SlideShare a Scribd company logo
1 of 36
RF Front End Radio Design-
Simulations and Specifications
Hemish Parikh
Advisor: Prof. William R. Michalson
9/27/2022 2
Outline
• Overview
• System parameters
• Specifications
• System Analysis
• System Parameter relations
• System Simulations in ADS
• Roadmap
• Questions
RF Front End Receiver Design - Outline
9/27/2022 3
Filters, Amps
Mixers, Osc
Analog Front End Location Estimate
A/D, Latches,
SDRAM
Digital Back End
Vin
GND
Vref
D1
D4
Sign
ENB
Vref
FB
Comp
Reset
I-sense
Drain
Source
Shtdwn
Interface
Overview
RF Front End Receiver Design - Overview
You are Here
9/27/2022 4
Today’s Focus
A/D
AMP
LO
BPF MIXER DSP
LPF
Possible Front End Models
• Model 1: Direct RF Sampling
• Model 2: Direct Down Conversion
A/D
AMP
BPF DSP
880 MHz
RF Front End Receiver Design - Overview
9/27/2022 5
System Parameters
• System Gain (G)
• System Noise Figure (NF)
• Input 3rd Order Intercept Point (IIP3)
• Receiver Sensitivity (Rx-Sens)
• Receiver Spurious Free Dynamic Range
(SFDR)
• Inter Modulation Distortion (IMD)
RF Front End Receiver Design – System Parameters
9/27/2022 6
Component Identification
AGC
VCO
BPF MIXER LPF
PLL
TCXO
LNA
0-50 MHz
COMTELCO
PEXW-400
MURATA
415-465 MHz
ANALOG DEVICES
AD-8343
MURATA
0-50 MHz
VARI-L
VCO190-445T
VECTRON
OSC-1B0-10MHz
ANALOG DEVICES
ADF-4112
ANALOG DEVICES
AD-8367
RF MICRO DEVICES
RF-2361
RF Front End Receiver Design - Specifications
9/27/2022 7
Specifications - LNA
• RFMD – 2361
– Low Noise Figure (NF): 1.9 dB
– Gain (G): 20 dB
– Input 3rd order intercept point (IIP3): 6 dBm
– Max input RF level: +10 dBm
AGC
BPF MIXER LPF
LNA
P_in P_out
RF Front End Receiver Design - Specifications
9/27/2022 8
Specifications - AGC
• AD 8367:
– Variable Gain:
-2.5 dB to 42.5 dB
– NF ???
– IIP3 ???
AGC
BPF MIXER LPF
LNA
P_in P_out
RF Front End Receiver Design - Specifications
mV
mV
V
V
dB
Gain
Gain
Gain
950
50
5
50
)
(





9/27/2022 9
Specifications – Mixer (1)
• Big role in overall system performance
• Mixing is just frequency shifting
• Produces LO+RF and LO-RF
• Produces Unwanted Inter Modulation Distortion (IMD)
• IM products: (M*LO + N*RF) and (M*LO - N*RF)
• Good Mixer or a Bad Mixer !!!!!????
RF
LO
LO-RF LO+RF
IM Products
RF Front End Receiver Design - Specifications
9/27/2022 10
Good Mixer
Low Noise Figure
(< 15dB)
Good Port Isolation
(~ 50dBm)
High IP3
( > 15dB)
High Conversion Gain
LO drive level
(application dependent)
RF Front End Receiver Design - Specifications
Specifications – Mixer (2)
9/27/2022 11
• AD 8343:
– NF: 11 dB
– Gain: 7.1 dB
– IIP3: 20 dBm
– LO drive level: -10 dBm
AGC
BPF MIXER LPF
LNA
P_in P_out
RF Front End Receiver Design - Specifications
Specifications – Mixer (3)
9/27/2022 12
MIXER
m14
freq=
dBm(V_input)=-9.172
40.00MHz
0.5 1.0 1.5 2.0 2.5 3.0
0.0 3.5
-200
-100
-300
0
freq, GHz
dBm(V_input)
m14 Mixer Input
m1
freq=
dBm(Vmix)=-15.926
440.0MHz
m7
freq=
dBm(Vmix)=-12.433
360.0MHz
0.6 1.1 1.6 2.1 2.6 3.1
0.1 3.5
-100
-50
-150
0
freq, GHz
dBm(Vmix)
m1
m7
Mixer Output
RF Front End Receiver Design - Specifications
Specifications – Mixer (4)
LO = 400 MHz
9/27/2022 13
Specifications - TCXO / VCO
• Vectron TCXO:
– Frequency: 10 MHz
– Stability: 2.5 ppm
– Mechanical Trip:
+/- 3 ppm
• Vari-L VCO:
– Tuning Range: 400 to 500
MHz
– Tuning Sensitivity:
15MHz/V
AGC
VCO
MIXER
PLL
TCXO
LNA
RF Front End Receiver Design - Specifications
9/27/2022 14
Specifications – PLL (1)
• ADF 4113:
– Programmable
counters: P, B, A, R
AGC
VCO
MIXER
PLL
TCXO
LNA
 
