝑙 = 3𝑓1 ***the 3rd harmonic, 𝑓2 𝑓1 = 3. ***Natural frequencies are any frequencies required to form standing waves. 𝑙 𝑙 𝑣 = 𝑇 πœ‡ Velocity of the string 𝑇 = π‘ π‘‘π‘Ÿπ‘–π‘›π‘” π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑁 πœ‡ = π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘˜π‘” π‘š ***linear density; a measure of mass per unit of length Open ended pipe The fundamental tone Ξ»1 = 2𝑙 𝑓1 = 1 2 𝑣 𝑙 𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ ***the 1st harmonic The first overtone Ξ»2 = 𝑙 𝑓2 = 𝑣 𝑙 = 2𝑓1 ***the 2nd harmonic, 𝑓2 𝑓1 = 2. 𝑙 𝑙
  • 8. The second overtone Ξ»3 = 2 3 𝑙 𝑓2 = 3 2 𝑣 𝑙 = 3𝑓1 ***the 3rd harmonic, 𝑓2 𝑓1 = 3. Close ended pipe The fundamental tone Ξ»1 = 4𝑙 𝑓1 = 1 4 𝑣 𝑙 𝑓1 = π‘“π‘’π‘›π‘‘π‘Žπ‘šπ‘’π‘›π‘‘π‘Žπ‘™ π‘“π‘Ÿπ‘’π‘žπ‘’π‘’π‘›π‘π‘¦ ***the 1st harmonic The first overtone Ξ»2 = 4 3 𝑙 𝑓2 = 3 4 𝑣 𝑙 = 3𝑓1 ***the 3rd harmonic, 𝑓2 𝑓1 =3. The second overtone Ξ»3 = 4 5 𝑙 𝑓2 = 5 4 𝑣 𝑙 = 5𝑓1 ***the 5th harmonic, 𝑓2 𝑓1 = 5. ***The harmonics of close ended pipe are only odd numbers. Velocity of wave inside the pipe 𝑙 𝑙 𝑙 𝑙 𝑣 = 𝐡 𝜌
  • 9. Resonance ; the tendency of a system to oscillate at a greater amplitude at some frequencies (natural frequencies) than at others. All system has its own frequency. If a force is applied with the same frequency of the system, the damage is largest as it can reach the maximum amplitude. Modulation and Beat The interference of 2 waves with the same amplitude and direction, but different π‘˜ and πœ” Wave1; 𝑦1(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜1 π‘₯ βˆ’ πœ”1 𝑑) Wave2; 𝑦2(π‘₯, 𝑑) = 𝐴 𝑠𝑖𝑛(π‘˜2 π‘₯ βˆ’ πœ”2 𝑑) 𝑦 = 𝑦1 + 𝑦2 𝑦 = 2𝐡 π‘π‘œπ‘ (π‘˜ π‘šπ‘œπ‘‘ π‘₯ βˆ’ πœ” π‘šπ‘œπ‘‘ 𝑑) 𝑠𝑖𝑛(π‘˜ π‘Žπ‘£ π‘₯ βˆ’ πœ” π‘Žπ‘£ 𝑑) When, π‘˜ π‘šπ‘œπ‘‘ = π‘˜2βˆ’π‘˜1 2 ,π‘˜ π‘Žπ‘£ = π‘˜2+π‘˜1 2 And, πœ” π‘šπ‘œπ‘‘ = πœ”2βˆ’πœ”1 2 ,πœ” π‘Žπ‘£ = πœ”2+πœ”1 2 π‘“π‘π‘’π‘Žπ‘‘ = 𝑓1 βˆ’ 𝑓2 𝑓 π‘šπ‘œπ‘‘ = πœ” π‘šπ‘œπ‘‘ 2πœ‹ = 1 2 𝑓2 βˆ’ 𝑓1 Since, 𝑦 = 2𝐡 π‘π‘œπ‘ (π‘˜ π‘šπ‘œπ‘‘ π‘₯ βˆ’ πœ” π‘šπ‘œπ‘‘ 𝑑) 𝑠𝑖𝑛(π‘˜ π‘Žπ‘£ π‘₯ βˆ’ πœ” π‘Žπ‘£ 𝑑) can be expressed in the form of 𝑦 = 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ When 𝐴 = 2𝐡 π‘π‘œπ‘ (π‘˜ π‘šπ‘œπ‘‘ π‘₯ βˆ’ πœ” π‘šπ‘œπ‘‘ 𝑑) ∴ We define, 𝐴 π‘šπ‘œπ‘‘ = 2𝐡 π‘π‘œπ‘ (π‘˜ π‘šπ‘œπ‘‘ π‘₯ βˆ’ πœ” π‘šπ‘œπ‘‘ 𝑑) ***The amplitude of the combined wave is a sinusoidal function