Complete
Residue
Systems
Jason T. Meregildo
MAEd - Mathematics
What is a Congruence…?
•𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏 if 𝐧︱𝐚 − 𝐛
•𝒂 − 𝒃 = 𝒌𝒏 ; 𝒌 𝝐 ℝ
What is a
System of Residues…?
•A subset of ℝ of the set
of integers is called a
residue system modulo 𝒏
if no two elements of ℝ
are congruent 𝐦𝐨𝐝𝐮𝐥𝐨 𝒏.
•A collection of n integers
𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 is a CSR
modulo n if every integer
is congruent to n to one
and only one of the 𝒂𝒌.
What is a
Complete System of Residues…?
What is a
Complete System of Residues…?
𝒂𝟏, … , 𝒂𝒏 ≡ 𝟎, 𝟏, … , 𝒏 − 𝟏 𝒎𝒐𝒅𝒖𝒍𝒐 𝒏
Example:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
Solution:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
Solution:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
Solution:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
Solution:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
Solution:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
Solution:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
Solution:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
Example:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔
Example:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔
Example:
Let 𝒏 = 𝟕
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔
Example 2:
Let 𝒏 = 𝟒
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
Solution:
Let 𝒏 = 𝟒
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
Solution:
Let 𝒏 = 𝟒
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
Solution:
Let 𝒏 = 𝟒
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
Solution:
Let 𝒏 = 𝟒
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
Example:
Let 𝒏 = 𝟒
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
Example 2:
Let 𝒏 = 𝟒
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
Solution:
Let 𝒏 = 𝟒
𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
That’s
all!!!

Complete Residue Systems.pptx

  • 1.
  • 2.
    What is aCongruence…? •𝒂 ≡ 𝒃 𝒎𝒐𝒅 𝒏 if 𝐧︱𝐚 − 𝐛 •𝒂 − 𝒃 = 𝒌𝒏 ; 𝒌 𝝐 ℝ
  • 3.
    What is a Systemof Residues…? •A subset of ℝ of the set of integers is called a residue system modulo 𝒏 if no two elements of ℝ are congruent 𝐦𝐨𝐝𝐮𝐥𝐨 𝒏.
  • 4.
    •A collection ofn integers 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 is a CSR modulo n if every integer is congruent to n to one and only one of the 𝒂𝒌. What is a Complete System of Residues…?
  • 5.
    What is a CompleteSystem of Residues…? 𝒂𝟏, … , 𝒂𝒏 ≡ 𝟎, 𝟏, … , 𝒏 − 𝟏 𝒎𝒐𝒅𝒖𝒍𝒐 𝒏
  • 6.
    Example: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔
  • 7.
    Solution: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔 𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
  • 8.
    Solution: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔 𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
  • 9.
    Solution: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔 𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
  • 10.
    Solution: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔 𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
  • 11.
    Solution: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔 𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
  • 12.
    Solution: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔 𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
  • 13.
    Solution: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, … , 𝟔 𝑺 = −𝟏𝟐, −𝟒, 𝟏𝟏, 𝟏𝟑, 𝟐𝟐, 𝟖𝟐, 𝟗𝟏
  • 14.
    Example: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔
  • 15.
    Example: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔
  • 16.
    Example: Let 𝒏 =𝟕 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔
  • 17.
    Example 2: Let 𝒏= 𝟒 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
  • 18.
    Solution: Let 𝒏 =𝟒 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑 𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
  • 19.
    Solution: Let 𝒏 =𝟒 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑 𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
  • 20.
    Solution: Let 𝒏 =𝟒 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑 𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
  • 21.
    Solution: Let 𝒏 =𝟒 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑 𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
  • 22.
    Example: Let 𝒏 =𝟒 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
  • 23.
    Example 2: Let 𝒏= 𝟒 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑
  • 24.
    Solution: Let 𝒏 =𝟒 𝒓 = 𝟎, 𝟏, 𝟐, 𝟑 𝑺 = 𝟏𝟐, 𝟏𝟏, 𝟖, 𝟑
  • 25.