  R
f
A
B
P
f TCXO
vco /



RF Front End Receiver Design - Specifications
9/27/2022 15
System Gain
G1= -2dB G2= 20dB G3= 7.1dB G4= -2dB
BPF LNA MIXER LPF
P_in (dBm) -40 -42 -22 -14.9
Gain (dB) -2 20 7.1 -2
Cumulative Gain -2 18 25.1 23.1
P_out (dBm) -42 -22 -14.9 -12.9
G(dB) = G1+G2+G3+G4
P_in = G + P_out
BPF MIXER LPF
LNA
P_in P_out
RF Front End Receiver Design – Analysis
9/27/2022 16
System Noise Figure (1)
Noise Sources
System Noise Thermal Noise
System noisy due to losses in
circuit, solid state devices.
Noise Figure
quantifies
how noisy the
system is
Noise Figure is
Noise Factor in dB
GOAL: Design receiver
with lowest NF !!!!!!
Reference Max allowed NF:
WCDMA: 9 dB
Cellular: 10 dB
PCS: 6.8 dB
RF Front End Receiver Design – Analysis
9/27/2022 17
System Noise Figure (2)
BPF LNA MIXER LPF
NF (dB) 2 1.9 11 2
Cumulative NF
(dB)
2 3.9 4.21 4.22
.....
1
1
2
1 



G
NF
NF
NF
Noise Figure of Cascaded System
NF1=2dB NF2=1.9dB NF4=11dB NF5= 2dB
G1= -2dB G2= 20dB G3= 7.1dB G4= -2dB
BPF MIXER LPF
LNA
P_in P_out
Critical
RF Front End Receiver Design – Analysis
9/27/2022 18
System Input IP3 (1)
IP3 is a measure of system linearity.
Point where the desired signal and the 3rd order
distortion have equal magnitudes.
Third Order products:
2f1+f2, 2f1-f2, 2f2+f1, 2f2-
f1, where f1 and f2 are two
inputs.
Problem: Relatively large
magnitude and difficult to
filter
Reference Min allowed IIP3:
Cellular: -13 dBm
PCS: -11.425 dBm
RF Front End Receiver Design – Analysis
9/27/2022 19
System Input IP3 (2)
G1= -2dB G2=20dB G3=7.1dB G4= -2dB
IIP1= dBm IIP2= 6dBm IIP3=20dBm IIP4= dBm
 