also. The average velocity of the combined wave,𝑣 π‘β„Žπ‘Žπ‘ π‘’ = 𝑣 π‘Žπ‘£ = πœ” π‘Žπ‘£ π‘˜ π‘Žπ‘£ π‘¦π‘‘π‘œπ‘‘π‘Žπ‘™propagates with π‘“π‘Ž 𝑣, 𝑣 π‘Žπ‘£ The Envelope propagates with 𝑓 π‘šπ‘œπ‘‘, 𝑣𝑔 𝑣𝑔 = πœ” π‘šπ‘œπ‘‘ π‘˜ π‘šπ‘œπ‘‘ = πœ”2 βˆ’ πœ”1 π‘˜2 βˆ’ π‘˜1 = π‘‘πœ” π‘‘π‘˜ 𝑣 π‘Žπ‘£ = πœ” π‘Žπ‘£ π‘˜ π‘Žπ‘£ π‘¦π‘‘π‘œπ‘‘π‘Žπ‘™ πΈπ‘›π‘£π‘’π‘™π‘œπ‘π‘’ (𝐴 π‘šπ‘œπ‘‘) 𝑣𝑔 = πœ”2 βˆ’ πœ”1 π‘˜2 βˆ’ π‘˜1 = π‘‘πœ” π‘‘π‘˜
  • 10. String 𝑣 = π‘£π‘’π‘™π‘œπ‘ π‘–π‘‘π‘¦ 𝑇 = π‘‘π‘’π‘›π‘ π‘–π‘œπ‘› 𝑁 πœ‡ = π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘˜π‘” π‘š The rate of energy transfer, 𝑱 𝒔 πΈπ‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑃𝐸 + 𝐾𝐸 For Kinetic Energy, 𝐾𝐸 = 1 2 π‘šπ‘’2 𝑑𝐾𝐸 = 1 2 π‘‘π‘š 𝑒2 Since, 𝑒 = πœ•π‘¦ πœ•π‘‘ 𝑒 = πœ• πœ•π‘‘ 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑒 = 𝐴 πœ• πœ•π‘‘ 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑒 = βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) And πœ‡ = π‘‘π‘š 𝑑π‘₯ π‘œπ‘Ÿ π‘‘π‘š = πœ‡π‘‘π‘₯ ∴ 𝑑𝐾𝐸 = 1 2 πœ‡π‘‘π‘₯ βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2 𝑑𝐾𝐸 𝑑𝑑 = 1 2 πœ‡ 𝑑π‘₯ 𝑑𝑑 βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2 𝑑𝐾𝐸 𝑑𝑑 = 1 2 πœ‡π‘£πœ”2 𝐴2 π‘π‘œπ‘ 2 (π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑑𝐾𝐸 𝑑𝑑 = 1 2 πœ‡π‘£πœ”2 𝐴2 π‘π‘œπ‘ 2 (π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ = 1 2 πœ‡π‘£πœ”2 𝐴2 1 𝑇 π‘π‘œπ‘ 2 (π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑇 0 𝑑𝑑 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ = 1 2 πœ‡π‘£πœ”2 𝐴2 1 2 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ = 1 4 πœ‡π‘£πœ”2 𝐴2 From Equipartition Theorem, 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ = 𝑑𝑃𝐸 𝑑𝑑 π‘Žπ‘£ ∴ 𝑑𝐸 𝑑𝑑 π‘Žπ‘£ = 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ + 𝑑𝑃𝐸 𝑑𝑑 π‘Žπ‘£ 𝑑𝐸 𝑑𝑑 π‘Žπ‘£ = 1 2 πœ‡π‘£πœ”2 𝐴2 Wave velocity in a fluid 𝐡 = π΅π‘’π‘™π‘˜ π‘€π‘œπ‘‘π‘’π‘™π‘’π‘  𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑑𝑦 π‘œπ‘“ π‘‘β„Žπ‘’ 𝑓𝑙𝑒𝑖𝑑 𝑣 = 𝑇 πœ‡ 𝑑𝐸 𝑑𝑑 π‘Žπ‘£ = 1 2 πœ‡π‘£πœ”2 𝐴 π‘šπ‘Žπ‘₯ 2 𝑣 = 𝐡 𝜌