1
4
3
2
1
3
1
1
1
1
log
10













IP
IP
IP
IP
IIP
dBm
1
.
1
)
28
.
1
log(
10
1
6
.
1
1
31
.
6
1
1
log
10
1















BPF MIXER LPF
LNA
P_in P_out
Critical
RF Front End Receiver Design – Analysis
9/27/2022 20
Rx. Sens = Noise Floor + 10log(BW) + SNR_min + Noise Figure
Significantly reduces
The Rx. Sens
Receiver Sensitivity (1)
• Rx. Sens quantifies the receivers ability to respond
to weak signal.
Rx. Sens = -174 + 77 + 12 + 4.22
= -80.78 dBm
SNR_min = 12dB (Assume)
BW = 50MHz
RF Front End Receiver Design – Analysis
BPF MIXER LPF
LNA
P_in P_out
A/D
Input
9/27/2022 21
Receiver Sensitivity (2)
RF Front End Receiver Design – Analysis
As BW increases, sensitivity becomes poor
9/27/2022 22
Receiver Sensitivity (3)
RF Front End Receiver Design – Analysis
9/27/2022 23
Receiver Spurious Free
Dynamic Range
• High DR means Receiver can operate over wide
range of input power levels.
– Receiver’s Output starts to saturate if the Input is above
the range
– Below DR, the noise dominates.
SFDR = 0.66 (IIP3 – Rx. Sens)
= 0.66 (1.1 + 80.78)
= 54.6 dB
RF Front End Receiver Design – Analysis
9/27/2022 24
AGC Issues
• Max AGC Gain:
– Lowest NF
– Lowest IIP3
RF Front End Receiver Design – Analysis
• Min AGC Gain:
– High IIP3
– High NF
• Poor Dynamic
Range: 25dB
9/27/2022 25
Dynam ic
Range
dBm
Noise
Figure
Min SNR
Reqd
Approx :
IP3-15
Min Reqd Rx .
Signal Level
Effective Rx. Noise
= -90dBm
Therm al Noise
Floor
System Parameters Relations
Application
Dependent
Maximize
Rx. Sens
Maximize
DR
Higher
IP3
Bandwidth
Dependent
Minimize
NF
RF Front End Receiver Design – Parameters Relations
9/27/2022 26
ADS simulations for Gain (1)
m2
Component=
our_bgain[0::x,0]=22.375
b6
b2_AMP1 b3_MIX1 b5_BPF2
b1_BPF1 b6
0
10
20
-10
30
Component
our_bgain[0::x,0]
m2
Gain in the Receive RF chain
BPF MIXER LPF
LNA
P_in P_out
RF Front End Receiver Design - Simulations
9/27/2022 27
ADS simulations for Gain (2)
m1
Component=
our_bgain[0::x,0]=22.018
b6
b2_BPF1 b3_MIX1 b5_BPF2
b1_AMP1 b6
0
10
20
-10
30
Component
our_bgain[0::x,0]
m1
Gain in the Receive RF chain
MIXER
BPF LPF
LNA
P_in P_out
Swapped
RF Front End Receiver Design - Simulations
9/27/2022 28
ADS simulations for NF(1)
m1
Component=
our_bnf[0::x,0]=4.259
b6
b2_AMP1 b3_MIX1 b5_BPF2
b1_BPF1 b6
1
2
3
4
0
5
Component
our_bnf[0::x,0]
m1
NF in the Receive RF chain
BPF MIXER LPF
LNA
P_in P_out
RF Front End Receiver Design - Simulations
9/27/2022 29
ADS simulations for NF(2)
MIXER
BPF LPF
LNA
P_in P_out
Swapped
m5
Component=
our_bnf[0::x,0]=2.468
b6
b2_BPF1 b3_MIX1 b5_BPF2
b1_AMP1 b6
0.5
1.0
1.5
2.0
0.0
2.5
Component
our_bnf[0::x,0]
m5
NF in the Receive RF chain
RF Front End Receiver Design - Simulations
9/27/2022 30
ADS simulations for IMD (1)
RF Front End Receiver Design - Simulations
9/27/2022 31
ADS simulations for IMD (2)
0.2 0.4 0.6 0.8 1.0 1.2
0.0 1.4
-100
-80
-60
-40
-20
-120
0
freq, GHz
dBm(Mix1_in)
Original Signal
0.2 0.4 0.6 0.8 1.0 1.2
0.0 1.4
-100
-80
-60
-40
-20
-120
0
freq, GHz
dB(BPF1_in)
UpConvertion Mixer Output
300 500 700
100 900
-300
-200
-100
0
-400
50
freq, MHz
dBm(Link1_in)
Transmitted Signal
RF Front End Receiver Design - Simulations
300 500 700
100 900
-400
-300
-200
-100
-500
0
freq, MHz
dBm(Amp2_in)
Receiver LNA input
9/27/2022 32
ADS simulations for IMD (3)
200 400 600
0 800
-100
-80
-60
-40
-20
0
-120
20
freq, MHz
dBm(Mix2_in)
Downconverter Mixer Input
200 400 600
0 800
-100
-80
-60
-40
-20
0
-120
20
freq, MHz
dBm(LPF1_in)
Downconverter Mixer Output
0.2 0.4 0.6 0.8 1.0 1.2
0.0 1.4
-250
-200
-150
-100
-50
-300
0
freq, GHz
dBm(LPF1_out)
LPF output
0.2 0.4 0.6 0.8 1.0 1.2
0.0 1.4
-250
-200
-150
-100
-50
-300
0
freq, GHz
dBm(Mix1_in)
Original Signal
RF Front End Receiver Design - Simulations
9/27/2022 33
ADS simulations for SFDR
0.2 0.4 0.6 0.8 1.0 1.2
0.0 1.4
-100
-80
-60
-40
-20
-120
0
freq, GHz
dBm(LPF1_out)
LPF output
RF Front End Receiver Design - Simulations
Rx Signal Level = -25dBm
SFDR ~= 50 dB
SFDR
9/27/2022 34
RF Front End Receiver Design - Simulations
9/27/2022 35
Roadmap
• ADS with Matlab
• ADS with Instruments
• Set-up Evaluation board
• Migrate to 2.4 GHz
RF Front End Receiver Design
9/27/2022 36
RF Front End Receiver Design
?

More Related Content

Similar to frls2.ppt

IBS TRAINING(new).pptx
IBS TRAINING(new).pptxIBS TRAINING(new).pptx
IBS TRAINING(new).pptxHussienEndris1
 
Maglayer Mulitilayer Products_20160420
Maglayer Mulitilayer Products_20160420Maglayer Mulitilayer Products_20160420
Maglayer Mulitilayer Products_20160420Chin Feng Cheng
 
Abhinav End Sem Presentation Software Defined Radio
Abhinav End Sem Presentation Software Defined RadioAbhinav End Sem Presentation Software Defined Radio
Abhinav End Sem Presentation Software Defined Radioguestad4734
 
Embedded World 2015: Sense2Go - 24GHz Sensor Solution for Industrial Applicat...
Embedded World 2015: Sense2Go - 24GHz Sensor Solution for Industrial Applicat...Embedded World 2015: Sense2Go - 24GHz Sensor Solution for Industrial Applicat...
Embedded World 2015: Sense2Go - 24GHz Sensor Solution for Industrial Applicat...Infineon4Engineers
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationPei-Che Chang
 
3 g coverage guidelines v2
3 g coverage guidelines v23 g coverage guidelines v2
3 g coverage guidelines v2Ryan Racun
 
RF—project
RF—projectRF—project
RF—projectHE LIU
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Simen Li
 
CMOSWiFiRFFront-EndsforMobileHandsetApplications-Part-I.pdf
CMOSWiFiRFFront-EndsforMobileHandsetApplications-Part-I.pdfCMOSWiFiRFFront-EndsforMobileHandsetApplications-Part-I.pdf
CMOSWiFiRFFront-EndsforMobileHandsetApplications-Part-I.pdfCesarAdrinUrestiTrej
 
Digital Earth Station
Digital Earth Station  Digital Earth Station
Digital Earth Station Susmita Pandey
 
TH2_T03_2_igarss2011.pptx
TH2_T03_2_igarss2011.pptxTH2_T03_2_igarss2011.pptx
TH2_T03_2_igarss2011.pptxgrssieee
 
02_Cornelsen_Doug_mapld09_pres_1.ppt
02_Cornelsen_Doug_mapld09_pres_1.ppt02_Cornelsen_Doug_mapld09_pres_1.ppt
02_Cornelsen_Doug_mapld09_pres_1.pptssuserf2cc17
 

Similar to frls2.ppt (20)

IBS TRAINING(new).pptx
IBS TRAINING(new).pptxIBS TRAINING(new).pptx
IBS TRAINING(new).pptx
 
Maglayer Mulitilayer Products_20160420
Maglayer Mulitilayer Products_20160420Maglayer Mulitilayer Products_20160420
Maglayer Mulitilayer Products_20160420
 