  • 11. Longitudinal Waves We have another function to represent longitudinal waves, using Pressure 𝑃 π‘₯, 𝑑 At (a), the air particles are at equilibrium point with the cross- sectional diameter (of the column of the air ) of 𝐷. When the longitudinal wave is produced in (b). Air particles move with different rate, causing the change in pressure. Since, Bulk Modulus, 𝐡 = βˆ’ βˆ†π‘ƒ Ξ¦ 𝑉 And Ξ¦ 𝑉 = βˆ†π‘‰ 𝑉𝑖 𝐡 = βˆ’ βˆ†π‘ƒ βˆ†π‘‰/𝑉𝑖 (a). (b). 𝑦 𝑦 + βˆ†π‘¦ 𝐷 βˆ†π‘₯ 𝑝0 𝑝0 + 𝑝 𝐡 = βˆ’ βˆ†π‘ƒ βˆ†π‘‰/𝑉𝑖 𝐡 = βˆ’ 𝑃𝑓 βˆ’ 𝑃𝑖 𝑉𝑓 βˆ’ 𝑉𝑖 /𝑉𝑖 𝐡 = βˆ’ 𝑝0 + 𝑝 βˆ’ 𝑝0 βˆ†π‘₯ + βˆ†π‘¦ 𝐷 βˆ’ βˆ†π‘₯𝐷 /βˆ†π‘₯𝐷 𝐡 = βˆ’ 𝑝 βˆ†π‘¦/βˆ†π‘₯ 𝑝 = βˆ’π΅ βˆ†π‘¦ βˆ†π‘₯ Since, y π‘₯, 𝑑 = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘) ∴ 𝑝 = βˆ’π΅ πœ• 𝐴 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ πœ•π‘₯ 𝑝 = βˆ’π΅π΄π‘˜ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘ 𝑝 = βˆ’π‘ƒ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘ We define, 𝑷𝒓𝒆𝒔𝒔𝒖𝒓𝒆 π‘¨π’Žπ’‘π’π’Šπ’•π’–π’…π’†, 𝑃 = π΅π΄π‘˜ Since, 𝑣 = 𝐡 𝜌 , 𝐡 = πœŒπ‘£2 ∴ 𝑃 = πœŒπ‘£2 π΄π‘˜ 𝑝 = βˆ’π΅ πœ•π‘¦ πœ•π‘₯ 𝑦(π‘₯, 𝑑)𝑝 π‘₯, 𝑑 βˆ’π΅ πœ• πœ•π‘₯ 𝑃 = π΅π΄π‘˜ = πœŒπ‘£2 π΄π‘˜
  • 12. Since, When y π‘₯, 𝑑 = 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘), 𝑝 = βˆ’π‘ƒ π‘π‘œπ‘  π‘˜π‘₯ βˆ’ πœ”π‘‘ We can express, 𝑝 = 𝑃 𝑠𝑖𝑛 π‘˜π‘₯ βˆ’ πœ”π‘‘ βˆ’ πœ‹ 2 Therefore, the shapes of the 2 graphs are the same. However, the π‘β„Žπ‘Žπ‘ π‘’ π‘ β„Žπ‘–π‘“π‘‘, πœ™ = πœ‹ 2 π‘œπ‘Ÿ 90Β° The rate of energy transfer or the longitudinal wave πΈπ‘‘π‘œπ‘‘π‘Žπ‘™ = 𝑃𝐸 + 𝐾𝐸 For Kinetic Energy, 𝐾𝐸 = 1 2 π‘šπ‘’2 𝑑𝐾𝐸 = 1 2 π‘‘π‘š 𝑒2 Since, 𝑒 = πœ•π‘¦ πœ•π‘‘ 𝑒 = πœ• πœ•π‘‘ 𝐴 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑒 = 𝐴 πœ• πœ•π‘‘ 𝑠𝑖𝑛(π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑒 = βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) And 𝜌 = π‘‘π‘š 𝑑𝑉 π‘œπ‘Ÿ π‘‘π‘š = 𝜌 𝑑𝑣 = 𝜌 𝐷𝑑π‘₯ ; 𝐷 = π‘π‘Ÿπ‘œπ‘ π‘  π‘ π‘’π‘π‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘Žπ‘Ÿπ‘’π‘Ž ∴ 𝑑𝐾𝐸 = 1 2 πœŒπ·π‘‘π‘₯ βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2 𝑑𝐾𝐸 𝑑𝑑 = 1 2 𝜌𝐷 𝑑π‘₯ 𝑑𝑑 βˆ’πœ”π΄ π‘π‘œπ‘ (π‘˜π‘₯ βˆ’ πœ”π‘‘) 2 𝑑𝐾𝐸 𝑑𝑑 = 1 2 πœŒπ·π‘£πœ”2 𝐴2 π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ = 1 2 πœŒπ·π‘£πœ”2 𝐴2 1 𝑇 π‘π‘œπ‘ 2(π‘˜π‘₯ βˆ’ πœ”π‘‘) 𝑇 0 𝑑𝑑 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ = 1 2 πœŒπ·π‘£πœ”2 𝐴2 1 2 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ = 1 4 πœŒπ·π‘£πœ”2 𝐴2 From Equipartition Theorem, 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ = 𝑑𝑃𝐸 𝑑𝑑 π‘Žπ‘£ ∴ 𝑑𝐸 𝑑𝑑 π‘Žπ‘£ = 𝑑𝐾𝐸 𝑑𝑑 π‘Žπ‘£ + 𝑑𝑃𝐸 𝑑𝑑 π‘Žπ‘£ 𝑑𝐸 𝑑𝑑 π‘Žπ‘£ = 1 2 πœŒπ·π‘£πœ”2 𝐴2 𝑑𝐸 𝑑𝑑 π‘Žπ‘£ = 1 2 πœŒπ·π‘£πœ”2 𝐴 π‘šπ‘Žπ‘₯ 2