Abhinav End Sem Presentation Software Defined Radio
Abhinav End Sem Presentation Software Defined RadioAbhinav End Sem Presentation Software Defined Radio
Abhinav End Sem Presentation Software Defined Radio
 
NT1065 LE DS v2.04
NT1065 LE DS v2.04NT1065 LE DS v2.04
NT1065 LE DS v2.04
 
Embedded World 2015: Sense2Go - 24GHz Sensor Solution for Industrial Applicat...
Embedded World 2015: Sense2Go - 24GHz Sensor Solution for Industrial Applicat...Embedded World 2015: Sense2Go - 24GHz Sensor Solution for Industrial Applicat...
Embedded World 2015: Sense2Go - 24GHz Sensor Solution for Industrial Applicat...
 
MCube_slides_20min.pptx
MCube_slides_20min.pptxMCube_slides_20min.pptx
MCube_slides_20min.pptx
 
lecture4.ppt
lecture4.pptlecture4.ppt
lecture4.ppt
 
GPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF considerationGPS sensitivity questions and its HW RF consideration
GPS sensitivity questions and its HW RF consideration
 
3 g coverage guidelines v2
3 g coverage guidelines v23 g coverage guidelines v2
3 g coverage guidelines v2
 
RF—project
RF—projectRF—project
RF—project
 
FFaraji
FFarajiFFaraji
FFaraji
 
NTU2018_01_26_Ph.D._oral_defence_YC
NTU2018_01_26_Ph.D._oral_defence_YCNTU2018_01_26_Ph.D._oral_defence_YC
NTU2018_01_26_Ph.D._oral_defence_YC
 
LnA Design_group5
LnA Design_group5LnA Design_group5
LnA Design_group5
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
CMOSWiFiRFFront-EndsforMobileHandsetApplications-Part-I.pdf
CMOSWiFiRFFront-EndsforMobileHandsetApplications-Part-I.pdfCMOSWiFiRFFront-EndsforMobileHandsetApplications-Part-I.pdf
CMOSWiFiRFFront-EndsforMobileHandsetApplications-Part-I.pdf
 
AD8351.pdf
AD8351.pdfAD8351.pdf
AD8351.pdf
 
Digital Earth Station
Digital Earth Station  Digital Earth Station
Digital Earth Station
 
TH2_T03_2_igarss2011.pptx
TH2_T03_2_igarss2011.pptxTH2_T03_2_igarss2011.pptx
TH2_T03_2_igarss2011.pptx
 
02_Cornelsen_Doug_mapld09_pres_1.ppt
02_Cornelsen_Doug_mapld09_pres_1.ppt02_Cornelsen_Doug_mapld09_pres_1.ppt
02_Cornelsen_Doug_mapld09_pres_1.ppt
 
Part 2 planning of 3G
Part 2  planning of 3GPart 2  planning of 3G
Part 2 planning of 3G
 

Recently uploaded

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 

Recently uploaded (20)

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 

frls2.ppt

  • 1. RF Front End Radio Design- Simulations and Specifications Hemish Parikh Advisor: Prof. William R. Michalson
  • 2. 9/27/2022 2 Outline • Overview • System parameters • Specifications • System Analysis • System Parameter relations • System Simulations in ADS • Roadmap • Questions RF Front End Receiver Design - Outline
  • 3. 9/27/2022 3 Filters, Amps Mixers, Osc Analog Front End Location Estimate A/D, Latches, SDRAM Digital Back End Vin GND Vref D1 D4 Sign ENB Vref FB Comp Reset I-sense Drain Source Shtdwn Interface Overview RF Front End Receiver Design - Overview You are Here
  • 4. 9/27/2022 4 Today’s Focus A/D AMP LO BPF MIXER DSP LPF Possible Front End Models • Model 1: Direct RF Sampling • Model 2: Direct Down Conversion A/D AMP BPF DSP 880 MHz RF Front End Receiver Design - Overview
  • 5. 9/27/2022 5 System Parameters • System Gain (G) • System Noise Figure (NF) • Input 3rd Order Intercept Point (IIP3) • Receiver Sensitivity (Rx-Sens) • Receiver Spurious Free Dynamic Range (SFDR) • Inter Modulation Distortion (IMD) RF Front End Receiver Design – System Parameters
  • 6. 9/27/2022 6 Component Identification AGC VCO BPF MIXER LPF PLL TCXO LNA 0-50 MHz COMTELCO PEXW-400 MURATA 415-465 MHz ANALOG DEVICES AD-8343 MURATA 0-50 MHz VARI-L VCO190-445T VECTRON OSC-1B0-10MHz ANALOG DEVICES ADF-4112 ANALOG DEVICES AD-8367 RF MICRO DEVICES RF-2361 RF Front End Receiver Design - Specifications
  • 7. 9/27/2022 7 Specifications - LNA • RFMD – 2361 – Low Noise Figure (NF): 1.9 dB – Gain (G): 20 dB – Input 3rd order intercept point (IIP3): 6 dBm – Max input RF level: +10 dBm AGC BPF MIXER LPF LNA P_in P_out RF Front End Receiver Design - Specifications
  • 8. 9/27/2022 8 Specifications - AGC • AD 8367: – Variable Gain: -2.5 dB to 42.5 dB – NF ??? – IIP3 ??? AGC BPF MIXER LPF LNA P_in P_out RF Front End Receiver Design - Specifications mV mV V V dB Gain Gain Gain 950 50 5 50 ) (     
  • 9. 9/27/2022 9 Specifications – Mixer (1) • Big role in overall system performance • Mixing is just frequency shifting • Produces LO+RF and LO-RF • Produces Unwanted Inter Modulation Distortion (IMD) • IM products: (M*LO + N*RF) and (M*LO - N*RF) • Good Mixer or a Bad Mixer !!!!!???? RF LO LO-RF LO+RF IM Products RF Front End Receiver Design - Specifications
  • 10. 9/27/2022 10 Good Mixer Low Noise Figure (< 15dB) Good Port Isolation (~ 50dBm) High IP3 ( > 15dB) High Conversion Gain LO drive level (application dependent) RF Front End Receiver Design - Specifications Specifications – Mixer (2)
  • 11. 9/27/2022 11 • AD 8343: – NF: 11 dB – Gain: 7.1 dB – IIP3: 20 dBm – LO drive level: -10 dBm AGC BPF MIXER LPF LNA P_in P_out RF Front End Receiver Design - Specifications Specifications – Mixer (3)
  • 12. 9/27/2022 12 MIXER m14 freq= dBm(V_input)=-9.172 40.00MHz 0.5 1.0 1.5 2.0 2.5 3.0 0.0 3.5 -200 -100 -300 0 freq, GHz dBm(V_input) m14 Mixer Input m1 freq= dBm(Vmix)=-15.926 440.0MHz m7 freq= dBm(Vmix)=-12.433 360.0MHz 0.6 1.1 1.6 2.1 2.6 3.1 0.1 3.5 -100 -50 -150 0 freq, GHz dBm(Vmix) m1 m7 Mixer Output RF Front End Receiver Design - Specifications Specifications – Mixer (4) LO = 400 MHz
  • 13. 9/27/2022 13 Specifications - TCXO / VCO • Vectron TCXO: – Frequency: 10 MHz – Stability: 2.5 ppm – Mechanical Trip: +/- 3 ppm • Vari-L VCO: – Tuning Range: 400 to 500 MHz – Tuning Sensitivity: 15MHz/V AGC VCO MIXER PLL TCXO LNA RF Front End Receiver Design - Specifications
  • 14. 9/27/2022 14 Specifications – PLL (1) • ADF 4113: – Programmable counters: P, B, A, R AGC VCO MIXER PLL TCXO LNA     R f A B P f TCXO vco /    RF Front End Receiver Design - Specifications
  • 15. 9/27/2022 15 System Gain G1= -2dB G2= 20dB G3= 7.1dB G4= -2dB BPF LNA MIXER LPF P_in (dBm) -40 -42 -22 -14.9 Gain (dB) -2 20 7.1 -2 Cumulative Gain -2 18 25.1 23.1 P_out (dBm) -42 -22 -14.9 -12.9 G(dB) = G1+G2+G3+G4 P_in = G + P_out BPF MIXER LPF LNA P_in P_out RF Front End Receiver Design – Analysis
  • 16. 9/27/2022 16 System Noise Figure (1) Noise Sources System Noise Thermal Noise System noisy due to losses in circuit, solid state devices. Noise Figure quantifies how noisy the system is Noise Figure is Noise Factor in dB GOAL: Design receiver with lowest NF !!!!!! Reference Max allowed NF: WCDMA: 9 dB Cellular: 10 dB PCS: 6.8 dB RF Front End Receiver Design – Analysis
  • 17. 9/27/2022 17 System Noise Figure (2) BPF LNA MIXER LPF NF (dB) 2 1.9 11 2 Cumulative NF (dB) 2 3.9 4.21 4.22 ..... 1 1 2 1     G NF NF NF Noise Figure of Cascaded System NF1=2dB NF2=1.9dB NF4=11dB NF5= 2dB G1= -2dB G2= 20dB G3= 7.1dB G4= -2dB BPF MIXER LPF LNA P_in P_out Critical RF Front End Receiver Design – Analysis
  • 18. 9/27/2022 18 System Input IP3 (1) IP3 is a measure of system linearity. Point where the desired signal and the 3rd order distortion have equal magnitudes. Third Order products: 2f1+f2, 2f1-f2, 2f2+f1, 2f2- f1, where f1 and f2 are two inputs. Problem: Relatively large magnitude and difficult to filter Reference Min allowed IIP3: Cellular: -13 dBm PCS: -11.425 dBm RF Front End Receiver Design – Analysis
  • 19. 9/27/2022 19 System Input IP3 (2) G1= -2dB G2=20dB G3=7.1dB G4= -2dB IIP1= dBm IIP2= 6dBm IIP3=20dBm IIP4= dBm   1 4 3 2 1 3 1 1 1 1 log 10              IP IP IP IP IIP dBm 1 . 1 ) 28 . 1 log( 10 1 6 . 1 1 31 . 6 1 1 log 10 1                BPF MIXER LPF LNA P_in P_out Critical RF Front End Receiver Design – Analysis
  • 20. 9/27/2022 20 Rx. Sens = Noise Floor + 10log(BW) + SNR_min + Noise Figure Significantly reduces The Rx. Sens Receiver Sensitivity (1) • Rx. Sens quantifies the receivers ability to respond to weak signal. Rx. Sens = -174 + 77 + 12 + 4.22 = -80.78 dBm SNR_min = 12dB (Assume) BW = 50MHz RF Front End Receiver Design – Analysis BPF MIXER LPF LNA P_in P_out A/D Input
  • 21. 9/27/2022 21 Receiver Sensitivity (2) RF Front End Receiver Design – Analysis As BW increases, sensitivity becomes poor
  • 22. 9/27/2022 22 Receiver Sensitivity (3) RF Front End Receiver Design – Analysis
  • 23. 9/27/2022 23 Receiver Spurious Free Dynamic Range • High DR means Receiver can operate over wide range of input power levels. – Receiver’s Output starts to saturate if the Input is above the range – Below DR, the noise dominates. SFDR = 0.66 (IIP3 – Rx. Sens) = 0.66 (1.1 + 80.78) = 54.6 dB RF Front End Receiver Design – Analysis
  • 24. 9/27/2022 24 AGC Issues • Max AGC Gain: – Lowest NF – Lowest IIP3 RF Front End Receiver Design – Analysis • Min AGC Gain: – High IIP3 – High NF • Poor Dynamic Range: 25dB
  • 25. 9/27/2022 25 Dynam ic Range dBm Noise Figure Min SNR Reqd Approx : IP3-15 Min Reqd Rx . Signal Level Effective Rx. Noise = -90dBm Therm al Noise Floor System Parameters Relations Application Dependent Maximize Rx. Sens Maximize DR Higher IP3 Bandwidth Dependent Minimize NF RF Front End Receiver Design – Parameters Relations
  • 26. 9/27/2022 26 ADS simulations for Gain (1) m2 Component= our_bgain[0::x,0]=22.375 b6 b2_AMP1 b3_MIX1 b5_BPF2 b1_BPF1 b6 0 10 20 -10 30 Component our_bgain[0::x,0] m2 Gain in the Receive RF chain BPF MIXER LPF LNA P_in P_out RF Front End Receiver Design - Simulations
  • 27. 9/27/2022 27 ADS simulations for Gain (2) m1 Component= our_bgain[0::x,0]=22.018 b6 b2_BPF1 b3_MIX1 b5_BPF2 b1_AMP1 b6 0 10 20 -10 30 Component our_bgain[0::x,0] m1 Gain in the Receive RF chain MIXER BPF LPF LNA P_in P_out Swapped RF Front End Receiver Design - Simulations
  • 28. 9/27/2022 28 ADS simulations for NF(1) m1 Component= our_bnf[0::x,0]=4.259 b6 b2_AMP1 b3_MIX1 b5_BPF2 b1_BPF1 b6 1 2 3 4 0 5 Component our_bnf[0::x,0] m1 NF in the Receive RF chain BPF MIXER LPF LNA P_in P_out RF Front End Receiver Design - Simulations
  • 29. 9/27/2022 29 ADS simulations for NF(2) MIXER BPF LPF LNA P_in P_out Swapped m5 Component= our_bnf[0::x,0]=2.468 b6 b2_BPF1 b3_MIX1 b5_BPF2 b1_AMP1 b6 0.5 1.0 1.5 2.0 0.0 2.5 Component our_bnf[0::x,0] m5 NF in the Receive RF chain RF Front End Receiver Design - Simulations
  • 30. 9/27/2022 30 ADS simulations for IMD (1) RF Front End Receiver Design - Simulations
  • 31. 9/27/2022 31 ADS simulations for IMD (2) 0.2 0.4 0.6 0.8 1.0 1.2 0.0 1.4 -100 -80 -60 -40 -20 -120 0 freq, GHz dBm(Mix1_in) Original Signal 0.2 0.4 0.6 0.8 1.0 1.2 0.0 1.4 -100 -80 -60 -40 -20 -120 0 freq, GHz dB(BPF1_in) UpConvertion Mixer Output 300 500 700 100 900 -300 -200 -100 0 -400 50 freq, MHz dBm(Link1_in) Transmitted Signal RF Front End Receiver Design - Simulations 300 500 700 100 900 -400 -300 -200 -100 -500 0 freq, MHz dBm(Amp2_in) Receiver LNA input
  • 32. 9/27/2022 32 ADS simulations for IMD (3) 200 400 600 0 800 -100 -80 -60 -40 -20 0 -120 20 freq, MHz dBm(Mix2_in) Downconverter Mixer Input 200 400 600 0 800 -100 -80 -60 -40 -20 0 -120 20 freq, MHz dBm(LPF1_in) Downconverter Mixer Output 0.2 0.4 0.6 0.8 1.0 1.2 0.0 1.4 -250 -200 -150 -100 -50 -300 0 freq, GHz dBm(LPF1_out) LPF output 0.2 0.4 0.6 0.8 1.0 1.2 0.0 1.4 -250 -200 -150 -100 -50 -300 0 freq, GHz dBm(Mix1_in) Original Signal RF Front End Receiver Design - Simulations
  • 33. 9/27/2022 33 ADS simulations for SFDR 0.2 0.4 0.6 0.8 1.0 1.2 0.0 1.4 -100 -80 -60 -40 -20 -120 0 freq, GHz dBm(LPF1_out) LPF output RF Front End Receiver Design - Simulations Rx Signal Level = -25dBm SFDR ~= 50 dB SFDR
  • 34. 9/27/2022 34 RF Front End Receiver Design - Simulations
  • 35. 9/27/2022 35 Roadmap • ADS with Matlab • ADS with Instruments • Set-up Evaluation board • Migrate to 2.4 GHz RF Front End Receiver Design
  • 36. 9/27/2022 36 RF Front End Receiver Design ?

Editor's Notes

  1. 1
  2. 5
  3. 25
  4. 31
  5. 32